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Statistics of heat transfer in mesoscopic circuits
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A method to calculate the statistics of energy exchange between quantum systems is presented. The gener-
ating function of this statistics is expressed through a Keldysh path integral. The method is first applied to the
problem of heat dissipation from a biased mesoscopic conductor into the adjacent reservoirs. We then consider
energy dissipation in an electrical circuit around a mesoscopic conductor. We derive the conditions under
which measurements of the fluctuations of heat dissipation can be used to investigate higher-order cumulants
of the charge counting statistics of a mesoscopic conductor.
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INTRODUCTION of the paper, we write the generating function of this statis-
tics in a Keldysh-representatidfThe “counting field” that

During the second decade of mesoscopic physics thergenerates moments of transferred energy enters as a gauge
has been an increasing interest in thermal phenomena. Sefield that shifts the time evolution of the studied subvolume
eral experiments succeeded in measuring properties of hegglative to that of the rest of the system.
transport in mesoscopic samples: Experimental tools based In Sec. Il we apply our approach to a simple example
on the Coulomb blockade to measure accurately local temhich nicely demonstrates the basic features of energy trans-
peratures in mesoscopic samples have been estabfiéhed. fer: We consider the energy dissipation from a biased meso-
has been demonstrated that the heat conductance througgopic conductor into one of its reservoirs. The problem has
one-dimensional phonon modes of a microbridge is quanbeen addressed before for a conductor at zero temperature.
tized at low temperaturésThe universal heat conductance In Ref. 18 it was shown that dissipation happens symmetri-
per mode is given byr?k?T/3h. The same universal heat cally, thatis, each reservoir dissipates half of the energy. We
quantum is also found for carriers other than bOS(BE find that this is true onIy on average and we determine fluc-
Ref. 4 and references ther@:_inThermopower was experi_ tuations around this rule. In contrast to the statistics of
mentally investigated for a quantum dot in the Coulombcharge transfer through such a conductor, the transfer of heat
blockade regime® and for multiwalled carbon nanotubés. is not quantized. In Sec. Ill we derive general relations for
The Andreev reflection process is ineffective for heat transthe statistics of energy exchange between a quantum system
port and has been employed to measure thermopower in Ar@nd a linear environment. Moments of the exchanged energy
dreev interferometers. The thermopower depends on th@re expressed in terms of correlators of the variable that
magnetic flux and shows geometry dependent time inversiogouples the quantum system to its environment. We apply
propertie$ these results to a mesoscopic conductor which is embedded

All these experiments have in common that they investiin & macroscopic measurement circuit in Sec. IV. The
gate mean properties averaged over time. In electrical trangnergy'tranSfer statistics is related to correlators of the cur-
port, however, noise measurements have become a very ugént through the mesoscopic conductor. One expects that the
ful tool to study properties of non-equilibrium systems which second moment of energy dissipated in a series resistor de-
are hidden in measurements of the mean cur(amta re- Pends on the fourth moment of current fluctuations in the
view see Ref. 9 A recent milestone was the first successfulmesoscopic conductor. This suggests to use a measurement
experimental investigation of higher-order current correlator®f heat fluctuations as a probe to study higher-order current
by Reuletet al° It revealed an unexpected temperature de-correlations in mesoscopic conductors. We quantify this ex-
pendence that was exp]ained by accounting for an externﬁectation and derive the conditions under which higher-order
measurement circult The calculation of average currents current correlators can be extracted from an energy measure-
and current fluctuations can be unified within the concept ofment.
full counting statistics that has been introduced into mesos-
copic physics a decade ago. It was shown by Levitov and
Lesovik that coherent charge transfer through a two-terminal I. APPROACH

conductor can be seen as probat>_|!|_st|c Process d_efmed We study the statistics of the exchange of energy between

through a set of transmission probabiliti€sThereafter dif- bvol &/ andV of ; ; Wi

ferent works investigated the statistics of other measurabl 0 subvolumes/andVv of a quanium system. YVe assume
that no degrees of freedom leave or erteand thatV is

quantities in mesoscopic structures such as voltige, gt
momentum-* and charge inside a mesoscopic volutne. coupled toV only through one degree of freedofy. jy

