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Indirect exchange interaction between two quantum dots in an Aharonov-Bohm ring
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We investigate the Ruderman-Kittel-Kasuya-Yosi&®KKY ) interaction between two spins located at two
quantum dots embedded in an Aharonov-BotB) ring. In such a system the RKKY interaction, which
oscillates as a function of the distance between two local spins, is affected by the flux. For the case of the
ferromagnetic RKKY interaction, we find that the amplitude of AB oscillations is enhanced by the Kondo
correlations and an additional maximum appears at half flux, where the interaction is switched off. For the case
of the antiferromagnetic RKKY interaction, we find that the phase of AB oscillations is shiftet] lhich is
attributed to the formation of a singlet state between two spins for the flux value close to integer value of flux.
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I. INTRODUCTION For ferromagnetidF) coupling between dot spins, the am-
plitude of AB oscillations is enhanced by Kondo correlations
When two magnetic moments are embedded in a metalnd an additional maximum appears at half flux. For AF
they induce spin polarization in a conduction electron se&oupling case, the phase of AB oscillations is shiftedry
and couple each other even if they are spatially separated.
Such indirect exchange interaction, the Ruderman-Kittel- Il. MODEL AND CALCULATIONS
Kasuya-Yosida(RKKY) interaction, has been known from
the 1950<. The indirect exchange interaction in magnetic
nanostructures is one of basic mechanisms for spintronics Figure Xa) shows the schematic picture of an AB ring
and it is well understood for ferromagnet and nonmagneti@embedded with one QD in each arm. They are formed in a
metal multilayer structure$.However for semiconductor two-dimensional electron gd@DEG) by means of gate volt-
nanostructures, the indirect exchange interaction between lages. QD’s denoted by 1 and 2 weakly couple to left and
cal spins formed in two quantum dots has not yet been obright leads, which are connected strongly to reservoirs. In
served, in spite of the importance as a basic physics and tht@rder to discuss RKKY interaction, we need to consider the
potential application for semiconductor nanospintronics.  situation when each quantum dot is occupied by odd number
Recent improvement of the fabrication technique forof electrons, so both of them are in the local moment regime.
semiconductor nanostructures enables one to make rath€he leads can include several channels depending on their
complicated structures with the possibility of the precisewidth. In the following for simplicity, we will assume the
controlling of their parameters. For example, a double quan-
tum dot(QD) systerft and the composite system of QD and
an Aharonov-Bohm(AB) ring have been mad® The
double-dot system was proposed for a candidate of “qubits,”
because in the Coulomb blockadéB) regime a dot with
odd numbers of electrons, behaves as a local spin and two
dot spins can be entangled by introducing the exchange in-
teraction between thefmSuch exchange interaction has been
also discussed from the point of view of the competition
between the Kondo effect and the antiferromagnét€)
interaction® However the direct exchange interaction was
considered rather than the RKKY interaction. Investigations
on the AB ring embedded with QD are aimed at understand-
ing the coherent transport through @Refs. 5,9 and 1)0and
the indirect exchange interaction between two local spins has

not been addressed. _ . ' FIG. 1. (a) Aharonov-Bohm ring embedded with one QD in
So it is intriguing to investigate the RKKY interaction each arm. The system has the parity symmetry along the horizontal

between two QD’s in CB regime embedded in AB ring. We and vertical axegdot-dashed lings (b) The flux dependentleft

will show that the RKKY interaction, the sign of which 0s- pane) and independentright pane) particle-hole excitation® is

cillates as a function of the distan€@KKY oscillations, is  the flux penetrating the ring. The directed solid and dashed lines are

affected by the flux and it dominates the transport propertiegshe particle and hole propagators, respectively.

A. Model Hamiltonian
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single-channel case. The effective Hamiltonian of such syseauses Zeeman splitting of electron spins. In the following
tem may be written with two one-dimensiondlD) leads discussions, we consider an ideal situation where the Zeeman
Hamiltonian H, and the tunneling Hamiltoniai; as H splitting is negligible. As we comment in Sec. IV B, such a
=Ho+H;. The lead Hamiltonian is given byH, situation will be typical for materials with a small Lande
=3\ =L R oEk@hro8kro » WHETeay (), IS @n annihilation op-  factor.

erator of an electron with quantum numbeand spino in

the left (right) lead. For simplicity, we adopt the so-called B. Flux dependent RKKY interaction

Cogblin-Schrieffer model, The Hamiltonian for the RKKY interaction can be ob-

tained by the second order perturbation theory in terms of

J
Hr= >, > Ea:rm,xz, JE- W (1) Jleg, whereeg is the Fermi energy?°
rr'=L,R o0’ =1,]
-tz Jrkky (@) 1 w2
for the tunneling Hamiltonian through QD’s with odd num- Hriiy = 2 g Koo Xarg (4)

bers of electrons in CB regime. The Hubbard operator _ .
X7, .=|n,o’)(n,o| describes the spin state of theh QD The coupling constanirgky () can be written as

andJ>0 is a coupling constant. The annihilation operator 72

arn, is written using the projectiofin|kr) of wave function Jrkky (@)= - x(2+2 cose), (5
of an electron in the lead with quantum numbek at the 2

boundary of thenth QD, asan,= Z(n|kr)a.,."* where a susceptibility functiog can be found by the pertur-

