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Semiquantitative theory of electronic Raman scattering from medium-size quantum dots
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A consistent semiquantitative theoretical analysis of electronic Raman scattering from many-electron quan-
tum dots under resonance excitation conditions has been performed. The theory is based on random-phase-
approximation-like wave functions, with the Coulomb interactions treated exactly, and hole valence-band
mixing accounted for within the Kohn-Luttinger Hamiltonian framework. The widths of intermediate and final
states in the scattering process, although treated phenomenologically, play a significant role in the calculations,
particularly for well-above-band-gap excitation. The calculated polarized and unpolarized Raman spectra re-
veal a great complexity of features and details when the incident light energy is swept from below, through, and
above the quantum dot band gap. Incoming and outgoing resonances dramatically modify the Raman intensi-
ties of the single-particle, charge-density, and spin-density excitations. The theoretical results are presented in
detail and discussed with regard to experimental observations.
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I. INTRODUCTION

The inelastic~Raman! scattering of light by a semicon
ductor is an optical process that has proven its usefulnes
a spectroscopic tool to investigate elementary excitation
semiconductors.1–3 From the theoretical point of view, th
scattering process is described by a simple expression c
ing from second-order perturbation theory,4

Af i

;(
int

^ f ,Ni21,1f uĤe-r
1 u int,Ni21&^ int,Ni21uĤe2r

2 u i ,Ni&
hn i2~Eint2Ei !1 iG int

.

~1!

Af i is the quantum-mechanical amplitude for the transit
from the initial ~electronic! state,u i &, of energyEi , to the
final stateu f &. This transition involves a change in the sta
of the radiation field. Indeed, the final state of the electr
photon system,u f ,Ni21,1f& containsNi21 incident photons
of energyhn i ~one less than the initial state!, and one photon
of energyhn f ~the scattered photon!. The sum in Eq.~1! runs
over all intermediate~virtual! states.Ĥe-r is the electron-
radiation interaction Hamiltonian, andG int is a phenomeno-
logical damping parameter.

From the amplitudesAf i , one computes the differentia
cross section,4

ds

dV fdn f
;(

f
uAf i u2d~Ei1hn i2Ef2hn f !, ~2!

wheredV f is the element of solid angle related to the wa
vector of the scattered photon. Energy conservation is
0163-1829/2004/69~15!/155314~11!/$22.50 69 1553
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pressed by means of thed function in Eq. ~2!, which is
approximated by a Lorentzian:

d~x2xf !5
G f /p

~x2xf !
21G f

2
. ~3!

In the present paper, we focus on the Raman scatterin
zero magnetic field from a quantum dot containing dozens
electrons. Thus,u i & andu f & are states withNe electrons. The
incident laser energyhn i is taken to be resonant with a
interband transition. It means that only the resonant con
bution toAf i is considered in Eq.~1!,5 and that the interme-
diate statesu int& contain an additional electron-hole pair.

Equations~1! and ~2! look very simple, but in fact their
evaluation is a cumbersome task because reliable approx
tions to the many-particle wave functionsu i &, u int&, and u f &
need to be computed. A widely used simplified expressio
obtained by assuming a constant denominator in Eq.~1! and
using completeness relations for the intermediate and h
states. In this way, we arrive at the off-resonan
approximation,1

Af i
or;2^ f u (

a,a8
^auei (qW i2qW f )•rWua8&H 2

3
~«W i•«W f !@ êa↑

† êa8↑

1êa↓
† êa8↓#1

i

3
~«W i3«W f !• ẑ@ êa↑

† êa8↑2êa↓
† êa8↓#

1
i

3
~«W i3«W f !•~ x̂1 i ŷ !êa↑

† êa8↓

1
i

3
~«W i3«W f !•~ x̂2 i ŷ !êa↓

† êa8↑J u i &, ~4!
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whereqW and«W are the wave vector and the light polarizatio
vector, respectively,a and a8 label the Hartree-Fock~HF!

states for electrons, andê and ê† are electron annihilation
and creation operators. Notice that, in this approximation,
intermediate states play no role and the Raman amplitud
identified with the structure functions, i.e., only collectiv
excitations in final states are supposed to contribute to
Raman peaks. Four terms are distinguished in Eq.~4!. The

first one, proportional to«W i•«W f , corresponds to charge
density excitations~CDE!. The next three, proportional t

«W i3«W f , correspond to spin-density excitations~SDE!.
Most of the analysis of Raman experiments in quant

wells ~qwells!, wires ~qwires!, and dots~qdots! are based on
expressions like Eq.~4! in spite of its known limitations.
Experiments in qwells and qwires under extreme resona
~i.e., when the incident laser energy is close to the energ
the exciton! have revealed Raman peaks associated w
single-particle excitations~SPE!.6 These peaks do not aris
from Eq. ~4! and are known to be related to taking a prop
account of the intermediate~virtual! states.7 For still higher
excitation energies~i.e., 40–50 meV above the band gap! a
resonant enhancement of Raman intensities for partic
values ofhn i has been observed.8 This effect is clearly not
described by Eq.~4!. It has been ascribed to the existence
incoming and outgoing resonances in the intermediate sta
although the nature of the outgoing resonances is not c
pletely understood. The authors of Ref. 8 have suggested
presence of higher-order Raman processes to explain the
served resonances. We shall show that the usual second-
expression, Eq.~1!, with a phenomenologicalG int accounts
for these effects.

