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Controlled rotation in a double quantum dot structure
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The coherent manipulation of a double quantum dot system by an external driving field is analyzed. Using
a controlled rotation method a general superposition state of the lower states is formed. Several interaction
schemes are discussed and analytic results are presented. These are found to agree very well with the results of
numerical simulations.
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I. INTRODUCTION

The interaction of electrons confined in symmetric dou
quantum dot structures with external oscillatory~ac, micro-
wave, or laser! driving fields has attracted much attention
the past decade. Several interesting phenomena have
recognized when the quantum dot structure contains on
two electrons. Examples include one1–12 and two-electron
localization13–18 in one of the wells under the interaction o
the quantum dots with electromagnetic fields that obey c
tain conditions, controlled transfer of electrons between
two quantum dots,19–26 and even creation of maximally en
tangled states in two-electron quantum dot systems.27,28

These effects are in the central interest of the topical are
quantum computation,29 as quantum dots are artificially cre
ated structures with potential scalability.30

In many from the studies outlined above a two-lev
model interacting with an oscillatory field is adequate
capturing the system’s dynamics.5–12,14–19,23,25,28Several
three-level population-transfer schemes31,32 have also been
applied successfully in this area.20–22,26 In particular,
Openov20 used a system of a double quantum dot struct
interacting with a pulsed field for the electron transfer b
tween the two dots and applied his findings for the imp
mentation of aNOT quantum gate. In addition, Brandes a
Renzoni21 have used coherent population trapping31 for the
realization of a very sensitive optically controlled curre
switch, and Brandeset al.22 have proposed to use the stim
lated Raman adiabatic passage technique32 for the determi-
nation of dephasing rates in double quantum dots interac
with microwave pulses. Finally, Borziet al.26 have proposed
an optimal control method for electron transfer in a thre
level system with application in semiconductor nanostr
tures.

In this paper we study the potential of coherent mani
lation of a double quantum dot structure similar to the o
studied by Openov.20 We present a general method based
controlled rotation33 which exploits the coupled and un
coupled states of the system31 and show that there is a larg
degree of control of the system’s dynamics. Moreover,
analyze several interaction schemes that could yield the
quired dynamics and present numerical results that verify
analytic findings.

The paper is organized as follows: In Sec. II we introdu
0163-1829/2004/69~15!/155316~5!/$22.50 69 1553
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the physical model of the double quantum dot structure.
also discuss several approximations that symplify the mo
considerably. In Sec. III we present the controlled rotat
scheme and discuss several excitation schemes that re
the scheme under consideration. We also show the resul
the numerical simulations. Finally, we summarize our fin
ings in Sec. IV.

II. MODEL SYSTEM

We consider two identical quantum dots, each one hav
only two bound-state energy levels. The quantum dots
taken to be widely separated. Thus, the lower pair of ene
levelsuA1&, uB1& are essentially degenerate as the tunnel
of an electron through the potential barrier between th
energy levels is very improbable. The upper energy lev
uA2&, uB2& are taken to be near the edge of the poten
barrier, therefore the tunneling probability of an electron b
tween these two levels is significantly high. The system
teracts with an external electromagnetic fieldE(t). The
Hamiltonian of the system is given by20

Ĥ5«1~ uA1&^A1u1uB1&^B1u!1«2~ uA2&^A2u1uB2&^B2u!

2\U~ uA2&^B2u1uB2&^A2u!1E~ t !m~ uA1&^A2u

1uB1&^B2u1H.c.!, ~1!

where m is the electric dipole moment for the transitio
ua1&↔ua2& (a5A,B), «1 is the energy of levelua1&, «2 is
the energy of levelua2&, andU is the electron hopping fre
quency between the two dots for the excited electronic sta
defined later in this section. We transform the Hamiltonian
Eq. ~1! to the interaction picture with the unitary transform
tion

V̂~ t !5expF2 i S «1

\
~ uA1&^A1u1uB1&^B1u!

1
«2

\
~ uA2&^A2u1uB2&^B2u! D t G . ~2!

