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Nonequilibrium transport through a Kondo dot in a magnetic field: Perturbation theory
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Using nonequilibrium perturbation theory, we investigate the nonlinear transport through a quantum dot in
the Kondo regime in the presence of a magnetic field. We calculate the leading logarithmic corrections to the
local magnetization and the differential conductance, which are characteristic of the Kondo effect out of
equilibrium. By solving a quantum Boltzmann equation, we determine the nonequilibrium magnetization on
the dot and show that the application of both a finite bias voltage and a magnetic field induces a novel structure
of logarithmic corrections not present in equilibrium. These corrections lead to more pronounced features in
the conductance, and their form calls for a modification of the perturbative renormalization group.
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A localized spin coupled to the spins of a conductio
electron system via a Heisenberg exchange interactio
known to give rise to the Kondo effect, provided the co
pling is antiferromagnetic.1 At sufficiently high temperatures
or energies, well above the characteristic energy scale
ferred to as the Kondo temperatureTK the signature of the
Kondo effect is a logarithmic variation of various obser
ables with temperature~or other energies!. As first demon-
strated by Kondo,2 such logarithmic behavior appears a
ready in perturbation theory to low order in the exchan
coupling. At low temperatures, however, forT!TK , the lo-
cal spin is screened by the conduction-electron spins, and
system enters a local Fermi-liquid state, characterized by
teger temperature power laws.

The many-body resonance state forming nearTK com-
prises infinitely many virtual particle-hole excitations lea
ing to a peak in the conduction-electron-scattering amplit
at the Fermi energy: the Kondo resonance. In equilibri
systems the Bethe ansatz method allows us to analytic
calculate thermodynamic properties,3 and dynamical proper
ties can be determined with the help of Wilson’s numeri
renormalization group.4 These methods reveal the univers
nature of the Kondo effect: a single characteristic scaleTK
determines the physics and all physical quantities are uni
sal functions of, e.g.,T/TK . Already in 1970 Anderson5 sug-
gested a simple and efficient method, known as ‘‘poor ma
scaling’’ or perturbative renormalization group, to resum t
leading logarithmic terms in perturbation theory and to
tablish the scaling behavior. It requires nothing more th
low-order perturbation theory, and provides a controlled
proximation forT.TK , i.e., as long as the running exchan
couplings remain small.

While the Kondo effect was discovered in metals conta
ing magnetic impurities in the 1960s~with experimental ob-
servations dating back to the 1930s!, and most of the theo
retical development took place before the mid 1980s, it ha
revival in the 1990s in the context of electron transp
through quantum dots weakly coupled to leads. Provided
the dot carries a net spin, a Kondo resonance develops,
admitting resonant tunneling of electrons.6,7 This leads to a
removal of the Coulomb blockade, i.e., an increase of
conductance from small values up to the quantum limit,
the Kondo resonance develops. We shall refer to this typ
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quantum dot as aKondo dot. It has been observed that th
Kondo effect is quenched by raising the transport bias v
ageV well aboveTK , i.e.,eV@TK , and that the presence o
a magnetic field splits the zero-bias conductance peak
two distinct peaks, located at bias voltages roughly equa
plus and minus the Zeeman splitting of the spin on
dot.8–12

The observation ofKondoesqueconductance anomalies
exhibiting a logarithmic temperature dependence of the ze
bias peak height and a Zeeman splitting of the peak in fin
magnetic field, actually has a much longer history; it h
often been observed in more traditional tunnel junctions
volving tunneling via magnetic impurities. In meta
insulator-metal junctions the Kondo anomaly can result fr
magnetic impurities present in the insulating metal-ox
barrier, from surface states at the metal/metal-ox
interface13–17 or even from unpaired electrons residing o
organic radicals in a polymerized benzene barrier.18 The
same type of conductance anomaly has been detecte
semiconductor-metal~Schottky! junctions,19,20 in which the
neutral shallow donors in the semiconductor depletion la
provide the spin-1/2 moments which incite the Kondo cor
lations.

In 1966, Appelbaum21,22 and Anderson23 demonstrated
that this type of conductance anomaly can result from
called exchange tunnelingprocesses, in which an electro
tunnels from one electrode to the other via an intermed
magnetic impurity orbital and at the same time flips its sp
This mechanism was shown to lead to a Kondo effect
hancing the charge transfer across the dot, and it explain
a natural way why the conductance is peaked at a bias v
age corresponding to the Zeeman splitting of the impu
moment: the finite bias has to supply the energy to flip
spin in the presence of a magnetic field. Appelbaum cal
lated the tunneling conductance from a simple golden r
expression, in which the tunneling amplitudes were de
mined from third-order perturbation theory, including th
leading logarithmic corrections reflecting the Kondo effe
His result did capture the qualitative features of the cond
tance anomaly, but any quantitative agreement with exp
ment has been restricted to the case of zero magnetic fi
Wolf and Losee24 later suggested an extension of Appe
baum’s theory in which the logarithmic enhancement was
©2004 The American Physical Society30-1
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off by the lifetime broadening of the Zeeman split spin le
els. Indeed this extra feature improved the agreement w
experiments somewhat, but even with several parame
this did not allow for a fit to experiments at finite magne
field.16–19,25

The mechanism of exchange tunneling, suggested by
pelbaum and Anderson, was originally built into a Ham
tonian with constant,a priori unknown, exchange coupling
to the spin. While this approach relied on an exchange t
neling term connecting the two electrodes@see the model~1!
below#, a parallel development by So´lyom and
Zawadowski26 suggested that the conductance anom
should arise from the energy dependent renormalization
the local density of states, induced by Kondo spins near
of the electrodesnot directly coupled to the other side. In
tially the two proposals disagreed even in the sign of
change in conductance, but these differences were reso
in a later work by Appelbaum and Brinkman,27 using Zawa-
dowski’s alternative approach to tunneling.28,29The final rec-
onciliation of these ideas came with the work of Ivezic´,30

taking the nonequilibrium Keldysh approach to tunnelin
developed earlier by Caroliet al.31 The fact that the elec
trodes were out of mutual equilibrium was taken into a
count, and it was demonstrated that the earlier~essentially
equilibrium! treatments26,27 were only correct in cases whe
the impurity was located near one of the electrodes, whe
an impurity somewhere in the middle of the barrier cons
tutes a true nonequilibrium problem. For a review of the
earlier works cf. also Ref. 32.

With the discovery of the Kondoesque tunneling anom
in various types of quantum dots, this venerable problem
recently been revived. Meanwhile, experimenting with qu
tum dots offers much better control over the parameters
fining the problem, and this in turn allows for a more sy
tematic study of the physics underlying the conducta
anomaly. Since the zero-bias anomaly arises only in C
lomb blockade valleys corresponding to anodd number of
electrons occupying the dot, the effective local moment
be ascribed to a single electron in the uppermost ene
level. In this way the ‘‘magnetic impurity’’ spreads over th
entire dot and there is no confusion as to whether the im
rity is located close to, or even residing in, one of the el
trodes or whether one should average over many impuri
issues which were all very important in the convention
tunnel junctions mentioned above. In particular, there is
reason to believe that the dot spin should be equilibra
with one particular lead, which was pointed out by Ivezic´31

to constitute a true nonequilibrium problem. Within th
Anderson model, this problem has been studied using
equations-of-motion technique combined with the noncro
ing approximation33–38and by means of nonequilibrium pe
turbation theory, expanding in the hybridization strength39

Other works have taken the Kondo model as their star
point, but have mostly focused on the effects of an applied
bias in the case of zero magnetic field.40,41

A complete theory of the Kondo dot in a nonequilibriu
stationary state, i.e., in the presence of a finite current fl
ing through the dot, does not exist yet. Most of the meth
which have proven so successful in dealing with the equi
15533
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rium Kondo problem, appear to have no trivial extension t
nonequilibrium situation. Schiller and co-workers42 have
successfully applied bosonization techniques, originally
vised by Emery and Kivelson43 in their solution of the two-
channel Kondo problem, to calculate a number of obse
ables near a certain Toulouse point in the presence of a fi
bias voltage. It is unclear, however, to what extent the
results apply to the generic Kondo model. Konik, Saleur a
Ludwig44 started from the Bethe ansatz solution in equil
rium to constructapproximatescattering states, in the pres
ence of a finite voltage. To what extent their approximatio
and boundary conditions are valid is not obvious to us.
the best of our knowledge, even the perturbation theory
true nonequilibrium situation has not yet been worked ou
the presence of a magnetic field to leading logarithmic ord
i.e., to third order in the exchange interactions. This lat
task will be taken on in the present paper, which presen
detailed analysis of the nonequilibrium perturbation theory
leading logarithmic order, generalizing Appelbaum’s result
the case where the spin is not equilibrated with one of
leads.