A review of relevant experimental facts of electronic R
man scattering in qdots can be found in Ref. 9. In our op
ion, the best experimental results are those reported in
10. Ashn i moves from extreme resonance to 40 meV abo
it, the observed Raman spectrum evolves from a S
dominated one to a spectrum dominated by collective e
tations. The positions of collective excitations for the do
studied in Ref. 10 have been computed in Ref. 11 by me
of expressions analogous to Eq.~4!, but the dependence o
hn i could only be obtained if one starts from
Eq. ~1!.

In the present paper, we give a consistent theory of
man scattering in medium-size qdots~dozens of electrons!
based on the exact expression given in Eq.~1!. The theory is,
however, ‘‘semiquantitative’’ because random-pha
approximation-like~RPA-like! wave functions and phenom
enologicalG int andG f are used. The main limitation of th
RPA functions in the present context is not related to
absence of correlation effects, but to an inadequate des
tion of the density of energy levels and of the matrix e
ments of the electron-radiation interaction Hamiltonian. T
main virtue of the RPA functions, on the other hand, is t
collective excitations are described quite well. In spite of
limitations, the theory is able to reproduce all of the observ
qualitative features of Raman scattering in qdots.

With respect to previous calculations, we are aware of
exact computations@i.e., numerically exact electronic wav
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functions plus Eq.~1!# for a two-electron quantum ring mad
in Ref. 12, and of the approximate calculations for the 1
electron dot in Ref. 13. In this paper, we report calculatio
for a dot with 42 electrons. Coulomb interactions are trea
exactly ~to the extent that the RPA approximation allows!
both in intermediate and final states. Valence-band mix
effects for the hole are accounted for in the framework of
Kohn-Luttinger Hamiltonian.

The plan of the paper is as follows. In the following se
tion, we derive the theory needed for calculating the reson
Raman spectra, which are later discussed in Sec. III. Con
sions are drawn in Sec. IV.

II. THEORY

The computation of the Raman amplitudeAf i requires~a!
the calculation of HF single-particle states for electrons a
holes; ~b! obtaining the finalNe-electron states,u f &, by
means of the RPA scheme;~c! obtaining the (Ne11)-
electron plus one hole states,u int&, by means of the so-called
particle-particle RPA formalism and, finally,~d! the compu-
tation of the matrix elements of the electron-radiation Ham
tonian,Ĥe-r . Additionally, we shall compute matrix elemen
of multipole operators, something equivalent to the struct
functions, and the density of final-state energy levels. Ma
of the required expressions and formulas were given exp
itly in Ref. 14 for the neutral electron-hole system. They c
be used in the present context with minor modifications.

Generally speaking, we use a HF-like scheme to desc
the ground state of theNe-electron system~in fact, the RPA
assumes that there are some ‘‘correlations’’ in the grou
state,u i &, as can be seen from the formulas below!. An ef-
fective ~conduction! mass approximation is used to descri
electrons in the qdot. Thus, theNe-electron problem with
confinement and Coulomb interactions is solved in this w
The excited states of this system,u f &, are looked for with the
help of the RPA ansatz, which has the form of a linear co
bination of ‘‘one particle plus one~conduction-band! hole’’
excitations over the ground state. To construct the interm
diate statesu int& we need the HF~valence-band! hole states.
The latter are obtained by solving the Kohn-Luttinger Ham
tonian in the presence of the external confinement and
Ne-electron background. The RPA ansatz for the interme
ate states has the form of a linear combination of ‘‘one el
tron ~above the Fermi level! plus one~valence-band! hole’’
excitations over the ground state. As a direct result of
RPA calculations, we obtain matrix elements such

^ f uês
† êlu i &, which are needed to compute the Raman am

tude.

A. HF states for electrons

We will model the qdot with a disk of thicknessL. The
disk axis coincides with thez axis. At z50 andz5L a hard
wall potential confines the electron motion. On the oth
hand, the in-plane confining potential will be assumed to
parabolic,15 with a characteristic energy\v0. The HF elec-
tron single-particle states~orbitals! are expanded in terms o
4-2
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two-dimensional~2D! oscillator wave functions16 ws , ac-
cording to the following ansatz:

fa~rW !5A2

L
sin~kz

apz/L !(
s

Cs
aws~x,y!xs~s!, ~5!

whereL is given in nanometers,kz is the subband label, an
xs are spin functions.