Here we encounter a problem: One needs to know th@ation theory based on the Keldysh Green function
proper wave function including the information on the coher-techniquée?® In the equilibrium, it can be written as

ent propagation of an electron through the arms. Though the

scattering theory is suitable for treating the electron coher- 1

ency, it is complicated to combine it with a theory based on y= 2 ZRef dede’

the Hamiltonian in the second-quantization representation,

i.e., the tunnel Hamiltonian approathin this paper we cir- X{f*(e)—f" (")}, (6)

cumvent this problem. Rather, we utilize an assumption of

parity (mirror) symmetry along the horizontal and the verti- where » is a positive infinitesimal number and,(e)

cal axes[dot-dashed lines in Fig.(@)]; namely, the total =J=(p|k)(k|p)J(e—e\) is a spectral function of paritp

Hamiltonian is invariant under the interchange of indices“electron propagator.” The subscrigt represents the oppo-

L—R or 1—2. Such an approximation will make calcula- gjte parity ofp, i.e., p=+ for p==+. Here, f*(s)=1/(1

tions simple and will contain all important physics. Any de- +e*P%) is the electron(hole) distribution function, and3

viatiorjs from such a symmetry will change the result onIyET—l, (We use the unikg=1.) In Eq.(5), a phase depen-

quantitatively. , n , , dent factor (2+ 2 cos¢) appears, which is related to the four
For practical calculations, it is convenient to introduce anconfigurations of particle-hole excitations—two of which en-

annihilation operator of even/odd parity stdfes;.,  close the flux{left panel of Fig. 1b)] and pick up a phase

= (a1 82)V2  [aro=2(=K)a,, Where |£)  factor € or e ¢ and give term 2 cos, and the others

=(|]1)*[2))/2; we dropped the indexfrom |kr) because (right panel are independent of the flux and give term 2.

of the parity symmetry along the vertical akisnnihilation  Equation(5) is one of the main results of this paper. It shows

operators for even and odd parity states are orthogonal,  that by means of external flig one can control the ampli-

tude of the RKKY interaction but it is impossible to change
{8rpo 18001} = Grer 801 Sppr (@ its sign since (22 cos¢)=0.

because of the parity symmetry along the horizontal axis.  Since we consider 1D leads, we approximagés) as for
When magnetic field is applied, an AB phase fagdt?  the 1D free-electron gas with the linearized dispersion

(e~1%/2) must be counted in Eq1), when electron tunnels relation®*

through a QD in the clockwiséanticlockwise direction®®

’)’p(é‘)'}’p(S,)_ ')’p(s)')’E(S,)
etin—¢g’

The AB phase is written with vector potentiél as, h(s):j{ 1i005{ kel | 1+ % } (7)
b= 27.,3 b= % A-dl (3)  Wherekg is the Fermi wave number arids the length of an
Oy’ ’ electron path between two QD’s. The argument of cosine

where®,=hc/e is the flux quantum and the line integral is function is the energy dependent “orbital phasée., the

performed along the ring in the clockwise direction. An AB acc’umulat_ed phase during electron prgpagation between two
flux breaks the time-reversal symmetry and it generates th@> S+ e introduced the cutoff ener@y=7veky, whereve

main difference between features of the orthodox twoJS the Fermi velocity. Here] is written with the density of
impurity Kondo modet*1®®and the AB ring embedded statesp asJ=Jp.

with one QD in each arm. Here, we note that the magnetic Substituting Eq(7) into Egs.(5) and (6), we obtain for
field in leads and QD's is not zero for an experiment and itshort distance between two QD€ <27) the ferromag-
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netic coupling asJguxy(®)=—2 IN232D(2+2 cos¢) and, [SP.SP]=i€Sy [Slp,S-H]=ieiijk_, (10)
more relevant, the RKKY oscillations of 1D free-electron
gas?? as a function ofl for long distance between dots

(kel >2), wheree;jj is the Levi-Chivita antisymmetric tensor. The op-
- eratorS* does not change the total spin-quantum number,

mJ°D cog 2kl ) while S~ is the operator of the singlet-triplet transition. By
Jriwy(4)=— 4Kkl (2+2cos¢). (8§ using above operators, we obtain the symmetrized form of

16,24,14 H H
Above expressions are obtained by replacing the Fermi func|:|T taking into account the AB phase as

tions in Eq.(6) with those aflf =0, which is valid below the
characteristic temperatufé® defined by

J
> X T
Hr=7 2 {2 (07 &+vap, dan,)

L T _hkg 9 p==
T ) a0’ =1,

Here, 7 is the characteristic time scale for an electron trav- +cos?(&p .SPipal s5.,a )+H.c

