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Nonequilibrium transport through a Kondo dot in a magnetic field: Perturbation theory
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Using nonequilibrium perturbation theory, we investigate the nonlinear transport through a quantum dot in
the Kondo regime in the presence of a magnetic field. We calculate the leading logarithmic corrections to the
local magnetization and the differential conductance, which are characteristic of the Kondo effect out of
equilibrium. By solving a quantum Boltzmann equation, we determine the nonequilibrium magnetization on
the dot and show that the application of both a finite bias voltage and a magnetic field induces a novel structure
of logarithmic corrections not present in equilibrium. These corrections lead to more pronounced features in
the conductance, and their form calls for a modification of the perturbative renormalization group.
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A localized spin coupled to the spins of a conduction-quantum dot as &ondo dot It has been observed that the
electron system via a Heisenberg exchange interaction iKondo effect is quenched by raising the transport bias volt-
known to give rise to the Kondo effect, provided the cou-ageV well aboveTy, i.e.,eV>Ty, and that the presence of
pling is antiferromagnetit At sufficiently high temperatures a magnetic field splits the zero-bias conductance peak into
or energies, well above the characteristic energy scale rewo distinct peaks, located at bias voltages roughly equal to
ferred to as the Kondo temperatufg the signature of the plus and minus the Zeeman splitting of the spin on the
Kondo effect is a logarithmic variation of various observ- dot®-1?
ables with temperaturéor other energigs As first demon- The observation oKondoesqueconductance anomalies,
strated by Kondg, such logarithmic behavior appears al- exhibiting a logarithmic temperature dependence of the zero-
ready in perturbation theory to low order in the exchangebias peak height and a Zeeman splitting of the peak in finite
coupling. At low temperatures, however, ok Ty, the lo-  magnetic field, actually has a much longer history; it has
cal spin is screened by the conduction-electron spins, and theften been observed in more traditional tunnel junctions in-
system enters a local Fermi-liquid state, characterized by involving tunneling via magnetic impurities. In metal-
teger temperature power laws. insulator-metal junctions the Kondo anomaly can result from

The many-body resonance state forming n€arcom-  magnetic impurities present in the insulating metal-oxide
prises infinitely many virtual particle-hole excitations lead- barrier, from surface states at the metal/metal-oxide
ing to a peak in the conduction-electron-scattering amplitudénterfacé®~" or even from unpaired electrons residing on
at the Fermi energy: the Kondo resonance. In equilibriunorganic radicals in a polymerized benzene barflefhe
systems the Bethe ansatz method allows us to analyticallpame type of conductance anomaly has been detected in
calculate thermodynamic propertieand dynamical proper- semiconductor-metalSchottky junctions!®2°in which the
ties can be determined with the help of Wilson’s numericalneutral shallow donors in the semiconductor depletion layer
renormalization grouf.These methods reveal the universal provide the spin-1/2 moments which incite the Kondo corre-
nature of the Kondo effect: a single characteristic sdgle lations.
determines the physics and all physical quantities are univer- In 1966, Appelbauft?? and Andersoft demonstrated
sal functions of, e.gT/Ty . Already in 1970 Andersorsug-  that this type of conductance anomaly can result from so-
gested a simple and efficient method, known as “poor man'salled exchange tunnelingrocesses, in which an electron
scaling” or perturbative renormalization group, to resum thetunnels from one electrode to the other via an intermediate
leading logarithmic terms in perturbation theory and to es-magnetic impurity orbital and at the same time flips its spin.
tablish the scaling behavior. It requires nothing more tharThis mechanism was shown to lead to a Kondo effect en-
low-order perturbation theory, and provides a controlled aphancing the charge transfer across the dot, and it explains in
proximation forT>Ty, i.e., as long as the running exchangea natural way why the conductance is peaked at a bias volt-
couplings remain small. age corresponding to the Zeeman splitting of the impurity

While the Kondo effect was discovered in metals contain-moment: the finite bias has to supply the energy to flip the
ing magnetic impurities in the 196Qwith experimental ob- spin in the presence of a magnetic field. Appelbaum calcu-
servations dating back to the 1930and most of the theo- lated the tunneling conductance from a simple golden rule
retical development took place before the mid 1980s, it had axpression, in which the tunneling amplitudes were deter-
revival in the 1990s in the context of electron transportmined from third-order perturbation theory, including the
through quantum dots weakly coupled to leads. Provided thdeading logarithmic corrections reflecting the Kondo effect.
the dot carries a net spin, a Kondo resonance develops, thiiis result did capture the qualitative features of the conduc-
admitting resonant tunneling of electrdh5This leads to a tance anomaly, but any quantitative agreement with experi-
removal of the Coulomb blockade, i.e., an increase of thanent has been restricted to the case of zero magnetic field.
conductance from small values up to the quantum limit, ad\olf and Lose&* later suggested an extension of Appel-
the Kondo resonance develops. We shall refer to this type dbfaum’s theory in which the logarithmic enhancement was cut
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off by the lifetime broadening of the Zeeman split spin lev- rium Kondo problem, appear to have no trivial extension to a
els. Indeed this extra feature improved the agreement withonequilibrium situation. Schiller and co-work&shave
experiments somewhat, but even with several parametersuccessfully applied bosonization techniques, originally de-
this did not allow for a fit to experiments at finite magnetic vised by Emery and Kivelsdfin their solution of the two-
field 16-19.25 channel Kondo problem, to calculate a number of observ-
The mechanism of exchange tunneling, suggested by Amables near a certain Toulouse point in the presence of a finite
pelbaum and Anderson, was originally built into a Hamil- bias voltage. It is unclear, however, to what extent these
tonian with constanta priori unknown, exchange couplings results apply to the generic Kondo model. Konik, Saleur and
to the spin. While this approach relied on an exchange tunkudwig* started from the Bethe ansatz solution in equilib-
neling term connecting the two electrodese the modg(ll) rium to construciapproximatescattering states, in the pres-
below], a parallel development by ‘Som and ence of a finite voltage. To what extent their approximations
ZawadowsKi® suggested that the conductance anomalyand boundary conditions are valid is not obvious to us. To
should arise from the energy dependent renormalization dhe best of our knowledge, even the perturbation theory in a
the local density of states, induced by Kondo spins near onttue nonequilibrium situation has not yet been worked out in
of the electrodesot directly coupled to the other side. Ini- the presence of a magnetic field to leading logarithmic order,
tially the two proposals disagreed even in the sign of thd.e., to third order in the exchange interactions. This latter
change in conductance, but these differences were resolvéask will be taken on in the present paper, which presents a
in a later work by Appelbaum and Brinkm&husing Zawa-  detailed analysis of the nonequilibrium perturbation theory to
dowski’s alternative approach to tunnelifft/° The final rec-  leading logarithmic order, generalizing Appelbaum’s result to
onciliation of these ideas came with the work of Ive#lc the case where the spin is not equilibrated with one of the
taking the nonequilibrium Keldysh approach to tunneling,leads.
developed earlier by Carobt al>! The fact that the elec- Our aim here is to understand the physical processes gov-
trodes were out of mutual equilibrium was taken into ac-erning the nonequilibrium situation and to formulate a start-
count, and it was demonstrated that the earlesrsentially ing point for the resummation of the leading logarithmic
equilibrium) treatment&?” were only correct in cases when terms in perturbation theory. Even in the perturbative regime,
the impurity was located near one of the electrodes, whereaghen magnetic fields, voltages, or temperatures are large
an impurity somewhere in the middle of the barrier consti-compared tol, such a resummation is necessary not only
tutes a true nonequilibrium problem. For a review of theseo recover the correct universal scaling behavior but also to
earlier works cf. also Ref. 32. be able to fit experiments quantitativélyln some of the
With the discovery of the Kondoesque tunneling anomalyearly works?®4® perturbation theory was resummed using
in various types of quantum dots, this venerable problem hagpproximations of NagaoKd, Abrikosov/® or Suhl and
recently been revived. Meanwhile, experimenting with quan‘\Wong*® mainly as an attempt to capture the strong-coupling
tum dots offers much better control over the parameters decegime. As for the quantum dots, Kaminskial ** first sug-
fining the problem, and this in turn allows for a more sys-gested a poor man’s scaling method to deal with this problem
tematic study of the physics underlying the conductancet finite voltage, but this approach did not encompass the
anomaly. Since the zero-bias anomaly arises only in Couease of a finite magnetic field and therefore avoided the con-
lomb blockade valleys corresponding to add number of  ceptual problem connected to the calculation of the magne-
electrons occupying the dot, the effective local moment cattization.
be ascribed to a single electron in the uppermost energy Recently, the present authors suggested a different poor
level. In this way the “magnetic impurity” spreads over the man’s scaling approacii,which effectively resums the loga-
entire dot and there is no confusion as to whether the impurthmic corrections and recovers scaling, even in the pres-
rity is located close to, or even residing in, one of the elecence of a magnetic field and a finite voltage. As an important
trodes or whether one should average over many impuritiessheck on this approach, it was crucial that an expansion in
issues which were all very important in the conventionalbare parameters would correctly reproduce the leading loga-
tunnel junctions mentioned above. In particular, there is naithmic corrections found from perturbation theory, and in-
reason to believe that the dot spin should be equilibratedeed this was found to be the case. Main results of the non-
with one particular lead, which was pointed out by Ivé%ic equilibrium perturbation theory presented here were briefly
to constitute a true nonequilibrium problem. Within the stated in Ref. 45. The details of our scaling approach will be
Anderson model, this problem has been studied using aprovided in a subsequent publicatith.
equations-of-motion technique combined with the noncross- The remaining parts of the paper are organized as follows.
ing approximatiof®—*and by means of nonequilibrium per- In Sec. | we define our model and briefly review the pseudo-
turbation theory, expanding in the hybridization strengjth. fermion formalism to be used throughout the paper. Section
Other works have taken the Kondo model as their startindl reviews the diagrammatic rules of nonequilibrium pertur-
point, but have mostly focused on the effects of an applied abation theory using the Keldysh formalism, and introduces a
bias in the case of zero magnetic fiéfd! few basic building blocks from which all subsequent dia-
A complete theory of the Kondo dot in a nonequilibrium grams will be constructed. In Sec. Ill we solve a quantum
stationary state, i.e., in the presence of a finite current flowBoltzmann equation to find the nonequilibrium distribution
ing through the dot, does not exist yet. Most of the methodgunction for the local spin, and demonstrate that this leads to
which have proven so successful in dealing with the equilib+ather dramatic effects of the bias voltage on the local mag-
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a 7 » |b b e b FIG. 1. (8 The bare conduction-electron—
pseudofermion vertexb) The absorption an¢t)
ed ,Yi_jm 71’_17 ¢ the emission vertices. Propagators are dashed
b ab ab (pf) and full (ce) lines. Note that the absorption
4 and emission vertices could equally well have
¢ “ " been drawn wittpf propagators.
netization. Finally, in Sec. IV we derive an expression for the - {(OQ),
tunneling current which takes the nonequilibrium magnetiza- (O)q=1= lim Q) €)
tion as its input. Section V contains a summary and discus- Ao A
sion of our results. where Q=2yf;fy is the pseudofermion number operator.
Note that in the common case, where the observébleas
| THE MODEL zero expectation value in thi@=0 ensemble, one may leave