The expansion coefficientsCs
a and the energy eigenvalue

Ea are obtained from a set of equations similar to Eq.~6! of
Ref. 14, in which hole contributions shall be ignored:

(
t

H Es,k
z
a

(0) dst1b
e2

k

3 (
g<mF

(
u,v

F K s,kz
a ;u,kz

gU 1

Ax21y2U t,kz
a ;v,kz

gL
2K s,kz

a ;u,kz
gU 1

Ax21y2Uv,kz
g ;t,kz

aL GCu
gCv

gJ Ct
a

5EaCs
a , ~6!

whereg runs over occupied states (mF is the electron Ferm
level!, and the 2D oscillator energies, in meV, are written

Es,kz

(0) 5
375.5 kz

2

~me /m0!L2
1\v0$2ks1u l su11%. ~7!

To be definite, we will use parameters appropriate for Ga
i.e., the conduction-band effective mass for electrons
e

m

le
nc

s
te

15531
s

s,
is

me /m050.067, and the relative dielectric constant isk
512.5.

Two-dimensional~2D! Coulomb matrix elements16 will
be used instead of the truly 3D ones. Consequently, we
assume that the matrix elements will be diagonal in the s
band indexkz and will multiply the matrix element by a
strength coefficientb in order to simulate the smearing effe
of thez direction.17 The coefficient will take values from 0.6
for L525 nm, to 0.8 forL58 nm.

The HF equations are solved iteratively. Twenty oscilla
shells are used in the calculations.

B. HF states for holes

To guarantee that both electrons and holes are confine
the same spatial region, we will assume different confin
potentials, i.e., we will require

mev05mi
hhv0

hh5mi
lhv0

lh , ~8!

where mi
hh is the in-plane mass of thej 53/2, mj563/2

~heavy! hole, andmi
lh is the mass of thej 53/2, mj561/2

~light! hole. The ansatz for the HF hole orbitals is the fo
lowing:

fa
(h)~rW !5A2

L (
s,kz ,mj

Cs,kz ,mj

a(h) sinS kzpz

L Dws~x,y! xmj
.

~9!

The expansion coefficients and energy eigenvalues are t
determined from the equations:
(
t,kz8 ,mj8

H ~HKL!
t,k

z8 ,m
j8

s,kz ,mj 2b
e2

k (
g<mF

(
u,v

K ~s,kz ,mj !;~u,kz
g!U 1

Ax21y2U~ t,kz8 ,mj8!;~v,kz
g!L Cu

g(e)Cv
g(e)J Ct,k

z8 ,m
j8

a(h)

5Ea
(h)Cs,kz ,mj

a(h) . ~10!
ffi-
or-
The first term is the Kohn-Luttinger HamiltonianHKL ,
whose matrix elements are given in the Appendix. The s
ond term is the electrostatic field of the backgroundNe elec-
trons. Coulomb interactions are assumed to be diagonal inmj
indices as well. Notice that, because of the form ofHKL ,
hole states are grouped into sets with a common value
f h52mj1 l s , where l s is the angular momentum quantu
number corresponding to the hole oscillator statews .

HF energies and wave functions for electrons and ho
are used as input in the calculation of the many particle fu
tions u f & and u int&.

C. Final states

The final statesu f & are excitations of theNe-electron sys-
tem. In the RPA, they are obtained as linear combination
‘‘one particle plus one hole’’ excitations over the initial sta
u i &,18
c-

of

s
-

of

u f &5 (
l<mF ,s.mF

~Xslês
† êl2Ylsêl

†ês!u i &, ~11!

where the indexl runs over occupied HF states, ands runs
over unoccupied states. Detailed equations for the coe
cients X, Y and the energy eigenvalues can be straightf
wardly obtained from the formulas~12!–~15! of Ref. 14:

(
t,m

$Asl,tmXtm1Bsl,mtYmt%5\V fXsl ,

(
t,m

$Bls,tmXtm1Als,mtYmt%52\V fYls , ~12!

in which \V f is the excitation energy,t and m are indices
similar to s and l, respectively, and theA and B matrices
are given by
4-3
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Asl,tm5~Es
(e)2El

(e)!dstdlm1
be2

k S K s,mU 1

Ax21y2Ul,tL
2K s,mU 1

Ax21y2Ut,lL D ,

Bsl,mt5
be2

k S K s,tU 1

Ax21y2Ul,mL
2K s,tU 1

Ax21y2Um,lL D . ~13!

Notice that Xsl has a straightforward interpretation
terms of a transition amplitude,

Xsl5^ i uêl
†êsu f &, ~14!

and similarly for theYls .
We shall stress that final states are characterized by

quantum numbersD l and DSz representing the variation
with respect to the ground state, of the total angular mom
tum projection and the total spin projection, respective
Conventionally, we will callD l 50 states as monopole exc
tations, D l 561 states as dipole excitations,D l 562 as
quadrupole excitations, etc.