. , 2 RL Rpo’ Yo’ o Lpo Edd
eling between two QD's. It can be understood from the fol-
lowing argument: Electrons deep inside the Fermi sea are -
responsible for the RKKY oscillations. On the other hand, +i sin—(épRL-§p+v aTR—U,ﬁf,,(,aLp,,)ﬂLH.c. .
electrons with energy (|e|<T*), i.e., electrons around the 2 .
Fermi level, are unimportant, because such electrons contrib- (11)

ute only oscillations whose characteristic wave length

hve/T* is much longer thamh. Thus the RKKY oscillations

are insensitive to the temperature in the regime&T™*. Here, Gf,(r*)zE,m,pa;r,p(r,&(,,(,arp(;)(, denotes effective
However, when the temperature reacfiés the RKKY os-  conducting electron spin and is defined with the vector Pauli
cillations are affected by the thermal excitations of lead eleCiayrix . Terms proportional to represent potential scat-

trons and will be smeared out. _ _ tering process and for our cases=1. The first line repre-
Due to the RKKY interaction, depending on the sign of sents the reflection process and shows that the change of
the couplingJrkky () [Eg. (8)], the two dot spins are en- parity and the singlet-triplet transition occur simultaneously.
tangled and form a singlet stai®,0) for AF coupling  The second and the third lines describe transmission pro-
[Jrkky(#)>0] or a triplet state|1m) (m=0,+1) for F cesses. The third line describes the singlet-triplet transition

coupling[Jriky(#)<0]. ~ without changing the parity, which is not invariant under the
We should note the limitation of the above approximation.interchange of indiced, <+ R, or 12, (i.e., the replace-

Equation(7) may not count the influence of the potential ment ofa,., , with +a,.,). Here it does not mean that the
barrier at the boundary of QD's and the shape of junctiongyarity symmetry is broken by the flux: the space inversion

between leads and reservoirs on an electron wave functioggnsformation changes— — &, because it also reverses the
Thus, in reality, the RKKY oscillations would be modified, yirection of the line integral in Eq3).

however our main result, the flux dependent RKKY interac- | order to calculate the linear conductance, we adopt the
tion, Eq. (5), will not be much affected by such an approxi- giagrammatic technique for the density matrix in the real-
mation. time domair?®>26With the help of the commutation relations,
Eq. (10), the perturbative calculation is performed rather sys-
C. Conductance tematically (see the Appendjx The “partial self-energy”
In the following, we will discuss how the flux dependent which represents the transition rate for an electron from the

RKKY interaction affects the conductance. The effect of thelSft [€ad to the right lead accompanied by the triplet-triplet
RKKY interaction would be pronounced below the tempera-transitionZ ;" preserving a S'”Q'fé stabeg, or accompanied
ture T~|Jgrkky(0)|. In this regime, it might be unrealistic to by the singlet-triplet transitio ;= (j=0,1) is obtained as

ignore Kondo correlations, which grow already much abovefollows:

the Kondo temperatur@,~D exp{—1/(2J)} and cause the
logarithmic variation of transport properties with tempera-

ture already abov@ .2 In the following, we will calculate SIR_ 3mi D z

. _ v
’pr(g) ’YpR(S)R 1+?+Glp(8)

the conductance fofdgkky(0)|>Tk and will take into ac- 2 P
count Kondo correlations within the third-order perturbation A
theory in terms ofl. LS TETAD| e b ey (e

First we rewrite the tunnel Hamiltonian, E@), using the j:zo,l 2 5+ pL(e) Vpr(e)
vector operator of thath local spiné“, whose components 2 Tosle—AD &
are defined as'}, =X ;; andS)= (X7, - X1,)/2. Further X Re{ 1+ +ogp(e)+ '—211 %] sinzg},
we introduce operator§®=S'+S?, which satisfy the fol- =5

lowing commutation relations: (12
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i - ) low temperatures: As the thermal excitation of lead electrons
S60= 72 | de Z+ vz[ YoL(8) Ypr(€) C032§ scrambles various orbital phases, the oscillatory component
e would be reduced for temperatures above the characteristic
N _ ) temperaturd™*, where characteristic lengthv /T reached.
*7pL(&) vpr(E) S'”2§]v (13 When one local spin, i.e., QD, is embedded in each arm of
the AB ring, in addition to the oscillatory component, the
LR 3 N B B nonoscillatory background of oscillations related to spin-flip
2,—72 Tf de §+ Yp(&) VBR(S_AH) Re{1+0qp(e) processes will appear: Spin-flip processes do not contribute
P to the interference effettbecause if a local spin is flipped,

B b . B B we can determine the path which an electron propagated.

tople— AJ'J')}COS?E +pLe) Ypr(e —Aj)) Such nonoscillatory background reduces the portion of oscil-
latory component. However, if we take account of the RKKY