In this publication we address the statistics of fluctuationsshall be coupled to the variabk, in V, see Fig. 1. A gen-
of energy exchange. We investigate the statistics of energgralization of our approach to more than one coupling vari-
flow into a subvolume of a quantum system. In the first partable is straightforward. Our model Hamiltonian reads
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FIG. 1. Quantum system divided into two subvolurveandV
that are coupled via the variablgg and Xy, .

with [jV!xV]:[jVIHV]:[HV!XV]:[HVvHV]:O'

To calculate the statistics of the flow of energy iMan a
period of time[0,7] we assume it to be in an eigenst#ig))
of Hy at timet=0 and calculate moments &f, at timet
=7, defining the generating function

PHYSICAL REVIEW B 69, 155334 (2004

o) 67| ol

Z|
9&* [\ —é&s(m=0 /]|,
Evidently, Eq.(4) reduces to Eq(2) for the measurement of
the time integrated energy flow durifi@,7], if s(t)=6.(t)
=0(t)— 6(t— 1) [with the step functiond(t)=1 for t>0
and #(t) =0 for t<0].

In the interaction picture with respect to the uncoupled
problem Hy=Hy+Hy, jy(t)=exgiHt}jyexp—iH\t} and
Xy(t) = exgliHyt}Xvexp —iHyt}, Z takes the form

(rh(n)= ()

21— (Tl [T vt — € (OHVITa— i fAIXTD iyt — T (OHV]
Z[E]=(Te Te ).
(8)

We rewrite Eq.(8) by breaking the time-ordered product
up into a large number of time-development exponentials for
infinitesimal time stepg. Applying to each one of them the
identity

e HvEO g iev(OXVD giHvE(D = gTelvIt=¢MIXD  (g)

Z(£) = (eltHvi2giHTg—itHyg—iH gl EHvI2) @)

we find that
(We have sefi=1.) The average is taken over the initial
state|Ey). The exponential eXp-iéH,} generates moments
of the energy inV at time 7. Through the exponentials

Z[E]=(TelTativli=¢ OV iTdtivit-€ OO,
(10

expliéH\/2} Ev) = expliéE\/2} Ey) and(E,|exp(iéH\/2} the
initial energy Ey, in V is subtracted from that such that
generates moments ofH,=e'""H e "M "—E,,, the flux of
energy intoV during[0,7],

P
(BHYH=IP- 2o 3

The generating functional of the statistics of energy flow into
a volumeV takes the form of a partition functional of the
entire system with shifted time arguments of all variables in
V. An analogous structure has been found before for the sta-
tistics of transfer of other globally conserved quantities, such
as charg¥ and momentun* Also there the generating func-
tional has the structure of EL0). The source term locally
shifts the variable conjugated to the measured qualfttity
phase for a measurement of charge, position for a momentum

A general|zat|0n OB that generates correlators of the energymeasurement and time for the energy measurement consid-

flux at finite frequency is the functional

Z[E]=(TeldUH—€ OHITe ITdH-E" ORIy (4

The symbolsT(T) denote(inverse time ordering and we
have collected the two source functions into a vector in &bles ag s (t— &5 (1)
\%

“Keldysh space, ”g (€7,€7). Z correlates the energy flux

at different times,
i\p.P ) 5

Hy(t ) -
<H v q)> ( 11 SE (tg) € (ty)

Z|§=O .
©)

ered herg
In a path integral formulation of Eq4) we mark fields

that evolve the system forward and backward in time with
superscripts+ and —, respectively, and we collect them in
vectors like the sourcé. We may change integration vari-
)— ]y (t) in the action corresponding to

Hy if |£(t)|<1 at all times(only then this map is bijectiye
The path integral takes then a form very similar to Ef),

