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Fermion Chern-Simons theory of hierarchical fractional quantum Hall states
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We present an effective Chern-Simons theory for the bulk fully polarized fractional quantum Hall~FQH!
hierarchical states constructed as daughters of general states of the Jain series, i.e., as FQH states of the
quasiparticles or quasiholes of Jain states. We discuss the stability of these new states and present two
reasonable stability criteria. We discuss the theory of their edge states which follows naturally from this bulk
theory. We construct the operators that create elementary excitations, and discuss the scaling behavior of the
tunneling conductance in different situations. Under the assumption that the edge states of these fully polarized
hierarchical states are unreconstructed and unresolved, we find that the differential conductanceG for tunneling
of electrons from a Fermi liquid intoanyhierarchical Jain FQH states has the scaling behaviorG;Va with the
universal exponenta51/n, wheren is the filling fraction of the hierarchical state. Finally, we explore alter-
native ways of constructing FQH states with the same filling fractions as partially polarized states, and
conclude that this is not possible within our approach.
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In 1983 Laughlin1 proposed his celebrated wave functio
as an explanation of the fractional quantum Hall effe
~FQHE! for a two-dimensional electron gas~2DEG! with
filling factors n51/m, with m an odd integer. Shortly afte
that, hierarchical generalizations of these fully polariz
states were also proposed for arbitrary filling factors w
odd-denominator fractions.2,3 The basic idea behind thes
Halperin-Haldane hierarchical states is that, at filling fact
away fromn51/m, there is a finite density of excitations o
a primary ~Laughlin! fractional quantum Hall~FQH! state
that are quasiholes with fractional charge and fractional
tistics, which themselves may also condense into a new
compressible FQH state. Thus, for instance the FQH sta
n52/5 is viewed as a FQH state of quasiholes of then
51/3 state, a ‘‘condensate.’’ Away from these filling factor
there is a finite density of these new excitations which in t
may also condense into yet another incompressible F
state, and so on. The bosonic Chern-Simons field theor
the Laughlin states4 describes the FQH states as the Bo
condensation of a~bosonic! field. In this picture the Haldane
Halperin hierarchical states are described by the conde
tion of vortex excitations on the primary condensate.5

Thus, Halperin-Haldane hierarchical FQH states hav
built-in nested structure, much reminiscent to that of a R
sian doll, in which states higher in the hierarchy are s
ported by lower states and so forth. Implicit in this constru
tion is the assumption that, as the magnetic field or
density are varied, their excitations remain well defined e
when their densities are relatively high~as measured by thei
effective filling factors!. Besides, underlying lower states r
main stable and inert as their excitations condense into
new higher states. Thus, although the Halperin-Haldane
erarchy offers a simple way to construct states for arbitr
filling, it is a crude model whose assumptions may not ob
ously hold. Furthermore, it is a necessary consequence o
assumptions of this hierarchical construction that the Hilb
spaces supported by these states have many conserved
rents, one for each level of the hierarchy, even though
0163-1829/2004/69~15!/155322~10!/$22.50 69 1553
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underlying 2DEGa priori has only one conserved curren
the charge current, as required by charge conservation. T
even if the Halperin-Haldane hierarchical states may
sound in the low-energy limit, at the microscopic level mo
of these additional conservation laws must be violat
Hence, for this hierarchy to work it is necessary to suppr
the processes which violate the extra conservation laws
also follows from these constructions that, as the phys
edges of the 2DEG are approached, the intricate structure
these states are progressively revealed as one layer afte
other of the state structure gets peeled off.5,6 This nested
structure also determines many qualitative features of
phase diagram of the 2DEG in the regime in which on
incompressible fluids and insulating states are present.7

An alternative construction, based on the notion of co
posite fermions, was proposed by Jain.8 This approach yields
stable FQH states for filling factors on the sequencesn
52n11/p, wheren and p are integers (n>0). The FQH
states on the Jain sequences are the most prominent,
hence the most stable, of the experimentally observed F
states. In these families of states, within a mean-field pictu
the composite fermions fill up a finite numberupu of Landau
levels of a partially screened magnetic field. Beyond me
field theory fluctuation effects, embodied by an effecti
Chern-Simons gauge field,9 turn the mean-field composit
fermions into excitations with fractional charge and fra
tional statistics.9 It is also possible to construct a hierarchy
FQH states using composite fermions.10,11

Although the universal physical properties of the FQ
states, i.e., the charge and statistics of the excitations and
ground-state degeneracy, derived from both constructions
in fact identical,4,6,9 in practice the nature of the approxima
tions that are made are different in each approach, i.e., c
densation of a composite boson or filling up Landau levels
composite fermions. As a result, there are significant qua
tative differences in their predictions of energy gaps a
other nonuniversal but physically important properties. B
sides, as we already discussed, it is an experimental fact
©2004 The American Physical Society22-1
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the states in the main Jain sequence are the most stable
polarized states, while within the Haldane-Halperin a
proach, only the Laughlin states would be the naturally m
stable. Why this is true is not entirely clear theoretica
since these theories~bosonic or fermionic! do not have a
small expansion parameter and the corrections to the m
field results may be large~and in practice are large!. Typi-
cally mean-field theory overestimates the energy gaps of
Jain states by about an order of magnitude~compared with
numerical results for small systems!. Also, the flux attach-
ment transformation, central to both constructions, is a lo
operation in space and as such it involves a large amoun
Landau level mixing. While this is not a problem for th
determination of the universal data of FQH states, it d
have a large effect on energy gaps and similar quantities
particular the mean-field theory yields gaps whose mag
tude is controlled by the effective magnetic field acting
the composite fermions and not by the physical energy sc
the Coulomb energy at the magnetic length. Calculations
yond mean-field theory may solve in the end some of th
problems.12–14Numerical calculations with a relatively sma
number of electrons, presumably with significant and
poorly understood finite-size effects, support the conclus
that the Jain states are indeed more stable and that thei
bility diminishes with the order of the Jain sequence.15 Thus,
at least qualitatively, the stability of the experimentally o
served states, as measured by the width of their respe
Hall conductivity plateaus, follows the progression of t
Jain sequences, rather than the Haldane-Halp
hierarchy.2,3