Our aim here is to understand the physical processes
erning the nonequilibrium situation and to formulate a sta
ing point for the resummation of the leading logarithm
terms in perturbation theory. Even in the perturbative regim
when magnetic fields, voltages, or temperatures are la
compared toTK , such a resummation is necessary not o
to recover the correct universal scaling behavior but also
be able to fit experiments quantitatively.45 In some of the
early works,26,46 perturbation theory was resummed usi
approximations of Nagaoka,47 Abrikosov,48 or Suhl and
Wong,49 mainly as an attempt to capture the strong-coupl
regime. As for the quantum dots, Kaminskiet al.41 first sug-
gested a poor man’s scaling method to deal with this prob
at finite voltage, but this approach did not encompass
case of a finite magnetic field and therefore avoided the c
ceptual problem connected to the calculation of the mag
tization.

Recently, the present authors suggested a different p
man’s scaling approach,45 which effectively resums the loga
rithmic corrections and recovers scaling, even in the pr
ence of a magnetic field and a finite voltage. As an import
check on this approach, it was crucial that an expansion
bare parameters would correctly reproduce the leading lo
rithmic corrections found from perturbation theory, and i
deed this was found to be the case. Main results of the n
equilibrium perturbation theory presented here were brie
stated in Ref. 45. The details of our scaling approach will
provided in a subsequent publication.50

The remaining parts of the paper are organized as follo
In Sec. I we define our model and briefly review the pseu
fermion formalism to be used throughout the paper. Sec
II reviews the diagrammatic rules of nonequilibrium pertu
bation theory using the Keldysh formalism, and introduce
few basic building blocks from which all subsequent d
grams will be constructed. In Sec. III we solve a quantu
Boltzmann equation to find the nonequilibrium distributio
function for the local spin, and demonstrate that this lead
rather dramatic effects of the bias voltage on the local m
0-2
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FIG. 1. ~a! The bare conduction-electron–
pseudofermion vertex.~b! The absorption and~c!
the emission vertices. Propagators are das
(p f) and full (ce) lines. Note that the absorption
and emission vertices could equally well hav
been drawn withp f propagators.
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netization. Finally, in Sec. IV we derive an expression for t
tunneling current which takes the nonequilibrium magneti
tion as its input. Section V contains a summary and disc
sion of our results.

I. THE MODEL

We consider the Hamiltonian

H5 (
a,k,s

~«k2ma!caks
† caks2gmBBSz

1 (
a,a8,k,k8,s,s8

Ja8a SW •
1

2
ca8k8s8

† tWs8scaks , ~1!

wheremL,R56eV/2, Sz is the spin-1/2 on the dot, andtW the
Pauli matrices. We shall use the dimensionless coupling c
stantsgi5N(0)Ji , whereN(0) is the density of states pe
spin for the conduction electrons andJLL , JRR, and JLR
5JRL the real-valued exchange constants. For simple qu
tum dots in the Kondo regime, which can be described by
Anderson model, the exchange coupling constants are re
by gLR

2 5gLLgRR. However, in more complex situations
such as in double dot systems in the Kondo regime, no s
relations exist and we will therefore treatgLR as an indepen-
dent parameter of our Hamiltonian~1!. For notational con-
venience we employ the shorthand notationgd5(gLL

1gRR)/2 andg25(gLL
2 1gRR

2 12gLR
2 )/4, andunless specifi-

cally stated otherwise, we will henceforth use units wh
\5kB5gmB5e51.

In order to proceed with a perturbative calculation, whi
includes also the effects of a magnetic field, it is conveni
to apply a fermionic representation of the local spin ope
tors. We choose here Abrikosov’s48 pseudofermionrepresen-
tation, which, in terms of fermionic charge-neutral spin-1
operatorsf, reads

SW 5
1

2 (
gg8

f g
†tWgg8 f g8 . ~2!

Since only the singly occupied fermion states have a
physical relevance, this representation must be suppleme
by a projection onto this physical part of the Hilbert spa
effectively excluding doubly occupied and empty states.
this end, the pseudofermion is endowed with a chemical
tential l, which is kept finite throughout the calculation, u
ing a grand-canonical ensemble average. As demonstrat
Ref. 51, the physically relevant, i.e.,canonicalensemble av-
eraged, expectation value of an observableO is obtained as
the limiting value
15533
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^O&Q515 lim
l→`

^OQ&l

^Q&l
, ~3!

where Q5(g f g
† f g is the pseudofermion number operato

Note that in the common case, where the observableO has
zero expectation value in theQ50 ensemble, one may leav
out theQ operator from the numerator in Eq.~3!. This pro-
cedure applies equally well within the Keldysh formulatio
of nonequilibrium perturbation theory, since the statistic
averaging in this approach is performed with respect t
thermal equilibrium state in the infinite past. A similar pr
jection technique was used in Ref. 34, and later in Ref. 35
study the Anderson model out of equilibrium.

Sincel enters as a chemical potential, thermal avera
taken with a finitel contain various powers ofe2l/T. In
particular,^Q&l;e2l/T and therefore the limit ofl→` in
Eq. ~3! effectively picks out the terms in̂OQ&l which are
also proportional toe2l/T. Likewise, in calculating any ther
mal average of interest at finitel, one is allowed to retain
only the terms of lowest order ine2l/T.

II. KELDYSH DIAGRAMMATICS

In setting up the nonequilibrium perturbation theory, w
shall comply with the conventions in Ref. 52. All Keldysh
space matrix propagators are represented in the usual up
right triangular form

G5S GR GK

0 GAD ~4!

and the individual entries will be denoted by latin indice
From this basic Green function, one may obtain the us
spectral, lesser, andgreater functions as

A5 i ~GR2GA!, ~5!

G,5~GK2GR1GA!/2, ~6!

G.5~GK1GR2GA!/2, ~7!

Re@G#5~GR1GA!/2, ~8!

implying theR superscript in the real part. A correspondin
notation will be used for self-energies, except that the sp
tral function will be replaced by thebroadeningG5 i (SR

2SA). We shall henceforth denote conduction-electron (ce)
and pseudofermion (p f) correlation functions by capital latin
and calligraphic letters, respectively.

Perturbation theory in terms of Keldysh matrix propag
tors involves the bare four-point vertex and themeasurement
vertices depicted in Fig. 1. These have the tensor structu

Lab
cd5 1

2 ~dabtcd
1 1tab

1 dcd!, ~9!
0-3
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gab
1 5g̃ab

2 5
1

A2
dab , ~10!

gab
2 5g̃ab

1 5
1

A2
tab

1 . ~11!

Diagrams should be interpreted with the usual ze
temperature Feynman rules, including a prefac
( iJ)n(21)Fp f1Fce to any diagram of orderJn, havingFp f ,ce
closed pseudofermion or conduction-electron loops. B
flavorspropagate with spin indicesg,s561, to which we
apply the convention thatḡ[2g. Furthermore, the
conduction-electron Green functions carry a lead indexa
P$L,R%. The Einstein summation convention is implied f
all indices except where otherwise stated.

Since we assume the total system to have reached a s
state, all Green functions depend only on one frequency.
barep f propagator has the spectral function

Ag~v!52pd~v1gB/2! ~12!

and corresponding retarded and advanced Green funct
For the Keldysh component, we make the usual ansatz

G g
K~v!5 iAg~v!@2ngl~v!21#, ~13!

which defines thep f distribution functionngl(v). At zero-
bias voltage, where the spin is equilibrated with the cond
tion electrons,ngl(v) reduces to the Fermi functionf (v
1l)51/(e(v1l)/T11). We follow the convention of Ref. 53
and place the chemical potentials in the distribution fu
tions rather than in the spectral functions, which prevents
parameterl from pervading the formulas. The unprojecte
mean occupation numbers are given by the integral

ngl5E
2`

` dv

2p
Ag~v!ngl~v!, ~14!

that is, ngl5ngl(2gB/2) for bare Ag . After taking the
limit l→` for a given observable and thus performing t
projection onto the physical spin states, one can use the
straint n↑1n↓51 to write the local magnetization asM
52n↑21. At times, we shall also use the shorthandMg,l
52ng,l21 prior to projection.