Z[E]= J DJ DXy (SvlivI+ SUXVD) g =i/ dt jy(t= D) raXit)
(11)

Z arises naturally as one models a linear detector that meé{ve have introduced actions, and Sy for the uncoupled

sures the energy fluklv into V.1® The detector read-off is
then a linear functional ofiy,

<f(7)>=<fdt5(7 DH v(t)> (6)

where the response functios(t) is causal,s(t)=0 for t

volumesV andV that are obtained by integrating the actions
corresponding tédy, andHy, over all variables except, and
Xy, respectivelyr; is the third Pauli matrix and we use the

notation [ jy(t—&(t))]1*=jy(t—&*(t)) (a={+,—}). The
assumption &(t)|<1 has the following physical interpreta-

tion. From Eq.(3) and its finite frequency generalization it is
seen that one can infer a probability distribution of energy

<0, and it depends on the internal dynamics of the detectoflow by Fourier transforming the generating functiggé).
Moments of the detector read-off are then generatedZby To resolve energy differences of the order ME in this

according to

distribution one needs to know for values &é,g=1/AE.
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o = notes the energy dependent Fermi function of confact
=L,R that depends on temperatufe and electrochemical
potentialu; . Evaluating Eq(12) in the zero-frequency limit
we find the cumulant generating functfén

<

InZ[§]=£f de; IN{1+T,f (1—fg)(e 1€ #R 1)

T fr(1—f) (€4 m— 1)), (14)

. o . ~ Cumulants of dissipated energy can now be calculated easily
FIG. 2. Geometry considered in this section: A bolometer |Sby tak|ng derivatives with respect g‘b The mean dlss|pat|0n

attached to one reservoir of a biased mesoscopic conductor. Wgithout applied voltage &; =0) is for instance given by
calculate the statistics of heat dissipated into the bolometer. !

) dInZ T ) )
The condition| £(t)| <1 means then that the energy detector ~ (AHV)=i el T12 ; La{ (KT = (kTr) -
smears out the measurement over a tifrte> £,=1/AE, ¢=0

S 15
that is, it does not attempt to measure the energy faster than (15
it is allowed to by the uncertainty relation. For almost equal temperaturés— Tr we recover the me-
soscopic version of the Wiedemann-Franz law for thermal
1,22
Il. HEAT DISSIPATION STATISTICS IN TUNNEL conductancé: o o
JUNCTIONS We note that Eq(14) is similar to the statistics of charge

transfer'? Charge statistics is recovered by substitutifg

We first illustrate our method with a particularly simple — ur)—> xe Wheree is the elementary charge and the figld
example: we calculate the statistics of heat diSSipated from Qenerates cumulants of Charge transfer. As for Charge statis-
voltage biased mesoscopic conductor into a bolometer atics, there is a classical probabilistic interpretation of Eq.
tached to its right contacsee Fig. 2 We assume ideal res- (14): An electron of total energy in channeln passes the
erVOirS, that iS, a” enel’gy transferred from one reserVOil’ th]esoscopiC Conductor W|th probab"iry_l t then dissipates
the other by scattering elec_trons is subsequently released g energye— ur in the right contact. It is the energy inte-
heat by relaxation mechanisms and can be measured by@ation in Eq.(14) which makes the statistics of heat transfer
bolometer. We address the zero frequency limit only, sucknteresting. Unlike in the binomial charge statistics the expo-
that the time of measurement exceeds the energy relaxatigqpnt i&(e—pg) assigns energy weights to each electron.
time in the reservoir. The resulting statistics is then indepenTherefore, energy transfer is not quantized.
dent of this relaxation time. _ ~_ We now turn to a specific example: the tunnel junction

We express the action of a simple connector in circuitytp I',<1. In this case, the logarithm of E¢l4) can be
theory by the Keldysh Green's functiofis  of the adjacent  expanded and the energy integration involves only elemen-