This transformation eliminates the diagonal terms of
Hamiltonian ~1!. The upper bare energy levels are coupl
through tunneling and give rise to a pair of symmetric a
antisymmetric levels. We denoteu1& (u2&) the lower state
©2004 The American Physical Society16-1
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ua1& in the a5A (a5B) quantum dot andu3&5(uA2&
1uB2&)/A2 @ u4&5(uA2&2uB2&)/A2] the symmetric~anti-
symmetric! superposition of the upper states, respective
The electron hopping frequencyU/p between the excited
bare states can be expressed as the energy difference o
statesu3& and u4&,

«22«152\U, where 2U5
p

tunneling time
, ~3!

with «15«22\U («25«21\U) being the energy of the
symmetric ~antisymmetric! upper states, respectively. Th
scheme of the system using the basis$u1&,u2&,u3&,u4&% is
shown in Fig. 1. The electromagnetic fieldE(t) is supposed
to oscillate at a frequencyvL ,

E~ t !5E0~ t !cos~vLt !, ~4!

with E0(t) being the slowly varying envelope of the field.
the frequencyvL is much larger than the field-matte
interaction-strengthE0(t)m @that is called the Rabi frequenc
and denoted byV8(t)5E0(t)m/\ below#, then the rotating-
wave approximation can be applied.34 In this approximation
the rapidly oscillating terms, such as terms with frequen
6@vL1(«62«1)/\#, are dropped from the Hamiltonian
yielding

Ĥ5
\

2
@V~ t !e2 iDtu1&^3u1V~ t !e2 iDtu2&

3^3u1V~ t !e2 i (D12U)tu1&^4u2V~ t !e2 i (D12U)tu2&

3^4u1H.c.#, ~5!

whereD5(«12«1)/\2vL is the field detuning from reso
nance with the transition u1&(u2&)↔u3&, and V(t)
5V8(t)/A2.

The Hamiltonian~5!, which describes the interaction o
the driving pulse with the quantum dots, can be simplified
we assume that the detuningD is much smaller than the
coupling frequencyU, uDu!U. This approximation is known
as the resonant approximation. In this case the transit
u1&(u2&)↔u4& can be ignored and the Hamiltonian~5! can be
approximated in the rotating-wave picture34 as

FIG. 1. Schematic diagram of the coupled quantum dot struc
studied. The system possess two degenerate lower levels (u1& and
u2&), and two separated upper levels (u3& andu4&). The lower states
are coupled near resonantly to the excited stateu3& by an external
electromagnetic field.
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Ĥ85\Du3&^3u1
\

2
@V~ t !u1&^3u1V~ t !u2&^3u1H.c.#.

~6!

This Hamiltonian will be our starting point in the following
section, where we describe a scheme for the controlled r
tion of the quantum state of the double quantum dot str
ture.

III. IMPLEMENTING THE ROTATION

We are going to present a scheme, with which the pr
ability amplitudes on the two lower statesu1& andu2& can be
controlled. It proves to be useful to introduce new ba
states, which are composed of these two states, hence w
define a coupled stateuC&:

uC&5
1

A2
~ u1&1u2&), ~7!

and an uncoupled state

uNC&5
1

A2
~2u1&1u2&), ~8!

with respect to the driving pulse.31 State~8! is uncoupled as
Ĥ8uNC&50. In this basis the Hamiltonian~6! reads

Ĥ85\Du3̃&^3̃u1
\

A2
V̄~ t !~ uC&^3̃u1u3̃&^Cu!, ~9!

whereV(t)5V̄(t)eif, V̄(t) is real, withf being a constant
phase andu3̃&5u3&eif. The Hamiltonian~9! is the one de-
scribing the interaction of a two-level system with a puls
field under the rotating-wave approximation.34 The dynamics
is governed by the Schro¨dinger equation

i\
d

dt
uc&5Ĥ8uc&. ~10!

The state vectoruc& is written in a superposition of the two
lower localized statesu1&, u2& and the symmetric excited
stateu3̃&,

uc&5c1~ t !u1&1c2~ t !u2&1 c̃3~ t !u3̃&, ~11!

or in a superposition ofuC&, uNC&, u3̃&,

uc&5bNC~ t !uNC&1bC~ t !uC&1b̃3~ t !u3̃&. ~12!

The component vectorsc(t)5@c1(t),c2(t),c̃3(t)#T andb(t)
5@bNC(t),bC(t),b̃3(t)#T are coupled through the relation

b~ t !5Wc~ t !, ~13!

with W being a constant matrix

re
6-2
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W5F 2
1

A2

1

A2
0

1

A2

1

A2
0

0 0 1

G . ~14!