The calculation of strength functions defined in Eq.~4!
follows also very simply from the results of Ref. 14. On
expands the exponential

ei (qW i2qW f )•rW5ei (qzi2qz f)zei (qW i i2qW i f )•rW

5ei (qzi2qz f)z@11 i ~qW i i2qW i f !•rW 1•••#, ~15!

and makes use of the definition of multipole operators,dag
l ,

given in Ref. 14

dag
l 5^aur u l ueil uug&, lÞ0

5^aur2ug&, l 50, ~16!

whose detailed expressions can be found in Appendix B
that reference. In the later formulas,a denotes the orbita
part ~no spin function included! of the HF electronic statea.
The spin projection quantum number is explicitly indicat
in Eq. ~4!. With respect to the part depending onz, one uses
that

^kzueiqzukz8&5
4ikzkz8q@211eipqcos~kzp!cos~kz8p!#

p@~kz2kz8!22q2#@~kz1kz8!22q2#
.

~17!

The strength functions, or more precisely the multipo
operators, allow a further classification of theu f & states into
collective and single-particle excitations.14 A charge mo-
nopolar collective stateu f &, for example, gives a significantl
nonzero value for the matrix element:

D f i
0 5^ f u (

a,a8
da,a8

0
@ êa↑

† êa8↑1êa↓
† êa8↓#u i &, ~18!
15531
he

n-
.

f

whereas for a single-particle excitation, the matrix elem
practically equals zero. By ‘‘significantly nonzero value’’ w
mean thatuD f i

0 u2 is greater than 5% of the energy-weighte
sum rule for the monopole operator,14,18

(
f

\V f uD f i
0 u25

2\2

me
(

l<mF

^lur2ul&. ~19!

Similar criteria can be formulated for charge multipol
states,14 or for spin-excited states~involving or not spin re-
versal with respect to the ground state!. The latter are related
to the last three terms of Eq.~4!.

D. Intermediate states

The intermediate states withNe11 electrons and one hol
can be obtained from the so-called particle-particle Tam
Dankoff approximation~pp-TDA!, which is an uncorrelated
pp-RPA function, i.e., no particles below the Fermi level a
created,18

u int&5 (
s.mF ,t

Vstês
† ĥt

†u i &, ~20!

wheres is a HF electron state above the Fermi level, andt
a HF hole state. The equations for the expansion coefficie
V and the energy eigenvalues are explicitly written
Ref. 14,

~\V int2Es
(e)2Et

(h)!Vst

52
be2

k (
s8,t8

K s,tU 1

Ax21y2Us8,t8L Vs8t8 .

~21!

The quantity\V int gives the excitation energy, measure
with respect to the ground state of theNe-electron system,
and the coefficientsVst can be interpreted as the transitio
amplitudes:

Vst5^ i uĥtêsu int&. ~22!

The intermediate states are characterized by the quan
numbers

F5 l e1 f h , Sz , ~23!

wherel e andSz are the angular momentum and spin proje
tion of the added electron.

E. Geometry of the Raman experiment

In the present paper, we restrict ourselves to the so-ca
backscattering geometry, which is often used in experime
The incident laser beam is deflected inside the dot becaus
Snell’s law. Thus, the actual angle of incidence~with respect
to thez axis! is

f i85arcsinS sinf i

h D , ~24!
4-4



ic

e

e-
re

q.

nd

e

.

-
o

n-
q.
f

in
of

ergy

an
ks

will
ue

ion

ism
this
-
i-
w
ap.

nted
ant

den

t.
lues

me,
ot.

ot,
s

eri-

e
ex-
ed

olar
es
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whereh'3.5 is the qdot refractive index. Ifqi denotes the
wave vector in vacuum, then inside the dot we have

qi i8 5qi i5qisinf i , ~25!

qzi8 5hqicosf i8 , ~26!

and for the scattered light

qi f8 5qfsinf f , ~27!

qz f8 52hqfcosf f8 ~28!

with f i5f f .
We distinguish between the polarized geometry, in wh

«W i and«W f are parallel~along they axis in our calculations!,
and the depolarized geometry, in which«W f ~in the xz plane!
is orthogonal to«W i . A detailed definition of angles for mor
general geometries can be found in Ref. 14.

F. Matrix elements of Ĥ eÀr

Ĥe-r
2 is the part of the electron-radiation Hamiltonian r

sponsible for the annihilation of an incident photon and c
ation of ane-h pair. Its matrix elements are written as14

^ intuĤe-r
2 u i &; (

s.mF ,t
~band-orbital!st

( i )Vst* , ~29!

where Vst are the coefficients entering the pp-TDA, E
~20!. Because of valence-band mixing, the orbital~envelope!
and band wave functions of the hole get mixed. The ba
orbital factor in Eq.~29! is defined as

~band-orbital!st
( i )5(

s,kz
(

t,kz8 ,mj

Cs,kz

s(e)* Ct,k
z8 ,mj

t(h)*
~«W i•pW ss ,mj

!

