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We address the subtle problem of formulating mesoscopic transport phenomena in the language of many-
body physics. We propose a microscopic description in which the whole systemple, leads, and detectprs
is given fully-quantum-mechanical treatments. The dynamics of the system is obtained from the projection, or
memory-function, formalism of nonequilibrium statistical mechanics combined with recent prescriptions for
measurements that are extended in the time domain. The associated irreversible quantum dynamics contains an
intrinsic doubling of the degrees of freedom identical to the real-time path-integral representation of the
Keldysh formalism. We derive a simple formula relating the generating function of the charge-counting sta-
tistics to the single-particle matrix Green’s function of the interacting system, thereby generalizing the Levitov-
Lesovik functional determinant formula. We report an interesting sample-leads duality in our description,
which has a simple interpretation in the regime of noninteracting particles, thus establishing the equivalence
between the Green’s-function technique and the random scattering-matrix approach. We discuss the physical
conditions, within the present scheme, for the validity of the Landaué&ik®u description of mesoscopic
transport. We conclude by providing an exact solution for the problem of charge transfer into a noninteracting
ballistic cavity in the presence of a periodic time-dependent voltage, using the supersymmetry method.
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[. INTRODUCTION description is contracted by projecting the dynamics of the
initially well-controlled density matrix onto a subspace of

The physics of bulk many-body systems has reached atates perturbed only on scales much larger than atomic dis-
staggering level of maturity both at the phenomenologicatances. These semiclassical concepts cannot, however, ac-
level of response functions and relaxation processes and thg@unt for the coherent processes inside the sample that lies at
of rigorous microscopic calculations of correlation functionsthe heart of mesoscopic phenomena. .
using quantum-field-theoretical methods. Achievements in- 1he correct procedure came with the rediscovery of Lan-
clude an essentially complete understanding of equilibriunfl2Uer's pioneering insight on the conduction p_rob?e°m,
and nonequilibrium phenomena in systems as varied as noY‘-’h'C_h consisted of inverting the traditional viewpoint of re-
mal quantum fluids, magnetic materials, liquid crystals, Sugardmg the transport field as a cause and the current flow as

perfluids, and superconductors, both at stable phases and ?Tgﬁsgggst?'ar'; L;?‘i?eﬂggsaapg:rag; 2‘3':;;?]”1%3”'[ r'ggog:ge
the vicinity of critical points. To be sure, much of our current 9 P PP y y P

understanding of irreversible transport processes in thes Coulomb screeningto carrier injection in the contacts im-
9 iy port. pre . ying that transport coefficients could be calculated by con-
systems stems from unifying concepts derived from linear

h d time-d d lation f ~“ sidering a sequence of highly localized voltage drops across
response theory and time-dependent correlation function purity barriers. For a one-dimensional disordered conduc-