Note thatW 215W. In the following we assume that at th
initial time t i the system occupies only the two lower stat
hencec̃3(t i)5b̃3(t i)50.

There are several analytically solvable models for tw
level systems interacting with pulsed fields that can be
plied here.34,35 A general solution can be obtained via th
transition matrix method. The columns of the transition m
trix Ũ(t f ,t i) correspond to the state vector of the system
time t f if it was initially, at time t i , in statesuNC&,uC&, and
u3̃&, respectively. The transition matrix for our system
general can be parametrized as

Ũ~ t f ,t i !5F 1 0 0

0 a 2b*

0 b a*
G , ~15!

in the basis$uNC&,uC&,u3̃&%. Note that in the original basis

$u1&,u2&,u3̃&% the transition matrix is given byU(t f ,t i)
5WŨ(t f ,t i)W. The unity on the top-left corner means th
the uncoupled stateuNC& is not altered in this process. Th
232 block describes the time evolution in the subspace
the coupled stateuC& and the stateu3̃&. Here, we need to
apply a model such that after the pulse has passed
coupled stateuC& acquires a phase shift2d and the stateu3̃&
is not populated. Hence the parameters of the transition
trix Ũ(t f ,t i) are chosen to be

a5e2 id, b50. ~16!

Inserting the above parameters into the transition matrix,
~15!, we obtain the final state of the system in the form

uc f&5^NCuc i&uNC&1e2 id^Cuc i&uC&. ~17!

By inserting the explicit forms of the scalar produc
^NCuc i& and ^Cuc i& using Eq.~11!, and Eqs.~7!, ~8! into
Eq. ~17! we obtain

uc f&5e2 id/2R̂n~d!uc i&, ~18!

where R̂n(d) is an element of the SU(2) group, withn
5@1,0,0#T andd being the axis and angle of rotation, respe
tively. Hence, the scheme described above results in a r
tion about thex axis in the Hilbert space of a two-state sy
tem. In this scheme we cannot control the axis of rotationn,
because the coupling strengths between the two local
lower statesu1&, u2& and the spread out excited stateu3& are
the same, since both couplings are provided by the s
electromagnetic field. For a more general rotation, one wo
need selective addressing of the lower levels.33 In that case
the rotation axisn could be also varied.
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Let us take the initial state to beuc i&5u1&, i.e., c1(t i)
51 andc2(t i)5 c̃3(t i)50 in Eq. ~11!, then

uc f&5e2 i (d/2)FcosS d

2D u1&2 i sinS d

2D u2&G , ~19!

a coherent superposition state of the two lower states of
two quantum dots is obtained. The angled determines the
probability amplitudes, which should be controlled in th
experimental realization.

We will now briefly discuss possible interaction schem
that can be used to realize the dynamics described ab
First we consider the Rabi model with rectangular pu
shape,V̄(t)5const, if 0,t,T, and zero elsewhere. In th
Rabi model the elements of the transition matrix~15! are
given by

a5FcosS 1

2
ṼTD1 i

D

Ṽ
sinS 1

2
ṼTD Ge2 iDT/2, ~20a!

b52 i
A2V̄

Ṽ
sinS 1

2
ṼTDe2 iDT/2, ~20b!

whereṼ5A2V̄21D2. For effective pulse area

ṼT52pm with m51,2, . . . , ~21!

the transition amplitudes become

a5expF2 i S D

Ṽ
11D mpG , ~22a!

b50. ~22b!

Thus, the conditions of Eq.~16! are fulfilled. Hence, the
angle of rotationd reads

d5S D

Ṽ
11D mp. ~23!

Another model is the one obtained under pulsed excita
in the case of exact resonance, i.e.,D50. This is the case
studied by Openov20 for rectangular pulse shape excitatio
However, for arbitrary pulse shape the parameters of
transition matrix read

a5cosF 1

A2
E

t i

t f
V̄~ t !dtG ,

b52 i sinF 1

A2
E

t i

t f
V̄~ t !dtG . ~24!

For pulse area

E
t i

t f
V̄~ t !dt5A2pm with m50,1,2, . . . , ~25!

the phased becomes
6-3
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d5mp. ~26!

Another, rather general model, is the one obtained in
case of large detuninguDu@uV̄u/& , i.e., the case of Rama
coupling between statesu1& and u2&. Then, the upper stat
u3& can be adiabatically eliminated from the dynamics34,36

and the parameters of the transition matrix are given by

a'expF i

2DEt i

t f
V̄~ t !2dtG , ~27a!

b'0. ~27b!

