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Controlled rotation in a double quantum dot structure
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The coherent manipulation of a double quantum dot system by an external driving field is analyzed. Using
a controlled rotation method a general superposition state of the lower states is formed. Several interaction
schemes are discussed and analytic results are presented. These are found to agree very well with the results of
numerical simulations.
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[. INTRODUCTION the physical model of the double quantum dot structure. We

also discuss several approximations that symplify the model

The interaction of electrons confined in symmetric doubleconsiderably. In Sec. Il we present the controlled rotation
quantum dot structures with external oscillat¢ac, micro- scheme and discuss several excitation schemes that realize
wave, or laserdriving fields has attracted much attention in the scheme under consideration. We also show the results of

the past decade. Several interesting phenomena have beTé\ﬁ* numerical simulations. Finally, we summarize our find-
recognized when the quantum dot structure contains one #Rgs in Sec. IV.

two electrons. Examples include dn& and two-electron

localizatiort*~*8in one of the wells under the interaction of Il. MODEL SYSTEM

the quantum dots with electromagnetic fields that obey cer-

tain conditions, controlled transfer of electrons between th% mW ?chnbs(l)iirdf\g; t'gegrt]gfl qg:ﬂ der?(;ts, 3:5&%”%2@';%
two quantum dotd®-26and even creation of maximally en- 'Y oy ' d

tangled states in two-electron quantum dot syst&rRg. taken to be widely separated. Thus, the lower pair of energy

These effects are in the central interest of the topical area A?VGIS|A1>’ B1) are essentially degenerate as the tunneling

quantum computatioft, as quantum dots are artificially cre- of an electron_through the poteniial barrier between these
ated structures with potential scalabifffy. energy levels is very improbable. The upper energy levels

in many from the studes outined above a tiorevelFo, I8 5= SN B B FEr TS SEGE OF 108 PR
model interacting with an oscillatory field is adequate fortween 'these wo levels is si %i?icantl hiy h. The svstem in-
capturing the system’s dynamits:®14-1923.2528geyerg| 9 y high. y

three-level population-transfer scherfle¥ have also been ':_?rac'tlf W'th ?r:hexterrgal glecj[rom%%net|c fiift). The
applied successfully in this aré®.?2% In particular, amiffonian ot the system 1S given
Openo?° used a system of a double quantum dot structure

interacting with a pulsed field for the electron transfer be- H=ea(|ALXAL|+[B1)B1|)+e,(|A2)(A2] +|B2)(B2|)

tween the two dots and applied his findings for the imple-  —zU(|A2)(B2|+|B2)(A2])+ E(t) u(|AL)(A2]
mentation of avOT quantum gate. In addition, Brandes and
Renzont! have used coherent population trappifpr the +|B1)(B2|+H.c), 1)

realization of a very sensitive optically controlled current
switch, and Brandest al?? have proposed to use the stimu-
lated Raman adiabatic passage technigjfm the determi-

where u is the electric dipole moment for the transition
|al)+|a2) (a=A,B), &, is the energy of levelal), ¢, is

i . ) i __the energy of levela2), andU is the electron hopping fre-
nz_att;]on .Of dephasm? rates_ In IcljouE?Ie ‘1“?22“;“ dots mteragtlnauency between the two dots for the excited electronic states,
with microwave puises. Finally, Borat al. ~have proposed  yafinaq |ater in this section. We transform the Hamiltonian of

an optimal control method for electron transfer in a three-Eq_ (1) to the interaction picture with the unitary transforma-
level system with application in semiconductor nanostrucs; o

tures.
In this paper we study the potential of coherent manipu- R 1
lation of a double quantum dot structure similar to the one V(t)=ex;{ —i(z(|A1>(A1|+|Bl>(Bl|)
studied by Openoff We present a general method based on
controlled rotatiod® which exploits the coupled and un- €y
coupled states of the systéhand show that there is a large + ?(|A2><A2| +|52><52|))t
degree of control of the system’s dynamics. Moreover, we
analyze several interaction schemes that could yield the reFhis transformation eliminates the diagonal terms of the
quired dynamics and present numerical results that verify ouHamiltonian (1). The upper bare energy levels are coupled
analytic findings. through tunneling and give rise to a pair of symmetric and
The paper is organized as follows: In Sec. Il we introduceantisymmetric levels. We denoté) (|2)) the lower state