such_ as Onsager’s_ reciprocity relations, dynamic _Stab'“ty[or, this prescription leads, at zero temperature, to a direct
conditions, fluctuation-dissipation theorems, causality relagonnection between the conductar@eand the transmission
tions, Kubp formulz_as, sum rul_es, Goldstone modes, and hyggefficient T of the sample,G=G,T/(1—T), where G,
drodynamic collective fluctuations. =2¢e?/h is the conductance quantum. The singlemost appeal-
In the 1980s, however, technological breakthroughs inng feature of this approach is the ease with which quantum-
nanolithographic processes made available electron devicegechanical coherence effects can be accounted for. If one
in which novel nonequilibrium conditions became experi-assumes that the phase-breaking length is larger than the
mentally accessiblelt was soon realized that for these so- sample itself, one may neglect many-body effects and calcu-
called mesoscopic systems new theoretical tools were needéate the conductance from the transmission coefficient of the
to account for challenging experimental data in new transeorresponding single-particle scattering problem. Such pro-
port regimes. An important step forward in this direction wascedure turned out to be highly successful.
the early recognition of the inadequacy of the conventional After this initial breakthrough, it was soon realized that
Boltzmann picture in which one neglects the microscopicthe usefulness of the Landauer scattering approach in de-
details of the impurity potential by replacing it by an averagescribing mesoscopic phenomena hinged upon the possibility
smooth function with a constant gradient along the samplepf generalizing it to conductors of finite cross sections, i.e.,
i.e., a homogeneous transport field that accelerates the cartidth a finite number of open transport channels. This enter-
ers throughout the whole device. Such an approach is erprize, however, turned out to be much harder and controver-
tirely justified for bulk systems, in which the many-body sial than expectedi The correct answer was finally put for-
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ward by Biitiker,* who explained in the process the puzzling general expectation is that eventually irreducible many-body
manifestation of Onsager-Casimir reciprocity relations in re-effects will become dominant and the use of sophisticated
sistance coefficient measurementsit®er’'s solution dem- nonperturbative  tools, such as field-theoretical
onstrated the crucial role played by the measurement processnormalization-group procedures, shall be imperative. For
in the description of mesoscopic dynamics. By assuming théhat, one would need a more general theory in which the
measurement time, i.e. the average time it would take for thelynamical aspects of the many-body problem appear in its
signal in the detector to be distinguished from the back-natural form. In this way, one would, in principle, be able to
ground noise, to be equal to the dephasing tiimemodern  establish the precise physical conditions, in terms of ratios of
language this is equivalent to assuming an ideal detgctorrelevant time scales, for the validity of the local equilibrium
Buttiker established a direct link between the measurementonditions underlying the Landauer-fiker approach.
process and Landauer’s scattering formalism. Furthermore, Interesting efforts in this direction can already be seen in
the spatial separation of phase-breaking events allowed fothe recent literature, where extensions of the Landauer-
as pointed out earlier by Landauer, a specification of boundButtiker formalism were introduced by admitting arbitrary
ary conditions in terms of certain fictitious reservoirs, whichinteractions in the mesoscopic region, but maintaining the
were supposed to incorporate all the complexities of the unleads as noninteracting and by using reservoir boundary con-
derlying many-body problem. In particular, the existence ofditions with different electrochemical potentials. Within the
well-defined electrochemical potentials in these reservoirsKubo formalism, for instance, Ogdfi developed a finite-
which after all are integral parts of a connected many-bodyemperature linear-response approach and expressed the
system, could, at least, in principle, be justified by appealingransmission probability in terms of a three-point correlation
to hidden irreversible phase-breaking scattering processefynction. Using the more general Keldysh formalism, Meir
similar to the way local equilibrium conditions appear in theand Wingreef? managed to go beyond the linear-response
hydrodynamic regime of quantum fluids. The remarkableregime and expressed the finite-temperature differential con-
simplicity of such formalism, which absorbs many-body ef- ductance in terms of nonequilibrium Green'’s functions. Their
fects as boundary conditions and allows transport obsenapproach was later extended to address time-dependent phe-
ables such as conductance and noise power spectrum to hemena as welfl® Much effort has also been devoted to de-
directly related to the scattering characteristics of a noninterveloping efficient calculation schemes, such as numerical
acting system, is only matched by its surprising experimentaprocedures and renormalization-group techniques. In Ref.
accuracy. In the trail of this success a massive amount af7, the authors expressed the zero-temperature linear-
work both theoretical and experimental followed, exploiting response conductance in terms of the persistent current of an
essentially all aspects of the single-particle description an@duxiliary noninteracting system. This method turned out to
bringing the area of mesoscopic transport to the level of e well suited for numerical studies. In Ref. 18, a numerical
mature research field. recipe was put forward for an approximate evaluation of the
Notwithstanding the fully experimental corroboration of Meir-Wingreen conductance formula. In Ref. 19 a powerful
the quantitative predictions of the Landaueitfiker scatter- framework was presented to study transport of interacting
ing approach and its close relatives, such as the impuritglectrons through nearly closed ballistic chaotic quantum
average single-particle Green’s-function technique with reseots. By separating the regimes in which interactions can be
ervoir boundary conditionsijts true microscopic foundation described by Landau Fermi-liquid parameters, these authors
in terms of a controlled sequence of conserving approximawere able to recover the universal Hamiltonian descripfion
tions starting from a full-fledged many-body description isin a weak-coupling phase and predicted a surprising strong-
largely unknown. This fundamental problem might be con-coupling phase with a spontaneous Fermi-surface distortion.
sidered, from a practical point of view, somewhat academicFor open systems, time scales related to electron decay
was it not for the fact that recent experimental observationsvidths enter the picture leading to much complex transport
may well be stretching the current theory beyond its breakingegimes. An important progress in this problem has recently
point. These include nonlinear-response measurements subken reported by Kindermann and Nazatbwho developed
as charge pumping into quantum dogmd the integer quan- a renormalization-group approach to address the weak inter-
tum Hall effect at large currents, time-dependent effects iracting regime. They showed the existence of two universality
photon-assisted tunneling through siffghad doublé quan-  classes for the power-law behavior in the low-voltage and
tum dots, interaction driven phenomena such as the mesobw-temperature differential conductance. A third universal-
copic Coulomb drag effeétphase relaxation in open ballis- ity class, related to a quantum transition at intermediate cou-
tic cavities? Fermi-edge singularities in impurity assisted pling and driven by resonance trapping, has recently been
tunneling through tunnel junctiort§ transport properties in  reported??
hybrid normal-superconductor systefhgunneling magne- In this work, we address the problem in its full generality
toresistance in quantum dots coupled to ferromagnetiand propose a formulation of mesoscopic transport in the
leads!? and electron transmission through atomic-sizedanguage of many-body physics. In Sec. Il, we describe the
conductors? to mention just a few. Although much effort physical system together with its measurement setup. Using
has been made to account for these effects by generating thiee language of modern quantum measurement tHéarg,
appropriate extensions to the theory via suitable, phenonrelate the internal dynamics of the system to the reduced
enology guided, generalizations of the boundary conditionslensity matrix of the detector. The resulting doubling of de-
and scattering characteristics with reasonable success, tigeees of freedom is conveniently accommodated in the
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Keldysh time-contour formalisrf. In Sec. I, we apply the conditions for minimal detector-induced dephasing, has re-
memory-function techniqi#éto deduce the relevant Dyson’s ceived much attention of the recent literature, particularly in
equation for the coupled leads-sample-detector system. Aonnection with quantum state engineefihgnd with the
generalization of Levitov-Lesovik determinant formtfldor quest to construct quantum-limited devic8s.