As we noted above, the Halperin-Haldane hierarchy le
to an effective low-energy theory which involves a numb
of conserved currents, one per level of the hierarchy, wh
thus grows with the level. This is actually a feature inher
to all hierarchical constructions, either fermionic or boson
In the K-matrix form of the effective theory, this feature
encoded in the rank of theK matrix and on the number of
fundamental quasiparticles, both of which grow with t
level of the hierarchy.5,6 It was noted by Haldane16 that in
most cases the resultingK matrix has ‘‘null vectors,’’ repre-
senting neutral particles with ‘‘zero statistics’’~i.e., without
chirality!, and proposed that such particles need not be c
served thus leading to an instability of these states. He t
went on to propose that the states whoseK matrices do not
have null vectors are the only stable states and coined
term T stability to describe this criterion.

Motivated by the question of whether these additio
conservation laws are actually needed to understand the
states we have recently constructed a theory for all F
states in the Jain sequences which requires the existen
only one conserved current, the charge current, and only
fundamental quasiparticle.17,18 A key ingredient of this
theory is a generalization of the flux attachment transform
tion which is consistent with the requirements resulting fro
topological and gauge invariance applicable for a 2DEG o
closed surface. Unlike the standard hierarchy, the resul
effective Chern-Simons theory has several components a
is characterized by aK matrix whose rank is the same for a
15532
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the sequences. Moreover the resulting theory is autom
cally T stable in the sense of Haldane.

Recently, Panet al.19 have carried out a set of exper
ments on high mobility samples at very low temperatures
which they observed the FQHE in the lowest Landau leve
filling fractions not included in the quantum Hall~Jain! se-
ries. A deep minimum inrxx , as well as a respectable pla
teau inrxy , was observed forn54/11 and 5/13, whereas fo
n56/17, 4/13, 5/17, and 7/11, the minimum was not as p
nounced, and in fact no plateau inrxy was actually observed
for these filling fractions. The state at 7/11 was observ
earlier by Goldman and Shayegan.20 A respectable minimum
in rxx was also seen forn53/8, but without any evidence fo
a plateau inrxy . In the case of the best defined of these n
states, withn54/11, Panet al.19 suggested that it is a fully
polarized FQH state. They further proposed that the sta
they observed are evidence of a FQHE of composite fer
ons.

If this interpretation is correct, these are the first tru
hierarchical FQH states observed to date, i.e., FQH state
the physical excitations of a primary Jain state. However,
should note that there are other possible mechanisms to
an incompressible FQH fluid, at least for some of the filli
fractions they observed. Finite-size diagonalization of sm
clusters of electrons21–23 suggest that some of the observ
states, such as the one atn54/11, should be at most partiall
polarized. This result is, however, at variance with the e
periments of Ref. 19 that are consistent with a fully polariz
state. On the other hand, a number of authors24–26 have also
proposed that at least for some of the observed fractions
examplen53/8, the ground state may be a paired quant
Hall state, with pairing of the excitations of the Laughlinn
51/3 FQH state.27 It is clear that in principle there may b
two or more competing phases and that whichever stat
observed may depend on subtle microscopic details.

In this paper we will take the point of view that the ob
served states are indeed hierarchical Jain states. In o
words, these new states are the result of the condensatio
the physical quasiparticles and quasiholesof the primary
Jain states into new Jain-like FQH states. We will use h
the approach we introduced in Refs. 17, 18 to construct th
new states as hierarchical Jain states, and to derive an e
tive Chern-Simons field theory for these states, demand
the existence of only the minimum number of necessary c
servation laws and compatible with the consistency requ
ments when the 2DEG is placed on a closed surface. We
show that these states can be~locally! stable and that they
satisfy the requirements forT stability. We will also show
that these new states are organized more naturally as
hierarchical states rather than along the lines suggeste
the standard Haldane-Halperin hierarchy. We will use
resulting bulk theory to find an effective theory of an unr
constructed unresolved edge and to compute the tunne
exponent for electrons into these states. We find that i
equal to 1/n for all systems with unreconstructed, unresolv
~i.e., ‘‘sharp’’! edge states within the Jain series as well as
all of their hierarchical descendants. This result, which
found earlier to hold for the primary Jain states,17 is consis-
tent with all the presently available experimental data on
2-2
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FERMION CHERN-SIMONS THEORY OF HIERARCHICAL . . . PHYSICAL REVIEW B 69, 155322 ~2004!
tunneling exponent.28–31 It suggests that this dependence
the exponent on the filling factor is a generic property of
clean unreconstructed unresolved edges.32 In contrast, it is
well known that if the edges are resolved, whether they
clean or not, the exponent has a more complex depend
on the filling fraction.33–36