¢ interaction, the oscillatory component can be enhanced from

XRe[1+ o p(8)+00ﬁ8—Aﬂ)}Sin2 (14

E 1
where we neglected the integral RE'y,(e")/(e+in

the following mechanism: First, according to E4.7), the
probabilities for singletP, and tripletP; states will be af-
—e&'). The subscripf =1(0) denotes the total-spin quantum fected _by the RKKY co_upllng constadky (), which is
— B B an oscillatory function in terms o andl. Second, as the

number andj=0(1). Here Ayg=—=Ao=Jraky(#) and = conqctance would be sensitive to a state of local spins, it
Ypr(€)=7p(e)f~ (e —u,) denotes the “lesser” or “greater” ,,y1g show also the oscillatory behavior related to the os-
Green function wherg. = — ug=eV/2. The functionoo),  cillations of Jrwy (). Such RKKY dominant oscillations
defined by one could expect for the enough low temperatuFe
+ /)+ + r) <|‘JRKKY(0)|<T*'
p (&) Vppr(® (15) In the following, we will discuss the properties of our

etin—e’ system for temperatures where the thermal scrambling of or-
) o ) bital phases is unimportant<T* and above the Kondo
gives the logarithmic divergence related with Kondo CoIe-temperatureT>Ty . We note that a$Jruxy (#)|<T*, the
lations. By substituting Eq(7) into Eq. (15), we obtain modification of orbital phases by inelastic spin-flip scattering

_ 2eD events is also unimportant.

0o+(g)=2J1In =

,7
ago1ple)=| de

A. | dependence

First we will discuss the RKKY oscillations without mag-
netic flux =0 as a function of the distandebetween two
for V=0 ande<T,T*. Here Eik) denotes the exponential QD’s. Figure 2a) shows the RKKY oscillations of the cou-
integral function andy~0.577 is the Euler constant. Equa- pling constantlzky(0) as a function of the length of an
tion (5) supplemented with Eq6) and Egs.(12)—(14) are  electron path obtained using Eq(8). It oscillates with the

— [ 2T*
o14(8)=0¢.(g)*2] Re{e'kF'[ln = +Ei(—ikFI)]

)

main results of this paper. period ofkgl/7=1, and shows local minima at integer val-
Using the partial self-energy, Eq&l2)—(14), the current  ues ofkgl/ar corresponding to F coupling and local maxima
can be expressed as at half-integer values d{(l/ 7 corresponding to the AF cou-

pling between the spins. The amplitude of the oscillations
decays with Ml as predicted for RKKY interaction in
quasi-1D geometrs? In Fig. 2(b), there is a plot of the prob-
o ] ability P, of the singlet state obtained from Ed.7). At low
where probabilitied?, for a singlet state ané, for each of temperatureT = |Jruky (0)] (the solid ling, a singlet state
particular triplet state@ve consider no Zeeman splittingan (triplet staté is formed when value dkdl/ is close to half

be obtained for the linear response from the Boltzmann disl'nteger (intege). As the temperature increasitbe dashed
tribution as line for T~|Jrkky(0)] and the dotted line forT
>|Jrkky (0)]] the amplitude of oscillations is suppressed

—_ '€ D Pj{E;‘JR/—(LHR)}, (16)

L j.i’=01

Po= ! , plzﬂ_ (17) and system approaches uniform distribution between the sin-
1+3 ex — BIrikv(4)] 3 glet and triplet statesPy=P,=1/4. There are also the os-
The linear conductance is defined @s-lim,_,4d1/dV. cillations of the conductanciig. 2(c)] with the period of

kel/m=1. In the same way as in Fig(l8, the amplitude of
oscillations is suppressed fars>|Jgrkky(0)|, which indi-
cates that in the regim&<|Jgkky(0)| the conductance os-
For the AB ring geometry without quantum dots in arm, cillations are mainly determined by the RKKY interaction.
the conductance oscillates as a function of the #lu¥ Fur-  Experimentally, it can be difficult to control the length of
thermore, because of the orbital phase, the conductance alaoms keeping other parameters fixed. However, the conduc-
oscillates as a function of the length of the drfior enough  tance oscillations would be possible to observe by changing

Ill. RESULTS
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2 x1074F . Jrkky () —0. In this case, the local-spin state is distributed
with equal probability among a singlet state and a triplet
state P;~Py~1/4 [see EQ.(17)]. The conductance is ex-
ok i pressed as

Ty (0)/D

G _
G_:(WJ)Z v?(1+cos¢ coSkel )+ 3
K

— 2e’D
1+4JIn ,
7T

(18

whereGy = e?/h is the quantum conductance. The first term,
which is proportional ta? and thus independent of spin-flip
processes, is attributed to the phase coherent component of
the cotunneling process. It shows the ordinary AB oscilla-
tions. The second term in E¢L8), which is related to spin-

flip processesdoes not depend o#h), forms the background

of AB oscillations. We can see that with decreasing of tem-
perature the Kondo correlations enhance the background:
The second term can be interpreted as the parallel conduc-
tance through two independent sgiflecal moments whose
conductance is enhanced by Kondo correlatidng the

third-order contribution irJ in Eq. (18), there is no interfer-

4 Keli2 6 ence related to the orbital phakd, which was pointed out
Fl/2m) by Beal-Monod'® We explicitly showed by Eq(18) that

FIG. 2. Length dependerta) RKKY coupling constant,(b) there is also no interference related to the AB phase in the

probability for singlet state, andc) conductance forT/D=5 thqu-order Cont”bUt'onj . .