the generating function of charge-counting statistics is de- |n the context of mesoscopic physics, tBker was the
rived in Sec. IV. This formula includes interaction effects andfirst to rea"ze the importance Of the measurement process in
uncovers a striking duality in the problem that allows thegescribing transport observables. He pointed” dbat the
development of two equivalent approaches: one that elimi yngauer conductance formula encompasses a scattering-
nates the degrees of freedom in the leddside problem a4y description of the system-detector interaction and that
and another that eliminates the degrees of freedom in thgo yery notion of particle reservoirs in the presence of trans-

sample(outside problem In Sec. V, we adopt the approach port currents can only make physical sense in such a context.

of eliminating the degrees of freedom in the leads and pmj\/\ore recently, Levitov and Lesov## building on the simi-

pose an approximation, for its influence on the dynamics of_ . .
the remaining degrees of freedom, that exploits a wide sep arlty between the theory of phqtodetectlon n quar!tum op-
ration of certain relevant time scales. The Landauétier ~ 1C and current measurement in mesoscopic devices, pro-

regime is obtained as a particular limit. We analyze, in Secposed the concept of full cm_mting _statist_ics _Of particle
VI, an exactly solvable model of a noninteracting ballistic transfer through the system during a given time intefigl
chaotic cavity and compute the average transmitted charg®/Sing a current detection scheme based on the dynamics of a
during a finite observation time, in the presence of a periodiéPin-1/2 galvanometer electromagnetically coupled at the

time-dependent voltage. A discussion and a summary argystem’s interface, they derived a microscopic representation
presented in Sec. VII. of the counting statistics generating function, defined as