. 2

0163-1829/2004/695)/1553165)/$22.50 69 155316-1 ©2004 The American Physical Society



E. PASPALAKIS, Z. KIS, E. VOUTSINAS, AND A. F. TERZIS PHYSICAL REVIEW B9, 155316 (2004

N h
U 4 A7 =#A[3)(3]+ 5 [Q(D]1)(3]+Q(D[2)(3] + H.cl.
U 6
1A v ©
This Hamiltonian will be our starting point in the following
section, where we describe a scheme for the controlled rota-
Q Q tion of the quantum state of the double quantum dot struc-
ture.
1) 12)

IIl. IMPLEMENTING THE ROTATION

FIG. 1. Schematic diagram of the coupled quantum dot structure \y\e gre going to present a scheme, with which the prob-
studied. The system possess two degenerate lower lehiglsifd ability amplitudes on the two lower statis) and|2) can be
2)), and two separated upper leve|8)(and|4)). The lower states .o olied. It proves to be useful to introduce new basis
are coupled near resonantly to the excited sf@jeby an extemnal 105 \which are composed of these two states, hence we can
electromagnetic field. define,a coupled staﬂ@)‘ !

|@l) in the a=A (a=B) quantum dot and3)=(|A2)

+|B2))/V2 [|4)=(|A2)—|B2))/\2] the symmetric(anti- |c>=i(|1>+|2>) @
symmetrig superposition of the upper states, respectively. J2 ’

The electron hopping frequendy/= between the excited

bare states can be expressed as the energy difference of thied an uncoupled state

states|3) and|4),

1
™ INC)=—=(=[1)+]2)), ®
tunneling time ©® V2

with &, =g,~#U (e_=g,+4U) being the energy of the With respect to the driving pulse.State(8) is uncoupled as
symmetric (antisymmetri¢ upper states, respectively. The H'[NC)=0. In this basis the Hamiltoniaf6) reads
scheme of the system using the ba§is),|2),|3),/4)} is

shown in Fig. 1. The electromagnetic fiegk{t) is supposed . - - h_ .

to oscillate at a frequency, , H'=hA|3)(3|+ —29('()(|C><3| +3)(C)), 9

%

whereQ (1) =Q(t)e'?, Q(t) is real, with¢ being a constant
with Eo(t) being the slowly varying envelope of the field. If yhase and3)=|3)e'¢. The Hamiltonian(9) is the one de-
the frequencyw,_ is much larger than the field-matter scribing the interaction of a two-level system with a pulsed

wave approximation can be appligtin this approximation

the rapidly oscillating terms, such as terms with frequency d .
+[w_+(e+—¢&q)/h], are dropped from the Hamiltonian, iﬁa|¢):H’|¢). (10)
yielding

e_—e,=2hU, where 2=

E(t)=Eo(t)cod w 1), (4)

5 The state vectof) is written in a superposition of the two
H=-[Q(t)e 21)(3]|+ Q(t)e 142) lower localized state$l), |2) and the symmetric excited
2 ~
state|3),
X(3[+Q(t)e (A2 1) (4] - Q(t)e (A +2U)2)

X{(4|+H.cl], (5)

whereA= (s, —s,)/%— w, is the field detuning from reso- OF in @ superposition ofC), [NC), [3),

nance with the transition|1)(|2))«|3), and Q(t) o

=Q'(t)/V2. [h)=bnc()INC)+be()|C)+bs(D)[3).  (12)
The Hamiltonian(5), which describes the interaction of _

the driving pulse with the quantum dots, can be simplified ifThe component vectors(t) =[c4(t),c,(t),c5(t)]" andb(t)

we assume that the detuning is much smaller than the =[by(t),bc(t),bs(t)]T are coupled through the relation
coupling frequency, |A|<U. This approximation is known

[y =ca(t)|1)+cy()]2) +C3(1)[3), (11)

as the resonant approximation. In this case the transitions b(t)=Wec(t), (13
|1)(]2))«|4) can be ignored and the Hamiltoniéh) can be
approximated in the rotating-wave pictéftas with WV being a constant matrix
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- A Let us take the initial state to bs;)=|1), i.e., c,(t;)

