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Statistics of heat transfer in mesoscopic circuits
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A method to calculate the statistics of energy exchange between quantum systems is presented. The gener-
ating function of this statistics is expressed through a Keldysh path integral. The method is first applied to the
problem of heat dissipation from a biased mesoscopic conductor into the adjacent reservoirs. We then consider
energy dissipation in an electrical circuit around a mesoscopic conductor. We derive the conditions under
which measurements of the fluctuations of heat dissipation can be used to investigate higher-order cumulants
of the charge counting statistics of a mesoscopic conductor.
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INTRODUCTION

During the second decade of mesoscopic physics th
has been an increasing interest in thermal phenomena.
eral experiments succeeded in measuring properties of
transport in mesoscopic samples: Experimental tools ba
on the Coulomb blockade to measure accurately local t
peratures in mesoscopic samples have been established1,2 It
has been demonstrated that the heat conductance thr
one-dimensional phonon modes of a microbridge is qu
tized at low temperatures.3 The universal heat conductanc
per mode is given byp2k2T/3h. The same universal hea
quantum is also found for carriers other than bosons~see
Ref. 4 and references therein!. Thermopower was experi
mentally investigated for a quantum dot in the Coulom
blockade regime5,6 and for multiwalled carbon nanotubes7

The Andreev reflection process is ineffective for heat tra
port and has been employed to measure thermopower in
dreev interferometers. The thermopower depends on
magnetic flux and shows geometry dependent time inver
properties.8

All these experiments have in common that they inve
gate mean properties averaged over time. In electrical tr
port, however, noise measurements have become a very
ful tool to study properties of non-equilibrium systems whi
are hidden in measurements of the mean current~for a re-
view see Ref. 9!. A recent milestone was the first success
experimental investigation of higher-order current correlat
by Reuletet al.10 It revealed an unexpected temperature
pendence that was explained by accounting for an exte
measurement circuit.11 The calculation of average curren
and current fluctuations can be unified within the concep
full counting statistics that has been introduced into mes
copic physics a decade ago. It was shown by Levitov a
Lesovik that coherent charge transfer through a two-term
conductor can be seen as probabilistic process defi
through a set of transmission probabilities.12 Thereafter dif-
ferent works investigated the statistics of other measura
quantities in mesoscopic structures such as voltag13

momentum,14 and charge inside a mesoscopic volume.15

In this publication we address the statistics of fluctuatio
of energy exchange. We investigate the statistics of ene
flow into a subvolume of a quantum system. In the first p
0163-1829/2004/69~15!/155334~8!/$22.50 69 1553
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of the paper, we write the generating function of this sta
tics in a Keldysh-representation.16 The ‘‘counting field’’ that
generates moments of transferred energy enters as a g
field that shifts the time evolution of the studied subvolum
relative to that of the rest of the system.

In Sec. II we apply our approach to a simple examp
which nicely demonstrates the basic features of energy tr
fer: We consider the energy dissipation from a biased me
scopic conductor into one of its reservoirs. The problem
been addressed before for a conductor at zero temperatu17

In Ref. 18 it was shown that dissipation happens symme
cally, that is, each reservoir dissipates half of the energy.
find that this is true only on average and we determine fl
tuations around this rule. In contrast to the statistics
charge transfer through such a conductor, the transfer of
is not quantized. In Sec. III we derive general relations
the statistics of energy exchange between a quantum sy
and a linear environment. Moments of the exchanged ene
are expressed in terms of correlators of the variable
couples the quantum system to its environment. We ap
these results to a mesoscopic conductor which is embed
in a macroscopic measurement circuit in Sec. IV. T
energy-transfer statistics is related to correlators of the c
rent through the mesoscopic conductor. One expects tha
second moment of energy dissipated in a series resistor
pends on the fourth moment of current fluctuations in
mesoscopic conductor. This suggests to use a measure
of heat fluctuations as a probe to study higher-order cur
correlations in mesoscopic conductors. We quantify this
pectation and derive the conditions under which higher-or
current correlators can be extracted from an energy meas
ment.