Il. THE MODEL SYSTEM AND THE MEASUREMENT .
PROCEDURE Xx(To):; e pn(To), (1)

One of the fundamental problems of a quantum descrip-

tion of a given physical system is to establish the precise ) - ]
connection between the dynamics of the information acquivherepn(To) is the probability that a discrete numbemof
sition process of its observable features and the quantu@rticles traverse the interface during the observation time
dynamics of the coupling to the associated measuremerto- Adopting the Landauer-Btiker scattering formalism,
probes. In general, both the quantum system and the probélgey were able' to derive a very useful determmant formula
are complex many-body systems and the resulting irreverdo" x»(To), which could be generalized to time-dependent
ible dynamics of the measurement process must, in principldroblems and was successfully applied to ac tran¥partd
be dealt with using techniques from nonequilibrium statisti-quantum Pum_pgz-
cal mechanics. Although a universal scheme for solving such In this section we shall formulate the above current detec-
a problem is not yet available, significant progress have beeffon scheme as a nonequilibrium mesoscopic many-body
made recently by considering certain simple processes, sudifoblem. Our model system is a many-body generalization of
as indirect quantum measuremefitsn this case, the mea- that of Ref. 33 and consists of a phase-coherent sample con-
surement is described as a two-step process consistifiy of Nected viaMl macroscopic conducting leads to the terminals
an interaction with a previously prepared quantum probeOf M/2 generators supplying time-dependent electromotive
described by a unitary evolution that produces correlationéorces. The system has thus the topology of a multiply con-
between quantum states of both the system and the probe aRgcted network in which, as shown in Ref. 34, Maxwell's
(i) a direct measurement of a chosen observable in the protluations, though locally conservative, admit globally dissi-
leading to an entropy production associated with informatiorPative solutions. As pointed out in Ref. 23, the importance of
extraction and thus causing, via back-action effects, an irrethe latter result resides in the fact that it provides the physical
versible change in the system’s initial quantum state. grounds for using quantum kinetic methods with locally con-
The great advantage of the indirect quantum measuremefgrvative Hamiltoniangsuch as the Keldysh technique
formalism in comparison with the traditional ensemble ap-describe the globally dissipative dynamics in the system.
proach is the possibility to address processes that are ex- Following the standard prescription for applying the
tended in the time domain and therefore one can accedseldysh formalisn?’® we assume that at times prior tigthe
subtle time-dependent correlations in the system. Followingnacroscopic leads and the sample are uncoupled and the
the time evolution of the system plus detector one realize§ystem is taken to be in contact with a thermal bath at tem-
the existence of three distinct time scatéghe dephasing PeratureT and with auniqueparticle reservoir of chemical
time , over which the system loses phase coherence; theotential.. The Hamiltonian of tg‘e uncoupled system reads
measurement time,, ., after which information about the Heys=Hi+Hs, ~where H =Hj 4t Hicaes and Hg
system’s state is extracted, and finally there is the detector's Hgamm;r H'S”;mp,eare the Hamiltonians for the electrons in
back-action on the system destroying the information abouthe leads and sample, respectively. More specifically, intro-
the initial state on a mixing time scalg,;,. The question of ducing the field operatorg,(r) and 4(r) for electrons in
the efficiency of a quantum measurement, i.e., finding théead o and in the sample, respectively, we may write
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e 2
P+ EAa(r,t))