The bare conduction-electron Green functions depend
momentum as well as frequency, but since the interac
and the pseudofermions are local in space, all internal li
in a Feynman diagram involve only propagation in time, a
we are allowed to work with local, momentum integrated,ce
Green functions. Assuming a constant density of states
band of width 2D, centered at zero, the momentum int
grated spectral function reads

A~v!52pN~0!Q~D2uvu!, ~15!

with N(0)51/(2D). Assuming the electrons in separa
leads to be in thermal equilibrium, the lead-depend
Keldysh Green function takes the form
15533
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K~v!52 iA~v!tanhS v2ma

2T D , ~16!

in terms of the chemical potentialsmL52mR5V/2. The
spectral function~15! implies a small real part Re@GR(v)#
5(N(0)/2)ln@(v1D)/(v2D)#'N(0)v/D which we can
safely neglect for most of our discussion.

A. Second-order vertex functions

The central objects in the diagrammatics of this probl
are thece-p f bubbles depicted in Fig. 2, insofar as the
carry the logarithmic integrals which eventually lead to t
Kondo effect. The bubbles in thePeierlsandCooperchan-
nels are evaluated as

g
aKba

dc~«!5E dv

2p
Ga

dc~v1«!Gg
ba~v!, ~17!

g
aK̄ba

dc~«!5E dv

2p
Ga

dc~«2v! Gg
ba~v!, ~18!

from which one can readily determine the various Keldy
components by straightforward integrations:

gK R
R~«!5gK A

A~«!50,

gK A
R~«!5 iGR~«2gB/2!,

gK R
A~«!52 iGA~«2gB/2!,

g
aK K

R,A,K~«!5 iGa
R,A,K~«2gB/2!Mg,l ,

g
aK R

K~«!52
i

2
Ga

K~«2gB/2!

2 iN~0!lnS D2

~«2ma2gB/2!21T2D ,

g
aK A

K~«!5
i

2
Ga

K~«2gB/2!

2 iN~0!lnS D2

~«2ma2gB/2!21T2D , ~19!

for the Peierls channel, from which the bubbles in the Co
per channel are obtained as

FIG. 2. The conduction-electron–pseudofermion bubbles
Peierls~a! andCooper~b! channels. Conduction-electron propag
tors have lead indexa and pseudofermion propagators carry t
spin indexg. Latin indices refer to the Keldysh-matrix structure
Eq. ~4!.
0-4
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gK̄A
R~«!5gK̄R

A~«!50,

gK̄R,A
R,A~«!52gKR,A

A,R~2«!,

g
aK̄K

R,A,K~«!52g
āK K

A,R,K~2«!,

g
aK̄R,A

K ~«!52g
āKR,A

K ~2«!. ~20!

In both channels the Kondo effect derives from the ima
nary part of bubbles with aK-component conduction elec
tron together with a retarded or an advanced pseudoferm
In such combinations, Re@Gg(v)#}1/v is convoluted with
tanh(«1v/2T) to produce the logarithmic enhancement.

To work out higher-order Feynman diagrams, it is conv
nient to construct the second-order renormalized vertex fu
tions, obtained by attaching a Keldysh vertex~9! to each end
of these bubbles:

g
aIab

cd~«!5Lab8
c8d

g
aKb8a8

d8c8~«!La8b
cd8 , ~21!

g
aĪab

cd~«!5Lab8
cd8

g
aK̄ b8a8

d8c8~«!La8b
c8d . ~22!

Working out the contraction of Keldysh indices one m
organize all entries in the Peierls channel as

I11
125I12

225I21
115I22

215
1

4i
I R,

I12
115I22

125I21
225I11

215
1

4i
I A,

I11
115I22

225I21
125I12

215
1

4i
I K,

I22
115I11

225I12
125I21

2150, ~23!

satisfying the symmetryIab
cd5Iāb

cd̄
5Iab̄

c̄d , and similarly in the
Cooper channel

Ī22
125Ī12

225Ī21
115Ī11

215
1

4i
ĪR,

Ī12
115Ī11

125Ī21
225Ī22

215
1

4i
ĪA,

Ī22
115Ī11

225Ī21
125Ī12

215
1

4i
ĪK,

Ī11
115Ī22

225Ī12
125Ī21

2150, ~24!

whereĪab
cd5Īāb

c̄d
5Īab̄

cd̄ . For clarity, we have temporarily sup
pressed the variablesg, a, and «, and written only the
Keldysh indices. Furthermore we have introduced new fu
tions,I R,A,K and ĪR,A,K, with
15533
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I R,A5 i ~K K
R,A1K A,R

K !,

ĪR,A5 i ~K̄K
R,A1K̄R,A

K !,

I K5 i ~K K
K1K A

R1K R
A!,

ĪK5 i ~K̄K
K1K̄R

R1K̄A
A!, ~25!

satisfying the relationg
aĪR,A,K(«)52g

āI A,R,K(2«).
From their definitions, these new functionsI R,A,K are

seen to have poles in the lower (R), the upper (A), or both
~K! half planes, and to satisfy that@I R(«)#* 5I A(«). To be
specific, one finds from Eq.~19!,

g
aI R~«!52Mg,lGa

R~«2gB/2!2
1

2
Ga

K~«2gB/2!

1N~0!lnS D2

~«2ma2gB/2!21T2D , ~26!

g
aI K~«!5 iA~«2gB/2!F11Mg,ltanhS «2ma2gB/2

2T D G .
~27!

The real and the imaginary part ofI R are

Re@g
aI~«!#5N~0!lnS D2

~«2ma2gB/2!21T2D
2Mg,lRe@Ga~«2gB/2!#, ~28!

Im @g
aI~«!#5

1

2
A~«2gB/2!FMg,l1tanhS «2ma2gB/2

2T D G ,
~29!

while the lesser and greater components take the follow
form:

g
aI ,~«!52iA~«2gB/2!~12ng,l! f ~«2ma2gB/2!,

~30!

g
aI .~«!52iA~«2gB/2!ng,l@12 f ~«2ma2gB/2!#.

~31!

Note that since Re@G(v)#'N(0)v/D for v!D, contribu-
tions from the last term in Eq.~28!, of order max@B,V#/D
!1, can safely be neglected.

The real and imaginary parts,~28! and ~29!, satisfy the
Kramers-Kronig relation, and altogether their analytic
properties allow us to interpretI as genuine Keldysh Gree
functions describing the~time-! parallel or antiparallel propa
gation of conduction electrons and pseudofermions. The
ferent components (R,A,,,.) of this mixed bubble could
have been written down immediately using the Langr
rules54 for analytical continuation, and in fact this method
also very convenient for determining the different comp
nents of the second-order self-energy. For the third-or
self-energy, however, we find the Keldysh matrix structure
be more convenient when dealing with the large number
0-5
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contractions appearing to this order. The catalogs~23! and
~24! have been worked out for this purpose and are u
repeatedly in working out the different Keldysh contractio
appearing throughout the paper.

III. NONEQUILIBRIUM MAGNETIZATION

A. Pseudofermion self-energy

With these basic diagrammatic objects at hand, we
now readily evaluate the Feynman diagrams for thep f self-
energies shown in Fig. 3. It is, however, essential to rea
that the occupation functionsngl on the dot are completely
undetermined to zeroth order of perturbation theory, i.e.
the absence of a coupling to the leads.55 These are therefore
kept as free parameters to be determined later. The first-o
p f self-energy vanishes, since we have not included a Z
man term for the conduction electrons. Nevertheless, the
responding Hartree term would be entirely real and cont
ute only by a constant shift of thep f energy levels~cf.
Appendix!.