X 1075 (solid line), 1074 (dashed ling and 103 (dotted line. (Il) The ferromagnetlc COUplIh_gTJRKKY(qS)>T . In this
Parameters are taken ds=0 andJ=0.04. case, two local spins form a triplet stam_av_« 1/3 and P,

~0 [see EQq.(17)]. Thus, the conductance is that &1
Kondo model plus the potential scattering. For the case of
long distance between QD& >1),

the Fermi wave numbeéx:, by controlling the carrier density
of 2D electron gas with an additional gate.

G — = ¢ 2T*
_—- 2 -
G 2(mJ)? 4Jcogkd cod > In—
B. ¢ dependence, analytical results 5
Y
Though above discussions suggest that the RKKY inter- +(1+ v_+2J_|n2e D (1+cos¢ cogkgl) |.
action dominates the length dependent conductance, it would 2 mT
be more convenient experimentally to measure the flux de- (19

pendence. In the following we will discuss the modification
of AB conductance oscillations by the presence of RKKY For the opposite cas&g <1, we obtain the same equation
interaction. as Eq.(19) with replacingT* in the logarithm bye™ ”D. The

As we mentioned before by means of external filboone  striking feature is that as opposed to the cagethe Kondo
can change the amplitude of the RKKY interaction but not itscorrelations enhance the oscillatory component as it is shown
sign since (22 cos¢)=0. In the particular experimental in the second term of Eq19). Loosely speaking, two spins
situation depending on the lengthof the arm and Fermi are no longer independent phase-breaking scatterers because
wave vectokg the spins can be coupled ferromagnetically orthey “observe” each other and the Kondo correlations en-
antiferromagnetically. By means of flug¢ one can control hance the AF coupling of each QD spin to the conducting
the strength of the interaction but does not switch betweeelectrons spins. The first term of Ed.9) shows the logarith-
them. For this reason it is sufficient to discuss three typicamic divergence, whose cutoff energy is equal to the charac-
situations, for which we are able to get analytic resultsteristic temperature of the orbital phase coherefite This
These three cases are classified by the value of the RKKYerm appears because the spin-1 moment stretcheslover
coupling constant: (i) the uncorrelated local-spin case Using Eq.(19), we can relate the F coupling of spins by
(|Irkky ()| <T), (ii) the ferromagnetic coupling case RKKY interaction[Fig. 2(a)] with the maximum in the con-
(= Jrkky(9)>T), and (iii) the antiferromagnetic coupling ductancgFig. 2(c)] around integer values &/ .
(Jrkky()>T). These cases are explained below. (iii) The antiferromagnetic couplinglgkky(#)=>T: In

(i) Uncorrelated local-spin limit is realized for high tem- this case two local moments form a singlet stBie=0 and
perature|Jrxky ()| <T or for the flux ¢~m+2m7n since Py~1 [see Eq(17)]. As the singlet state is decoupled from
then, according to Eq5), the RKKY interaction is weak, lead electrons, i.e., electrons flowing through QD’s cannot

155320-5
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excite local spins to a triplet state, so only the potential scat-2«10™
tering process contributes to the conductance:

\(z-a)l-

[

I(l-a)l

1k

0r 4 0
-1 -/- -1

Because we consider the Coulomb blockade regime, the co -2
tunneling current is very small. It is the reason why the con-
ductance is suppressed around each half-integer value ¢
kel/7 [Fig. 2(c)], where the RKKY coupling is antiferro- /%3
magnetic[Fig. 2(@)]. Here we note that situationd) and
(i) are not realized for the fluxg~m+27n since
Jrkky (@) is small there and the limifi) is approached. For
|Irkky (0)|>T by means of the fluxp we can tune between
(ii) and (i), or (iii), and (i) but not between(ii) and (iii)
situations.

Jrexv(9)/D

GIGk=(7J)2v2(1+cos¢ cofkd ). (20)

C. ¢ dependence, numerical results 0 01 02 03 04 05 0 0l 02 03 04 05

For above three cases, we obtained simple analytic result ¢,
and clarifed that the local-spin state due to RKKY interaction
causes the pronounced effect on the conductance. Next, w
will analyze the conductance of the system for the full ranges *'[
of the flux ¢ and discuss the additional structures caused by

o1 T T @]

the flux dependent RKKY interaction, which can be anevi- o, . = = = d4o¢ . o o
dence of the RKKY interaction in our system. Figurés-3) 0 ol 0-2/ 20-3 04 05 0 0l 0-2/ 20'3 04 03
and 32-a) show the RKKY coupling constadikkky () as a ¢/2m) ¢/(2m)

functipn of the qux¢?/(27r)_. The former shows plot for F FIG. 3. Flux dependent RKKY coupling constaffi-a and
coupling caseKel/ is an integerand the latter shows the ;.37 probability for singlet stat§(1-b) and 2-b], and conductance
plot for AF coupling casekl/# is a half integer. The pan- [(1-0 and 2-4], for J=0.04. Panelg1-a), (1-b), and (1-0) corre-
els (1-b) and (2-b) are the corresponding plots of the prob- spond to the F’coupling caste,:(/(27r)=55 and banel$2-a), (2-b),
ability for the singlet state for various temperatures, and the,q (2-0) correspond to the AF coupling cakgl/(27)=5.25].
panels(1-c) and (2-c) are plots of the conductance. For pa- jyx dependent conductance fe8) kel/(27) =50 and(4) 50.25.

rameters used in Fig. 3, the Kondp _te_mperature iS approxXirhe solid, dashed, dotted, and dot-dashed lines show the results for
mately T, /D~3.7x10°%. In the vicinity of zero flux T/D=5x10"5, 10 4, 2x10°%, and 103, respectively.