out theQ operator from the numerator in E(). This pro-

We consider the Hamiltonian cedure applies equally well within the Keldysh formulation
of nonequilibrium perturbation theory, since the statistical
averaging in this approach is performed with respect to a

H= E (sk—,ua)czkacakg—g,u,BBSZ thermal equilibrium state in the infinite past. A similar pro-
akio jection technique was used in Ref. 34, and later in Ref. 35, to
1 R study the Anderson model out of equilibrium.
+ > Jora S Ecl,k,o,ro,(,cak”, (1) Since\ enters as a chemical potential, thermal averages

a.a’ kk' o0 taken with a finitex contain various powers o 7. In
R particular,(Q),~e T and therefore the limit ok — in
whereu g=*eV/2, S, is the spin-1/2 on the dot, andthe  Eq. (3) effectively picks out the terms ifOQ), which are
Pauli matrices. We shall use the dimensionless coupling coralso proportional t@™*T. Likewise, in calculating any ther-
stantsg;=N(0)J;, whereN(0) is the density of states per mal average of interest at finite, one is allowed to retain
spin for the conduction electrons adg, , Jrr, andJ.g  only the terms of lowest order ia 7.

=Jg, the real-valued exchange constants. For simple quan-

tum dots in the Kondo regime, which can be described by an Il. KELDYSH DIAGRAMMATICS

Anderson model, the exchange coupling constants are related . _ .
g pling In setting up the nonequilibrium perturbation theory, we

gzcg'-;;ig'-égﬁgl'e l;(())'zlvsvs?gn:g i?&rg chnnaglfg iSrIr;{gatr:gnssl,Jcﬁha" comply with the conventions in Ref. 52. All Keldysh-
. . y gime, Space matrix propagators are represented in the usual upper-
relations exist and we will therefore tregitg as an indepen-

e . right triangular form
dent parameter of our Hamiltonigd). For notational con- 9 9

venience we employ the shorthand notatigg= (g, GR GX
+grR)/2 andg?= (g2, + gar+20°r)/4, andunless specifi- G=| o GA (4)
cally stated otherwise, we will henceforth use units where -

h=kg=gug=e=1. and the individual entries will be denoted by latin indices.

. Iln dorderlto i)hrocef?d ){N'thfa perturb?tlvfg f;l?tu.lat'on' Wh.'ChErom this basic Green function, one may obtain the usual
includes also the effects of a magnetic field, it is convenien pectral lesser andgreaterfunctions as

to apply a fermionic representation of the local spin opera-

tors. We choose here Abrikosot?gpseudofermiomepresen- A=i(GR-G"), (5
tation, which, in terms of fermionic charge-neutral spin-1/2 K R A
operatord, reads G==(G*-GR*+G"/2, (6)
1 G™=(G*+GR-G"/2, (7)
=1 -
S=3 yzy:' BTy fyrs (2) REG]=(G"+GH/2, ®)

implying the R superscript in the real part. A corresponding
Since only the singly occupied fermion states have anyotation will be used for self-energies, except that the spec-
physical relevance, this representation must be supplementeel function will be replaced by théroadeningl’=i(ZR
by a projection onto this physical part of the Hilbert space,—3A). We shall henceforth denote conduction-electrog) (
effectively excluding doubly occupied and empty states. Taand pseudofermiorp(f) correlation functions by capital latin
this end, the pseudofermion is endowed with a chemical poand calligraphic letters, respectively.
tential N, which is kept finite throughout the calculation, us-  Perturbation theory in terms of Keldysh matrix propaga-
ing a grand-canonical ensemble average. As demonstrated {ifrs involves the bare four-point vertex and theasurement
Ref. 51, the physically relevant, i.eanonicalensemble av- vertices depicted in Fig. 1. These have the tensor structure
eraged, expectation value of an observablé obtained as cd 1 N N
the limiting value A b= 32(GabTedt Tapded) 9
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~ 1 a oy b 0,y
1 2 - RS T Rt S
Yab™ Yab™ \/E Oab (10 ; ":" . b b e . “
d\*/c \/C
1
2 ~1 1 &t+m, o £&-w, o
Yab™ Yab™ \/E Tab- (11