3^kzueiqzizukz8&E eiqW i i•rWwse* ~rW !

3w th* ~rW !d2r. ~30!

The band factor«W i•pW ss ,mj
is computed according to Tabl

I. The factor^kzueiqzizukz8& is computed with the help of Eq
~17!. Finally, the computation of the integral~the orbital fac-
tor! is made along the lines sketched in Ref. 14.

On the other hand,Ĥe2r
1 is that part of the electron

radiation Hamiltonian responsible for the creation of a ph
ton and annihilation of ane-h pair. Its matrix elements are
given as14

TABLE I. The quotient«W i•pW s,mj
/( iP), whereP is the GaAs

band constant.

s\mj 3/2 1/2 21/2 23/2

1/2 «1 i A2/3«zi A1/3«2 i 0
21/2 0 A1/3«1 i A2/3«zi «2 i
15531
h

-

-

-

^ f uĤe2r
1 u int&; (

s.mF ,l<mF
(

t
~band-orbital!lt

( f )VstXsl* ,

~31!

whereXsl is one of the coefficients entering the RPA expa
sion, Eq.~11!. The band-orbital factor is obtained from E
~30! by replacingi by f and taking the complex conjugate o
the expression.

G. PhenomenologicalG f and G int

The main decay mechanism of electronic excited levels
a qdot at very low temperatures is the emission
longitudinal-optical~LO! phonons.19 We will ignore surface
effects in a qdot, and assume a threshold excitation en
appropriate for GaAs,\vLO'30 meV, for the emission of
LO phonons.

Only final states with excitation energies lower th
\vLO will be considered in order to exclude Raman pea
related to phonon excitations. It means that final states
have small widths, for which we will take a constant val
G f in the interval between 0.1 and 0.5 meV.

In the same way, for intermediate states with excitat
energy lower than\vLO we will take G int50.5 meV. For
higher excitation energies, the LO phonon decay mechan
becomes active and the widths suddenly increase. In
case, we will takeG int510 meV, except for a set of particu
lar states, which can be interpreted as ‘‘excitons’’ or ‘‘exc
tons1 plasmons,’’ whose meaning will become clear belo
in the discussion of Raman scattering well above band g
In this latter situation, we will takeG int52 meV.

We stress that the role ofG f andG int as functions of the
excitation energy in the Raman spectra has not been poi
out before. In our view, the qualitative change of the reson
Raman spectrum when the incident laser energyhn i is raised
30 meV or more above the band gap is related to the sud
increase ofG int .

III. CALCULATED RAMAN SPECTRA

In the following, we report results for a 42-electron do
The disk thickness and the harmonic confinement take va
L525 nm and\v0512 meV,20 respectively. The chosen
\v0 corresponds to a qdot in the strong confinement regi
and the number of electrons to a closed-shell quantum d

We show in Fig. 1 the electronic excitations of the d
i.e., the spectrum of final statesu f &. The reference energy i
the energy of the ground state,u i &. The excitation energy is
precisely what is measured as the Raman shift in the exp
ments.

To the left of they axis, states withDSz51 ~with respect
to u i &) are represented, while to the right of they axis, states
with no spin flips are shown. In the figure, we identify th
collective excitations, labeled CDE and SDE, and give
plicitly the corresponding fraction of the energy-weight
sum rule.14 In the D l 50, DSz50 case, for example, the
CDE state concentrates the strength of the charge monop
transition~from u i & to u f &), and the SDE state concentrat
the strength of the spin monopolar transition~with no spin
4-5
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FIG. 1. Spectrum of final
states in the model qdot.
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flip!. The rest of the states shown correspond to SPE’s.
tice that, in general, collective excitations are isolated fr
SPE’s.

For the intermediate states, we take a nominal band
Egap51560 meV. This gap is renormalized by Coulomb i
teractions. We define the renormalizedEgap8 as the energy of
the lowest intermediate state. Note that this convention m
not coincide with the experimental definition of the effecti
gap in terms of the position of the exciton line.

A. Raman spectra below the effective band gap

Measurements of electronic Raman spectra when the l
excitation energyhn i is belowEgap8 have not, to the best o
our knowledge, been reported for qdots. In the present
tion, however, we show that such measurements could
vide information for both collective excitations and SPE’s
qdots. Raman intensities for both kinds of excitations sh
comparable magnitudes.

Note that we use only the resonant contribution toAf i ,
Eq. ~1!, in spite of the fact that the present situation does
correspond, strictly speaking, to a resonant process.5

We have the possibility of computing the spectrum
each multipolarity of final states. Results will be presented
this way, although in an experiment all the multipolariti
can be observed in the same spectrum.