1. Second-order self-energy

Neglecting the Zeeman term for the conduction electro
the ab component of the second-order self-energy from F
3 is given as

Sgl
ab(2)~v!5

ugg8
8

Jaa8
2 E d«

2pg8
a Iab

cd~«! Ga8
dc

~«1v!,

~32!

where a summation overce spin has led to the tensor

ugg85
1

2 (
s,s8

tss8
i tgg8

i ts8s
j tg8g

j
5dgg812tgg8

1 . ~33!

Contracting the Keldysh indicesc andd, using Eq.~23!, and
using the analytical properties ofI, theK component of this
self-energy may be written as

Sgl
K(2)~v!5

ugg8
16i

Jaa8
2 E d«

2p
@g8

a I ,~«!Ga8
.

~«1v!

1g8
a I .~«!Ga8

,
~«1v!#. ~34!

Similarly, from the retarded and advanced components of
self-energy, the imaginary part is found to be

FIG. 3. Unlabeled Feynman diagrams for thep f self-energies.
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Ggl
(2)~v!5

ugg8
16

Jaa8
2 E d«

2p
@g8

a I ,~«!Ga8
.

~«1v!

2g8
a I .~«!Ga8

,
~«1v!#, ~35!

and the lesser component

Sgl
,(2)~v!5

ugg8
16i

Jaa8
2 E d«

2pg8
a I .~«!Ga8

,
~«1v!. ~36!

Using the identities~30! and ~31! it is now straightfor-
ward to carry out the integral over«, together with the sum-
mation overa, a8, andg8, to find that

G↑
(2)~2B/2!5

p

4
@N↑↑

(2)1N↑↓
(2)1R(2)# ~37!

and

S↑l
,(2)~2B/2!5

ip

4
@N↑↑

(2)n↑,l1N↑↓
(2)n↓,l#, ~38!

where the coefficients are given by

N↑↑
(2)5gLR

2 Vcoth~V/2T!1~gLL
2 1gRR

2 !T, ~39!

N↑↓
(2)52~gLL

2 1gRR
2 !B@11N~B!#12gLR

2 @~B1V!$11N~B

1V!%1~B2V!$11N~B2V!%#, ~40!

R(2)522~gLL
2 1gRR

2 12gLR
2 !B, ~41!

andN(v)51/(ev/T21) is the Bose function. While the co
efficientsNgg8 do not depend onl, R(2) is in fact given by
(n↓,l21)8g2B. Since, however, the factorn↓,l vanishes in
the limit of l→` and leaves behind a term which remai
finite, we can simply omit this term and employ the ident
~41! for R.

2. Third-order self-energy

The third-order self-energy diagram depicted in Fig.
gives rise to two different terms, corresponding to two d
ferent orientations on thece loop. One involves two Coope
bubbles and the other, two Peierls bubbles, and the comb
ab component translates to

Sgl
ab(3)~v!5

i

64
Jaa8Ja8a9Ja9aE d«

2p
@ugg8g9

P Lab8
c8d

3g9
a Kb8a9

d9c8~«! La9b9
c9d9

g8
a8 Kb9a8

d8c9~«! La8b
cd8

3Ga9
dc

~«1v!1ugg8g9
C Lab8

cd8
g9
a K̄ b8a9

d8c9~«!

3 La9b9
c9d9

g8
a8 K̄ b9a8

d9c8~«! La8b
c8d Ga9

dc
~«2v!#,

~42!

where a summation overce spin has produced the tensor

ugg8g9
P

522i e i jktgg8
i tg8g9

j tg9g
k

54@dgg8tg8g9
1

1dgg9tgg8
1

1dg8g9tgg8
1

#
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andugg8g9
C

52ugg8g9
P . A contraction of the relevant Keldys

indices allows one to express Eq.~42! as a sum of products
of two vertex functions. Using again the relations derived
Sec. II A, together with the analytical properties ofI, theK
component of the third-order self-energy may be written

Sgl
K(3)~v!5

1

128i
ugg8g9

P Jaa8a9
3 E d«

2p
Re@g9

a I~«!#

3@g8
a8I ,~«!Ga9

.
~«1v!

1g8
a8I .~«!Ga9

,
~«1v!#1~V↔2V!,

where we have introduced the shorthandJaa8a9
3

5Jaa8Ja8a9Ja9a . The imaginary part takes the similar form

Ggl
(3)~v!5

1

128
ugg8g9

P Jaa8a9
3 E d«

2p
Re@g9

a I~«!#

3@g8
a8I ,~«!Ga9

.
~«1v!

2g8
a8I .~«!Ga9

,
~«1v!#1~V↔2V!,

and the lesser component reads

Sgl
,(3)~v!5

1

128i
ugg8g9

P Jaa8a9
3 E d«

2p
Re@g9

a I~«!#

3g8
a8I .~«!Ga9

,
~«1v!1~V↔2V!. ~43!

Comparing to the second-order result, the basic differenc
the presence of the extra real part of the vertex functi
which provides the logarithmic enhancement underlying
Kondo effect.

Again, the relevant integrations and summations are
ried out using the specific form of the various components
I, and the result is expressed just as in Eqs.~37! and ~38!,
but with new third-order coefficients

N↑↑
(3)52gLR

2 gdH FT1~V1B!cothS V

2TD G ln D

uV1Bu

1FT1~V2B!cothS V

2TD G ln D

uV2BuJ
12~gLL

3 1gRR
3 !T ln

D

uBu
, ~44!

N↑↓
(3)54gLR

2 gdH @11N~B1V!#F ~B1V!ln
D

uB1Vu
1B ln

D

uBu

1V ln
D

uVuG1@11N~B2V!#F ~B2V!ln
D

uB1Vu

1B ln
D

uBu
2V ln

D

uVuG1@11N~B!#F ~B1V!ln
D

uB1Vu

1~B2V!ln
D

uB2VuG J 14~gLL
3 1gRR

3 !
15533
is
,

e

r-
f

3B@11N~B!# ln
D

uBu
, ~45!

R(3)528gLR
2 gdH ~B1V!ln

D

uB1Vu
1~B2V!ln

D

uB2Vu

1B ln
D

uBuJ 24~gLL
3 1gRR

3 !Bln
D

uBu
, ~46!

using the shorthand ln(D/uxu)5ln(D/Ax21T2). As was the
case for the second-order terms, onlyR(3) depends onl, but
in such a way that one can safely take the limitl→` which
leads to Eq.~46!.

Logarithmic correction of the form ln(D/uBu), ln(D/uVu), or
ln(D/uV6Bu), as in Eqs.~44!–~46!, appear throughout this
paper. They are signatures of resonant scattering from
Fermi surface to another. More precisely, a term such
ln(D/uVu) shows that resonant scattering from the left to t
right Fermi surface is prohibited due to the difference,V, in
their electrochemical potentials. Similarly, a spin-flip proce
within the left lead is cut off by the required energyB, lead-
ing to ln(D/uBu). Most interesting are probably the logarithm
of the form ln(D/uV2Bu), characteristic for resonant scatte
ing from the left to the right lead where the energy misma
of the two Fermi surfaces is compensated by a spin fl
These terms are especially important, insofar as they lea
pronounced cusps atV;B in physical quantities~see below!.

B. Solution of the quantum Boltzmann equation

Having determined thep f self-energy in terms of the un
known nonequilibrium p foccupation numbers, the Keldys
component of the Dyson equation provides a closed equa
for ngl . Since we assume the system to be in a steady s
this equation is greatly simplified and may be expressed52

Ggl~v!G gl
K ~v!5Ag~v!Sgl

K ~v!, ~47!

or equivalently

Ggl~v!G gl
, ~v!5Ag~v!Sgl

, ~v!, ~48!

which merely states that the collision integral in the quant
Boltzmann equation has to vanish in a steady-state situa

The p f spectral function appearing in this equation m
be determined by solving the retarded and advanced com
nents of the Dyson equation and takes the usual form

Ag~v!5
Gg~v!

$v2Re@Sg~v!#1gB/2%21@Gg~v!/2#2
,

~49!

where the shift Re@S# and the broadeningG of thep f energy
levels are determined from perturbation theory, includi
leading logarithmic corrections. However, assuming t
Ag(v) is nonzero for all frequencies it can be divided out
Eq. ~48! which then takes the simple form

@Sgl
, ~v!2Sgl

. ~v!#ngl~v!5Sgl
, ~v!, ~50!

or equivalently
0-7
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ngl~v!5@12Sgl
. ~v!/Sgl

, ~v!#21. ~51!