) ) ) FIG. 2. The conduction-electron—pseudofermion bubbles in
Diagrams should be interpreted with the usual Zzero-pgijeris(a) andCooper(b) channels. Conduction-electron propaga-
temperature Feynman rules, including a prefactorors have lead index: and pseudofermion propagators carry the
(13)"(—1)"et* Fee to any diagram of orded", havingF ot ce  spin indexy. Latin indices refer to the Keldysh-matrix structure in
closed pseudofermion or conduction-electron loops. BotlEq. (4).
flavors propagate with spin indiceg,o=*1, to which we

apply the convention thaty=—1y. Furthermore, the 0=,
conduction-electron Green functions carry a lead index Gﬁ(w)=—iA(w)tan|‘( oT ) (16)
e{L,R}. The Einstein summation convention is implied for

all indices except where otherwise stated. in terms of the chemical potentialg, = — ug=V/2. The

Since we assume the total system to have reached a steagigectral function15) implies a small real part R&R(w)]
state, all Green functions depend only on one frequency. The (N(0)/2)IN(w+D)/(w—D)]=N(0)w/D which we can
barepf propagator has the spectral function safely neglect for most of our discussion.

A, (w)=278(w+ yB/2) (12 A. Second-order vertex functions

and corresponding retarded and advanced Green functions. The central objects in the diagrammatics of this problem

For the Keldysh component, we make the usual ansatz tha@'® thece-pf bubbles depicted in Fig. 2, insofar as they
carry the logarithmic integrals which eventually lead to the

g';(w)=iA7(w)[2ny>\(w)—1], (13) Kondo effect. The bubbles in theeierls and Cooperchan-
nels are evaluated as

which defines thepf distribution functionn,, (). At zero- q

bias voltage, where the spin is equilibrated with the conduc- ajcde(g)— f hd G w+£)GP%( w) (17)

tion electrons,n.,(w) reduces to the Fermi functiof(w v_ba 27 = =y

+N\)= 1/(e(‘°“‘)’¥ﬂL 1). We follow the convention of Ref. 53

and place the chemical potentials in the distribution func-

tions rather than in the spectral functions, which prevents the

parametemn from pervading the formulas. The unprojected

mean occupation numbers are given by the integral

— d
‘;E;‘g<s>=f 5o Ge-w) Gw), (19

from which one can readily determine the various Keldysh
components by straightforward integrations:

» d Riv— 1Ay —
Ny, = f_wﬁAywn%(w), (14 KoR(8) =K a(e)=0,

JCR(e)=iGR(e—yBI2),
that is, n,,=n,,(—yB/2) for bare A,. After taking the

limit A—co for a given observable and thus performing the y;cé(s): —iGA(e—yBI2),
projection onto the physical spin states, one can use the con-
straint n;+n;=1 to write the local magnetization adl ‘;ICE'A'K(s):iGS'A'K(s—yB/2)MM,

=2n;—1. At times, we shall also use the shorthavid, ,
=2n,,,— 1 prior to projection. i

The bare conduction-electron Green functions depend on SKR(e)=— §G§(8— ¥B/2)
momentum as well as frequency, but since the interaction
and the pseudofermions are local in space, all internal lines
in a Feynman diagram involve only propagation in time, and —iN(O)In(
we are allowed to work with local, momentum integrated,
Green functions. Assuming a constant density of states in a )
band of width D, centered at zero, the momentum inte- aKK(S):LGK(S_yB/Z)
grated spectral function reads A 2«

D2

(e — p,— yBI2)?+T?

A(w)=27N(0)O(D—|w|), (15

( D2

—iN(0)In 5 ) (19
. . . _ _ +T2

with N(0)=1/(2D). Assuming the electrons in separate (6= payBIR2)THT

leads to be in thermal equilibrium, the lead-dependenfor the Peierls channel, from which the bubbles in the Coo-
Keldysh Green function takes the form per channel are obtained as
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JCR(e)=KR(e)=0,
JRA(e)=— KRR(—¢),
SERRK(—g),

SCRAK (8) =~

K A(8) = — KR A(—2). (20)

In both channels the Kondo effect derives from the imagi-

nary part of bubbles with &-component conduction elec-

PHYSICAL REVIEW B59, 155330 (2004
IRA=I(KERMH KRR,
TRA=I (K" + K o),
TE=I(KE+ KR+ KR,
TE=i(KK+ KR+ L), (25)
satisfying the relatior[ij'A'K(s) = —gIA'R'K(— g).

From their definitions, these new functiod**X are
seen to have poles in the loweR), the upper A), or both

tron together with a retarded or an advanced pseudofermioiiK) half planes, and to satisfy theLR(e)]* =Z%(¢). To be

In such combinations, R§,(w)]*1/w is convoluted with
tanhg+w/2T) to produce the logarithmic enhancement.

To work out higher-order Feynman diagrams, it is conve-
nient to construct the second-order renormalized vertex func-

tions, obtained by attaching a Keldysh vert@xto each end
of these bubbles:

TSN (e) = Ay iKh i (e) Ay, (21)
a— !m! ’ ’
ygg(s)zAgﬂ,yEb,;,(s)A;,‘;. (22)

specific, one finds from Eq19),

27Rg)==M,,GR B/2 1GK B/2
L (8)==M,\Go(e —yBI2)— 5 G (e~ vBI2)

Working out the contraction of Ke|dy5h indices one mayThe real and the imaginary part @"ﬁ are

organize all entries in the Peierls channel as

1
12_ 722_ A1_ 421_
T1=1T=151=15= EI R,

1
11__ A2 4722__ 421__
T=T=15=T50= 7%,

1
=155 Toi=Tip= 1%,

L= Thi=15=151=0, (23
L d_cd_cd
satisfying the symmetrgsp="22 =7 -

7., and similarly in the
Cooper channel

1
27Tl
222=11§=Izi=zli= EIR,

RT3

A
112741174217 422 4iI’

TR 27
Iy=111=151=115=

1_
a
=T T3=1n1=0, (24

Wherez‘g:z—gzz%. For clarity, we have temporarily sup-
pressed the variableg, «, and e, and written only the

D2
N(0)I , 26
FNn (6= po—¥BI2)?+T? (20
—u,— yBI2

“TK(&) =iA(e — yBI2) 1+Mw\tanr(%”.

(27
D2
Re “Z(¢)]=N(0)In P

—M,\REG,(s—yBI2)], (29)

N 1 e— .~ yBI2
IM[57(s)]= 5 Ale = ¥BI2)| M, +tant ————— .
(29

while the lesser and greater components take the following
form:

3I<(s)=2iA(8— yBl2)(1—n,,\)f(e—u,— yBI2),
(30

9T>(e)=2iA(e— yBI2)N,\[ 1~ f(e — o~ YBI2)].
(3D

Note that since R&(w)]~N(0)w/D for @<D, contribu-
tions from the last term in Eq28), of order makB,V]/D
<1, can safely be neglected.