We show in Fig. 2 the polarized Raman spectrum
monopole final state excitations, computed withG f

50.5 meV. Egap8 in this situation is 1599.2 meV. The inc
dent ~and backscattered! angle is equal to 20°.hn i is swept
in a 30 meV interval belowEgap8 . Notice the monotonic
increase of intensities ashn i rises. One peak correspondin
to the CDE, and a second one related to the SPE’s are
served. In the latter case, there is a group of energy le
contributing to the peak in the figure. We may think of th
set of levels as a Coulomb-renormalized oscillator shell.
we are dealing with monopole excitations, the average p
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tion of the group should correspond to 2\v08 , i.e., the renor-
malized oscillator energy is\v08'9 meV.

The fine structure of the SPE peak is shown in Fig. 3~a!
along with the density of final-state energy levels. In th
case, the monopolar polarized Raman spectrum was ca
lated withG f50.1 meV. The depolarized spectrum is show
in Fig. 3~b! ~In fact, only the energy interval correspondin
to the SPE peak is shown. The SDE peak is outside
interval!. Histograms with a step of 0.1 meV are used
represent the level density. Although Eq.~4! refers to collec-
tive excitations, we have used its implications to correl
the polarized Raman spectrum with the level density
charge monopolar SPE’s, and the depolarized spectrum
the density of monopolar spin excitations. The Raman sp
tra reproduce quite accurately the details of the level den
in both cases. A general remark concerning Fig. 3 is that

FIG. 2. ~Color online! Polarized monopolar Raman spectru
below band gap (G f50.5 meV).
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SEMIQUANTITATIVE THEORY OF ELECTRONIC RAMAN . . . PHYSICAL REVIEW B69, 155314 ~2004!
intensity of the depolarized peaks is about three times lo
than the intensity of the polarized ones.

Depolarized spectra for spin-flipped monopolar and di
lar final states are shown in Figs. 4~a! and 4~b!. Polarized
spectra for dipolar and quadrupolar states are shown in F
4~c! and 4~d!. The shell structure10,21 is clearly seen in these
figures. Dipolar and spin-flipped final states are strongly

FIG. 3. ~Color online! Polarized and depolarized monopolar R
man spectra (G f50.1 meV) and comparison with the density
energy levels.
15531
er
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pressed in the Raman spectra. Quadrupole final states, o
contrary, show magnitudes comparable to monopolar pe

The fact that even multipoles are favored in the Ram
spectra is understood in terms of the even parity of fi
states in a two-photon process. On the other hand, s
flipped final states are reached only as a consequenc
valence-band mixing. We~virtually! create an electron and
hole, whose dominant component ismj , and annihilate the
same hole and an electron with opposite spin. The amplit
of the latter process is proportional to the minority comp
nent of the hole wave function,xm

j8
. It means that the am

plitude squareduAf i u2 will be proportional touxm
j8
u2.

These calculations show that experimental measurem
of the electronic Raman spectra with below-band-gap e
tation can provide valuable information on the collecti
states and SPE’s of qdots. Furthermore, below-band-gap
citation can overcome the problem of overlap with the
tense photoluminescence observed under resonant excita
The peak maxima exhibit a continuous but not very mark
increase in intensity with excitation approaching the ba
gap ~see Fig. 2!, indicating that excitation around 30 me
below the gap is sufficient. The other notable feature of th
calculations, apart from the marked differences predicted
Raman intensities of the polarized and depolarized multi
lar components, is the fine structure of the SPE Raman p
~see Fig. 3!. It would be interesting to probe all these aspe
experimentally.

B. The extreme resonance region

In the present section, we consider Raman scatte
whenhn i moves in a 30-meV window aboveEgap8 . We will
call this interval the ‘‘extreme resonance’’ window.

Figure 5 shows a polarized Raman spectrum correspo
ing to charge monopolar final states. As in Fig. 2, we us
G f50.5 meV. Two characteristics of Fig. 5 make it ve
different from Fig. 2:~i! Peak intensities are not monotono
ls
is
FIG. 4. Raman spectra in different channe
(G f50.1 meV). The incident laser energy
1594.2 meV.
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with respect to variations ofhn i , and~ii ! the position of the
maximum in the SPE peak moves slightly withhn i . Both
properties are related to resonances in the intermediate s

Resonances in the intermediate states can be better
alized if we follow the Raman intensities of the peaks sho
in Fig. 3. For this purpose, we computed monopolar Ram
spectra withG f50.1 meV and varyinghn i with a 0.5 meV
step. The results are drawn in Fig. 6. The monotonous
crease of peaks in thehn i,Egap8 region is apparent in the
figure. On the other hand, forhn i.Egap8 the intensity varia-
tion with laser excitation energy is much more complicat
The intensities of the individual SPE components rise a
fall markedly with laser energy, as has been observed exp
mentally. This variation is attributed to individual resonanc
occurring within intermediate states lying close to the ba
gap as the incident light energy sweeps through them.
effect is particularly noticeable forhn i'1616 and 1626
meV. In the associated intermediate states, the addede-h pair
has zero total angular momentum projection, and the ho
basically a heavy hole. Notice that the same intermed
states are responsible for the strong enhancement of Ra
intensities in both the polarized and depolarized geometr

A spin monopolar SPE Raman peak is followed as a fu
tion of hn i in Fig. 7~b!. For comparison, we have also give
the productsu^ f uĤe2r

1 u int&^ intuĤe2r
2 u i &u2 for each intermedi-

ate state, and the absorption strengthsu^ intuĤe2r
2 u i &u2 ~the

upper panel!. The optical absorption coefficient is define
according to

a~E!5(
int

u^ intuĤe2r
2 u i &u2

G int /p

~E2Eint!
21G int

2
. ~32!