I. APPROACH

We study the statistics of the exchange of energy betw
two subvolumesV and V̄ of a quantum system. We assum
that no degrees of freedom leave or enterV and thatV is
coupled toV̄ only through one degree of freedomj V . j V

shall be coupled to the variableXV̄ in V̄, see Fig. 1. A gen-
eralization of our approach to more than one coupling va
able is straightforward. Our model Hamiltonian reads
©2004 The American Physical Society34-1
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H5HV1HV̄1 j VXV̄ ~1!

with @ j V ,XV̄#5@ j V ,HV̄#5@HV ,XV̄#5@HV ,HV̄#50.
To calculate the statistics of the flow of energy intoV in a

period of time@0,t# we assume it to be in an eigenstateuEV&
of HV at time t50 and calculate moments ofHV at time t
5t, defining the generating function

Z̄~j!5^ei jHV/2eiH te2 i jHVe2 iH tei jHV/2&. ~2!

~We have set\51.! The average is taken over the initi
stateuEV&. The exponential exp$2ijHV% generates moment
of the energy inV at time t. Through the exponential
exp$ijHV/2%uEV&5exp$ijEV/2%uEV& and^EVuexp$ijHV/2% the
initial energy EV in V is subtracted from that such thatZ̄
generates moments ofnHV5eiH tHVe2 iH t2EV , the flux of
energy intoV during @0,t#,

^~nHV!p&5 i p
]p

]jp
Z̄~j!uj50 . ~3!

A generalization ofZ̄ that generates correlators of the ener
flux at finite frequency is the functional

Z@jW #5^TQ ei *dt[H2 j̇2(t)HV]TW e2 i *dt[H2 j̇1(t)HV]&. ~4!

The symbolsTW (TQ ) denote~inverse! time ordering and we
have collected the two source functions into a vector in
‘‘Keldysh space,’’jW5(j1,j2). Z correlates the energy flu
at different times,

K )
q51

p

ḢV~ tq!L 5S i

2D p

)
q51

p F d

dj1~ tq!
2

d

dj2~ tq!
GZuj50 .

~5!

Z arises naturally as one models a linear detector that m
sures the energy fluxḢV into V.16 The detector read-offr is
then a linear functional ofḢV ,

^r ~t!&5 K E dt s~t2t !ḢV~ t !L , ~6!

where the response functions(t) is causal,s(t)50 for t
,0, and it depends on the internal dynamics of the detec
Moments of the detector read-off are then generated bZ
according to

FIG. 1. Quantum system divided into two subvolumesV andV̄
that are coupled via the variablesj V andXV̄ .
15533
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^r p~t!&5S i

2D p ]p

]jp
ZF S js~t2t !

2js~t2t !
D GU

j50

. ~7!

Evidently, Eq.~4! reduces to Eq.~2! for the measurement o
the time integrated energy flow during@0,t#, if s(t)5ut(t)
[u(t)2u(t2t) @with the step functionu(t)51 for t.0
andu(t)50 for t<0].

In the interaction picture with respect to the uncoupl
problem H05HV1HV̄ , j V(t)5exp$iHVt%jVexp$2iHVt% and
XV̄(t)5exp$iHV̄t%XV̄exp$2iHV̄t%, Z takes the form

Z@jW #5^TQ ei *dt[XV̄(t) j V(t)2 j̇2(t)HV]TW e2 i *dt[XV̄(t) j V(t)2 j̇1(t)HV]&.
~8!

We rewrite Eq.~8! by breaking the time-ordered produ
up into a large number of time-development exponentials
infinitesimal time stepse. Applying to each one of them the
identity

e2 iH Vj(t)e2 i e j V(t)XV̄(t)eiH Vj(t)5e2 i e j V[ t2j(t)]XV̄(t) ~9!

we find that

Z@jW #5^TQ ei *dt jV[ t2j2(t)]XV̄(t)TW e2 i *dt jV[ t2j1(t)]XV̄(t)&.
~10!

The generating functional of the statistics of energy flow in
a volumeV takes the form of a partition functional of th
entire system with shifted time arguments of all variables
V. An analogous structure has been found before for the
tistics of transfer of other globally conserved quantities, su
as charge12 and momentum.14 Also there the generating func
tional has the structure of Eq.~10!. The source term locally
shifts the variable conjugated to the measured quantity~the
phase for a measurement of charge, position for a momen
measurement, and time for the energy measurement con
ered here!.