The real and imaginary parté28) and (29), satisfy the
Kramers-Kronig relation, and altogether their analytical
properties allow us to interprét as genuine Keldysh Green
functions describing th@ime-) parallel or antiparallel propa-
gation of conduction electrons and pseudofermions. The dif-
ferent componentsR,A,<,>) of this mixed bubble could
have been written down immediately using the Langreth
rules** for analytical continuation, and in fact this method is
also very convenient for determining the different compo-
nents of the second-order self-energy. For the third-order

Keldysh indices. Furthermore we have introduced new funcself-energy, however, we find the Keldysh matrix structure to

tions, ZRAK and ZRAK with

be more convenient when dealing with the large number of
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0

’ d8
(2) _ Yy 42 T ra < >
N (w) 6 Jaa,f 277[7'1 ()G, (et w)
* —%T7(e)G (s +w)], (35
and the lesser component

<(2)( )_ 77 Jaa J— I>(8)G§,(€+w)- (36)

FIG. 3. Unlabeled Feynman diagrams for thé self-energies.

contractions appearing to this order. The catal®® and Using the identitie30) and (31) it is now straightfor-
(24) have been worked out for this purpose and are useward to carry out the integral over, together with the sum-
repeatedly in working out the different Keldysh contractionsmation overa, @', andy’, to find that

appearing throughout the paper.

a
F(-B/2)= [N +N+R?)] (37)
I1l. NONEQUILIBRIUM MAGNETIZATION q
an
A. Pseudofermion self-energy
With these basic diagrammatic objects at hand, we can <(2)( B/2)= _[N%ZT)nT,ﬁ” Nﬁ)ni,h]’ (38)

now readily evaluate the Feynman diagrams for flieself-

energies shown in Fig. 3. It is, however, essential to realizgneare the coefficients are given by

that the occupation functions,, on the dot are completely

undetermined to zeroth order of perturbation theory, i.e., in N{P=gfrVeoth V/2T) + (g7 + g&R) T, (39
the absence of a coupling to the ledtFhese are therefore

kept as free parameters to be determined later. The first-ordeN{?)=2(g? +g&g)B[1+N(B)]+ 29[ (B+V){1+N(B
pf self-energy vanishes, since we have not included a Zee-

man term for the conduction electrons. Nevertheless, the cor- V) (B=V){1+N(B-V)}], (40)
responding Hartree term would be entirely real and contrib- ) 5 5 )

ute only by a constant shift of thpf energy levels(cf. R'=—2(g{, +9rrt 20(r)B, (41)

Appendix. andN(w)=1/(e”’T—1) is the Bose function. While the co-
efficientsN,,, do not depend o, R® is in fact given by
1. Second-order self-energy (n,,—1)8g°B. Since, however, the factor, , vanishes in
Neglecting the Zeeman term for the conduction electronsthe limit of A—c2 and leaves behind a term which remains
the ab component of the second-order self-energy from Figfinite, we can simply omit this term and employ the identity
3 is given as 41) for R

2. Third-order self-energy

S—;;”,g;g(s)gif(sm), ~The third-order self-energy diagram depicted in Fig. 3
32 gives rise to two different terms, corresponding to two dif-
ferent orientations on thee loop. One involves two Cooper
bubbles and the other, two Peierls bubbles, and the combined
ab component translates to

0.,
ab(2) vy’ 2 f
SR w)= 5= 3%,
where a summation overe spin has led to the tensor

d8 ’
z 1 ab(3) _ P c'd
:— T O"Tyy T] TJ r+27’y7, . (33) ((l)) 64‘]aa"]a’a”‘]a"aJ' zw[ey'y’y”Aab’

d”c’ c"d"a’ ,-d'c” cd
Contracting the Keldysh indicesandd, using Eq.(23), and Xy yKeprar(8) Mgy Krar (8) Agr

using the analytical properties @f the K component of this de cd' a Z~d’c”
self-energy may be written as XGaletw)+ 077 yAap yKprar(e)
'd" a _CT" d
de X A;//bu ’ b";'(e) Acrb G //(8 )],
K(2) w Y o< >
(0= 320 | ST (0)6 e+ o) 2)
N - where a summation overe spin has produced the tensor
+577(e)G, (e +w)]. (34
7 P ik
o, 2|€|Jk7' S
L 'y YY"y
Similarly, from the retarded and advanced components of the 1
self-energy, the imaginary part is found to be =4[5,y 7’7”+ Oyy Tyyr T Oy 7”77«/ a
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and GSV, o= sz, g A contraction of the relevant Keldysh
indices allows one to express E42) as a sum of products
of two vertex functions. Using again the relations derived in

X B[1+ N(B)]In%, (45

Sec. Il A, together with the analytical propertiesZfthe K 5 D D
component of the third-order self-energy may be written as  R®)= —8g{rgq (B+V)|nm+(B—V)|n|B_V|
1 de D D
K(3 _ P 3 @
EW(\ w)= maw’ }’"Jaa’a"J ERQV’I(E)] +B |n®} _4(QEL+9?F’¢R)B|nE, (46)
X[%T%(2)G (e +w) using the shorthand IB(|x))=In(D/\x>+T?). As was the
7 case for the second-order terms, oRf) depends om., but
+ (;,’I>(8)Ga<,,(s+ )]+ (Ve —V), in such a way that one can safely take the limit-cc which

leads to Eq(46).
where we have introduced the shorthandfm,a,, Logarithmic correction of the form Iy/|B|), In(D/|V|), or

=Jpardarardare - The imaginary part takes the similar form In(D/[V+B|), as in Egs.(44)—(46), appear throughout this
paper. They are signatures of resonant scattering from one

3y P 3 de Fermi surface to another. More precisely, a term such as
N (w)= @077’7”Jaa’a”f ZRG[ y”I(s)] In(D/|V]) shows that resonant scattering from the left to the
right Fermi surface is prohibited due to the differengejn
X [a,’I<(8)G>,,(8 +w) their electrochemical potentials. Similarly, a spin-flip process
7 “ within the left lead is cut off by the required enerBylead-
T ()G (e + )]+ (Vs — V), ing to In(D/|B|). Most interesting are probably the logarithms
’ “ of the form InQ/|V—B|), characteristic for resonant scatter-
and the lesser component reads ing from the left to the right lead where the energy mismatch

of the two Fermi surfaces is compensated by a spin flip.
These terms are especially important, insofar as they lead to

S )= 0,02 [ SR T(6))
@ 27 Ly pronounced cusps &~ B in physical quantitiessee below.

128 )")’/ }’” aa' o

X $,I>(s)G§,,(s +w)+(V——V). (43 B. Solution of the quantum Boltzmann equation

Comparing to the second-order result, the basic difference is Having determined thef self-energy in terms of the un-
the presence of the extra real part of the vertex functionknown nonequilibrium pfoccupation numbers, the Keldysh
which provides the logarithmic enhancement underlying th&omponent of the Dyson equation provides a closed equation
Kondo effect. forn,, . Since we assume the system to be in a steady state,
Again, the relevant integrations and summations are cathis equation is greatly simplified and may be expresséd as

ried out using the specific form of the various components of

K _ K
7, and the result is expressed just as in Hg3) and (38), Fpn(@)Gp(0)=A)(0)25(w), (47)
but with new third-order coefficients or equivalently
\Y D r S(w)= (), 48
N{P=297rgq| [T+ (V+ B)cotr( ﬁ) g (@) (@)= Ay (@) (@) 48
| | which merely states that the collision integral in the quantum

D ] Boltzmann equation has to vanish in a steady-state situation.