The paper is organized as follows. In Sec. I we introdu
a generalization of the fermionic Chern-Simons theory of
FQHE for fully polarized systems along the lines of Re
9,17, and use it to construct these states, to compute
degeneracy on a torus, and to determine the quantum n
bers of their quasihole and quasiparticle excitations. We a
show that, contrary to the general expectations derived f
the standard hierarchy16 these states areT stable. In doing so
we will assume that quasiparticles and quasiholes of the
mary Jain states have simple and short-range interacti
Under these assumptions it is possible to give a simple~per-
haps naive! criterion for the stability of these states, which
discussed in Sec. II. In Sec. III we study the possibility
these states being realized as partially polarized prim
FQH state of electrons, and conclude that this option is
generally feasible within our approach, for all the filling fra
tions that have been observed. Finally in Sec. IV we der
an effective theory for the edge states for these new hie
chical states, and calculate the electron edge tunneling e
nents.

I. FULLY POLARIZED HIERARCHICAL JAIN STATES

The elementary excitations of all FQH states, includi
those on the principal Jain sequences with filling factor 1n
52n11/p, are quasiholes with fractional charge and fra
tional statistics.1,2,4,5,9Here we will take as the starting poin
the effective theory for the states in the Jain sequences
veloped in our earlier work,17 which follows the framework
and notation of Wen.5 In this work the elementary excitation
of these states are described by a set of currentsj qp

m , the
world lines of a set of~composite! fermions, which are
coupled to a statistical gauge fieldam and to a hydrodynamic
gauge fieldbm through the effective action

L5
p

4p
emnlam]nal1

1

2p
emnlam]nbl2

2n

4p
emnlbm]nbl

1
1

2p
emnlbm]nAl1am j qp

m , ~1.1!

whereAm is an external electromagnetic perturbation. T
effective action reproduces all the universal data of the J
states: the 2np11-fold ground-state degeneracy on t
torus, the quasiparticle fractional chargee/(2np11) and
fractional statistics 2np/(2np11) ~measured relative to
fermions!.17

Away from these precise filling factors, the system ha
finite density of quasiparticles~or quasiholes! which, due to
their residual interactions, can condense in a new FQH s
in the field am . Thus, we will assume that the underlyin
Jain state remains stable even in the presence of a fi
density of its elementary excitations. We can then apply
15532
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same procedure for these quasiparticles as we did for
original electrons, and attach an even number 2n1 of flux
quanta to each quasiparticle which ensures that their st
tics remains unchanged, resulting in the quasiparticle
grangian

Lqp5am j qp
m →am j qp

m 1cm j qp
m 1

1

2p
emnlcm]ndl

2
2n1

4p
emnldm]ndl , ~1.2!

where we have written the conserved quasiparticle curren
j qp
m 51/2pemnl]ndl . Upon integrating out the quasiparticle

within a mean-field theory in which they fill upup1u Landau
levels of the effective fieldam1^cm&, the effective action
becomes

Lqp5
p1

4p
emnlcm]ncl1

1

2p
emnl~cm1am!]ndl

2
2n1

4p
emnldm]ndl , ~1.3!

where cm are the fluctuations about the mean field^cm&.
Integrating outcm anddm we find that the contribution of the
quasiparticles to the total action is (n1/4p)emnlam]nal ,
with

1

n1
52n11

1

p1
, ~1.4!

i.e., the quasiparticles condense in a Jain-like FQH state w
filling fraction n1. So far, we have used the term quasipa
cle to name the elementary excitations of the Jain sta
independently of the sign of their charge. Note, however, t
if we take into account this sign, interchanging quasipartic
~negative charge! by quasiholes~positive charge! will only
change the sign ofn1. Thus,n1,0 corresponds to a FQH
state of quasiholes andn1.0 is a FQH state of quasiparticle
~or quasielectrons!. Hence there is no restriction on the sig
of either n1 or p1. In contrast, we still have the constrain
n.0 and that thetotal filling factor is positive.

We can now collect the results of Eqs.~1.1!–~1.3! in the
more compactK-matrix form.5 In this representation, the ef
fective Lagrangian for a sequence of states whose ‘‘prima
states are the Jain ones at 1/n52n11/p is

L5
1

4p
KIJemnlam

I ]nal
J1

1

2p
t Iemnlam

I ]nAl1, Iam
I j qp,1

m ,

~1.5!

where the coupling constant matrix is

K5S 22n 1 0 0

1 p 1 0

0 1 22n1 1

0 0 1 p1

D ~1.6!
2-3



e

ov
we
ca

hi

. T
s
sy

o
n
a
ic
l

r
tw
e
e
si-
el

at

re
b

trix

rar-
ne
ld.
ast
ier-
re

st

um-
the

In
nned

is-

er
l,

as
an

f a
c-

19,
, 40,

not
to

at a

of
and,
be-
ri-
si-
n

sta-
icu-
f a
r.

the

le-
l as
xi-

hi-
iven
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and the indicesI ,J51, . . . ,4. Wehave defined the gaug
fields am

1 5bm , am
2 5am , am

3 5dm , am
4 5cm , the charge vec-

tor t5(1,0,0,0), and the flux vector,5(0,0,0,1). j qp,1
m is the

quasiparticle current corresponding to the excitations ab
the hierarchical state. Therefore, the general set of allo
quasiparticle excitations on top of this hierarchical state
be represented by a vectorm5k,5(0,0,0,k) wherekPZ.