In a path integral formulation of Eq.~4! we mark fields
that evolve the system forward and backward in time w
superscripts1 and2, respectively, and we collect them i
vectors like the sourcejW . We may change integration var
ables asj V

6(t2j6(t))→ j V
6(t) in the action corresponding to

HV if u j̇(t)u,1 at all times~only then this map is bijective!.
The path integral takes then a form very similar to Eq.~10!,

Z@jW #5E D jWVDXW V̄e2 i (SV[ jWV] 1SV̄[XW V̄])e2 i *dt jWV(t2jW (t))t3XW V̄(t).

~11!

We have introduced actionsSV and SV̄ for the uncoupled
volumesV andV̄ that are obtained by integrating the actio
corresponding toHV andHV̄ over all variables exceptj V and
XV̄ , respectively.t3 is the third Pauli matrix and we use th
notation @ jWV(t2jW (t))#a5 j V

a(t2ja(t)) (a5$1,2%). The

assumptionu j̇(t)u<1 has the following physical interpreta
tion. From Eq.~3! and its finite frequency generalization it
seen that one can infer a probability distribution of ener
flow by Fourier transforming the generating functionZ(j).
To resolve energy differences of the order ofDE in this
distribution one needs to knowZ for values jDE.1/DE.
4-2
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STATISTICS OF HEAT TRANSFER IN MESOSCOPIC . . . PHYSICAL REVIEW B 69, 155334 ~2004!
The conditionu j̇(t)u,1 means then that the energy detec
smears out the measurement over a timeDt.jDE.1/DE,
that is, it does not attempt to measure the energy faster
it is allowed to by the uncertainty relation.

II. HEAT DISSIPATION STATISTICS IN TUNNEL
JUNCTIONS

We first illustrate our method with a particularly simp
example: we calculate the statistics of heat dissipated fro
voltage biased mesoscopic conductor into a bolometer
tached to its right contact~see Fig. 2!. We assume ideal res
ervoirs, that is, all energy transferred from one reservoir
the other by scattering electrons is subsequently release
heat by relaxation mechanisms and can be measured
bolometer. We address the zero frequency limit only, s
that the time of measurement exceeds the energy relaxa
time in the reservoir. The resulting statistics is then indep
dent of this relaxation time.

We express the action of a simple connector in circ
theory by the Keldysh Green’s functionsGL,R of the adjacent
reservoirs19,20

Scon5
i

2 (
n

Tr lnF11
1

4
Gn~$GL ,GR

j %22!G , ~12!

where theGn denote energy independent transmission pr
abilities and the brackets$,% anticommutation. The trace in
cludes integration over time. In the following, we address
zero frequency limit only. In this case, the time integration
Eq. ~12! is conveniently rewritten as energy integration. A
formulated in Eq.~10!, we obtain the statistics of heat diss
pation into the right contact by shifting all observables of t
right contact in time byj1 on the upper Keldysh contour an
by j2 on the lower contour. The diagonal elements ofGR in
the Keldysh space are left unchanged by this transforma
which can be cast in the following form~we introduce the
differencej5j12j2):

GR
j 5ei j(e2mR)t3/2GR

0~e!e2 i j(e2mR)t3/2,

Gj
0~e!5S 122 f j 2 f j

2~12 f j ! 2 f j21D . ~13!

The time shift introduces a rotation of the Green’s functi
GR analogous to charge counting statistics.19 f j5 f j (e) de-

FIG. 2. Geometry considered in this section: A bolometer
attached to one reservoir of a biased mesoscopic conductor
calculate the statistics of heat dissipated into the bolometer.
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notes the energy dependent Fermi function of contacj
5L,R that depends on temperatureTj and electrochemica
potentialm j . Evaluating Eq.~12! in the zero-frequency limit
we find the cumulant generating function24

lnZ@j#5
t

2pE de(
n

ln$11Gnf L~12 f R!~e2 i j(e2mR)21!

1Gnf R~12 f L!~ei j(e2mR)21!%. ~14!

Cumulants of dissipated energy can now be calculated ea
by taking derivatives with respect toj. The mean dissipation
without applied voltage (m j50) is for instance given by

^DHV&5 i
] lnZ
]j U

j50

5
pt

12 (
n

Gn$~kTL!22~kTR!2%.

~15!