Figure 7 shows that, in the present situation, peaks in
optical absorption coincide with peaks in the Raman inten
ties, which leads to the conclusion that the latter are rela
to incoming ~absorption! resonances. Note that from Fig
7~b! it follows that interference effects among intermedia

FIG. 5. ~Color online! Monopolar polarized Raman spect
(G f50.5 meV) in the extreme resonance region:Egap8 ,hn i

,Egap8 130 meV.
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states are weak in the Raman scattering under extr
resonance.22 Raman spectra in the extreme resonance reg
look similar to the spectra shown in Fig. 4, but with SP
peaks much higher than collective ones and selectively
hanced for particular values ofhn i . A comparison with the
density of energy levels would lead to results very similar
those of Fig. 3.

C. Raman spectra 40 meV above band gap

As mentioned in Sec. II G, we assume thatG int experi-
ences a sudden increase whenEint.Egap8 1\vLO . As a re-
sult, the contribution of these states toAf i , Eq. ~1!, loses its
resonant character even whenhn i sweeps this energy range
It means that peak intensities become smooth functions
hn i , as for below-band-gap excitation. Both collective a
SPE Raman peaks decrease in intensity forhn i.Egap8
1\vLO ~as compared with values at extreme resonance!, but
the SPE peaks are more strongly depressed.22 Figure 8 shows
a typical spectrum athn i51642 meV.

Nevertheless, a modest increase of the peak intensity
hn i well above the band gap may result not only from lar
values ofu^ f uĤe2r

1 u int&^ intuĤe2r
2 u i &u2 but also from relatively

small level broadening~as compared with the neighborin
levels!. There could be a set of intermediate states in wh
G int takes relatively small values. One can think, for e
ample, of the lowest state in a subband, let us say thekz
52 electron subband. Intersubband transitions due to p
non emission are not as fast as intrasubband transition19

FIG. 6. ~Color online! The dependence onhn i of the intensity of
SPE peaks identified in Fig. 3.
4-8
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SEMIQUANTITATIVE THEORY OF ELECTRONIC RAMAN . . . PHYSICAL REVIEW B69, 155314 ~2004!
Consequently, theG int of the lowest state in the subband
relatively small. We will call these states ‘‘excitonic’’ state
X. If the product̂ f uĤe-r

1 uX&^XuĤe-r
2 u i & is not small, a peak in

the Raman intensity will appear. In the interpretation of R
8, this is an ‘‘incoming’’ resonance.

On the other hand, ‘‘outgoing’’ resonances correspond
emitted photons with energyEX , as shown in Fig. 9. The

FIG. 7. ~Color online! ~a! Absorption in the model qdot.~b!
Intensity of the spin monopolar Raman peak withDEf

518.6 meV as a function ofhn i .

FIG. 8. Raman spectrum in the polarized geometry (G f

50.1 meV) for well above band gap excitation.
15531
.

o

intermediate states are located at excitation energiesEX
1Ef . One can think of these states as an exciton on top
collective excitation or, conversely, a collective electron
excitation on top of an exciton.23 The X in this case may
correspond to an absorption peak in the extreme reson
region or well above band gap.

The resonant enhancement of these ‘‘exciton plus p
mon’’ states can be due, again, to big numerators or sm
denominators in Eq.~1!. Relatively smallG int could be re-
lated to the collective nature of these states or to the rela
isolation from neighboring levels.

To illustrate the effect of resonant enhancement of Ram
peaks, we show in Fig. 10 the intensity of the CDE peak
a function ofhn i . The entire range of variation is shown fo
completeness, i.e., below-band-gap excitation, extreme r
nance, and well-above-band-gap excitation. In the extre
resonance case, the enhancement is related to absor
maxima as mentioned above. On the other hand, forhn i well
above band gap, we pick up an intermediate state with

FIG. 9. Schematic representation of incoming and outgoing
man resonances.

FIG. 10. ~Color online! Intensity of the CDE monopolar Rama
peak as a function ofhn i . An outgoing resonance at 1642 meV
modeled.
4-9
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ergy EX1ECDE , where the exciton levelX corresponds to
the absorption maximum at 1620 meV@see Fig. 7~a!#, and
ECDE'22 meV is the energy of the charge monopolar c
lective state. For this state, we choseG int52 meV. The ef-
fect is an enhancement of the intensity around 1642 meV
shown in the figure, that according to Ref. 8 is an outgo
resonance.