=0, electron wave functions constructively interfere and
thus the maximum RKKY interaction is inducdganels

(1-a) and(2-a)]. For F coupling case, a triplet state is formed,  Here we will make a note on the Onsager symmetry. For
i.e., Po~0, at low temperatur¢panel (1-b)] and thus the  the two-terminal geometry, it means that the conductance is
conductance is enhancgpanel (1-c)] as discussed in case an even function of the flux. We can see that the RKKY
(ii). For AF coupling case at low temperature, a singlet iscoupling constan@gyy (&) is an even function of the flux
formed [panel (2-b)] and the conductance is suppressedEq, (5)]. This property depend only on the symmetry of the
[panel (2-0)] as it was discussed in casié). At half flux,  Hamiltonian under the inversion of time and magnetic fi&ld

electron wave functions destructively interfere and theang does not depend on the assumption of the mirror sym-
RKKY interaction is switched offpanels(1-a and (2-a].  metry.

Surprisingly at half flux we can observe the maximum in the
conductance for both situations F and AF. According to dis-
cussion in caséi), this maximum is caused by the term in IV. DISCUSSION
Eq. (18), which does not depend on the flux and which cor-
responds to incoherent transport thought the two independent
spin+ local moments related to Kondo correlations. Espe- Here we note some features to distinguish experimentally
cially for AF coupling case, it leads to the effective phasethe RKKY dominant oscillations from the ordinary AB os-
shift of AB conductance oscillations by [panel(2-0)]. cillations. The first feature is the characteristic temperature
In order to compare our results with the limit, where the below which the oscillations can be observed: The character-
RKKY interaction is negligible, we show curves of AB os- istic temperature of the ordinary AB oscillatiom¥ is higher
cillations for |Jrkiy(#)|<T in panels(3) and (4). As dis-  than that of RKKY dominant oscillationggkky (0)| by the
cussed in casé), the component of the ordinary AB oscil- factor ~J~2. One can point out that the RKKY dominant
lations is very small. The Kondo correlations only enhanceoscillations is sensitive to the temperature. The second fea-
the background and they do not promote characteristic strucure is the temperature dependence of the amplitude of oscil-
tures as the case of the AF or F coupling. lations: Suppose we decrease the temperature from enough

A. Relation to experiments
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high temperaturel>|Jrkky (0)|, where singlet and triplet For a small AB ring, the Zeeman splitting could become
probabilities areP,~P;~1/4 and the conductance is ex- important. In order to reduce the Zeeman splittig keep-
pressed by Eq(18). As temperature is lowered, singlet and ing the number of fluxes constant, one could increase the size
triplet  probabilies are modified as Py=1/41  of the AB ring becauségrkky(0)/Ez~1. In such a case, the
—3Jrkky () (4T)] and Pi=~1/4 1+ Igkky()/(4T)]. consideration of the Kondo regim@nitary limit), T<Ty,
Therefore, the correction depending on both the orbital phaseould be necessary because the RKKY interaction was also
and the AB phase, reduced so the limifrx=|Jgkxy(0)| was approached. An-
other way to reduce or to remove the Zeeman splitting is to
utilize materials with small Landg factor: Such situations

— — 2eD are realized in AlGaAs parabolic quantum w&li& or can
—_ 2
6G=—(mJ) [3 1+4JIn T (2+coskel cos¢h) be achieved by manipulation of the electron wave-function
) position in 2DEG by means of the gate voltage.
J
+20?(1+ cogk cos¢>)] %\{_(qb,
V. SUMMARY

emerges. It grows as(In T)/T; the logarithmic correction is In conclusion, we have theoretically investigated the
relategd t6 thge Kondo correlétions g\J/Ve expect that with theRKKY interaction acting between local spins, i.e., two QD's
help of the Kondo correlations .one caﬁ distinguish theWith odd numbers of electrons in CB regime, embedded in
RKKY dominant AB conductance oscillations from the ordi- the AB ring. We assumed the parity symmetry of the system

nary AB oscillations. and such an assumption does not change the result qualita-

We also should make a note on our assumptions. In Outr|vely. We calculated the RKKY coupling constant and the

) . conductance above the Kondo temperatdre, T, but in
calculation, we assumed the single-channel leads, however

. L e regime where Kondo correlations had already become
real experimental situation there could be several channels

As discussed in Ref. 30, for the-channel case, the oscilla- mportant. The RKKY coupling constant, the sign of which

. scillates as a function of the distance, also depends on the
tory component of the conductance decreases approximate, ¥ix and the distance between two QD’s. When the RKKY
as 1N. From the same discussion it occurs that the couplinq :

; . ; nteraction is ferromagnetic, two local spins form a triplet
constantJgky(¢) of RKKY interaction, Eq.(5), will be state around zero flux, where the electron wave construc-
enhanced approximately by.