For almost equal temperaturesTL→TR we recover the me-
soscopic version of the Wiedemann-Franz law for therm
conductance.21,22

We note that Eq.~14! is similar to the statistics of charg
transfer:12 Charge statistics is recovered by substitutingj(e
2mR)°xe wheree is the elementary charge and the fieldx
generates cumulants of charge transfer. As for charge st
tics, there is a classical probabilistic interpretation of E
~14!: An electron of total energye in channeln passes the
mesoscopic conductor with probabilityGn . It then dissipates
the energye2mR in the right contact. It is the energy inte
gration in Eq.~14! which makes the statistics of heat transf
interesting. Unlike in the binomial charge statistics the exp
nent i j(e2mR) assigns energy weights to each electro
Therefore, energy transfer is not quantized.

We now turn to a specific example: the tunnel juncti
with Gn!1. In this case, the logarithm of Eq.~14! can be
expanded and the energy integration involves only elem
tary integrals~for equal temperaturesTL5TR5T on both
sides of the junction!. Definingm5mL2mR we find the fol-
lowing result for the characteristic function:

lnZ@j#5Gtcoth
m

2kT S kT
sin~jm!

sinh~pjkT!/p
2m D

2 iGt
12cos~jm!

sinh~pjkT!/p
. ~16!

We introduced the conductance of the junctionG
5(Gn/2p. For comparison, we also give the statistics
charge transfer23

lnZ@x#5Gtmcoth
m

2kT
@cos~xe!21#2 iGmsin~xe!.

~17!

We observe several differences: WhereasZ@x# is strictly pe-
riodic, the characteristic function of heat dissipationZ@j#
shows damped oscillations. The lacking periodicity is due
the unquantized transfer of energy. For charge transfer,
real part ofZ@x# is even in the applied voltagem in contrast
to an odd imaginary part. Odd cumulants therefore cha
sign under voltage inversion. This is not the case for ene

s
e

4-3
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M. KINDERMANN AND S. PILGRAM PHYSICAL REVIEW B 69, 155334 ~2004!
Z@j# does not depend on the sign of the applied volta
Heat dissipation takes place in both reservoirs symmetric
regardless of the current direction! Odd cumulants of cha
transfer@the imaginary part of Eq.~17!# do not depend on
temperature.23 In contrast, we find that the asymmetry of th
distribution of dissipated heat does depend on tempera
@see the imaginary part of Eq.~16!#.

Another interesting case is the statistics in the presenc
a temperature gradient only. Analytical results are availa
for TL@TR . We find

lnZ@j#52GtkTLH ip

sinh~pkTLj!
1 ln~2!2b~2 ikTLj!J

5GtkTLH 2 i
p2

6
kTLj2

3z~3!

2
~kTLj!2

1 i
7p4

360
~kTLj!31•••J ~18!

for energy transport and

lnZ@x#52GtkTLln~2!@cos~xe!21# ~19!

for charge transport@we introduced theb-function b( iz)
5(n50

` (21)n/( iz1n)]. Figure 3 illustrates several limiting
cases: On a log scale, it compares the charge- and en
transfer statistics in equilibrium, and in nonequilibrium d
to an applied voltage@see Eqs.~16! and ~17!# and due to an
applied temperature gradient@see Eqs.~18! and ~19!#.

In general, Eq.~14! has to be evaluated numerically. Fig
ure 4 shows the probability distribution of dissipated heat
barriers with various transparenciesGn5G in the high-
voltage regimem@kT. Noise disappears in the ballistic lim

FIG. 3. Comparison of energy dissipationDHV5HV2^HV&
~upper panel! and chargeDQ5Q2^Q& statistics~lower panel! for
a tunnel contact in equilibrium and nonequilibrium due to an
plied bias or temperature difference. The energy is normalize
temperaturekTL or biasm5mL2mR , respectively. The product o
N5mt/2p,kTLt/2p, and dimensionless conductanceG is assumed
to be large.
15533
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G51. It is clearly visible that the third cumulant of the dis
tribution changes its sign as a function ofG. We find that

^~DHV!3&5Gm4~12G!~122G!/4 ~20!