Y
T+(V—B)cotl‘<ﬁ)

+ Inm The pf spectral function appearing in this equation may
be determined by solving the retarded and advanced compo-
5 s D nents of the Dyson equation and takes the usual form
+2(gLL+gRR)T|n®' (44)
I (o)
D D AN = T RS ()] B2+ [T )2
N{3=49g7rgq{ [1+N(B+V)] (B+V)InW+B |nE 7 7 (49)
D D where the shift R, ] and the broadening of thepf energy
+VIn—|+[1+N(B—V)]| (B—V)In=—+r levels are determined from perturbation theory, including
V] B+V| leading logarithmic corrections. However, assuming that
D D D A,(w) is nonzero for all frequencies it can be divided out of
+BIn——VIn—|+[1+N(B)]| (B+V)Inf=——+ Eq. (48) which then takes the simple form
ERR IR KA Y
D . [Z (@) =20 (0)]n)(0) =37, (w), (50)
+(B_V)m|B—V| AL ORe) or equivalently
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Na(0)=[1-37, (0)/25 ()] (51 (N1 +N;  +R)n;=N;;n; +N;n |, (53)

. . <> . .
In this equation the self-energies ;™ are determined in \yhich can be viewed as a rate equation with the transition
perturbation theory as integrals involving the unknown d's'ratesWHZ(77/4)(NH+R) andW, | = (m/4)N; | . This equa-

tribution function n,,(w). However, in bare perturbation (s js readily solved together with the constraint equation
theory, where there is no dressing of internal lineg,(w) is n;+n,=1 and one finds that

always multiplied by theunrenormalized pfspectral func-
tion (12) inside the integrals, and only the occupatimm-

bers n,=n,,(—yB/2) will appear in%=~. In our case, ”T:L’ (54)
the quantum Boltzmann equation can thus be solved without 2Ny +R
any feedback from the retarded and advanced Dyson equa- _ )
tions, and we can focus our attention on the on-shell occuor expressed in terms of the magnetizatdr=n,—n,
pation numbers,, .

Dividing out the spectral function and setting -R
w=—yBI2, Eq.(48) takes the form M= 2N, +R’ (55)

iT \(—¥Bl2)n,, =37, (—yB/2). (52)

Note that to obtain the observable magnetization to order
Sincen,, , and thereb)EjA vanishes in the limit ok — o, g°In(D), it is not sufficient to consider only the on-shell oc-
the whole equation may be divided @), and after this cupations appearing in Eq&3)—(55). In addition, one has
limit has been taken one can establish the same equation ftw consider also contributions from thpef spectral function
the physical, projected, occupation numbers. Expressed ifsee Eq(14)], which are discussed in detail in the Appendix.

terms of the coefficients defined in Eq87) and (38), we Inserting the second-order expressi¢d8)—(41), one ob-
arrive at the equation tains
|
2 +92.+29°,)B
M(B,V)— (9L +9rrT200R (56

2 | 2 9B cotl | + g2l (B+V)cot o |+ (B—v)cot| Bt ||
(9{Lt9rr/BCO T giR| ( )co T ( )co T

which, up to a factor of 2 in the definition &, is exactly D D V-B) ,

what was found in Eq(4) of Ref. 55, where a rate equation +2ng|nm+259d|n@ +C0t"< ?)QLR (V-B)

such as Eq(53) was solved using second-order transition

rates. Including the third-order correctiof@s})—(46), we ob- | D | D | D

tain X| 14294 nm +2Vgy nm—ZBgd HE , (59

M=NID, (57) using again the shorthand Di(x|)=In(D/\x?+T?). Both

_ numerator\ and denominatoP of the magnetizatio are

with calculated only to ordeg®+ g®In[---], andM should there-

fore also be expanded. As expected, the Kondo effect reveals
D D itself in logarithmic enhancements, and interestingly enough
(V+ B)Inm—(v— B)Inm} the logarithmic corrections tM come as[1+gIn(---)]
rather tharf 1+ g2In(- - -)], which is found in equilibrium. In
the limit whereT>V, the logarithmic corrections from\V’
1+29wln@)' (58) and D cancel and we recover the usual thermal magnetiza-
tion M =tanh@/2T). In the highly asymmetric case, where
gLL>0rRr:OLr, @ Similar cancellation takes place and one
(V+B)In D finds again thaivl =tanh@®/2T). In the Appendix, we dem-
|V+B| onstrate how the observable magnetization receives addi-
tional corrections of ordeg?In(- - -), arising from self-energy

N=4g7r04

+B2Y (97,+03a)

B 2
D=coth 55 29{r9d

D D i he f tral function. Nevertheless, in the
—(V=B)In 4B 2 (1429 In— corrections to thepf spectra -N ,int
( ) |V—B] ; aa Yaa |B] ) ] case wher&/>T, such additional corrections are subleading.
V4B b In Fig. 4 we plot the magnetization and the corresponding
+ ibilitydM/dB as functions ofB/V for T<V, while
n 2 n n SL_Jscept_|b| ity ,
cotf( 2T )gLR (V+B){ 1 2gd|n|V+B| Fig. 5 investigates th&/ dependence oM and dM/4V,
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FIG. 4. Nonequilibrium magnetizatioashed and long-dashed
lines) and susceptibilityfull and dotted linesas functions oB/V,
for T=10 2V and D=10%V. Solid and dasheddotted and long-
dashed lines correspond to @.) order perturbation theory. Both

PHYSICAL REVIEW B59, 155330(2004
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FIG. 5. Nonequilibrium magnetization as a function\dB, for
T=102B andD = 10°B. The two lower curves in each panel show
the absolute value of the slope, i.giIM/4V|. This quantity enters
the conductance shown in Fig. 7. Solabtted lines correspond to
3.(2.) order perturbation theory. Both quantities have been ex-
panded to first order in the exchange couplings. Upper panel:

guantities have been expanded to first order in the exchange coa-grg=9,r=0.01. Middle panel: g, =9ggr=0.01 and g,r

plings. Upper panelg,, =grr=0,r=0.01. Middle panel:g .
=grr=0.01 andg, g=0.05. Lower panelg,, =ggr=0.05 and
g.r=0.01 (note the different scale foy). Corrections from third
order are more pronounced ngRa& OLLORR-

which will both influence the conductance. Roughly speak-
ing, the magnetization curve resembles the usual thermal

magnetization withv replacingT, and the impurity-spin be-
comes polarized only wheB exceedsV. However, struc-

tures close t&/~B are much sharper and obtain completely
different logarithmic corrections compared to the equilibrium
case. The exchange-correlations change the slopes of the
magnetization, which is clearly seen in the susceptibility

(Fig. 4 and indM/ gV (Fig. 5 which become sharper spiked
when including third-order perturbations. In the limit of
>[(g?, +9&R)/29°:]B, V=B, and smallT, one may ex-
pand to find

NE OfL+0&r+297r (9L +OrR(TFL+0RR)
v ZQER QER
2
— D
X 1+—gLR2 gLngRR |n§—|nv , (60)
gL T 9RrR

which simplifies toM = (2B/V)(1+2gIn|V/B|) when g, .
=0rr=OLR-

In the regime where the bias voltayedoes not supply
sufficient energy to flip the spiry<B and B—V>T, the
magnetization is at its equilibrium valud =1 to first order

=0.05. Lower panelg, , =ggrg=0.05 andg, z=0.01.

in g. However, as soon a¢>B, voltage-induced spin flips
are possible and the magnetization is redutezk Fig. 5.
For V>B andT<V—B<B we obtain

M~1 (V_B) 20 [1+( +0rp)| |
~1-= gL T OrRr)| IN
B JgfL+9irt 200k vV-B
2
- D
_(1+2 2gLR szLgRRZ = } 61)
gL+ 9rrT20(Rr

It is interesting to note that the structure of logarithmic
corrections is rather special in the case when the Hamiltonian
(1) is derived from an underlying Anderson model by means
of a Schrieffer-Wolf transformation. In this case the ex-
change couplings are related g{stg,_,_gRR (cf., e.g., Ref.

41) and for such realizations of the model all leadin@®In

contributions cancel while logarithmic corrections of the

form In(V/B) or In(B/(V—B)) remain. For example, E460)
9fL+9&r

V 29 gRR ,

1+4gdln§ (62)
and Eq.(61) takes the form

M

_ V-B 20, 9rr
B (9. +0rR)?