In this equation the self-energiesSgl
,,. are determined in

perturbation theory as integrals involving the unknown d
tribution function ngl(v). However, in bare perturbatio
theory, where there is no dressing of internal lines,ngl(v) is
always multiplied by theunrenormalized p fspectral func-
tion ~12! inside the integrals, and only the occupationnum-
bers ngl[ngl(2gB/2) will appear inS,,.. In our case,
the quantum Boltzmann equation can thus be solved with
any feedback from the retarded and advanced Dyson e
tions, and we can focus our attention on the on-shell oc
pation numbersngl .

Dividing out the spectral function and settin
v52gB/2, Eq. ~48! takes the form

iGgl~2gB/2!ngl5Sgl
, ~2gB/2!. ~52!

Sincengl , and therebySgl
, vanishes in the limit ofl→`,

the whole equation may be divided by^Q&l and after this
limit has been taken one can establish the same equatio
the physical, projected, occupation numbers. Expresse
terms of the coefficients defined in Eqs.~37! and ~38!, we
arrive at the equation
n
on

15533
-

ut
a-

u-

for
in

~N↑↑1N↑↓1R!n↑5N↑↑n↑1N↑↓n↓ , ~53!

which can be viewed as a rate equation with the transit
ratesW↓↑5(p/4)(N↑↓1R) andW↑↓5(p/4)N↑↓ . This equa-
tion is readily solved together with the constraint equat
n↑1n↓51 and one finds that

n↑5
N↑↓

2N↑↓1R
, ~54!

or expressed in terms of the magnetizationM5n↑2n↓ ,

M5
2R

2N↑↓1R
. ~55!

Note that to obtain the observable magnetization to or
g2ln(D), it is not sufficient to consider only the on-shell o
cupations appearing in Eqs.~53!–~55!. In addition, one has
to consider also contributions from thep f spectral function
@see Eq.~14!#, which are discussed in detail in the Append

Inserting the second-order expressions~39!–~41!, one ob-
tains
M ~B,V!5
~gLL

2 1gRR
2 12gLR

2 !B

~gLL
2 1gRR

2 !B cothS B

2TD1gLR
2 F ~B1V!cothS B1V

2T D1~B2V!cothS B2V

2T D G , ~56!
eals
gh

iza-
e
ne

ddi-

e
g.
ing
which, up to a factor of 2 in the definition ofM, is exactly
what was found in Eq.~4! of Ref. 55, where a rate equatio
such as Eq.~53! was solved using second-order transiti
rates. Including the third-order corrections~44!–~46!, we ob-
tain

M5N/D, ~57!

with

N54gLR
2 gdF ~V1B!ln

D

uV1Bu
2~V2B!ln

D

uV2BuG
1B(

a
~gLa

2 1gRa
2 !S 112gaaln

D

uBu D , ~58!

D5cothS B

2TD H 2gLR
2 gdF ~V1B!ln

D

uV1Bu

2~V2B!ln
D

uV2BuG1B(
a

gaa
2 S 112gaaln

D

uBu D J
1cothS V1B

2T DgLR
2 F ~V1B!S 112gdln

D

uV1Bu D
12Vgdln
D

uVu
12Bgdln

D

uBuG1cothS V2B

2T DgLR
2 F ~V2B!

3S 112gdln
D

uV2Bu D12Vgdln
D

uVu
22Bgdln

D

uBuG , ~59!

using again the shorthand ln(D/uxu)5ln(D/Ax21T2). Both
numeratorN and denominatorD of the magnetizationM are
calculated only to orderg21g3ln@•••#, andM should there-
fore also be expanded. As expected, the Kondo effect rev
itself in logarithmic enhancements, and interestingly enou
the logarithmic corrections toM come as@11g ln(•••)#
rather than@11g2ln(•••)#, which is found in equilibrium. In
the limit whereT@V, the logarithmic corrections fromN
andD cancel and we recover the usual thermal magnet
tion M5tanh(B/2T). In the highly asymmetric case, wher
gLL@gRR,gLR , a similar cancellation takes place and o
finds again thatM5tanh(B/2T). In the Appendix, we dem-
onstrate how the observable magnetization receives a
tional corrections of orderg2ln(•••), arising from self-energy
corrections to thep f spectral function. Nevertheless, in th
case whereV@T, such additional corrections are subleadin

In Fig. 4 we plot the magnetization and the correspond
susceptibility]M /]B as functions ofB/V for T!V, while
Fig. 5 investigates theV dependence ofM and ]M /]V,
0-8
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which will both influence the conductance. Roughly spe
ing, the magnetization curve resembles the usual ther
magnetization withV replacingT, and the impurity-spin be-
comes polarized only whenB exceedsV. However, struc-
tures close toV;B are much sharper and obtain complete
different logarithmic corrections compared to the equilibriu
case. The exchange-correlations change the slopes o
magnetization, which is clearly seen in the susceptibi
~Fig. 4! and in]M /]V ~Fig. 5! which become sharper spike
when including third-order perturbations. In the limit ofV
@@(gLL

2 1gRR
2 )/2gLR

2 #B, V@B, and smallT, one may ex-
pand to find

M'
B

V H gLL
2 1gRR

2 12gLR
2

2gLR
2

1
~gLL1gRR!~gLL

2 1gRR
2 !

gLR
2

3F S 11
gLR

2 2gLLgRR

gLL
2 1gRR

2 D ln
D

B
2 ln

D

VG J , ~60!

which simplifies toM5(2B/V)(112g lnuV/Bu) when gLL
5gRR5gLR .

In the regime where the bias voltageV does not supply
sufficient energy to flip the spin,V,B and B2V@T, the
magnetization is at its equilibrium valueM51 to first order

FIG. 4. Nonequilibrium magnetization~dashed and long-dashe
lines! and susceptibility~full and dotted lines! as functions ofB/V,
for T51022V and D5103V. Solid and dashed~dotted and long-
dashed! lines correspond to 3.~2.! order perturbation theory. Both
quantities have been expanded to first order in the exchange
plings. Upper panel:gLL5gRR5gLR50.01. Middle panel:gLL

5gRR50.01 andgLR50.05. Lower panel:gLL5gRR50.05 and
gLR50.01 ~note the different scale forx). Corrections from third
order are more pronounced forgLR

2 ÞgLLgRR.
15533
-
al
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y

in g. However, as soon asV.B, voltage-induced spin flips
are possible and the magnetization is reduced~see Fig. 5!.
For V.B andT!V2B!B we obtain

M'12S V2B

B D 2gLR
2

gLL
2 1gRR

2 12gLR
2 H 11~gLL1gRR!F ln

D

V2B

2S 112
gLR

2 2gLLgRR

gLL
2 1gRR

2 12gLR
2 D ln

D

BG J . ~61!

It is interesting to note that the structure of logarithm
corrections is rather special in the case when the Hamilton
~1! is derived from an underlying Anderson model by mea
of a Schrieffer-Wolf transformation. In this case the e
change couplings are related asgLR

2 5gLLgRR ~cf., e.g., Ref.
41! and for such realizations of the model all leading lnD
contributions cancel while logarithmic corrections of th
form ln(V/B) or ln(B/(V2B)) remain. For example, Eq.~60!
simplifies to

M'
B

V H 11
gLL

2 1gRR
2

2gLL gRR
F114gdln

V

BG J , ~62!

and Eq.~61! takes the form

M'12
V2B

B

2gLL gRR

~gLL1gRR!2 F112gdln
B

V2BG . ~63!

u-

FIG. 5. Nonequilibrium magnetization as a function ofV/B, for
T51022B andD5103B. The two lower curves in each panel sho
the absolute value of the slope, i.e.,u]M /]Vu. This quantity enters
the conductance shown in Fig. 7. Solid~dotted! lines correspond to
3.~2.! order perturbation theory. Both quantities have been
panded to first order in the exchange couplings. Upper panel:gLL

5gRR5gLR50.01. Middle panel: gLL5gRR50.01 and gLR

50.05. Lower panel:gLL5gRR50.05 andgLR50.01.
0-9
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This explains why the plots of the magnetization in the up
panels in Figs. 4 and 5 hardly differ from second to th
order, while more pronounced effects are seen in the lo
panels wheregLR

2 ÞgLLgRR.
From Eq.~62! we see that the peak atB50 in the mag-

netic susceptibility, seen in Fig. 4, grows as ln(uVu/T) for T
!V. Also, from Eq.~60! we learn that the high-voltage tail
in Fig. 5 fall off as 1/V. The derivative]M /]V, shown in
w
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i
r-
c-
-

ha
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Fig. 5, displays a peak nearV5B already in second-orde
perturbation theory which is then slightly enhanced or
duced by the third-order correction, depending on the re
tive size ofgd and gLR . As we shall see in Sec. IV, thes
features turn out to have a marked influence on the cond
tance.