~see also the inset of Fig. 4!.
In this entire section, we assumed that the energy diss

tion in the right reservoir is measured by an ideal bolome
which does not act back on the mesoscopic contact. A r
istic bolometer is characterized by a finite thermal cond
tance. Energy fluctuations in the right reservoir are then c
verted into temperature fluctuations which modulate
noise intensity of the mesoscopic contact. This backactio
similar to the backaction from a nonideal current meter.11

III. ENERGY FLOW INTO A LINEAR MEDIUM

We use now Eq.~11! to calculate the statistics of energ
flow from a systemS into a linear medium. An example i
the energy thatS emits as electromagnetic radiation. Th
electromagnetic field is then the linear medium into whi
energy flows. This energy flow may for example be me
sured with a photodetector. The distribution of the number
photons emitted by a source currentj S can be expressed in
terms of correlators ofj S .26 In Ref. 26 this relation has bee
established perturbatively in a weak coupling of the pho
detector to the electromagnetic field. In Ref. 27 it has be
used to calculate the fluctuations in the number of phot
emitted by a mesoscopic conductor. Equation~11! allows us
to obtain these results nonperturbatively. As a second ap
cation of our method we calculate the fluctuations in t
amount of heat that is dissipated in a macroscopic electr
circuit around a mesoscopic conductor. Such fluctuati
could be measured with a bolometer.

A. General relations

In our analysis we divide space into three regions. T
systemS, a volumeV into which the energy flow is measure

-
to

FIG. 4. Probability Distribution of dissipated energy into on
reservoir of a biased mesoscopic conductor (m@kT). The distribu-
tion is broader for tunneling junctions (G50.01) than for open
point contacts (G50.80). It is clearly seen that the third cumula
of the distribution changes sign. The inset shows the third cumu
^(DHV)3& as a function of the transparencyG. (G is the dimension-
less conductance andN5mt/2p, we assumeNG to be large!.
4-4
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STATISTICS OF HEAT TRANSFER IN MESOSCOPIC . . . PHYSICAL REVIEW B 69, 155334 ~2004!
and a regionẼ. We callE5Ẽ1V the environment ofS. The

subspaces are connected via two variablesXS andXV̄ in Ẽ,
that couple toj S in S and j V in V, respectively~see Fig. 5!.
With the HamiltoniansHS , HẼ , andHV of S, Ẽ, andV we
then have the total Hamiltonian

H5HS1HẼ1HV1XS~ j S2 j̄ S!1XV̄~ j V2 j̄ V!, ~21!

where j̄ V and j̄ S are sources that generate moments ofXV̄
andXS . The generating functional for correlators of the e
ergy flow intoV takes the form of Eq.~11! with

e2 iSV̄[XW V̄]5E DXW SD jWSe2 i (SS[ jWS] 1SẼ[XW S ,XW V̄])e2 i *dt jWS(t)t3XW S(t)

~22!

with the actionsSS and SẼ corresponding toHS and HẼ .
SẼ , being the action of a linear system, is quadratic a
depends only on the response functions ofẼ and its tempera-
tureT. We characterize the response ofE when disconnected
from S ~corresponding to the HamiltonianH2HS2XSj S) by
four functions,

RSS~v!5
]XS~v!

] j̄ S~v!
U

j̄ V

, RSV~v!5
]XS~v!

] j̄ V~v!
U

j̄ S

,

RVS~v!5
]XV̄~v!

] j̄ S~v!
U

j̄ V

, RVV~v!5
]XV̄~v!

] j̄ V~v!
U

j̄ S

. ~23!

The volumeV is described by the response to a sourceX̄V

coupling to j V in the absence ofẼ, corresponding to the
HamiltonianHV2 j VX̄V̄ ,

Riso
21~v!5

] j V~v!

]X̄V̄~v!
. ~24!

The environment’s action is determined by the fluctuat
dissipation theorem.16 The action forj V when V is isolated
reads

Siso@ jWV#5 jWV^ Miso^ jWV . ~25!

The matrix multiplication̂ extends over Keldysh as well a
time indices,@A^ B#(t,t9)[*dt8 A(t,t8)B(t8,t9) and corre-
spondingly for vectors like jWV(t). In a steady state

FIG. 5. S is an arbitrary quantum system. The energy flow in
the partV of its linear environment is considered in this section. T
variablesj S , XS and j V , XV̄ couple the three constituent volume
15533
-

d

n

Miso(t,t8) depends only on the time differencet2t8 and in
Fourier representationM (v)5*d(t2t8)eiv(t2t8)M (t2t8)
it reads

Miso~v!5 1
2 Riso~v!t31 i Im Riso~v!G0~v!, ~26!