It follows that the filling fraction of these states is5

n5utTK21tu5
p~2n1p111!1p1

detK
~1.7!

or, equivalently

1

n
52n1

1

p1n1
~1.8!

wheren1 is given in Eq.~1.4!. It is straightforward to check
that these sequences include the series of FQH hierarc
states proposed earlier in Ref. 10.

In Eq. ~1.6!, the quantity

udetKu5u~2n1p111!~2np11!12np1u ~1.9!

is the ground-state degeneracy of these states on a torus
result agrees with the standard hierarchy even though, a
shall see, the spectrum is not quite the same. It is also ea
check that, providedudetKu remains finite, the excitation
spectrum has a finite-energy gapEG which in mean-field
theory is

EG5
\vc

udetKu
. ~1.10!

We expect that this mean-field result is an over-estimate
the size of the real gap. As it is usual in these type
approximations8,9,37 the mean-field gap is just the cyclotro
gap of the composite fermions and it depends on the b
mass~in this case of the quasiparticles or quasiholes wh
are condensing in the FQH state!. Here too, on physica
grounds one expects that the cyclotron scale should be
placed by the appropriate Coulomb interaction energy of
quasiparticles~or quasiholes! at a distance of the order of th
magnetic length. Thus, due to the short-distance structur
these excitations,38 we expect that quasiparticle and qua
hole gaps will be appreciably reduced from the mean-fi
theory prediction.

The quantum numbers of the quasi-holes of the new st
are

Qqh5etTK21,5
e

detK
, ~1.11!

which is their charge, and

uqh

p
5,TK21,5

2n12n1~2np11!

detK
~1.12!

for their fractional statistics~measured from fermions!. Note
that there is only one quasiparticle~or quasihole! in our con-
struction. In contrast, the Haldane-Halperin hierarchy p
dicts the existence of a number of well-defined distinct sta
15532
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quasiparticles whose number given by the rank of the ma
K, depends on the level of the hierarchy.5 In particular, and in
contrast to the requirements of the Haldane-Halperin hie
chical construction, in our theory there is one and only o
conserved current with respect to the electromagnetic fie

An interesting consequence of this fact is that, in contr
with what happens in the case of the Haldane-Halperin h
archical states, all the states described by our approach aT
stable. According to Haldane,16 an Abelian Quantum Hall
theory isT unstable if the effectiveK matrix theory has qua-
siparticles labeled by vectorsm that satisfymK21m50 and
tK21m50. An important caveat is that the null vectors mu
belong to the subspace spanned by the, vectors of the fun-
damental quasiparticles. In the standard hierarchy, the n
ber of fundamental quasiparticles grows with the level of
hierarchy, i.e., with the rank of theK matrix, and the null
vectors ~if they exist! belong to the physical subspace.
contrast, in our approach, the physical subspace is spa
by the fundamental quasiparticle, whose, vector is ,
5(0,0,0,1). Thus, although in all the cases we have d
cussed theK matrices of the form of Eq.~1.6! have null
vectors, theydo notbelong to the physical subspace. In oth
terms, in this construction the ‘‘nullparticles’’ are unphysica
and as a result these FQH statesare T stable. In particular,
the observed state atn54/11 isT stable.39

Finally we note that this hierarchical construction, just
in any hierarchy, at least at a formal level can be repeated
indefinite number of times, leading to the construction o
~hierarchical! FQH Jain state for any odd-denominator fra
tion. We will spare the reader from this discussion.

II. APPLICATION TO THE OBSERVED STATES AND THE
STABILITY OF THE HIERARCHICAL JAIN STATES

In this section we show that the states reported in Ref.
as well as some other states observed earlier in Refs. 20
can be reproduced within this framework.

It is clear from the experiments that all these states are
equally stable, and that some criterion must be devised
classify these states. We will address this problem here
very qualitative~and perhaps naive! level.

In the case of the primary Jain sequences the stability
the states is determined by the size of the excitation gap
to a lesser extent, by the interaction coupling constants
tween quasiparticles. Here too a similar sort of stability c
terion can be constructed, by focusing mainly on the qua
particle~and quasihole! energy gaps. We should note that a
argument of this sort can at best determine the relative
bility for states sharing the same parent Jain state. In part
lar, this sort of analysis should fail if a competing state o
different type were to be allowed for the same filling facto
Another factor that must be taken into account is that
states can be FQH states of eitherquasiparticlesor quasi-
holes, which in general are not related simply by a partic
hole transformation as they have different gaps as wel
interactions, and particle-hole symmetry holds only appro
mately.