B
1+ ngmm} (63
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This explains why the plots of the magnetization in the uppeiFig. 5, displays a peak ned=B already in second-order

panels in Figs. 4 and 5 hardly differ from second to thirdperturbation theory which is then slightly enhanced or re-

order, while more pronounced effects are seen in the loweluced by the third-order correction, depending on the rela-

panels wheregLRaé OLL9RR- tive size ofgy andg,g. As we shall see in Sec. IV, these
From Eq.(62) we see that the peak Bt=0 in the mag- features turn out to have a marked influence on the conduc-

netic susceptibility, seen in Fig. 4, grows as|MiT) for T  tance.

<V. Also, from Eq.(60) we learn that the high-voltage tails For arbitraryT andV, the susceptibility aB=0 takes the

in Fig. 5 fall off as 1¥. The derivativedM/dV, shown in  following form:

+§ Jua

292 (l+2g | —+Zg In— g +29 | +Zg | )
n n aa n Ni—r
LR d T d |V| LR |V|

v 2

X= (64)

D D D
L+4geln +2T2) Yool Guat 202,05 +29,_Rln|v|

In the limit of T>V the logarithms all take the form IB(T);  the current may be expressed simply by the imaginary part of
the corrections in numerator and denominator cancel, and wiie Keldysh component
are left with the usual Curie lay=1/(2T). In the extreme

i . . . o K
nonequilibrium situation, however, whew&>T, the correc- JL=JIRIMD (L, 1)]. (67)
tions no longer cancel and we are left with a complicated The | d buti hi lation f .
fraction times 1V. e lowest-order contribution to this correlation function

is obtained from the first Feynman diagram in Fig. 6, which

It is important to note that numerator and denominator in
translates to

Eq. (64) have a rather different structure of logarithmic cor-
rections, e.g., thg? term in the numerator receives correc- 0., de  do
tions of the form 2y4[ In(D/T)+In(D/|V|)] whereas the corre- DEM(t,t)=— L.VJLRJ —f —
sponding term in the denominator has the forgyl(D/|V]). 8i g
This observation was the basis of our claim in Ref. 45 that
the perturbative renormalization group has to be formulated
in terms of coupling functions which depend on the energy
of the incoming electron. This will be explained in more
detail in a forthcoming publicatiorf

XY G (@G5 (@+Q)
SGL ()G (s+0) Yoy, (69

with measuring vertices* and y? defined in Eqs(10) and
(11) and the spin tensor from Ed33). Contracting the
IV. NONLINEAR TUNNELING CURRENT Keldysh indices and expressing things in terms of the vertex

functionZ, this simplifies to
The current operator measuring the charge flow from left

to right lead is found from the equation of motion for the K(l) de | K. R R
charge density in the left lead: (t, t)_ 128 JLRJ -2 (e), I(e)
o =i[H,n]. (65) +57%) 5, 74 (e)], (69)
The expectation value at tinteis which in turn leads to
0
i(2) vy R K
o = - J ——J f—lm[ 1(8)] Z%(e)—= (Ve —V).
JL=I9R2 (SD-[€] 40 (D TyroCrice(t) — L=RI), -

Kk’ (70

and by defining a two-particle Keldysh contourordered cor-
relation functon T -

Dir(7,7") <I _____ Q * <l y
Z(—i)zl%, <TCK(CIk/g/(T)%CRko(T)'g(T,)]>v

FIG. 6. Unlabeled Feynman diagrams oy . Triangles denote
(66) the bare measurement vertices.
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Evaluating this expression and performing the projection,

one finds the physical charge current to be

r(v+ B)
(V+B)cot T

] . (71

. T
= ate] V-1

V—-B
- (V— B)COtf( ?)

The magnetization entering this formula is tba-shell

PHYSICAL REVIEW B59, 155330(2004

D i_(V B)
+ZBngnE —cot o7 (V—B)

D D D
1+ ZQdIn— + 2ng|n— — ZBgdln—] } ] .

X
[V-B] VI Bl

(79

Here again, IiD/|x|) is shorthand for IMY/\x?+T?) as all
logarithms are cut off byf. The current has acquired loga-
rithmic corrections, which again enter ps+gIn(---)], and

magnetization determined in Sec. Ill B, and since we includg,, zero magnetic field we recover the conductance obtained
no dressing of internal lines this quantity receives no addixgyjier in Refs. 21 and 4treinstallinge and#):
tional renormalization from the retarded and advanced

Dyson equations.

The second-order corrections to the correlation function

92 T 2
G(V):% EgLR 3

)
1+4gdlnw . (76)

D R are contained in the second diagram in Fig. 6. After
contracting indices with the measurement vertices, this may |n a finite magnetic field, however, the proliferation of

be written in terms of Peierls and Cooper bubbles as

1 dS q" q’
ngktj)=——1§éJuﬂaR9;ﬂwJ-E;[A;biﬁi;(s)

c’d d’c” L,dd

X Aa brraqu b”a”(s) J’Eg’a (8)
c¢’dL —~dc’ cd’

- Aa”b 7/E ba’(g) Aa b

X% K () RIS (o)1, (72

rMa’a

which upon full contraction leads to

=]
.y,yl .y//

1
DEI(?Z)(trt) = EJLaJaR 0

d
X [ GBI ()T @) )
+ 5 I%(8) 5T (2)5TA(s)
+ 5IRe) L IR(2) TK(e) ]+ (Vs = V).
(73
Inserting this into Eq(67), we end up with

i 0P ran d8
=L 32000+ ) | 3R+ o)

xIm[5,Z(e)15, 7 (e) = (Ve = V), (74)

e? 2 gER
which may finally be evaluated and projected to obtain theG(BZV,T)%%(EgLR) 2+ —

physical current

D
J’_ P—
1494y g

V+B
cot

+(V+B)

LT, D
=709~ \4 1+49d|nm

2T

D
+(V— B)( l+4gdlnm) -M

D
X +2VgyIni—

VI

D
(V+ B)( 1+ ngmm

logarithms is more intricate. While the logarithmic structure
in Eq. (75) was derived already by Appelbaufh??he tacitly
employed the equilibrium magnetizatidh=tanh@/2T), in-
stead of the correct expressi¢h?7), and thereby left out a
number of logarithmic corrections to the resulting conduc-
tance. These early results by Appelbaum are therefore only
valid for a local moment coupled dominantly to one elec-
trode, in which cas@, | >ggrg,9.r and therefore indeei
=tanh@/2T), as was pointed out in Sec. Il B. Having
solved the quantum Boltzmann equation in Sec. Il B, in-
cluding the leading logarithmic corrections, we can now cor-
rect for this omission.

Close toV=B, the conductance shows a characteristic
jump (see Fig. 7. ForV<B andT<B—-V<V we obtain

(77)
while for V>B andT<V—-B<B we get

2 2
D
(3+ gLRgd)ln_
gt /B

2

e [ 2
G(B,V)%% SR

1+2g4

|D+|
nE n

B-V

wh

o2 2 2
G(B,V)*_(ggm) |3+%+29d

2
g
3+ =
g
The jump in the conductance is broadened by the tempera-
ture T and we obtain fol,B>T>|V—B|

In——1+¢. (78)

* V—B

29
3 D

In?