Hisads= Ef dreol( r)[

+ua<r>}oa<r> @

and

M
H:;‘;ds > fﬂ drdr’u,(r,r ) eh(Neh(r ) eu(r' ) eu(r)
’ 3)

for the leads, and

sample f dr’/’s(r)[ Vs(r)}‘/’s(r) (4)

and

H i mple f drdr’vg(r,r" )N wlr ) ws(r) we(r)
(5)

for the mesoscopic sample. The total configuration space is U(t,tg)=

given by Q=0,UQ,,
9NN N =

where Q,=uUM 0, and

jection, so thatQ=Q(T)UQ(]). The vector potential
A,(r,t) describes the effect, in lead, of switching on the
emf, while the scalar functiond ,(r) and V¢(r) represent

internal potential profiles in lead and in the sample, respec-
tively. We remark that the quantum dynamics of this un-

0. The electron spin can be accounted for by
introducing two identical copies d2 one for each spin pro-
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0 0 0
Ptot™ Psys® Pg 8

wherepgys is diagonal in charge representati§rFor t>t,
we may describe the first step of the indirect measurement
prescription by using von Neumann’s equation

Prot() =U(t,to) pioU (to, 1), ©)
in which the evolution operatdd (t,ty) satisfies

17
hﬁu(t!to):HtOIU(t!tO)' (10)
In the second step, a direct measurement is performed on the
detector to extract information about the system. Accord-
ingly, we may thus project the total density matrix onto the
subspace of the detector’s degrees of freedom by performing
the partial trace

pa(t)=Tre,dU(1,t0) popU(to,1)).

Expressing the evolution operator in the interaction picture
with respect toH,s, we get

11)

uot, tO)Texp[—%f dt/H2(t’ )}Uo(to t)
(12)
and

U(to,t):Uo(to,t);ex%%ftdt,Hgd(t')}Uo(t,to),
to
(13

coupled system can, in principle, be described by convenwhere T (T) is the (antitime-ordering operator. Using the

tional many-body techniques.

above expressions in E¢Ll) we get

Let us now turn to the measurement problem associated to

the emergence of current-carrying states in the coupled leads

plus sample system. Following Levitov and Lesoffkye

(olpa(®]a"y=(alpdlo" X7 (1), (14)

consider a spin-1/2 galvanometer, represented by the followvherex)! (t) = 1= x{(t) andx,*(t) = x"\(t) with

ing fictitious vector potential in the sample region:

M

P
ALTD= 50,2 N(OV (1), (®)

a=

in which ®y=hc/e is the flux quantumg, is a Pauli spin

matrix, and the equatiof,(r) =0 specifies the leads-sample

interfaceC,=dQ N dQ,. The counting field\ ,(t) has a
constant value\ , in the measurement time intervaQ
<Tg and goes smoothly to zero fog<t<0 andt>T,. We

=<Tyexp(‘%Jydt’H2d<t’))> ., (19
sys

where y=[ty—t—tg] is the Keldysh time contour, and
(- Yeys=Tr(pdydt) .., (16)

in which

17

P(s)ys(t) = UO(tO vt)ngsUO(t!tO)-

assume that at timigy both the system-detector and the Ieads—

dependent Hamiltonian is given by
Hiot= Hsys+ Hsqt+Hg, (7)

where Hsys_Hsy5+H|s H,+Hs+Hs is the Hamiltonian

of the coupled leads plus sample system Big represents

when going from the lower to the upper part of the Keldysh
contour.

Equation(15) is, as expected, in agreement with the result
of Ref. 37. Note that the doubling of degrees of freedom,
characteristic of the Keldysh approach, is generated directly
from the dynamics and, as pointed out by Ramifi¢hjs is a

the system-detector interaction. We neglect, in the followinggeneric feature of the density-matrix description to quantum

the internal dynamics of the spin system by settihg=0.

dynamics. Interestingly, the authors of Ref. 39, analyzing the

The total density matrix at=t, is prepared so that it reads microscopic foundations of this formula, concluded that it is