Therefore, the angled reads

d52
1

2DEt i

t f
V̄~ t !2dt. ~28!

Finally, the last model that we will discuss here is t
Rosen-Zener model35,37 with hyperbolic-secant pulse shap
where we haveV̄(t)5V0 sech@(t2t0)/t#. The initial t i and
final t f times of the interaction are set to7`, respectively,
in the Schro¨dinger equation~10!. In practice this means tha
t i!t02t and t f@t01t. Then,

a5

FGS 1

2
1 i D̄ D G2

GS 1

2
1V̄01 i D̄ DGS 1

2
2V̄01 i D̄ D , ~29!

where G(•) is the Gamma function,D̄5Dt/2 and V̄0

5V0t/A2. A simple expression for the probability ampl
tude can be found when

V̄05n with n51,2, . . . . ~30!

Then, using the recurrence relationG(z11)5zG(z) we
obtain35

a5~21!n)
j 50

n21 j 1
1

2
2 i D̄

j 1
1

2
1 i D̄

, ~31a!

b50. ~31b!

Here, the phased is not given by a closed-form relation as
the previous cases. However, requiringa5exp(2id), for
specificd, we obtain an algebraic equation forD̄ which may
haven real solutions. These solutions will complete the p
rameters for the wanted superposition.

As an example of controlled response of the system
choose to study the case of coherent population transfer f
stateu1& to stateu2& or vice versa. This is an application o
the rotation scheme we described in the paper. This so
rotation can be quite useful in the area of quantum com
tation as it is the basis for theNOT quantum gate.29 We use
the full Hamiltonian of Eq.~1! and study the unitary evolu
tion of the system. This way both the rotating-wave and
15531
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FIG. 2. Time evolution of the populations in statesu1& ~solid
curve!, u2& ~long dashed curve!, u3& ~dot-dashed curve!, and u4&
~short dashed curve! using the Hamiltonian of Eq.~1!. In all figures
«150.1 eV, «251 eV, \U51023 eV. ~a! is for the Rabi model
with \D51025 eV andd55p. ~b! is for the resonant model with

Gaussian pulse shapeV̄(t)5V0 exp@2(t2t0)
2/2t2# with \V0

51024 eV andd5p. ~c! is for the off-resonant Raman model fo

rectangular pulse shape with\V̄5731027 eV, \D51025 eV,
and d52p. ~d! is for the Rosen-Zener model with\V0

51024 eV, n52, andd5p.
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resonant approximations, which are the basis of the effec
three-level model of Eq.~6! that describes our system, a
assessed. We choose typical parameters for the materia
tem, see Sec. II of Ref. 20. The results of our numeri
calculations are shown in Fig. 2. In all the cases the requ
population transfer is succeeded. We note that the
resonant Raman coupling gives quite longer response ti
for the system than the other cases, see Fig. 2~c!. This shows
that this last interaction model may not be useful in the a
of quantum computation due to the short decoherence ti
of these materials.20

IV. SUMMARY

In summary, we have considered the coherent manip
tion of the quantum state of an electron bounded in a dou
quantum dot structure. The speciality of the system studie
that each quantum dot has only two bound states. We h
shown that, by applying a coherent and appropriately
tuned electromagnetic field, the controlled manipulation
the electronic state can be realized. Mathematically,
implement a rotation in a two-dimensional Hilbert subspa
representing the state of the electron. In physical terms,
realize a coherent population transfer between the two lo
states of the two quantum dots. We have shown that a
from a global phase2d/2 a superposition state of the tw
o
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lower levels can be created in a controlled manner with
method. If the system is isolated, then the global ph
2d/2 is unimportant. If the system is part of a larger syste
such that there are several couples of quantum dots w
form a quantum computer, then the global phase is cle
relevant, however, it may be incorporated into the algorit
being implemented on the quantum computer. We have c
sidered several models for two-level systems interacting w
pulsed fields, which may serve as a basis for a physical
alization. Finally, we have performed numerical simulatio
to justify the validity of our analytic considerations. Th
simulations verified the validity of the rotating-wave an
resonant approximations that lead to the Hamiltonian of
~6! and tested the excitation schemes discussed in Sec
We have found very good agreement in all the cases
studied.
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