A related issue is that in our construction of the hierarc
cal states there is more than one way to reproduce a g
2-4
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filling fraction. For instance then54/11 state can be ob
tained as a 1/3 descendant withn151/3, or alternatively, as a
2/5 descendant withn1522/3. Likewise, then55/13 state
can be constructed as a 1/3 descendant withn152/3, or as a
2/5 descendant withn1521/3. In the case ofn54/11 the
choice seems straightforward. It should be a descendan
the more stable parent state (1/3) with the smallest poss
number of extra quasiparticles condensing into an151/3
state. However, for the 5/13 state it is not clear whether
correct option is to choose the more stable parent state (
with a larger number of condensing quasiparticles into an1

52/3 state, or the less stable parent state (2/5) but wi
smaller condensate of quasiholes into an1521/3. In the
case of exact particle-hole symmetry these two construct
lead exactly to the same state even though they have di
ent parent states. Note that even though there are diffe
ways to construct a given hierarchical state, the resul
state has exactly the same universal properties. Hence t
are not distinct FQH states.

In what follows, we will discuss two different criteria
which are both intuitively reasonable and are natural wit
the framework of this mean-field theory. A more care
study of the energy gaps and of the interactions between
elementary excitations~which is beyond the scope of thi
work! is necessary to determine which of the following c
teria is more suitable.

The first criterion is based on the following assumptio
~1! The more stable parent states are the Jain states

larger gaps.
~2! The more stable hierarchical states are those that

ing the largest gaps, are descendants of the more stable
states.

~3! If there are two different ways of constructing a hie
archical state, the more stable one is the one that has
more stable parent state, and that requires the lowest de
of condensing quasiparticles.

~4! Finally, states withn1.0 are more stable than thos
with n1,0, since quasiholes are expected in general to h
smaller excitations energies than quasiparticles.

It is apparent that this a rather qualitative criterion at be
and that in a number of cases it does not provide for a uni
answer. For instance, it is not obvious whether it is bette
construct a state with quasiparticles~with n1.0) of a more
stable primary state, or with quasiholes~with n1,0) of a
less stable primary state. Clearly it is not possible to de
mine a unique choice without some knowledge of the qu
particle and quasihole excitation energies~their gaps! and of
their interactions.41 Nevertheless it is still useful to explor
what consequences follow from the naive application of t
criterion.

According to this criterion we must first look at the th
states which share the same parent primary Jain state.

~1! 1/3 descendants: they are obtained by settingp51
and 2n52, and are given by the sequences

1

n
521

1

11n1
~2.1!
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yielding states at filling factors 4/11~with n151/3), 5/13
~with n152/3) and 6/17~with n151/5). Other descendants
not seen yet in experiment, have filling factors 7/19 (n1
52/5), 10/27 (n153/7), 8/21 (n153/5), and so on

~2! 2/3 descendants: they are obtained by settingp522
and 2n52, and are given by the sequences

1

n
521

1

221n1
. ~2.2!

According to our criterion, the most stable descendant st
will be 5/7 ~with n151/3), 9/13~with n151/5), 4/5 ~with
n152/3), 8/11~with n152/5), etc. All these states fall out
side of the range of filling fractions of the data of Ref. 1
since they haven.2/3. However, a weak signature of
possible state at 5/7 and 4/5 was observed earlier by
et al.40 who saw a weak depression of the longitudinal res
tivity for these filling factors. Also, Goldman and Shayegan20

saw FQH states atn59/13 ~and at 7/11).
~3! The 2/7 descendants are obtained by settingp522

and 2n54, and are given by the sequences

1

n
541

1

221n1
. ~2.3!

The states seen in the experiment have filling factors at 4
~with n152/3), and 5/17~with n151/3).

~4! The 3/5 descendants are obtained by settingp523
and 2n52, and are given by the sequences

1

n
521

1

231n1
. ~2.4!

So far the only observed 3/5 descendant has filling fac
7/11 ~with n152/3).

A somewhat different classification of the observed sta
can be obtained if we adopt another stability criterion. In t
second criterion we will assume instead that the more sta
states are those generated by the condensation of the sm
number of elementary excitations on top of the more sta
Jain states, independently of whether they are quasipart
or quasiholes. This is a very crude approximation, but c
sistent with our derivation of the quasiparticle condensa
since except for the sign of the charge, it does not distingu
between quasiparticles and quasiholes.

It is straightforward to show that given a parent state w
filling fraction 1/(2n11/p), the number of elementary exc
tations on top of it that condense into the staten
5@p(2n1p111)1p1 /udetKu# is given by n1

qp5(B/2p)
3(p1 /udetKu) ~ in units ofe5c5\51). Therefore, if there
are two different ways of generating a given filling fractio
the more stable one will be the one that has the sma
number of condensing excitations, i.e., the smallestp1. Ac-
cording to this criterion, for each Jain state, the more sta
descendants, and therefore the most likely to be obser
will be those withn1561/(2n111) ~ i.e., p1561). We
will see below that all the states generated following this r
have been seen in Ref. 19.