1 1 u
AN 0 =1 andc,(t)) =¢4(t;)=0 in Eq.(11), then
_ ) 1) 1)
W=l L L 49 [gy=e1( cos(z 1)~ sin(§ |2>}, (19
V2 2
0 0o 1 a coherent superposition state of the two lower states of the

- = two quantum dots is obtained. The andledetermines the
Note thatww~t=W. In the following we assume that at the probability amplitudes, which should be controlled in the
initial time t; the system occupies only the two lower states,experimental realization.
hencezg(ti)253(ti)=0. We will now briefly discuss possible interaction schemes
There are several analytically solvable models for two-that can be used to realize the dynamics described above.
level systems interacting with pulsed fields that can be apFirst we consider the Rabi model with rectangular pulse
plied here**% A general solution can be obtained via the shape,Q(t)=const, if 0<t<T, and zero elsewhere. In the
transition matrix method. The columns of the transition ma-Rabi model the elements of the transition matfbs) are

trix U(t ,t;) correspond to the state vector of the system agiven by
time t; if it was initially, at timet; , in stategNC),|C), and

|§>, respectively. The trqnsition matrix for our system in = cos(}ﬁT +iésin(1S~2T) e AT (209
general can be parametrized as 2 Q 2
1 0 0 \/——
20 1. .
~ _ ; —iAT/2
Ut t)=[0 a —p*|, (15 B——ITSIH(EQT)e S (20b
0 B a

_ _ _ _ N ~ whereQ) =202+ A2, For effective pulse area

in the basis{|NC),|C),|3)}. Note that in the original basis

{|1),12),|3)} the transition matrix is given by(t;,t;) QT=2mm with m=1,2, ..., (22)
=WU(t; ,t;)W. The unity_ on the top-left corner means that ihe transition amplitudes become

the uncoupled statNC) is not altered in this process. The

2X 2 block describes the time evolution in the subspace of A
the coupled statéC) and the statd3). Here, we need to a=expg —i 5+1
apply a model such that after the pulse has passed the

coupled stat¢C) acquires a phase shift 5 and the stat&) B=0. (22b)

is not populated. Hence the parameters of the transition ma-
trix Z(t; ,t;) are chosen to be Thus, the conditions of Eq(16) are fulfilled. Hence, the

angle of rotationd reads

(229

mmr|,

a=e %  pB=0. (16)
A
Inserting the above parameters into the transition matrix, EqQ. o=|<=+ 1) mar. (23
(15), we obtain the final state of the system in the form Q
|y =(NC|;)|NC)+ e "%(C|y;)|C). (17 Another model is the one obtained under pulsed excitation

) ) o in the case of exact resonance, i£=0. This is the case
By inserting the explicit forms of the scalar products gygied by Opendd for rectangular pulse shape excitation.
(NClyi) and(C|4;) using Eq.(11), and Egs.(7), (8 into  However, for arbitrary pulse shape the parameters of the
Eq. (17) we obtain transition matrix read

|y =e 2R (&) | ¢, (18)

ty

o | a=cos{if fQ(t)dt],
where R, (6) is an element of the SU(2) group, with V2 b
=[1,0,0]" andé being the axis and angle of rotation, respec-
tively. Hence, the scheme described above results in a rota- 1 (t—
tion about thex axis in the Hilbert space of a two-state sys- B=—i sir{—f Q(t)dt]. (29
tem. In this scheme we cannot control the axis of rotatipn V2
because the coupling strengths between the two localizeflor puise area
lower stateg1), |2) and the spread out excited stéB are

the same, since both couplings are provided by the same tr— _

electromagnetic field. For a more general rotation, one would f Q(ndt=y27m with m=012..., (25
need selective addressing of the lower levalg that case i

the rotation axis could be also varied. the phaseS becomes
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s=mar. (26) 1 ;

Another, rather general model, is the one obtained in the 0.8 4 !
case of large detuningh|>|Q|/v2, i.e., the case of Raman
coupling between statdd) and|2). Then, the upper state
|3) can be adiabatically eliminated from the dynamic$§
and the parameters of the transition matrix are given by