G0~v!5S N~v! 2N~v!

2N~v!21 N~v!11D , ~27!

with the Bose-Einstein distributionN(v)5(exp$v/kT%
21)21. ~We define the response functions such that they h
negative imaginary part.!

We analyze first the particularly simple case that the
ergy flow into the entire environment toS is measured,V
5E. Then we haveXV̄5 j S , XS5 j V and SV̄5SS . We re-
write Eq. ~11! by introducing a coupling matrix

s~ t,t8!5S d@ t2t81j1~ t8!# 0

0 d@ t2t81j2~ t8!#
D ,

~28!

Z@jW #5E D jWSD jWVe2 i (SS[ jWS] 1Siso[ jWV] 1 jWV^ t3s ^ jWS). ~29!

The Gaussian integrals overjWV in Eq. ~29! are easily done,
resulting in

Z@jW #5E D jWSe2 i (SS[ jWS] 1SE[ jWS] 1AjW [ jWS]) ~30!

with an actionSE that describes the influence of the enviro
ment onS,

SE@ jWS#52 1
4 jWSt3^ Miso

21
^ t3 jWS , ~31!

and a source termAjW that vanishes atjW50,

AjW@ jWS#5 jWS^ AjW ^ jWS , AjW52 1
4 t3ajWt3 , ~32!

ajW5s†
^ Miso

21
^ s2Miso

21 . ~33!

In the general caseVÞE, the environment’s action is dete
mined byRSS,

SE@ jWS#5 jWS^ GSŜ jWS , ~34!

Gag5 1
2 @Ragt31~Rag2Rga* !G0#, a,gP$S,V%.

~35!

The source term then takes the form

AjW5GSV^ $@GVV1GVV^ ajW ^ GVV!#212GVV
21% ^ GVS.

~36!

Equation~32! is recovered forXV̄5 j S andXS5 j V , such that
RVV50, RSS52Riso

21 , andRVS5RSV51.

B. Zero frequency

For concrete results we focus on zero-frequency corr
tors of the energy flow, choosingjW5(1,21)ut(t)j/2 @cf. Eq.
~7!#. We neglect transient effects, that is, we calculate o
4-5
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M. KINDERMANN AND S. PILGRAM PHYSICAL REVIEW B 69, 155334 ~2004!
terms of leading order in the timet over which energy is
accumulated. We may then work in the discrete Fou
space oft-periodic functionsf, with Fourier coefficientsf l

5*0
tdt eiv l t f (t)/t and frequenciesv l52p l /t. In this repre-

sentation the source term in Eq.~30! reads

Aj@ jWS#5t(
l

jWS,lAj,l jWS,l . ~37!

s is now diagonal in frequency indices,

s l5S e2 iv lj/2 0

0 eiv lj/2D , ~38!

and so isAj . At zero temperature it takes a simple form ev
in the general caseEÞV,

Aj,l5uRVS~v l !u2S 0 0

i Im Riso
21~v l !~e2 i jv l21! 0D . ~39!

Applied to a linear photodetector this reproduces the dis
bution of photocounts in response to a sourcej S obtained
perturbatively in Ref. 26. To see this we substitutejv l
→jn in Eqs.~30! with Equation~37! and ~39! to obtain the
statistics of the number of absorbed quantan rather than that
of the absorbed energy. The further substitutione2 i jn21
→xn yields the generating function for factorial moments
n. To compare the resulting factorial moments of the pho
count to the formulas obtained in Ref. 26, we write them
the time domain,

^n~n21!•••~n2p!&

5K F E
2`

`

dt8 dt9E
0

t

dt8 dt9Im Riso
21~ t8,t9!RVS~ t8,t8!

3RVS~ t9,t9! j S
2~t8! j S

1~t9!G pL
SS1SE

. ~40!

This is equivalent to Eq.~30! in Ref. 26. The detector sens
tivity f there corresponds to our ImRiso

21 , the density of ab-
sorbing detector modes per unit of frequency. The retar
photon propagatorDret corresponds to our cross-respon
function iRVS. The time ordering ofj S

1 and j S
2 along the

Keldysh contour corresponds to the ‘‘apex’’ time order of t
sources in Ref. 26. The expectation value in Eq.~40! is taken
with respect to the actionSS of the source system and th
pieceSE that describes the back action of the environment
S.