Thus, following this second criterion we get instead t
following classification:
2-5



n

ob

o

g
le
a

d

/1

xc

r

r
uc
r
d

en
i

on
t

th
ro
cle
ue
te

le

o

re

J
a
a
a

e

the
ar-
tion
rent
un-

n of
to

e a
be
iven
the
on
ilar

ssed
ons
ve
can

he

res-
in-
r-
r

eld
the

he

1/2

an

not
lar
s is
hat

t
ted

ical
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~1! 1/3 descendants: In this case, the more stable desce
dant states will be 4/11~with n151/3), 6/17 ~with n1

51/5), and 4/13~with n1521/5). Forn1521/3 we obtain
n52/7 which is of course more stable as a Jain~parent! state.
The next states that can be obtained are 8/23 (n151/7), and
6/19 (n1521/7), whose gaps are smaller than the ones
served by Panet al.19

~2! 2/3 descendants: This yields the states 5/7~with n1

51/3), 7/11~with n1521/3), 9/13~with n151/5), 11/17
~with n1521/7), etc. The state 9/13 lies outside the range
the data of Ref. 19~since 9/13.2/3), although it was re-
ported earlier in Ref. 20. However, 11/17 is within the ran
of the observed states, and in principle should be as stab
5/17 or 6/17, except for the fact that it is the result of
quasihole condensate.

~3! 2/5 descendants: This yields the states 3/17~with n1

51/3), and 5/13~with n1521/3). Note that 3/17 being
smaller than 2/7 is out of the range of the states observe
Ref. 19. The next possible states 5/27~with n151/5), 9/23
~with n1521/7), etc, have very small gaps. The state 5
can also be constructed as a 1/3 descendant withn152/3,
but this choice requires a larger number of condensing e
tations than the one obtained as a 2/5 descendant.

~4! 2/7 descendants: have filling factors 5/17~with n1

51/3), 7/25~with n1521/3), and states with even smalle
gaps.

~5! 3/5 descendants: have filling factors 8/13~with n1

51/3), 10/17~with n1521/3), and states with even smalle
gaps. As discussed before, the state 7/11 can be constr
as a 3/5 descendant withn152/3, but this requires a large
number of quasiparticles than the construction as a 2/3
scendant.

As mentioned before, besides the very general argum
invoked about the stability of the parent states, together w
the size of the gap and the density of condensing excitati
there are no other factors that one can take into accoun
this level of approximation to decide on how to organize
states according to their degree of relative stability. A mic
scopic study of the interactions between the quasiparti
and/or quasiholes involved is necessary to solve this q
tion. Effective interactions among excitations of Jain sta
have been studied numerically recently by Leeet al.42 Goer-
big et al.43 have investigated the form of the quasipartic
interactions for Jain states withn51/2n11 using the Hamil-
tonian approach for the fermionic Chern-Simons theory
the FQHE of Murthy and Shankar.14

To conclude our discussion about the experimental
sults, we turn our attention to the minima inrxx , but not yet
a plateau inrxy , observed by Panet al.19 at the even de-
nominator fractions. We can construct these states as
descendants only ifn151/2. In particular, we obtain 3/8 as
1/3 descendant, 3/10 as a 2/5 descendant, and 5/8 as
descendant. However, in this theory these even-denomin
states arecompressible37 fully polarized hierarchical Jain
states since they are gapless. Alternatively, they have b
described as either paired states,24,25,44 or liquid crystallike
states.45–47
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III. A PARTIALLY SPIN POLARIZED DESCRIPTION
OF THE OBSERVED STATES

Up to this point, we have discussed how to construct
FQHE states observed in Ref. 19 as fully polarized hier
chical descendants of the Jain series. Since this construc
requires the condensation of the quasiparticles of the pa
state, it is clear that these daughter states might become
stable under changes leading to a complete reorganizatio
the ground state. Thus, if a FQH state of electrons were
become available at the same filling fraction, for instanc
state which involves the spin degrees of freedom, it will
necessary to determine which state is chosen for a g
physical system. Thus, the application of pressure to
sample, or tilting of the magnetic field may drive a transiti
to a partially polarized, or even an unpolarized state. Sim
considerations apply to paired states.

In this section we will consider if partially polarized FQH
states can compete with the hierarchical Jain states discu
in Sec. I. In Refs. 18,48 we showed that the Chern-Sim
field theory for two-dimensional electron systems that ha
an extra degree of freedom, such as a layer or spin index,
describe FQHE states whose filling fractions are

n5

2n2S 1

p↓
12n↓D2S 1

p↑
12n↑D

n22S 1

p↑
12n↑D S 1

p↓
12n↓D . ~3.1!

Here, 2ns is the integer number of fluxes attached to t
electrons with polarizations (s5↑,↓), andn is the integer
number of fluxes attached to a given particle due to the p
ence of the particles with the opposite polarization. The
tegerupsu is the number of Landau levels filled by the pa
ticles with polarizations. All these numbers can have eithe
sign, since the flux attached, or the effective magnetic fi
seen at mean field, can be either parallel or antiparallel to
external magnetic field.

The totalz-component magnetization per electron of t
ground state is

Stotal
z 5

n↑2n↓
2n

. ~3.2!

As discussed in Refs. 48,18, in the case of a spin-
system, in order to preserve the SU~2! spin rotation invari-
ance of the Hamiltonian, even in the presence of a Zeem
term, we must choose 2ns5n. In other words, the flux at-
tachment should be done in such a way that it does
distinguish between different spin orientations. In particu
this guarantees that the statistics of all the quasiparticle
the same, independently of their spin orientation. Note t
this is asymmetry requirementand it does not imply that the
state is necessarily a spin singlet~although it is consisten
with it!. It is simple to check that none of the states repor
in Ref. 19 can be obtained imposing the condition 2ns5n,
s5↑,↓.