For arbitraryT andV, the susceptibility atB50 takes the
following form:
x5

2gLR
2 S 112gdln

D

T
12gdln

D

uVu D1(
a

gaaS gaa12gaa
2 ln

D

T
12gLR

2 ln
D

uVu D
2V cothS V

2TDgLR
2 S 114gdln

D

uVu D12T(
a

gaaS gaa12gaa
2 ln

D

T
12gLR

2 ln
D

uVu D
. ~64!
t of

n
ch

tex
In the limit of T@V the logarithms all take the form ln(D/T);
the corrections in numerator and denominator cancel, and
are left with the usual Curie lawx51/(2T). In the extreme
nonequilibrium situation, however, whereV@T, the correc-
tions no longer cancel and we are left with a complica
fraction times 1/V.

It is important to note that numerator and denominator
Eq. ~64! have a rather different structure of logarithmic co
rections, e.g., thegLR

2 term in the numerator receives corre
tions of the form 2gd@ ln(D/T)1ln(D/uVu)# whereas the corre
sponding term in the denominator has the form 4gdln(D/uVu).
This observation was the basis of our claim in Ref. 45 t
the perturbative renormalization group has to be formula
in terms of coupling functions which depend on the ene
of the incoming electron. This will be explained in mo
detail in a forthcoming publication.50

IV. NONLINEAR TUNNELING CURRENT

The current operator measuring the charge flow from
to right lead is found from the equation of motion for th
charge density in the left lead:

] tnL5 i @H,nL#. ~65!

The expectation value at timet is

j L5 iJLR(
k,k8

^ SW ~ t !•@cLk8s8
†

~ t !tWs8scRks~ t !2L↔R#&,

and by defining a two-particle Keldysh contourordered c
relation function

DLR~t,t8!

5~2 i !2(
k,k8

K TcK
H cLk8s8

†
~t!

tWs8s

2
cRks~t!•SW ~t8!J L ,

~66!
e

d

n

t
d
y

ft

-

the current may be expressed simply by the imaginary par
the Keldysh component

j L5JLRIm@DLR
K ~ t,t !#. ~67!

The lowest-order contribution to this correlation functio
is obtained from the first Feynman diagram in Fig. 6, whi
translates to

DLR
K(1)~ t,t !52

ugg8
8i

JLRE d«

2pE dv

2pE dV

2p

3g̃a8b8
1 G g8

ba8~v!G g
b8a~v1V!

3Lab
cdGR

d8c~«!GL
dc8~«1V!gc8d8

2 , ~68!

with measuring verticesg̃1 andg2 defined in Eqs.~10! and
~11! and the spin tensor from Eq.~33!. Contracting the
Keldysh indices and expressing things in terms of the ver
function I, this simplifies to

DLR
K(1)~ t,t !5

ugg8
128i

JLRE d«

2p
@g

LI K~«!g8
R I R~«!

1g
LI A~«!g8

R I K~«!#, ~69!

which in turn leads to

j L
(2)5

ugg8
32i

JLR
2 E d«

2p
Im@g

RI~«!#g8
L I K~«!2~V↔2V!.

~70!

FIG. 6. Unlabeled Feynman diagrams forDLR . Triangles denote
the bare measurement vertices.
0-10
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Evaluating this expression and performing the projecti
one finds the physical charge current to be

j L
(2)5

p

4
gLR

2 H 3V2M F ~V1B!cothS V1B

2T D
2~V2B!cothS V2B

2T D G J . ~71!

The magnetization entering this formula is theon-shell
magnetization determined in Sec. III B, and since we inclu
no dressing of internal lines this quantity receives no ad
tional renormalization from the retarded and advanc
Dyson equations.

The second-order corrections to the correlation funct
DLR are contained in the second diagram in Fig. 6. Af
contracting indices with the measurement vertices, this m
be written in terms of Peierls and Cooper bubbles as

DLR
K(2)~ t,t !52

1

128
JLaJaR ugg8g9

P E d«

2p
@La9b

cd9
g8
R Kba8

d8c
~«!

3La b9
c9d

g9
a K b9a9

d9c9 ~«! g
L Kā8a

d d̄8~«!

2La9b
c9d

g8
L K̄ ba8

dc8~«! La b9
c d9

3g9
a K̄ b9a9

d9c9~«!g
R K̄ā8a

c̄8c
~«!#, ~72!

which upon full contraction leads to

DLR
K(2)~ t,t !5

1

512i
JLaJaR ugg8g9

P

3E d«

2p
@g8

RI K~«!g9
a I A~«!g

LI A~«!

1g8
RI R~«!g9

a I K~«!g
LI A~«!

1g8
RI R~«!g9

a I R~«!g
LI K~«!#1~V↔2V!.

~73!

Inserting this into Eq.~67!, we end up with

j L
(3)5

ugg8g9
P

64i
JLR

2 ~JLL1JRR!E d«

2p
Re@g

LI~«!1g
RI~«!#

3Im@g9
R I~«!#g8

L I K~«!2~V↔2V!, ~74!

which may finally be evaluated and projected to obtain
physical current

j L5
p

4
gLR

2 H VS 114gdln
D

uVu D1~V1B!S 114gdln
D

uV1Bu D
1~V2B!S 114gdln

D

uV2Bu D2M FcothS V1B

2T D
3H ~V1B!S 112gdln

D

uV1Bu D12Vgdln
D

uVu
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12Bgdln
D

uBuJ 2cothS V2B

2T D H ~V2B!

3S 112gdln
D

uV2Bu D12Vgdln
D

uVu
22Bgdln

D

uBuJ G J .

~75!

Here again, ln(D/uxu) is shorthand for ln(D/Ax21T2) as all
logarithms are cut off byT. The current has acquired loga
rithmic corrections, which again enter as@11g ln(•••)#, and
in zero magnetic field we recover the conductance obtai
earlier in Refs. 21 and 41~reinstallinge and\):

G~V!5
e2

p\ S p

2
gLRD 2

3S 114gdln
D

ueVu D . ~76!

In a finite magnetic field, however, the proliferation
logarithms is more intricate. While the logarithmic structu
in Eq. ~75! was derived already by Appelbaum,21,22he tacitly
employed the equilibrium magnetizationM5tanh(B/2T), in-
stead of the correct expression~57!, and thereby left out a
number of logarithmic corrections to the resulting condu
tance. These early results by Appelbaum are therefore o
valid for a local moment coupled dominantly to one ele
trode, in which casegLL@gRR,gLR and therefore indeedM
5tanh(B/2T), as was pointed out in Sec. III B. Havin
solved the quantum Boltzmann equation in Sec. III B,
cluding the leading logarithmic corrections, we can now c
rect for this omission.

Close toV5B, the conductance shows a characteris
jump ~see Fig. 7!. For V,B andT!B2V!V we obtain

G~B,V!'
e2

p\ S p

2
gLRD 2H 112gdF ln

D

B
1 ln

D

B2VG J ,

~77!

while for V.B andT!V2B!B we get

G~B,V!'
e2

p\ S p

2
gLRD 2H 31

gLR
2

g2
12gdF S 31

gLR
2 gd

2

g4 D ln
D

B

1S 31
gLR

2

g2 D ln
D

V2BG J . ~78!