2
24 Ir
292

2+
"B

efifRe)

+204| | 2+ 2g°

(79

with g2=(g? +g&r+297r)/4. All terms in Egs.(78) and
(79) proportional tong/g2 originate fromoM/oV and are
therefore not present in Appelbaum’s result. The logarithmic
divergences ID/|V—B| and I'D/T in Egs.(77)—(79) seem to
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the lower panel, wherg, g<g4, Appelbaum’s conductance
is closer to the true curve, as for smgjlr one is closer to
equilibrium (g, g=0 is an equilibrium problem

Our result for the conductance appears to be similar to a
plot by Sivan and Wingreéf for the Anderson model, but
since that work does not contain an explicit analytical ex-
pression for the current and the magnetization it is difficult to
compare the two results. Furthermore, logarithmic correc-
tions to the quantum Boltzmann equation appear not to be

0.001

° included in their approach.
0.03 In the high-temperature limiT>max{,B), there is no
= effect of V on the magnetization, and we recover Appel-
& baum’s result for the current, or rather the result he would
= have obtained by performing the final energy integrations in
> his expressiong39) and (60) of Ref. 22. The closed-form
© . expression presented in Ref. 23 is the conductance rather
T than the current, and as an aside we note that differences
0 from his formulas(where theT dependence arises through
hyperbolic tangenjsto our Eq.(75) (with hyperboliccotan-
gentg arise due to an(invalid) approximation by Appel-
baum, when he approximated the derivative of the Fermi
0.001 function by a § function. Using the identityf(w+¢)[1

—f(0+Q)]=N(e—Q)[f(w+Q)—f(w+e)] between
Fermi and Bose functions, we find cathtxd,coth) in-
stead of tanh() giving rise to a different prefactor (2/3 in-
stead of 1) forT larger than eithe¥, B, or |V—B].

viB V. DISCUSSION

FIQ. 7. Conductgnce, expanded toitglrd order in the exc_:hange In the present work we have calculated the local magne-
couplings, as a function of/B, for T=10 *B andD=10'B. Solid 4, 2iion and the charge current through a quantum dot at
and daShe(ﬂd.Otted and long-dashgdines Co"eSpond. to @) or- large bias voltage and in the presence of a magnetic field. We
der perturbation theory. Dashed and long-dashed lines heawd h idered a Kondo model where the dot is represented
and correspond to Appelbaum’s result, which neglectsvtidepen- ave considere E! P
dence ofM shown in Fig. 5. Upper panedi,, = grr= g, r=0.01. _by a qgantum sp|r8=_1/2, coupled to leads by exchange
Middle panel:g,, =grgr=0.01 andg, g=0.05. Lower panelg,, interaction and tunneling. . .
=grr=0.05 andg, z=0.01. Remarkably, the .fstr_uctur_e of pertyrbauon theory in

steady-state nonequilibrium is rather different from that in
suggest that logarithmic corrections may grow large Yor  equilibrium. The main physical reason is that in our problem
—B andT—0, signaling a transition to the strong-coupling the occupation on the dot is completely undetermined in the
regime, but such behavior will ultimately be prohibited by limit of vanishing couplings to the leads and therefore has to
spin-relaxation processes emanating from the finite currertbe calculated from the solution of the quantum Boltzmann
flowing through the dot. As argued in Refs. 56 and 45, theequation(i.e. from a self-consistent Dyson equatioiore
relevant cutoff energy is the voltage dependent spingenerally, in equilibrium all distribution functions are given
relaxation ratd”~g2V, and forT,|V—B|<T, the diverging exactlyby the “bare” Boltzmann, Fermi, or Bose functions
logarithms will be replaced by VT, leading to a finite cor-  without any corrections from interactions while out of equi-
rection. This cutoff arises as a joint effect of vertex and self-librium these functions have to be calculated and will depend
energy corrections, which will be worked out in detail in a on all the couplings. Probably the most drastic consequence
subsequent publicatiof. The same relaxation rate also is that for finite voltages the magnetizati®6) is modified
broadens the jump in the conductance and (#6) is there-  even for vanishing couplings, i.e., @erothorder of pertur-
fore only valid forT>T. bation theory as has been emphasized in Ref. 56. As a con-

In Fig. 7 we plot the conductance as a functionsB, sequence the structure of logarithmic corrections to the mag-
for T<V, using both the nonequilibrium magnetization netization is also rather different out of equilibrium. As the
given by Eqgs.(57)—(59) and the equilibrium valueM ~1 matrix elements of ordeg? in the quantum Boltzmann equa-
since T<B), corresponding to Appelbaum’s result. In both tion get corrections of ordeg®In(D), the perturbative
cases a cusp develops |a|~|B|, beyond which spin-flip magnetization (57) is generically of the form ¢?+g®
tunneling processes are energetically viable. Including the<In(---))/(g>+¢°In(---))~const-O[gIn(---)], to be com-
nonequilibrium magnetization, however, leads to a proJared to the equilibrium case where logarithmic corrections
nounced enhancement of the cusps, coming faMVoV  arise only to ordeg?In(-- ).

(shown in Fig. %, which is missing in Appelbaum’s result. In In this paper, we have calculated the magnetization and
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the current through a Kondo dot to third order in the cou-work was carried out. This work was supported in part by the
pling, including the leading logarithmic terms. In contrast to CFN and the Emmy Noether prograi@.R.) of the DFG.
earlier treatments of this probleth?? the effect of the non-

equilibrium magnetization on the current is incorporated and  AppENDIX: MAGNETIZATION AND SELE-ENERGY

md_eed sh_own to be important for a_ty_plcal quantum dot ex- CORRECTIONS

periment in the Kondo regime. In finite magnetic field the

differential conductance exhibits threshold behavior at In this appendix we calculate the observable magnetiza-
V= +B, reflecting the fact that spin-flip tunneling is possible tion to orderg?In(---), by including self-energy corrections
only for |V|>|B|. Taking the voltage dependence of the to the pseudofermion spectral function. Using the prescrip-
magnetization properly into account, the conductance showion (3) for evaluation of a canonical ensemble average, the
a cusp atv=+B, already to lowest order in perturbation magnetization is determined as

theory. Going one order higher, logarithmic corrections are

found to enhance these cusps even further, increasing the Ny =N

conductance substantially over the threshold plateau, even M _J[nwn“JrnM’ (A1)
for magnetic fields much larger than temperature. This be-
havior clearly calls for a resummation of the perturbationwhere
series to infinite order.
The intricate structure of logarithmic corrections, revealed » de
by nonequilibrium perturbation theory, enforces a modified N\ f_ocsz(w)ny)\(w)r (A2)

formulation of the perturbative renormalization group.

Thinking in terms of poor man’s scaling, a resummation ofand, in principle, the full frequency dependence of both the
the logarithmic corrections cannot simply be achieved byspectral and the distribution function is needed to carry out
collecting the logarithmic corrections into a renormalizedihis integral.
coupling constant. This is clearly illustrated by Eg4) for To illustrate how such renormalization works out within
the susceptibility, which shows that different combinations ofthe pseudofermion approach, we shall commence with the
logarithms appear in the numerator and in the denominatosimpler case of thermal equilibrium and consider merely lin-
However, as we have recently demonstrdfedxactly this  ear response foB<T. Traditionally, most work regarding
structure of leading logarithms is generated in a poor man'ghe Kondo effect on the magnetic susceptibility in this re-
scaling approach dealing with energy dependent couplingime has been conducted using a Kubo forntit&°and to
functionsA detailed account of this approach will be given the pest of our knowledge only one work has taken the ap-
in a subsequent publicaticf. ~ proach outlined above to calculate the magnetization directly
An additional important difference between nonequilib- from the renormalization of thef spectral functiori? Since,
rium and equilibrium physics is the fact that in a nonequilib- yowever, this latter work contains an error, and as we think
rium situation the current through the system generates sulnat the calculation is instructive, we shall consider this sim-

stantial noise. As a conseguence, quantum coherence [$er case in some detail before briefly discussing the non-
limited to energies above a certain relaxation rBteThe  equilibrium case.

scaleI” will therefore cut off all logarithmic divergences
which remain in the limitT—0 in the perturbative expres-
sions for magnetization and current found in this paper. This
important piece of physics is not included in the low-order At zero-bias voltage the local spin is in equilibrium with
bare perturbation theory presented here and requires a resuthe leads, and thef distribution function reduces to a
mation of subleading self-energy and vertex corrections. Thisimple Fermi function. In the Keldysh formalism, this may
will be demonstrated explicitly in a forthcoming be viewed as a simple consequence of the KKSibo-
publication®’ Martin-Schwingey boundary conditioi? which states that
Historically, the Kondo effect has played an importantin thermal equilibrium g;\(w)=—Q;\(w)eX[{(w-l-)\)/T].
role in the development of techniques such as the renormalFhe quantum Boltzmann equati¢f8) may be rewritten as
ization grouf® to treat strong-coupling problems for sys-
tems in thermal equilibrium. It is our hope that the present 3 ()G (0)=27, ()G (w), (A3)
perturbative calculation of leading logarithmic corrections
can serve both as a starting point and a check for futuréom which the KMS condition is seen to imply that
developments of similar methods applicable to systems out
of equilibrium.