IV. LINEAR ELECTRICAL CIRCUITS

Electrical conductors couple to their electromagne
environment—the circuit that they are embedded in—w
the currentI S that flows through them. To calculate the flo
of energy into this environment we may therefore apply
formulas obtained in the previous section withj S5I S , HS
being the Hamiltonian of the conductor. Also in this ca
energy is transferred by means of photons. These pho
may be either detected by a photocounter27 or with a bolom-
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eter, that measures the thermal energy exchanged by m
of photons. According to Eq.~40! the nth factorial moment
of energy transfer is proportional to the 2nth moment of
fluctuations of the sourcej S . This suggests that a measur
ment of the energy flow and its fluctuations may be a use
tool for measuring higher-order correlators of electrical c
rents whose measurement poses an experimental challe
While experimental techniques for the measurement of
variance of electrical current fluctuations are by now w
developed, so far only one experiment has been success
measuring higher-order current correlators. In Ref. 10
measurement of the third moment of current fluctuatio
through a tunnel barrier has been reported. Equation~40!
suggests that the fourth moment of current fluctuations
be inferred from the variance of the heat produced by the
Since for statistical reasons determining the variance o
quantity is much easier than measuring the fourth cumula
moment, a measurement of heat fluctuations has advant
over the direct charge fluctuation detection.

To quantify this we apply now the relations obtained
the previous section to the electrical circuit depicted in F
6. We assume all resistors in the circuit to be macrosco
and linear, exceptRS , that plays now the role of the system
S. Fluctuations of the amount of heat that is dissipated inRV

as measured with a bolometer are by virtue of Eq.~40! re-
lated to fluctuations in the electrical current throughRS . For
that the volumeV should be chosen the resistorRV . The
current I V flowing through the volumeV is coupled to the

variablex V̄ in the rest of the environmentẼ. This variable
x V̄ is the time integral of the voltageVV̄ over RV , x V̄(t)
5* tdt8 VV̄(t8). The currentI S throughRS similarly couples
to the environment variablexS(t)5* tdt8 VS(t8). Again we
introduce external sourcesĪ V and x̄ V̄ . The circuit Fig. 6 is
then mapped onto the general model of Fig. 5 with t
choice XV̄5x V̄ , X̄V̄5x̄ V̄ , XS5xS , j V5I V , j̄ V5 Ī V , j̄ S

5 Ī S , and j S5I S . We need the response functions of t
circuit Fig. 6 without the conductorRS ,

RSS5
]xS

] Ī S
U

Ī V

5
1

iv FZS1S 1

Z
1

1

ZV1RV
D 21G ,

FIG. 6. Electrical circuit analyzed in this section.RS is the con-
ductor that generates current fluctuationsdI S . These fluctuations
can be characterized by a measurement of fluctuations of the
that is dissipated in the external resistorRV .
4-6
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RVS5RSV5
]xS

] Ī V
U

Ī S

5
1

iv

ZRV

Z1ZV1RV
, ~41!

RVV5
]x V̄

] Ī V
U

Ī S

5
1

iv S 1

RV
1

1

ZV1ZD 21

, ~42!

Riso
215

]I V

]x̄ V̄
U

isolated

5
iv

RV
~43!

~all quantities here are frequency-dependent!. Note, that any
four-terminal circuit connecting the conductorRS with RV
can be modeled by the three resistorsZ, ZS , and ZV . The
resulting zero-frequency energy flow statistics takes a p
ticularly simple form in the limit of an infiniteZ. Then the
current flowing throughRS is directly fed intoRV and the
source term in the generating functional~30! is given by Eq.
~37! with

Aj,l52
ReRV~v l !

iv l

3S 0 N~v l !~ei jv l21!

@N~v l !11#~e2 i jv l21! 0 D .

~44!