The jump in the conductance is broadened by the temp
ture T and we obtain forV,B@T@uV2Bu

G~B5V,T!'
e2

p\ S p

2
gLRD 2H 21

gLR
2

2g2

12gdF S21
gLR

2 gd
2

2g4 D ln
D

B
1S 21

gLR
2

2g2D ln
D

T G J ,

~79!

with g25(gLL
2 1gRR

2 12gLR
2 )/4. All terms in Eqs.~78! and

~79! proportional togLR
2 /g2 originate from]M /]V and are

therefore not present in Appelbaum’s result. The logarithm
divergences lnD/uV2Bu and lnD/T in Eqs.~77!–~79! seem to
0-11
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suggest that logarithmic corrections may grow large forV
→B andT→0, signaling a transition to the strong-couplin
regime, but such behavior will ultimately be prohibited b
spin-relaxation processes emanating from the finite cur
flowing through the dot. As argued in Refs. 56 and 45,
relevant cutoff energy is the voltage dependent sp
relaxation rateG;g2V, and forT,uV2Bu,G, the diverging
logarithms will be replaced by lnD/G, leading to a finite cor-
rection. This cutoff arises as a joint effect of vertex and se
energy corrections, which will be worked out in detail in
subsequent publication.57 The same relaxation rate als
broadens the jump in the conductance and Eq.~79! is there-
fore only valid forT@G.

In Fig. 7 we plot the conductance as a function ofV/B,
for T!V, using both the nonequilibrium magnetizatio
given by Eqs.~57!–~59! and the equilibrium value (M'1
sinceT!B), corresponding to Appelbaum’s result. In bo
cases a cusp develops atuVu'uBu, beyond which spin-flip
tunneling processes are energetically viable. Including
nonequilibrium magnetization, however, leads to a p
nounced enhancement of the cusps, coming from]M /]V
~shown in Fig. 5!, which is missing in Appelbaum’s result. I

FIG. 7. Conductance, expanded to third order in the excha
couplings, as a function ofV/B, for T51022B andD5103B. Solid
and dashed~dotted and long-dashed! lines correspond to 3.~2.! or-
der perturbation theory. Dashed and long-dashed lines haveM51
and correspond to Appelbaum’s result, which neglects theV depen-
dence ofM shown in Fig. 5. Upper panel:gLL5gRR5gLR50.01.
Middle panel:gLL5gRR50.01 andgLR50.05. Lower panel:gLL

5gRR50.05 andgLR50.01.
15533
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the lower panel, wheregLR,gd , Appelbaum’s conductance
is closer to the true curve, as for smallgLR one is closer to
equilibrium (gLR50 is an equilibrium problem!.

Our result for the conductance appears to be similar t
plot by Sivan and Wingreen40 for the Anderson model, bu
since that work does not contain an explicit analytical e
pression for the current and the magnetization it is difficult
compare the two results. Furthermore, logarithmic corr
tions to the quantum Boltzmann equation appear not to
included in their approach.

In the high-temperature limitT@max(V,B), there is no
effect of V on the magnetization, and we recover Appe
baum’s result for the current, or rather the result he wo
have obtained by performing the final energy integrations
his expressions~39! and ~60! of Ref. 22. The closed-form
expression presented in Ref. 23 is the conductance ra
than the current, and as an aside we note that differen
from his formulas~where theT dependence arises throug
hyperbolic tangents! to our Eq.~75! ~with hyperboliccotan-
gents! arise due to an~invalid! approximation by Appel-
baum, when he approximated the derivative of the Fe
function by a d function. Using the identityf (v1«)@1
2 f (v1V)#5N(«2V)@ f (v1V)2 f (v1«)# between
Fermi and Bose functions, we find coth(x)1x]xcoth(x) in-
stead of tanh(x) giving rise to a different prefactor (2/3 in
stead of 1) forT larger than eitherV, B, or uV2Bu.

V. DISCUSSION

In the present work we have calculated the local mag
tization and the charge current through a quantum do
large bias voltage and in the presence of a magnetic field.
have considered a Kondo model where the dot is represe
by a quantum spinS51/2, coupled to leads by exchang
interaction and tunneling.

Remarkably, the structure of perturbation theory
steady-state nonequilibrium is rather different from that
equilibrium. The main physical reason is that in our proble
the occupation on the dot is completely undetermined in
limit of vanishing couplings to the leads and therefore has
be calculated from the solution of the quantum Boltzma
equation~i.e. from a self-consistent Dyson equation!. More
generally, in equilibrium all distribution functions are give
exactlyby the ‘‘bare’’ Boltzmann, Fermi, or Bose function
without any corrections from interactions while out of equ
librium these functions have to be calculated and will depe
on all the couplings. Probably the most drastic conseque
is that for finite voltages the magnetization~56! is modified
even for vanishing couplings, i.e., inzerothorder of pertur-
bation theory as has been emphasized in Ref. 56. As a
sequence the structure of logarithmic corrections to the m
netization is also rather different out of equilibrium. As th
matrix elements of orderg2 in the quantum Boltzmann equa
tion get corrections of orderg3ln(D), the perturbative
magnetization ~57! is generically of the form (g21g3

3 ln(•••))/(g21g3ln(•••))'const1O@gln(•••)#, to be com-
pared to the equilibrium case where logarithmic correctio
arise only to orderg2ln(•••).

In this paper, we have calculated the magnetization

e

0-12



u
to

n
ex
he
a
le
e

ow
n
ar

t
v
be
on

le
e
p
o
b

ed

o
to

n
lin
n

ib-
ib
su
e

s
-
h
e
su
h

g

n
a

s-
en
ns
tu
o

ha
a

hi

the

iza-
s
rip-
the

the
out

in
the
in-

e-

ap-
ctly

ink
m-
on-

h

y

e

-

NONEQUILIBRIUM TRANSPORT THROUGH A KONDO . . . PHYSICAL REVIEW B69, 155330 ~2004!
the current through a Kondo dot to third order in the co
pling, including the leading logarithmic terms. In contrast
earlier treatments of this problem,21,22 the effect of the non-
equilibrium magnetization on the current is incorporated a
indeed shown to be important for a typical quantum dot
periment in the Kondo regime. In finite magnetic field t
differential conductance exhibits threshold behavior
V56B, reflecting the fact that spin-flip tunneling is possib
only for uVu.uBu. Taking the voltage dependence of th
magnetization properly into account, the conductance sh
a cusp atV56B, already to lowest order in perturbatio
theory. Going one order higher, logarithmic corrections
found to enhance these cusps even further, increasing
conductance substantially over the threshold plateau, e
for magnetic fields much larger than temperature. This
havior clearly calls for a resummation of the perturbati
series to infinite order.

The intricate structure of logarithmic corrections, revea
by nonequilibrium perturbation theory, enforces a modifi
formulation of the perturbative renormalization grou
Thinking in terms of poor man’s scaling, a resummation
the logarithmic corrections cannot simply be achieved
collecting the logarithmic corrections into a renormaliz
coupling constant. This is clearly illustrated by Eq.~64! for
the susceptibility, which shows that different combinations
logarithms appear in the numerator and in the denomina
However, as we have recently demonstrated,45 exactly this
structure of leading logarithms is generated in a poor ma
scaling approach dealing with energy dependent coup
functions. A detailed account of this approach will be give
in a subsequent publication.50

An additional important difference between nonequil
rium and equilibrium physics is the fact that in a nonequil
rium situation the current through the system generates
stantial noise. As a consequence, quantum coherenc
limited to energies above a certain relaxation rateG. The
scale G will therefore cut off all logarithmic divergence
which remain in the limitT→0 in the perturbative expres
sions for magnetization and current found in this paper. T
important piece of physics is not included in the low-ord
bare perturbation theory presented here and requires a re
mation of subleading self-energy and vertex corrections. T
will be demonstrated explicitly in a forthcomin
publication.57

Historically, the Kondo effect has played an importa
role in the development of techniques such as the renorm
ization group4,5 to treat strong-coupling problems for sy
tems in thermal equilibrium. It is our hope that the pres
perturbative calculation of leading logarithmic correctio
can serve both as a starting point and a check for fu
developments of similar methods applicable to systems
of equilibrium.
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APPENDIX: MAGNETIZATION AND SELF-ENERGY
CORRECTIONS

In this appendix we calculate the observable magnet
tion to orderg2ln(•••), by including self-energy correction
to the pseudofermion spectral function. Using the presc
tion ~3! for evaluation of a canonical ensemble average,
magnetization is determined as

M5 lim
l→`

n↑l2n↓l

n↑l1n↓l
, ~A1!

where

ngl5E
2`

` dv

2p
Ag~v!ngl~v!, ~A2!

and, in principle, the full frequency dependence of both
spectral and the distribution function is needed to carry
this integral.