Populations
-
3
s

i(t— ) ’ /' ' ) /'
a~exp | Qi) (279 Do \
ti 0 100 200 300 400
(a) Time (psec)

B~O0. (27b)

Therefore, the anglé reads

1 te
5=— ﬁftifg(t)z‘dt. (28)

Finally, the last model that we will discuss here is the
Rosen-Zener mod&3” with hyperbolic-secant pulse shape,
where we havél(t) =Qgsech(t— 7o)/ 7]. The initialt; and 0.
final t; times of the interaction are set o, respectively, P .
in the Schrdinger equatior{10). In practice this means that % 20 0 % 80 100
ti<7o— 7 andt;> 19+ 7. Then, (b} Time (psec)

o]

2
1 -
E'+()04‘|A

Populations

, (29 .

a=

r

1
r|5-0o+ia

where T'(-) is the Gamma functionA=A7/2 and Q,
=Q,7/\/2. A simple expression for the probability ampli-
tude can be found when 0.

Populations

Qo=n with n=1,2,.... (30)

. . (c)
Then, using the recurrence relatidi(z+1)=2zI'(z) we

obtain®®

1 —

n—1]+§_|A
a=(—1)n__ol—_, (3139

g rid

Populations

B=0. (31b) 0.

Here, the phasé is not given by a closed-form relation as in .
the previous cases. However, requirimg=exp(—id), for 0 50 100 ~150 200

specificd, we obtain an algebraic equation fdrwhich may (@ Time (psec)
haven real solutions. These solutions will complete the pa- F|G. 2. Time evolution of the populations in statds (solid
rameters for the wanted superposition. curve, |2) (long dashed curye |3) (dot-dashed curye and |4)
As an example of controlled response of the system weshort dashed curyaising the Hamiltonian of Eq2). In all figures
choose to study the case of coherent population transfer from, =0.1 eV, s,=1 eV, #U=10"2 eV. (a) is for the Rabi model
state|1) to state|2) or vice versa. This is an application of with #A=10"° eV andé=5. (b) is for the resonant model with
the rotation scheme we described in the paper. This sort abaussian pulse shap€(t)=Q,exd —(t—)%272] with #Q,
rotation can be quite useful in the area of quantum compu=10* eV andé= . (c) is for the off-resonant Raman model for
tation as it is the basis for theoT quantum gaté? We use rectangular pulse shape Wimﬁ:?x 1077 ev, AA=10"° eV,
the full Hamiltonian of Eq(1) and study the unitary evolu- and 6=—=. (d) is for the Rosen-Zener model witk,
tion of the system. This way both the rotating-wave and the=10"% eV, n=2, andé= .
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resonant approximations, which are the basis of the effectiviower levels can be created in a controlled manner with our
three-level model of Eq(6) that describes our system, are method. If the system is isolated, then the global phase
assessed. We choose typical parameters for the material sys-6/2 is unimportant. If the system is part of a larger system,
tem, see Sec. Il of Ref. 20. The results of our numericakuch that there are several couples of quantum dots which
calculations are shown in Fig. 2. In all the cases the requireébrm a quantum computer, then the global phase is clearly
population transfer is succeeded. We note that the offrelevant, however, it may be incorporated into the algorithm
resonant Raman coupling gives quite longer response timdseing implemented on the quantum computer. We have con-
for the system than the other cases, see K. Zhis shows sidered several models for two-level systems interacting with
that this last interaction model may not be useful in the aregulsed fields, which may serve as a basis for a physical re-
of quantum computation due to the short decoherence timeaization. Finally, we have performed numerical simulations
of these material&’ to justify the validity of our analytic considerations. The
simulations verified the validity of the rotating-wave and
resonant approximations that lead to the Hamiltonian of Eq.

] ) (6) and tested the excitation schemes discussed in Sec. lll.
In summary, we have considered the coherent manipulape have found very good agreement in all the cases we

IV. SUMMARY

tion of the quantum state of an electron bounded in a doublg;,gied.
guantum dot structure. The speciality of the system studied is
that each quantum dot has only two bound states. We have

shown that, by applying a coherent and appropriately de-
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