In Sec. 1l A. we also assumed the parity symmetry in c)r_tively interferes, and thus the maximum RKKY interaction is
der to et' the ’sim ler exDressions ThF()a Iagk gf the symmetrinduced' As the temperature decreases, the amplitude of AB
g P P : y Yscillations is enhanced by Kondo correlations, which is the

leog%r?sti\(l)?]rg?ilsaxﬁavsvgliaeglcjg)e‘mz (;S(rt]ljlmgﬁy ;ﬁ)rr?p?ggmdistinctive difference between the ordinary AB oscillations
; OfAB P . ' Y y 9 and those of the ferromagnetically coupled two local spins.
horizontal axis is important in order to get compact expres-

. . . The maximum was found at half flux where the RKKY in-
sions for th.e partial self-e.nergy, Eqd.2)-(14). Th? devia- teraction is switched off and the conductance is described by
tion from this symmetry will mainly affect the orbital phase

which in turn can modify details of both the RKKY oscilla- the parallel conductance of two independent spincal mo-

) oo . ments whose conductance is enhanced by Kondo correla-
tions and the conductance oscillations. However such devi

tion will not change the general features of the conductance%elons' When the RKKY interaction is AF, the phase of AB

S X A . oscillations is shifted byr. It is because around zero flux,
oscillations, i.e., the oscillations dominated by the flux de- . . ; .
: . where we obtain the maximum AF interaction, two local
pendent RKKY interaction.

spins form a singlet state, which is decoupled from the lead
electrons.

B. Parameters Note addedAfter submission of this work, we learned
a{.pat the RKKY interaction between two QD’s was observed

Finally we discuss on parameters. For a 2DEG system . . :
y b y Sexperlmentally in a different geomet$.

an AlAs/GaAs heterostructure, the carrier density of which i
typically 3.8<10" m~2,% the Fermi energy and the Fermi
wave length aresp=D~14meV and Zr/ke=40nm, re- ACKNOWLEDGMENTS
spectively. The RKKY coupling constantdgkky(0)
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Te~Dexp{~1/(2))}, |Jrkiv(0)[>Tx, otherwise each schm for valuable discussions and comments. J.M was sup-
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calculations, we pud=0.04 which gives the small Kondo PBZ/KBN/044/P03/2001, and by the Center of Excellence
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FIG. 4. The diagrams for the second-order partial self-energy 0 T
representing the transition preserving total-spin quantum nuinber —-— Sz —— ST
[(a-1), (a-2), and(a-3)] and the singlet-triplet transitiof(b-1) and = = = — W
(b-2)]. Directed lines represent propagators for lead electrons. Thick +\\ Jmrl < Sz Sm
solid lines on the Keldysh contouitwo horizontal lineg represent b1 2 )
propagators for the local spins. (b-1) i Sy 'AfT st
Si\\ jim—1 \ SJ_\\ j_,m+1 \
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APPENDIX: THIRD-ORDER PERTURBATION THEORY -
| | | | ST~— ol X s gm %
In this appendix, we present detailed calculations of the T M .
third-order partial self-energy in terms dfon the basis of ol 3 — 57
the diagrammatic technique in the real-time donfaiff.Fig- w— gmil N ST Jm %

ure 4 shows the second-order diagrams for the partial self-

energy representing the transition preserving the total-spin FIG. 5. The third-order diagrams: Each four diagramgabfl),
guantum numbelj, E"R [(a 1, (a-2, and (a-3] and the (&-2), (b'-1), and (b’-2) show corrections for the vertex on the
singlet-triplet transmon 2 -R (J =0,1) [(b-) and (b-2)]. upper branch of the diagrafa-1), (a-2), (b-1), and(b-2) in Fig. 4,

Green functions of lead electrons are represented by directe

Sspectively.

solid lines, which are also called “reservoir lines,” and solid
lines on the Keldysh contoitwo horizontal lineg represent

propagators of local spins. Here diagrafesl) and (a-3  yLR(b-1)_ E
represent different processes. For the former case, we must’ =
count factor—1 for the vertex denoted witls, when o

=|. We omitted diagrams which could be obtained by ap-

plying the mirror rule®

i N _
5 de ?’pL(S)')’ER(S_Ajj_)

ss]

XcoszgRe(j ,m|2(S,)?j,m), (A2)

Following the rules in Ref. 25, the diagrafa-1) plus its

mirror diagram can be calculated as

i B
SHRE D= 2 5 | devoi(e) vpr(e)

ss

XCosZERe(j,m|2(s;)2|j,m>. (A1)

where Ajj is the energy difference between the total-spin
quantum numbej state andj state. The result for the dia-
gram (b-2), which we denote b - LR(b-2) is obtained from
Eq. (A2) by replacing 28,)? by S+S+