On the other hand, if we could assume that the phys
system breaks the SU~2! symmetryexplicitly, we would be
2-6
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allowed to relax this condition and only require that the nu
ber of crossed flux (n) attached to the particles is even
order to maintain their fermionic statistics. In this case it
possible to find realizations of the different observed sta
Taking for instancen52n↑ and 2n↓22n↑[2m, we can re-
write the total filling fraction in the following way

n5
1

2n↑1
1

p↑1n*

, ~3.3!

where

n* 5
1

2m1
1

p↓

. ~3.4!

This expression looks identical to the one we found for
hierarchical states@Eq. ~1.8!# provided that p↑→p, 2m
→2n1 , p↓→p1, and 2n↑→2n. However the interpretation
of the integers appearing here is different. In this case
flux attachment is performed on the electrons, with 2n↑
52n fluxes attached to electrons with spin↑, and 2n↓
52n12n1 fluxes attached to electrons with spin↓. It is
therefore obvious that the SU~2! symmetry is explicitly bro-
ken. Moreover, all these states are partially polarized w
polarization Stotal

z 5$p↑(2mp↓11)2p↓/2@p↑(2mp↓11)
1p↓#%. On the other hand, in the case of the hierarchi
construction of Sec. I, 2n fluxes are attached to the origin
electrons that condense into the parent state, and 2n1 fluxes
to the remaining excitations that condense into the daug
state.

It can be shown that the states with even denomina
(n53/8,5/8, and 3/10) cannot be constructed as incompr
ible partially polarized ones if the conditionn52n↑ is im-
posed. We could only obtain them ifn* 51/2m, but in this
case, they are compressible. Other possible mechanism
generate even denominator incompressible states inv
pairing.24,25

An alternative proposal has been put forth by Park a
Jain,49 who discussed states whose filling fraction is given
Eq. ~3.3! for the particular case ofn52,p↑51. The authors
argue that these states are mixed states of composite fe
ons of different flavors, carrying different number of flux
~vortices!. In fact, the construction of Ref. 49 can be o
tained from a scheme similar to the partially polarized sta
discussed in this section. Thus, we first attachn52n↑ fluxes
to every fermion, independently of the orientation of its sp
The remaining fluxes 2n↓22n↑52m are attached only to
the, let us say, spin↓ electrons.

However, as discussed above, a construction of this ty
in which different spin orientations get attached differe
number of flux quanta, breaks explicitly the SU~2! spin sym-
metry of the system, and it is not an equivalent represe
tion of the system. Naturally, it is always possible to ca
out the formal process of flux attachment in an asymme
fashion, i.e., by ignoring the fact that, except for the prese
of the Zeeman term~which commutes with the Hamiltonian!,
15532
-

s.

e

e

h

l

er

r
s-

to
ve

d
y

i-

s

.

e,
t

a-

ic
e

the physical system is SU~2! invariant. In such an approach
spin SU~2! becomes a dynamical symmetry. However,
soon as approximations are made, the SU~2! symmetry is
explicitly broken. Of course, since the original problem ha
SU~2!-symmetric Hamiltonian, the effects of the symmet
should eventually be recovered. However there is no gua
tee that the symmetry can be recovered in perturba
theory, as it may well be a nonperturbative effect. Thus,
resulting mean-field theory of composite fermions is co
structed with states which are essentially orthogonal to
physical states, and the fully projected states are very
from the intuitive and simple wave functions of~composite!
fermions filling up these effective asymmetric Landau leve
Thus, although Park and Jain succeeded in construc
states of this type for most of the new fractions, the sta
they find are not fully polarized. Moreover, it is unclear ho
this scheme can be made compatible with the spin symm
of the underlying Hamiltonian. We should emphasize that
have a ground state which is either fully or partially pola
ized, it is not necessary to break the SU~2! symmetry of spin
at the level of the Hamiltonian~beyond the effects of a pos
sible Zeeman term!.

IV. EDGE STATES AND ELECTRON TUNNELING

In this Section we give a brief derivation of the theory
the edge states for the hierarchical Jain states discusse
Sec. I. Since we will follow closely the approach we used
Refs. 17,18 we will omit many details and refer the reade
these references. The main goal of this section is to de
mine the exponent of the differential tunneling conductan
for electrons.

The Lagrangian of Eq.~1.5! has the standard form dis
cussed by Wen and Zee.6 Therefore, following the genera
arguments of Ref. 5, it is straightforward to extract a theo
for the edge states which reflects the structure of the bulk
what follows we assume that there is a sharp potential
confines the electrons to a disk in such a way that there is
edge reconstruction. Furthermore we will also assume17,18

that the possible multiple edge charge modes are unreso
i.e., that they are confined within a magnetic length.
course the validity of this assumption depends on mic
scopic details such as the specific form of the confining
tential.

The effective theory takes its simplest form when writt
in terms of the chiral bosonfC , the charge mode, which i
the only mode that couples to the electromagnetic field,
nonpropagating topological modes which play a role sim
to that of Klein factors. In terms of these fields, the Lagran
ian for the edge theory is

L5
1

4pn
~]1fC]0fC2v]1fC]1fC!

2
1

4p
~p1n1!]1fT]0fT2

1

4p
k i j ]1fTi

]0fTj
,

~4.1!
2-7
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wherev the velocity of the charged edge mode. The 232
matrix k i j is given by

k5S p 1

1 22n1
D . ~4.2!