This calculation reveals that the dependence ofG int on
Eint may dictate the qualitative features of Raman scatte
with well-above-band-gap excitation. A consistent treatm
in which theG int are computed for eachu int& is left for future
study.

IV. CONCLUSIONS

This theoretical investigation of the role of resonance
citation in electronic Raman scattering from qdots has
vealed many hitherto unsuspected features and details
general terms, the Raman intensities of the SPE’s, CD
and SDE’s are strongly affected when the incident light
ergy is swept from below, through, and above the quan
dot band gap. Incoming resonances produce a rapid varia
in intensity for excitation energies just above the band g
and outgoing resonances are predicted for higher excita
energies, as observed experimentally. In fact, observatio
the Raman intensity of just one SPE, for example, as a fu
tion of the incident light energy, can provide precise deta
of the optical absorption spectrum and density of states.
role of damping in the intermediate states has been show
be a significant factor in determining these resonances
deserves further theoretical analysis.

Another aspect of this work is the unraveling of the co
plexity of features in polarized Raman spectroscopy of qd
This spectral complexity in dots with large numbers of ele
trons has been evident from the first experiments. These
culations have shown what excitations dominate in wh
polarizations and point the way to a better control of wha
measured in future experiments.

Experimentally, the predicted selective resonances h
advantages and disadvantages. By employing resonanc
citation, a particular final state can be enhanced over its c
panions and thus make it easier to identify. On the ot
hand, the rapid variation in intensity of the individual an
numerous SPE’s makes it difficult to uniquely identify the
In this regard, the fine structure evident for SPE’s from th
calculations should be explored by performing hig
resolution Raman spectroscopy in future. The best situa
for evaluating the SPE’s would be for an excitation ene
about 30 meV below the band gap, where some overall re
nance enhancement occurs but the contribution from ba
gap photoluminescence would be weak. No such exp
ments have been performed to date.
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APPENDIX: MATRIX ELEMENTS OF THE KOHN-
LUTTINGER HAMILTONIAN

In the present appendix, we give the matrix elements
the Kohn-Luttinger Hamiltonian entering Eq.~10!. Results
are presented for the more general case when a mag
field B is applied in thez direction. We use the following se
of parameters:24

g156.790, g251.924, g352.681,

ḡ5~g21g3!/2, k51.2, q50.04.

The Kohn-Luttinger Hamiltonian has the following stru
ture in themj variable:

HKL5S H3/2 S R 0

S† H1/2 0 R

R† 0 H21/2 2S

0 R† 2S† H23/2

D ~A1!

The H terms are diagonal in oscillator andkz indices. They
are given by

H63/25\Ve

me~g11g2!

m0
~2k1u l hu11!

1
\2

2m0
~g122g2!

kz
2p2

L2
2

\vce

2

me~g11g2!

m0
l h

6mBS 3k1
27q

4 DB, ~A2!

H61/25\Ve

me~g12g2!

m0
~2k1u l hu11!

1
\2

2m0
~g112g2!

kz
2p2

L2
2

\vce

2

me~g12g2!

m0
l h

6mBS k1
q

4DB, ~A3!

wherem0 is the electron mass in vacuum,mB is the atomic
Bohr magneton,vce is the electron cyclotron frequency
Ve5Av0

21vce
2 /4, andk, l h are the radial and angular mo

mentum quantum numbers corresponding to the 2D osc
tor state.

The matrix elements of theS andR operators are written
in the following form:
4-10
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^k,l h ,kzuSuk8,l h8 ,kz8&5
m0

A
\

L~kz
22k

z

82
!

d l h ,l
h811dkz1k

z8 ,odd

3H Ak811@12vce~2Ve!#dk,k8111Ak81u l h8u@11vce /~2Ve!#dk,k8 , l h8<21

Ak8@11vce /~2Ve!#dk,k8211Ak81 l h811@12vce /~2Ve!#dk,k8 ; l h8>0,
~A4!

^k,l h ,kzuRuk8,l h8 ,kz8&

5
A3ḡme

2m0
\Ved l h ,l

h812dkz ,k
z8H A~k81u l h8u21!~k81u l h8u!@11vce /~2Ve!#

2dk,k8

2A~k811!~k81u l h8u!$12@vce /~2Ve!#
2%dk,k811 , l h8<22

A~k812!~k811!@12vce /~2Ve!#
2dk,k812

3H 2Ak8~k811!@11vce /~2Ve!#
2dk,k821

22k8$12@vce /~2Ve!#
2%dk,k8 , l h8521

2A~k812!~k811!@12vce /~2Ve!#
2dk,k811

3H A~k821!k8@11vce /~2Ve!#
2dk,k822

2Ak8~k81u l h8u11!$12@vce /~2Ve!#
2%dk,k821 ; l h8>0

A~k81 l h812!~k81 l h811!@12vce /~2Ve!#
2dk,k8 .

~A5!
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