The third-order diagrams give the vertex correction to the
second-order diagrams. Figure®’s1), 5(@'-2), 5(b’-1), and
5(b’-2) show the correction for the vertex on the upper
branch of diagramsa-1), (a-2), (b-1), and (b-2) in Fig. 4,
respectively. Except for the topmost two diagrams, we omit-
ted the lower branch of each diagram, which is exactly the

The results for the diagran(a-2 and(a-3, which we term  same as for the corresponding diagram in Fig. 4. The left
3;7@72) and 3 ;%@ %), can be obtained from EqA1) by  diagrams and the right diagrams show direct tunneling pro-
changmg 26,)? to SIS’ and to 22, respectively. In the cesses and exchange processes, respectively. We did not
same way, the diagratia) plus its mirror diagram is calcu- show the correction for the diagraf@-3) of Fig. 4 because it

lated as

is proportional toX _ - ,<;(j,m|S; |j,m) and thus vanishes.
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For example, the topmost two diagrams in Fig. 5 plus their oipe—Af) +ople—A)
mirror diagrams are calculated by utilizing the commutation Zjj=1+op(e)+ 5 . (A5)
relations, Eq(10), as

Finally, the third-order contributions change*~1 to
3@ D@ where the latter is obtained from the former by
replacing 26,)? with 2z;(S;)% For the diagrams other

2 LR(a—1)correction
1

. + _
:ﬂlmz f de,de ,des 7Lp(81)7’Rp_(83) Szf than those of pandl’-1) of Fig. 5, we can repeat the same
4% 1 g1~ &3ty 2 discussions as above. The result for diagrémg and(a’-2)
_ - N o of Figs. 4 and 5, respectively, and their derivative diagrams,
(i m|S+[ Yrp(€2) st— ~ Yiplea) S_'S+ 1j.m) which we term2;X®=2(@), is obtained from Eq(Al) by
VU ermeptin epmestin | replacing 26; )2 with z; SISt .

i By calculating diagramgb’-1) of Fig. 5 and their deriva-
= g > f dsyfp(s)ygp(s)coszg tive diagrams,&nd adding them to the diagréovl) of Fig.
P 4, we obtainEiT(b’l)(z), which is the same expression as
Ed. (A2) with replacing 26, )? by 2z;(S,)?. Here

Zjj=1+01p(e) + o —Aj). (AB)

whereo, is defined in Eq(15). Here we counted the minus The result for the diagram®-2) and(b’-2) of Figs. 4 and 5,
sign for a loop with three vertices in the anticlockwise direc-respectively, and their derivative diagrams, which we term
tion and we dropped terms except for the renormalization o LR(b-2)(2) j5 gptained from Eq(A2) by replacing 28, )?

- o =i
the transmission probability. We checked that terms whlchith 2-S;S-. Finally, by summarizing EhR(a-l)(Z),

we dropped are canceled out by the diagrams other thafL_R(a_z)jgz) “andS LRE3) e obtain the first term of Eq12)
L JJ 1

xRe{ ‘”2(8)<j,m|2(s;)2|j,m>], (A3)

those depicted in Fig. 5, i.e., diagrams in which the positior{*ii . . o .
of a lower vertex is inbetween upper two vertices. Further w O[Fej(b__l}(;)md tfgﬁ(ﬂrg?zgerm of Eq13) for j=0. By adding
neglected the integral Rele’ yp(s')/(s +ip—s') whichis  >jj. to 7 , We obtain the first term of Eq14).

at most~Je/D for kel <1 or ~J{|e|/D+1/(kgl)} for kel For now, we have explained only the diagrams related to
>1. By adding Eqs(A1) and(A3), we obtain Eq(A1) with the time-reversal symmetric term, corresponding to the first
replacing 267)2 by 2[1+ o, (8)/’4](5;)2 and second lines in Eq11). Diagrams related to the time-

p .

; ; ' ; _ reversal symmetry breaking term, the third line in Etf),
Other two diagrams in pane#’-1) of Fig. 5 can be cal are obtained from Figs. 4 and 5 by changing the parity indi-

culated in the same way. In Fig. 5 we omitted diagrams ob- f the right i F le. th d
tained by reversing direction and indices for spin and lead o €s of the right reservoir ines. -or eéxampie, the correspond-
Ing diagram of(a-1) of Fig. 4 is calculated as

reservoir lines. By calculation of all such diagrams and add-

ing them to Eqg.(Al), we obtain Eq.(Al) with replacing P i . B )
2(S;)? by 2zj,(S;)? where the renormalization factor is 3= 2; gJ' d87’pL(8)75R(8)S|n2§
given by me=1,0

o —A) + op(e—A[) X Re(j,m[2(S;)?|j,m). (A7)

1
zi=1+ 2 + _ . -
) 2 71p(8) 2 For vertex corrections, the change in the parity indices of the

(A4) right reservoir lines corresponds to the operation of the re-

In Fig. 5 we did not show the lower vertex corrections, Placement ofo; , by oo . Thus the second terms of Egs.

which are given in the same way as the upper vertex corred12—(14) can be obtained fro_m first terms by replacing
tions. By counting lower vertex correctiorg; is modified ~ T1p: cos(¢/2), and y, g With oq,, sir(¢/2), and
as yp:(p)R’ respectively.
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