219,20 .
reservoirs tary integrals(for equal temperature$, =Tg=T on both
i 1 side_s of the junction Defining,q,=_,u,,_—,uR we find the fol-
Sconzz Z Trinl 1+ Zrn({GL ,G,%}—Z) , (12 lowing result for the characteristic function:
n
. - n sin(£)

where thel’,, denote energy independent transmission prob- InZ[§]=G7-coth2— KT———————p
abilities and the brackets} anticommutation. The trace in- KT\ sinf(ekT)/ m
cludes integration over time. In the following, we address the 1—cod £u)
zero frequency limit only. In this case, the time integration in —-iG (16

T 1 =
Eqg. (12) is conveniently rewritten as energy integration. As sinh(7¢kT)/ 7
formulated in EC](].O), we obtain the statistics of heat dissi- We introduced the conductance of the juncti@
pation into the right contact by shifting all observables of the=ST /2. For comparison, we also give the statistics of
right contact in time by, on the upper Keldysh contour and charge transféf
by £_ on the lower contour. The diagonal element<efin

the Keldysh space are left unchanged by this transformation M _ _
which can be cast in the following forrtwe introduce the InZ[ x1=Grucothy —[cod xe) — 1] —iGusin(xe).
differenceé=¢,—&_): (17
ng eif(ewR)rfs/ZGg(e)e*if(ewn)faﬂy We observe several differences: Wher&gg] is strictly pe-
riodic, the characteristic function of heat dissipatigh¢]
0 1-2f; 2f; shows damped oscillations. The lacking periodicity is due to
Gj (6)2(2(1_f_) 2f~—1)' (13)  the unquantized transfer of energy. For charge transfer, the
i i

real part ofZ[ x] is even in the applied voltage in contrast
The time shift introduces a rotation of the Green'’s functionto an odd imaginary part. Odd cumulants therefore change
Gg analogous to charge counting statisﬂi%sf.j=fj(e) de-  sign under voltage inversion. This is not the case for energy,
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=
: | ' : ' FIG. 4. Probability Distribution of dissipated energy into one
-2.5 0 25 5 . - . L
AQ /NG reservoir of a biased mesoscopic conduciee(kT). The distribu-

tion is broader for tunneling junctiond’&0.01) than for open
FIG. 3. Comparison of energy dissipatiaiHy=Hy—(Hy) point contacts [ =0.80). It is clearly seen that the third cumulant
(upper pangland charge\ Q=Q—(Q) statistics(lower pane) for of the distribution changes sign. The inset shows the third cumulant
a tunnel contact in equilibrium and nonequilibrium due to an ap-((AHv)®) as a function of the transparenEy (G is the dimension-
plied bias or temperature difference. The energy is normalized t6¢SS conductance ard= w 7/27, we assuméNG to be largg.

temperatur&k T, or biasu=u, — ur, respectively. The product of . . . .
N:/F.)LT/ZW kTLLT/2’7T anlc;dilr;angnlessF::onduc¥ar@es Zssumed I'=1. Itis clearly visible that the third cumulant of the dis-
o be large. ' tribution changes its sign as a functionof We find that

_ _ ((AHY)®)=Gu*(1-T)(1-2T)/4 (20
Z[ €] does not depend on the sign of the applied voltage. . )
Heat dissipation takes place in both reservoirs symmetricall{Se€ also the inset of Fig).4 o
regardless of the current direction! Odd cumulants of charge N this entire section, we assumed that the energy dissipa-
transfer[the imaginary part of Eq(17)] do not depend on tionin the right reservoir is measured by an ideal bolometer
temperaturé® In contrast, we find that the asymmetry of the Which does not act back on the mesoscopic contact. A real-
distribution of dissipated heat does depend on temperatufgtic bolometer is characterized by a finite thermal conduc-
[see the imaginary part of E¢L6)]. tance. Energy fluctuations in the right reservoir are then con-

Another interesting case is the statistics in the presence oferted into temperature fluctuations which modulate the

a temperature gradient only. Analytical results are availabld0ise intensity of the mesoscopic contact. This backaction is
for T,>Tg. We find similar to the backaction from a nonideal current méter.