To illustrate how such renormalization works out with
the pseudofermion approach, we shall commence with
simpler case of thermal equilibrium and consider merely l
ear response forB!T. Traditionally, most work regarding
the Kondo effect on the magnetic susceptibility in this r
gime has been conducted using a Kubo formula,58–60 and to
the best of our knowledge only one work has taken the
proach outlined above to calculate the magnetization dire
from the renormalization of thep f spectral function.52 Since,
however, this latter work contains an error, and as we th
that the calculation is instructive, we shall consider this si
pler case in some detail before briefly discussing the n
equilibrium case.

1. Equilibrium magnetization

At zero-bias voltage the local spin is in equilibrium wit
the leads, and thep f distribution function reduces to a
simple Fermi function. In the Keldysh formalism, this ma
be viewed as a simple consequence of the KMS~Kubo-
Martin-Schwinger! boundary condition,52 which states that
in thermal equilibrium G gl

. (v)52G gl
, (v)exp@(v1l)/T#.

The quantum Boltzmann equation~48! may be rewritten as

Sgl
. ~v!G gl

, ~v!5Sgl
, ~v!G gl

. ~v!, ~A3!

from which the KMS condition is seen to imply that

Sgl
. ~v!

Sgl
, ~v!

52e(v1l)/T. ~A4!

This can also be verified explicitly from our perturbativ
expressions forS.,,, by employing the~KMS! condition
12ngl5nglexp@(l2gB/2)/T# ~explicitly satisfied by a
Fermi function! for the on-shell equilibrium occupation num
bers. Inserting~A4! into Eq. ~51! shows that indeed
0-13
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ngl~v!5
1

e(v1l)/T11
, ~A5!

and when derived in this way, it becomes clear that the K
condition ensures a highly nontrivial cancellation of intera
tion corrections in the case of thermal equilibrium. Applyin
a finite voltage, this condition is violated and the nonequil
rium distribution function will be affected by interactions
the manner which we have described in Sec. III B.

As mentioned earlier, the first-orderp f Hartree self-
energy vanishes unless one includes a Zeeman term fo
conduction electrons. However, adding such a term,

HZeeman
ce 5B (

k,s;k8,s8;a

caks
† tss8

3 cak8s8 , ~A6!

to the Hamiltonian, one finds that the self-energy is entir
real and given as

Re@Sg
(1)~v!#5

1

4i
Jaatss

i tgg
i E d«

2p
L11

cdGas
dc ~«!5gBgd/2,

~A7!

where thece Green function now depends on the spin. No
that the Keldysh component of the Hartree self-energy
identically zero, due to the fact that Re@Gag(«)# is an un-
even function. In a case where particle-hole symmetry
broken on an energy scaled, one obtains a finite contribution
of orderJd/D, which can be neglected for largeD. The only
effect of including a Zeeman term for the conduction ele
trons is therefore a constant shift of thep f energy levels.

The second-orderp f self-energy has a real part, whic
has only a negligible contribution from the term~A6!. With-
out this term, one finds that

Re@Sg
(2)~v!#52

gaa8
2

32
ugg8E

2D

D

d« tanhS «1v2ma8
2T D

3 lnS D2

~«2ma2g8B/2!21T2D , ~A8!

which implies that

Re@Sg
(2)~2gB/2!#'gBg2ln

D

T
~A9!

and

]vRe@Sg
(2)~v!#'2

3

2
g2ln

D

T
, ~A10!

in the case ofV50 andT@B.
The broadening of thep f energy levels is given by the

imaginary part of the self-energy asG5 i (S.2S,), and
when neglectingS,, which projects to zero, we end up wit
G5 iS. which is given by

Gg~v!5g2ugg8~v1g8B/2!@11N~v1g8B/2!#,
~A11!
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to second order ing. This function is highly asymmetric and
expanding to first order inB/T one finds the asymptotic be
havior

Gg~v!55
3pg2v, T!v

3pg2TS 12
gB

3T D , 2T!v!T

3pg2uvue2uvu/TS 12
gB

6T D , v!2T,

~A12!

complemented by the fact thatGg(v)50 for uvu.2D, since
the excitation of particle-hole pairs giving rise to the broa
ening is limited by the bandwidth. SinceG is essentially
constant near the peak of the spectral function, one may
proximateAg in Eq. ~49! by a Lorentzian forvP@2T,T#
and byGg(v)/v2 for uvu.T. Introducing the wave-function
renormalization factor

Zg~v!5u12]vRe@Sg~v!#u21512
3

2
g2ln

D

T
, ~A13!

the coherent part of this approximate spectral function in
grates toZ in the interval@2T,T#. The exponential integra
of the negative frequency tail contributes with a number
the order ofg2, which should be neglected, while the int
gral fromT to D yields exactly 12Z, which ensures that this
approximate spectral function integrates to 1.

To find the magnetization, the integral~A2! may now be
evaluated using the Boltzmann distribution and this appro
mate spectral function. The spectral function is centered
frequency vg satisfying the equation vg52gB/2
1Re@Sg(vg)#, and consequently the integral over@2T,T#
contributes a factor ofZngl(vg), that is,

E
2T

T dv

2p

Gg

~v2vg!21~Gg/2!2
Zngl~v!

'Z1g
B

2T S 12g2
7

2
g2ln

D

T D , ~A14!

to first order inB/T. Since the distribution function falls of
exponentially forv@T, the integral over@T,D# is negli-
gible. On the negative frequency tail, the spectral funct
decays exponentially, but this is compensated in the inte
by the exponential increase of the Boltzmann distributio
and one finds that

E
2D

2Tdv

2p

Gg

v2
ngl~v!'12Z2g

B

4T
g2ln

D

T
. ~A15!

Adding up Eqs.~A14! and ~A15! and inserting in Eq.~A1!,
one ends up with the magnetization

M5
B

2T S 12g24 g2ln
D

T D , ~A16!
0-14
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to which one may finally add the corresponding induced s
polarization of the conduction electrons to obtain the to
magnetization

^Sz1sL
z1sR

z &2^sL
z1sR

z &0
Pauli'

B

4T S 122g24 g2ln
D

T D .

~A17!

Here thez component of the total spin of leada has been
introduced as

sa
z 5 (

k,s;k8,s8;a

caks
† tss8

3 cak8s8 , ~A18!

and thep f and ce g factors are assumed to be equal. Th
result matches the high-temperature expansion of the e
Bethe ansatz solution as it should.1,61

In Ref. 51, the normalization of the approximate spec
function is demonstrated just like here. In calculating t
magnetization, however, the contribution~A15! was not in-
cluded and theZ factor was argued to be canceled by t
same factor appearing in the denominator of Eq.~A1!. Alto-
gether, this error leads to a prefactor of 2 instead of 4 in fr
of the g2ln(D/T)-term in Eq.~A16!, which destroys the cor
respondence with the exact result.
vid

c

an

Re
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2. Nonequilibrium magnetization

As demonstrated in the equilibrium case, the magnet
tion is renormalized in a delicate balance between shifts
broadening of thep f energy levels, i.e., between the influ
ence of Re@S# on the coherent part, and ofG on the inco-
herent tails of the spectral function. In the case of finite b
voltage, however, the renormalization of the distributi
function becomes important.

At finite voltage, there are logarithmic corrections toS,

and S., which no longer cancel in Eq.~51!, and the mag-
netization now exhibits the stronger renormalization by fa
tors of g ln(D) rather thang and g2ln(D). To properly de-
scribe the crossover to equilibrium, asT becomes greate
thanV, one should include these subleading corrections
riving from the renormalization of thep f spectral function.
This can be done in much the same way as above, as lon
care is taken to separate the coherent part of the spe
function from the incoherent tails at eitherT or V, so as to
ensure normalization of the total spectral weight. WhenT is
increased beyondV, theg ln(D) corrections get less and les
important.

It should be emphasized that, as mentioned already
Sec. IV, the effects of shifts and broadening, discussed in
appendix, affect only the observable magnetization and h
no influence on our result for the leading logarithmic corre
tions to the current.
.
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