A general edge operator can be written as

C~x!5ei (aCfC1aTfT1(
i 51

2

aTi
fTi

). ~4.3!

The chargeQ and statisticsu of these excitations are

Q

e
52naC ,

u

p
52naC

2 1
1

p1n1
aT

21aTi
k i j

21aTj
. ~4.4!

It is apparent that the topological modes only contribute
determine the statistics of the operators. Their role is to p
vide for a set of effective Klein factors which give the phys
cal excitations their correct statistics.

The operator that creates a quasi-particle or quasi-ho
the boundary can be found by requiring that its charge
statistics are given by Eqs.~1.11! and~1.12!, respectively. It
is immediate to see that the quasihole operator can be wr
as

Cqh~x!5ei $[1/p(2n1p111)1p1]fC1fT%. ~4.5!

Analogously, the electron operator at the boundary is

Ce~x!5ei [(1/n)fC1udetKufT] . ~4.6!

This operator has the correct chargeQ52e, and statistics
u/p5udetKu@2n2(2np11)12n#, measured with respect t
fermions. Notice that all the physical operators can be rep
sented only in terms of the charge modefC and one of the
topological modesfT .

There is much interest in studying different tunneling p
cesses into the edges of the FQHE hierarchical states
order to do so, we need to compute the propagator for
excitation created by an operator of the form of Eq.~4.3!.
Since the effective action for the edge modes is quadrati
the fields, the calculation of the propagators of the ch
bosons is straightforward giving17,18

^fC~x,t !fC~0,0!&52n ln z

^fT~x,t !fT~0,0!&5 i
p

2~p1n1!
sgn~xt!, ~4.7!

wherez5x1 ivt.
Using the above results, the propagator for the fi

C(x), of the form given in Eq.~4.3!, in the limit x→01

becomes

^C†~01,t !C~0,0!&}
1

utugt
ei (u/2)sgn(t), ~4.8!
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wheregt5naC
2 andu is given by Eq.~4.4!. In particular, we

find that the exponentgt for electrons isge51/n, whereas
for quasiparticles~and quasiholes! gqp5n/@p(2n1p111)
1p1#2.

The tunneling currentI at bias voltageV has the scaling
form33,34 I (V)}Va, where the exponenta is determined by
the scaling dimension of the tunneling operator. There
three cases of physical interest.~a! internal tunneling of qua-
siparticles, for whichaqp52gqp21 ~here scaling holds a
large biasV), ~b! tunneling of electrons between identic
fluids, for whichae52ge21 ~at low biasV), and~c! elec-
tron tunneling between distinct fluids, for whicha t5ge
~again at low biasV). In particular, in the case of tunnelin
of electrons from a Fermi liquid into a hierarchical FQ
state, we find that the tunneling exponent isa5ge51/n.

Thus, in contrast with what is obtained for the Haldan
Halperin hierarchy,5 all the states described by our approa
have a universal value of their electron tunneling expone
which is always equal to 1/n in the case of an unrecon
structed unresolved edge. Although this interesting re
agrees with the experimental observations of Refs. 28–
we should note that it doesnot predict that the exponent i
1/n for all values of the magnetic field, as the experime
seem to suggest. Instead what this theory predicts is tha
each FQH state at filling factorn, the exponent willlock at
the value 1/n so far as the bulk state has not changed. Th
there should still be a plateau, no matter how small, cente
about the value 1/n. Although this reproduces the trend se
in the experiment, it still requires that the functional depe
dence of the exponent on the magnetic field has the s
structure as the Hall conductance. The fact that, with
possible exception of a very small plateau at 1/3 with a sm
but observable discrepancy in the value of the exponent,29 no
plateau has ever been seen in edge tunneling exponen
mains an unsolved and intriguing puzzle which presuma
will not be resolved until a true point-contact geometry b
comes available for experiments.

V. CONCLUSIONS

In this paper, we presented an effective theory to desc
hierarchical states constructed as daughter states of the
cipal fractional quantum Hall Jain series atn5p/2np11.
These daughter states result from the condensation of
elementary excitations~either quasiparticles or quasihole!
of the parent~Jain! state, into new FQH Jain-like states. Th
effective theory is a generalization of the fermionic Che
Simons theory of the FQHE for fully polarized systems.9,17,18

It reproduces all the odd denominator filling fractions r
ported in Ref. 19 as well as some states reported earlie
Refs. 20,40. We found that these states are both locally st
andT stable.

Our results do not preclude the existence of other poss
competing states, such as paired states, inhomogen
states~stripes, bubbles, etc.! or anisotropic nematic states
But they do confirm that at least locally~in energy space! the
hierarchical states are stable states of the 2DEG.

We also used a similar approach to discuss the possib
of explaining some of these states as partially polarized F
2-8
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states. We found that it is not possible to construct the n
states reported in Ref. 19 using a scheme which respect
SU~2! invariance of the underlying Hamiltonian.

Finally, we derived a theory of the edge states for the n
hierarchical states, using the Chern-Simons bulk effec
theory presented here. In particular we discussed the pre
tions of this theory for the edge tunneling exponent of el
trons from a Fermi liquid, and find that for an unreco
structed sharp unresolved edge, the tunneling expone

*Permanent address: Centro Ato´mico Bariloche,~8400! S. C. de
Bariloche, Rı´o Negro, Argentina.
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