[ T Ill. ENERGY FLOW INTO A LINEAR MEDIUM
In =2G kT { =—————==+In(2)— B(—ikT
4 t sin(7k T, €) (2)=A 8) We use now Eq(11) to calculate the statistics of energy

2 3£(3) flow from a systemSinto a linear medium. An example is
:GTkTL[ —i—kT é——— (kT &)? the energy thg’S _emit_s as electro_magnetic _radia_ltion. T_he
6 2 electromagnetic field is then the linear medium into which
77 energy flows. This energy flow may for example be mea-
+imn (KTLE)%+ - - (18 sured with a photodetector. The distribution of the number of
360 photons emitted by a source currggtcan be expressed in
terms of correlators ofs.2% In Ref. 26 this relation has been
for energy transport and established perturbatively in a weak coupling of the photo-
InZ[ x]= 2G 7k T_In(2)[ cos x&) — 1] (19 detector to the electromagnetic field. In Ref. 27 it has been

used to calculate the fluctuations in the number of photons
for charge transporfwe introduced theg-function B(iz) emltted_ by a mesoscopic conductor._ Equatidh allows us .
—S*_ (—1)"(iz+n)]. Figure 3 illustrates several limiting to thaln these results nonperturbatively. As a S(_econq appli-
casznag'o On a log scale, it compares the charge- and energ ation of our method we calculate the fluctuations in the
transfer statistics in equilibrium, and in nonequilibrium due .mOL.'nt of heat that is d|55|pated In @ macroscopic elect_rlcal
to an applied voltagesee Eqs(16) and(17)] and due to an circuit around a mesoscopic conductor. Such fluctuations

applied temperature gradiefgee Eqs(18) and (19)]. could be measured with a bolometer.
In general, Eq(14) has to be evaluated numerically. Fig- )
ure 4 shows the probability distribution of dissipated heat for A. General relations
barriers with various transparencids,=I" in the high- In our analysis we divide space into three regions. The

voltage regimeu>kT. Noise disappears in the ballistic limit systemS, a volumeV into which the energy flow is measured
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FIG. 5. Sis an arbitrary quantum system. The energy flow into
the partV of its linear environment is considered in this section. The
variablesjg, Xgandj,, Xy, couple the three constituent volumes.

and a regiorE. We callE=E+V the environment o8. The

subspaces are connected via two variablgsand Xy in E,
that couple tgjgin Sandjy in V, respectively(see Fig. .
With the HamiltoniansHs, Hg, andHy of S E, andV we
then have the total Hamiltonian

H=Hg+Heg+Hy+Xs(js— g+ Xvljv—iv), (2

whereﬂ, andj_s are sources that generate momentsXof
andXs. The generating functional for correlators of the en-
ergy flow intoV takes the form of Eq(11) with
o ISTIR) — j DX D] e (5179 + SElRs. ) g~ 10t s 75Xe(0)

(22)

with the actionsSg and Sg corresponding tdHg and Hg.

PHYSICAL REVIEW B 69, 155334 (2004

Miso(t,t") depends only on the time differente t’ and in
Fourier representatiorM ()= fd(t—t")e“t"t"IM(t—t')
it reads

Miso(w):%Riso(w)T3+i IMRiso( @) Go(w), (26)

N(w) —N(w)
—N(w)—1 N(w)+1)’

with the Bose-Einstein distributionN(w)= (exp{w/KT}
—1)~L. (We define the response functions such that they have
negative imaginary pait.