1. Equilibrium magnetization

;\(ﬁ))
—:_e(w+)\)/T. (A4)

;\(w)

This can also be verified explicitly from our perturbative
We thank P. Coleman, L. Glazman, C. Hooley, J. Krohaexpressions fo,~'=, by employing the(KMS) condition
O. Parcollet, and H. Smith for useful discussions. J.P. aci—n,,=n,exd(A\—yB/2)/T] (explicitly satisfied by a
knowledges the hospitality of thér&ed Laboratory at the Fermi function for the on-shell equilibrium occupation num-
University of Copenhagen in Denmark, where parts of thisbers. InsertingA4) into Eq. (51) shows that indeed

ACKNOWLEDGMENTS

155330-13



J. PAASKE, A. ROSCH, AND P. WOFLE

1

e(w+)\)/T+ 1 ’ (AS)

ny)\(w):

and when derived in this way, it becomes clear that the KMS
condition ensures a highly nontrivial cancellation of interac-
tion corrections in the case of thermal equilibrium. Applying
a finite voltage, this condition is violated and the nonequilib-
rium distribution function will be affected by interactions in

the manner which we have described in Sec. Il B.

As mentioned earlier, the first-ordgsf Hartree self-
energy vanishes unless one includes a Zeeman term for the

conduction electrons. However, adding such a term,

ce _ T 3
Cema=B X ChioTouCakror s (A6)

k,ok", 0"

PHYSICAL REVIEW B 69, 155330(2004

to second order ig. This function is highly asymmetric and
expanding to first order iB/T one finds the asymptotic be-
havior

37ngw, T<w
B
377ng( 1- 7—), —T<w<T
I' (w)= 3T
3mg?wle”elT l—’y—B w<—T
6T/’ '

(A12)

complemented by the fact thRt(w) =0 for |w|>2D, since

the excitation of particle-hole pairs giving rise to the broad-
ening is limited by the bandwidth. Sindé is essentially
constant near the peak of the spectral function, one may ap-

to the Hamiltonian, one finds that the self-energy is entirelyproximate A, in Eq. (49) by a Lorentzian foroe[—T,T]

real and given as

1. . . (ds
REST(0)]= - duaTooTyy f 5 A1IGL(e)=YBgy/2,
(A7)

where thece Green function now depends on the spin. Note
that the Keldysh component of the Hartree self-energy
identically zero, due to the fact that R®&,,(¢)] is an un-

even function. In a case where particle-hole symmetry
broken on an energy scaf one obtains a finite contribution
of orderJ /D, which can be neglected for lar@®e The only

effect of including a Zeeman term for the conduction elec-

trons is therefore a constant shift of thé energy levels.

The second-ordepf self-energy has a real part, which

has only a negligible contribution from the tei@®6). With-
out this term, one finds that

2

RES P (w)]=— % 0,, f lds tank(%)
D2
X (e—pa—y'BI22+T2) (A9
which implies that
RS2 (—yB/2)]~ yBgZ|n$ (A9)
and
J,REZP ()]~ - Eg2|n9, (A10)
2° T

in the case oV=0 andT>B.

The broadening of thg@f energy levels is given by the

imaginary part of the self-energy d3=i(X~-X~), and

when neglectin@. =, which projects to zero, we end up with

'=iX~ which is given by

T (©)=g%0,,(o+y B2)[1+N(w+y'B2)],
(A11)

and byl“y(a))/w2 for |w|>T. Introducing the wave-function
renormalization factor

Z(w)=|1-9,R4> |*1—1—E 2 ° (A13
‘y(w)_ w q: ‘y(w)] - 29 nT, )

the coherent part of this approximate spectral function inte-

ISgrates taZ in the intervall — T,T]. The exponential integral
i of the negative frequency tail contributes with a number of
Ihe order ofg?, which should be neglected, while the inte-

gral fromT to D yields exactly - Z, which ensures that this
approximate spectral function integrates to 1.

To find the magnetization, the integrgd2) may now be
evaluated using the Boltzmann distribution and this approxi-
mate spectral function. The spectral function is centered at a
frequency o, satisfying the equation w,=—yB/2
+Rg 2 ,(w,)], and consequently the integral oMer T,T]
contributes a factor oZn,,(w,), that is,

fT dw r,
~T27 (0—w,)?+(I',/2)?

Zn,y)\((l))

z 5 1 ! 2| P Al4
~Z+yo7|179- 595, (A14)

to first order inB/T. Since the distribution function falls off
exponentially foro>T, the integral ove{T,D] is negli-
gible. On the negative frequency tail, the spectral function
decays exponentially, but this is compensated in the integral
by the exponential increase of the Boltzmann distribution,
and one finds that

f_waF’ 1-7 5 2|D A15
o2m ;ny)\(w)w —Z-y 79 (A15)
Adding up Egs(A14) and(A15) and inserting in Eq(Al),
one ends up with the magnetization

D
M 1-g—4 gzln?), (A16)

:E(
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to which one may finally add the corresponding induced spin 2. Nonequilibrium magnetization
polarizqtion_ of the conduction electrons to obtain the total a5 gemonstrated in the equilibrium case, the magnetiza-
magnetization tion is renormalized in a delicate balance between shifts and
broadening of thepf energy levels, i.e., between the influ-
s 2. 2 . o paul , D ence of REX] on the coherent part, and &f on the inco-
(S*+s{+sp)—(s(+sp)g =~ aT 1-29-4g 'nT : herent tails of the spectral function. In the case of finite bias
(A17) voltage, however, the renormalization of the distribution
function becomes important.
Here thez component of the total spin of lead has been At finite voltage, there are logarithmic corrections3o
introduced as and~, which no longer cancel in Eq51), and the mag-
netization now exhibits the stronger renormalization by fac-
tors of g In(D) rather thang and g2In(D). To properly de-
= > ch P oo (A18)  scribe the crossover to equilibrium, @sbecomes greater
Kokloa 00TEE thanV, one should include these subleading corrections de-
riving from the renormalization of thef spectral function.
and thepf andce gfactors are assumed to be equal. ThisThis can be done in much the same way as above, as long as
result matches the high-temperature expansion of the exactre is taken to separate the coherent part of the spectral
Bethe ansatz solution as it shodit: function from the incoherent tails at eith&ror V, so as to
In Ref. 51, the normalization of the approximate spectralensure normalization of the total spectral weight. Whes
function is demonstrated just like here. In calculating theincreased beyon¥, theg In(D) corrections get less and less
magnetization, however, the contributi¢Al15) was not in-  important.
cluded and theZ factor was argued to be canceled by the It should be emphasized that, as mentioned already in
same factor appearing in the denominator of &dL). Alto- Sec. IV, the effects of shifts and broadening, discussed in this
gether, this error leads to a prefactor of 2 instead of 4 in frontppendix, affect only the observable magnetization and have
of the g?In(D/T)-term in Eq.(A16), which destroys the cor- no influence on our result for the leading logarithmic correc-
respondence with the exact result. tions to the current.
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