This is a generalization of Eq.~39! to finite temperature,
allowing for emission of energy quanta fromV as well as
absorption. The transferred quanta have predominantly e
gies that are smaller than the inverse of the RC timetRC of
RV . For finite Z thermal current fluctuationŝdI 2& th'kT/Z
created inZ mix into the fluctuations ofI S . As a conse-
quence Eq.~44! is then only valid in the regime (tRCkT)2

!uZ/RVu.
The formulas for the statistics when the mixing in of the

mal fluctuations occurs are more complicated. To make
ther progress we assume that the frequency dispersion o
measured current correlators is negligible on the sc
1/tRC , ^^)q51

p I S(vq)&&'2pd((q51
p vq)Cp for vq!1/tRC

~here ^^•••&& denotes irreducible, or cumulant correlator!.
For a mesoscopic conductor this is satisfied if 1/tRC is
smaller than the voltage applied to the conductor. In t
limit we find that

^DHV&52tE
0

`dv

2p
Re f f~v!C2 ~45!

^^~DHV!2&&

54tH F E
0

`dv

2p
Re f f~v!G2

C41E
0

`dv

2p

3FRe f f
2 ~v!C2

22
v

2
@2N~v!11#Re f f~v!C2G J

~46!
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with Re f f5ReRVuZ/(Z1ZV1RV)u2. We have assumed tha
Re f f(0)50 andRe f f(v)→0 for v.1/tRC such that the dc
component~that will be avoided in experiments! and the
contributions from frequenciesv.1/tRC in Eqs. ~45! and
~46! are negligible. We conclude that the variance of the h
dissipated inRV depends on the fourth cumulant of curre
fluctuations in the mesoscopic conductor, as one would
pect. There are, however, also contributions from low
order current correlators. The environment circuit has a fin
response timetRC and therefore effectively averages fluctu
tions over that time. As a result, the energy fluctuations
come dominated by the lowest order current correlator in
limit of a long tRC , when higher-order current correlato
become negligible and the statistics becomes Gaussian
this limit of ‘‘narrow-band detection’’ the statistics of energ
transfer is negative binomial.27 Only deviations from this
encode non-Gaussian current correlations. In order to
them the statistics of charge flow through the conductor d
ing tRC has to be strongly non-Gaussian. This is the cas
tRCĪ /e, the mean number of transmitted electrons in th
period, is small.

More concretely, for a measurement of the fourth cum
lant C4 of current fluctuations inRS one would want the first
term in Eq. ~46! to be dominant. An estimate of the thre
summands in Eq.~46! for a tunnel contact with mean curren
Ī @assuming thatRe f f(v)'Re f f for v,1/tRC],

^^~DHV!2&&'
t

tRC
2

Re f f
2 GQeĪ

3S 11
tRCĪ

e
1

tRC
2 kTmin$kT,1/tRC%

GQRe f f
D
~47!

~with the conductance quantumGQ5e2/2p) confirms this.
The variance of fluctuations of the heat flux intoRV is a
direct measure for the fourth cumulant of current fluctuatio
in a tunnel contact iftRCĪ /e!1 andtRCkT!GQRe f f . The
origin of the first condition has been explained qualitative
above. The second condition ensures that the fourth cu
lant is visible on the thermal background. Back action effe
of the measuring resistor on the measured tunnel con
~conductanceG) are avoided if additionallyRSSG!1.16

These requirements are rather restrictive, but can in princ
be met in experiments. For a practical implementation,
first conditiontRCĪ /e!1 may be relaxed totRCĪ /e.1 by
measuring the voltage dependence of^^(DHV)2&& and ex-
tracting the term that is linear inĪ .

CONCLUSION

We have presented a theory for the statistics of ene
exchange between coupled quantum systems. As an app
tion we have calculated the statistics of energy dissipa
into the leads connected to a mesoscopic conductor. Gen
and exact expressions can be obtained for the energy
from a quantum system into a linear environment. We ha
4-7
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M. KINDERMANN AND S. PILGRAM PHYSICAL REVIEW B 69, 155334 ~2004!
used these results to calculate the moments of the heat
sipated in a linear circuit around a mesoscopic conduc
They have been expressed in terms of moments of the
rent fluctuations produced by the conductor. As one expe
the variance of this dissipated heat depends on the fo
cumulative moment of current fluctuations produced by
conductor. Heat fluctuations may therefore serve as a too
detect the fourth cumulant, whose direct measurement is
ficult. We have analyzed the conditions under which a m
surement of heat fluctuations can reveal higher-order cu
lants of the charge counting statistics.
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