We analyze first the particularly simple case that the en-
ergy flow into the entire environment 8 is measuredy
=E. Then we haveXy=js, Xs=jy and Sy=S85. We re-
write Eq.(11) by introducing a coupling matrix

Go(w)= (27)

St—t'+&7(t")]
0

0

St—t'+&(t)])’
(28

O'(t,t’)=<

Z[g]zf DjsDjye (Ssis *Siscliv+iveso9i9  (29)

The Gaussian integrals ovg'}]; in Eq. (29 are easily done,
resulting in

Z[g]:f Dj e~ i(Selisl +Selis + Ailis) (30

Sg, being the action of a linear system, is quadratic and

depends only on the response function&afnd its tempera-
ture T. We characterize the responsetofvhen disconnected
from S(corresponding to the Hamiltonidh—Hgs— Xgjg) by
four functions,

X ) X )

Red @)= =222 | Refw)= ==

sd djs(w) Ty sv@) djv(w) Ts
IX IX

Rudw)= A g )= P g
djs(w) |+ Jv(w) |-

v, Is

The volumeV is described by the response to a souXge
coupling tojy in the absence oE, corresponding to the
HamiltonianHy, — j Xy,

djy(w)

&Y\,Tw) .

The environment’s action is determined by the fluctuation
dissipation theorert The action forj, whenV is isolated
reads

-1
iso

R.i(w)= (24

Siso[fv]:j)v@Miso@j_)V- (25

The matrix multiplication® extends over Keldysh as well as
time indices] A® B](t,t")=fdt’ A(t,t")B(t’,t") and corre-

with an actionSg that describes the influence of the environ-
ment onS,

Seljsl=—4ism®Msa® 73], (31

and a source termi; that vanishes a§=0,
AE[FS]ZJ?S@Aé@]?Sv A= — 51323, (32
ai=c'®M i@ or—M.s. (33

In the general cas€+E, the environment’s action is deter-
mined byRgs,

Seljsl=is®Gs®]s, (34)

Gay:%[RayTS+(Ray_ R:Q)GOJ’ a”yE{S’V}'

(35

The source term then takes the form

Ai=Gs@{[ Gyt Gw®a;®Gy)] =Gy} ®Gys.
(36)
Equation(32) is recovered foXy=jsandXs=j, such that
Ryw=0, Rgs= —Rs, andRys=Rgy=1.

IS0 ’

B. Zero frequency

For concrete results we focus on zero-frequency correla-

tors of the energy flow, choosirfg= (1,—1)6.(t)¢&/2[cf. Eq.

spondingly for vectors likejy(t). In a steady state (7)]. We neglect transient effects, that is, we calculate only
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terms of leading order in the time over which energy is e % | [ e v
accumulated. We may then work in the discrete Fourier L '
space ofr-periodic functionsf, with Fourier coefficientd, o
= [;dt i (t)/ 7 and frequencies, = 2#1/7. In this repre- ‘
sentation the source term in EQO) reads

> > > l: | \\\
Ag[]s]:TEI JsiAgi)s) @n - =
v

o is now diagonal in frequency indices, , - . L
g q y FIG. 6. Electrical circuit analyzed in this sectidRs is the con-

e w2 0 ductor that generates current fluctuatiofis;. These fluctuations
o :( ) , (39 can be characterized by a measurement of fluctuations of the heat

that is dissipated in the external resisky.

and so isA, . At zero temperature it takes a simple form even
in the general case+#V, eter, that measures the thermal energy exchanged by means
of photons. According to Eq40) the nth factorial moment
0 0 f transfer | tional to thenth t of
. (39 of energy transfer is proportional to thenth moment o
fluctuations of the sourcgs. This suggests that a measure-

A =|R 2 4
&l | VS(w|)| (IImRI—Sg.(wI)(e—Ifm_l) 0
Applied to a linear photodetector this reproduces the distri-ment of the energy flow and its fluctuations may be a useful

) . . . tool for measuring higher-order correlators of electrical cur-
bution of photocounts in response to a soujgenbtained rents whose measurement poses an experimental challenge
perturbatively in Ref. 26. To see this we substitute, P b ge.

&, in Egs. (30) with Equation(37) and (39) to obtain the While experimental techniques for the measurement of the
n .

statistics of the number of absorbed quantather than that variance of electrical current fluctuations are by now well
of the absorbed energy. The further substitutmén—1 developed, so far only one experiment has been successful in

— x, yields the generating function for factorial moments of Measuring higher-order_current correlators. In Ref. 10_ the
n. To compare the resulting factorial moments of the photo_measurement of the third moment of current fluctuations

count to the formulas obtained in Ref. 26, we write them inthrough a tunnel barrier has been reported. Equatiih
the time domain, suggests that the fourth moment of current fluctuations can
be inferred from the variance of the heat produced by them.
(n(n=1)---(n—p)) Since for statistical reasons determining the variance of a
" T quantity is much easier than measuring the fourth cumulative
= < “ dt’ dt”f d7’ d7’Im Ri;é(t’vt”)RVS(t,1T,) moment, a measurement of heat fluctuations has advantages
- 0 over the direct charge fluctuation detection.

p To quantify this we apply now the relations obtained in
> (400  the previous section to the electrical circuit depicted in Fig.
Sg+Sg 6. We assume all resistors in the circuit to be macroscopic
and linear, excepRg, that plays now the role of the system

S Fluctuations of the amount of heat that is dissipateB\jn
s measured with a bolometer are by virtue of Ef) re-
ted to fluctuations in the electrical current througd. For
that the volumeV should be chosen the resistBr,. The

XRys(t", 7)js ()i (7")

This is equivalent to Eq.30) in Ref. 26. The detector sensi-
tivity f there corresponds to our IR;;&, the density of ab-
sorbing detector modes per unit of frequency. The retarde
photon propagatoD,.; corresponds to our cross-response
function iRys. The time ordering of¢ andjg along the I flowi h h th ume/ | led h
Keldysh contour corresponds to the “apex” time order of thecurrent v 9wmg through the vo.um 'E C°“Pe tf) the
sources in Ref. 26. The expectation value in &) is taken variable yy in the rest of the environmeri. This variable
with respect to the actioSs of the source system and the xv is the time integral of the voltag¥y over Ry, xv(t)
pieceSg that describes the back action of the environment or=J'dt’ Vi{t"). The current s throughRg similarly couples
S to the environment variablgg(t) = f'dt’ Vg(t'). Again we
introduce external sourcds, and xy,. The circuit Fig. 6 is
IV. LINEAR ELECTRICAL CIRCUITS then mapped onto the general model of Fig. 5 with the

Electrical conductors couple to their electromagneticC@ICe XVfXV’ Xv=xv, Xs=xs: Iv=lv, Iv= v, Js
environment—the circuit that they are embedded in—with=!s, andjs=Is. We need the response functions of the
the current s that flows through them. To calculate the flow Circuit Fig. 6 without the conductdRs,
of energy into this environment we may therefore apply the
formulas obtained in the previous section wijts=1g, Hg
being the Hamiltonian of the conductor. Also in this case dxs
energy is transferred by means of photons. These photons RSS:T
may be either detected by a photocoufiter with a bolom-

1

i

1 1

+ls+s——=
S'\Z ' Zy+Ry

lv
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Ixs 1 zZR, with Re¢s=ReRy|Z/(Z+Zy+Ry)|2. We have assumed that
Rys=Rgy=—=| =——=——-, (41) Ret1(0)=0 andRg¢1(w)—0 for w>1/rz¢ such that the dc
dly Ts lw Z+Zy+Ry component(that will be avoided in experimentsand the
contributions from frequencie® > 1/7rc in EQgs. (45 and
Py 1/1 1\t (46) are negligible. We conclude that the variance of the heat
va:g :__<_+ ) , (42) dissipated inR, depends on the fourth cumulant of current
ayly 1o Ry Zy+Z fluctuations in the mesoscopic conductor, as one would ex-
s pect. There are, however, also contributions from lower-
) order current correlators. The environment circuit has a finite
R-1_ dly o response timerc and therefore effectively averages fluctua-
iso™ "Ry 3 fions over that time. As a result, the energy fluctuations be-
XV lisolated v ) ’ gy

come dominated by the lowest order current correlator in the
(all quantities here are frequency-depengleNbte, that any limit of a long 7rc, when higher-order current correlators
four-terminal circuit connecting the conduct® with R, ~ become negligible and the statistics becomes Gaussian. In
can be modeled by the three resist@isZs, andz,. The this limit of “narrow-band detection” the statistics of energy
resulting zero-frequency energy flow statistics takes a patransfer is negative binomial. Only deviations from this
ticularly simple form in the limit of an infiniteZ. Then the encode non-Gaussian current correlations. In order to see
current flowing througtRg is directly fed intoR, and the them the statistics of charge flow through the conductor dur-
source term in the generating functiori@0) is given by Eq.  INg 7rc has to be strongly non-Gaussian. This is the case if

(37) with Trcl/e, the mean number of transmitted electrons in that
period, is small.
ReRy(w)) More concretely, for a measurement of the fourth cumu-
Agi=— i) lant C, of current fluctuations ifkg one would want the first
_ term in Eq.(46) to be dominant. An estimate of the three
" 0 N(w))(e'€“1—1) summands in Eq46) for a tunnel contact with mean current
[N(w)+1](e '¢1—-1) 0 ' | [assuming thaRq¢{(w)~Re¢s for o<1llmrd],
(44)
2\ 2 o
This is a generalization of Eq39) to finite temperature, (((AHy) >>~TTReffGQe|
allowing for emission of energy quanta fromas well as RC
absorption. The transferred quanta have predominantly ener- Trel T2 KTMIn{kT,1/rrc}
gies that are smaller than the inverse of the RC tipg of x| 1+ GR
Ry . For finite Z thermal current fluctuation&s! 2),,~kT/Z QTeff
created inZ mix into the fluctuations oflg. As a conse- (47)
quence Eq(44) is then only valid in the regimergckT)? . ) , .
<|ZIR|. (with the conductance quantuf@g=e“/27) confirms this.

The formulas for the statistics when the mixing in of ther- 1he variance of fluctuations of the heat flux Ny is a
mal fluctuations occurs are more complicated. To make furdirect measure for the fo_urth cumulant of current fluctuations
ther progress we assume that the frequency dispersion of ttie a tunnel contact ifrgcl/e<1 and 7r KT<GgRey;. The
measured current correlators is negligible on the scal@rigin of the first condition has been explained qualitatively
Urre, ((M_1ls(wg)))=~278(2h_104)Cp for wq<lirpc above. The second condition ensures that the fourth cumu-
(here((---)) denotes irreducible, or cumulant correlajors lant is visible on the th_ermal background. Back action effects
For a mesoscopic conductor this is satisfied ifgY is of the measuring resistor on the measured tunnel contact
smaller than the voltage applied to the conductor. In thigconductanceG) are avoided if additionallyRsG<1."°
limit we find that These requirements are rather restrictive, but can in principle
be met in experiments. For a practical implementation, the

*dw first condition 7gcl/e<1 may be relaxed te-RCI_/ezl by
(AHV>:27'JO 5 Reti(@)C2 (45 measuring the voltage dependence(¢fAHy)%) and ex-
tracting the term that is linear in

{(((AHV?)

:47{

X

CONCLUSION

2 *dw
Cyt fo o We have presented a theory for the statistics of energy
exchange between coupled quantum systems. As an applica-
5 , © tion we have calculated the statistics of energy dissipation
Rer(@)C= 5 [2N(@) +1]Rer(0)Cy into the leads connected to a mesoscopic conductor. General
and exact expressions can be obtained for the energy flow
(46)  from a quantum system into a linear environment. We have

*dw
fo ZReff(w)
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