155309-4



TRANSPORT THEORY OF INTERACTING MESOSCORPIC. .. PHYSICAL REVIEWED, 155309 (2004

independent of the specific charge detection scheme, pro- Z(0) i

vided one neglects the internal dynamics of the detector. p(J,J%)= p(O)Tyexp{ - —f dt’5Ht,(t’)).
We remark that the measurement problem in mesoscopic Z(3,J%) i)y

physics has become an area of its own, with several interest- (20)

ing recent developments such as optimal quantum detectofiye canonical partition functiodi(J,J*) is determined from
and controlled entanglement effects, topics of great intereshe identity Tp(J,J*)=1.

in quantum-information theor§; Following up the conventional implementation of the pro-
jection formalism the next step would be to project out the

1. THE MEMORY-EUNCTION EORMALISM evolution equation of the vector field of average valugs,
=(x1, - - -.xm.{s), and thus derive the associated memory

The measurement prescription described in Sec. Il spectunction. Here, we shall instead take an alternative route that
fies rigorously the observational level. The information ex-has the advantage of allowing a direct link with Keldysh
tracted in the detection process must be obtained from th&reen’s-function technique. We start by defining the con-
full many-body dynamics of the coupled system via a suit-nected contour-ordered Green’s funcfibn
ably defined projection. The memory-function formalféiis
a systematic way of implementing such a program. This - 8%nZ(3,3%) ‘
technique, also known as the projection method, was devel-  Goo (1,tr' 1) =i ———
oped in the 1960s by Nakajima, Zwanzig, Mori, and 0o (rt )5‘]”“'0‘
Robertsoft and is one of the cornerstones of non-

, (21
3,3%=0

whereo,0’'=1,2,... M+ 1. Since the mathematical struc-
summarized as followsi) it allows for a detailed analysis of Ture of the projection formalism is quite similar to that of
Y equilibrium statistical mechanics, we may define different

thent:lrned scralesdlr; t?e E)(r?biltemiu) illgl prowd(resti an Wey-tim “thermodynamic potentials” via generalized Legendre trans-
controfied procedure 1o exploit possibie separations o Sormations. Introducing the compact notations (r,t/%),

scales; and(iii) it permits systematic inclusion of finite we consider the followina potential:
memory effects in the dynamics. This method has been given ap '
a powerful geometric interpretation in Ref. 42 which allows

for many useful generalizations. In the present problem, it FK,K*)=—=In Z(J,J*)+if dX[K(x)-J(x)

will prove convenient to introduce a geometrical extension

of the formalism by using noncommutative Grassmann coor- +K*(x)-J*(x)]. (22)
dinates.

In the projection technique the dynamics of the system isThe Legendre transformation is completed by using the
projected onto a level of description, defined by a smallfelations — J(x)=—i6F(K,K*)/6K(x) —and  J*(x)
selected set of relevant operators. We choose the following — i 0F(K,K*)/6K*(x). Taking 7(K,K*) as a generating

set: functionrfgl we may define the contour-ordered vertex
functio
B={e1(r),e1(1), . .. @m(r), opm(r), (1), ()}, FFRKKY) |
(18 L, (rtr t)y=—i

Ko (1 1) KAy
The expectation values of the relevant operators are funda- (23
mental constraints on the projected dynamics and thus, i - , . .
order to get a well-posed problem with nonvanishing averagge?;?ig':mg Eq.(21) with Eq. (23) we obtain the important
values, we must introduce the following fictitious time-
dependent perturbation in the syst&:
> j dyG,,(XIY)T o (YIX')=8,,0(x—X").  (24)
M 14
SH= >, dr[ 7,(r,0) @ (1) + 75(r,H)eh(n] We remark that a similar equation applies for the Green’s

a=1 0, function g, (x|x’) and the vertex functiory,,(x|x’) of

the uncoupled leads-sample system at times pridp.t&Ve

+ JQ dr[ &(rt)e(r)+ f;‘(r,t)zﬂl(r)], (19 proceed by introducing the contour-ordered memory function

EO’O”(X|X,)E’YO'(T’(X|X,)_FU'O"(X|X/)! (25)
in which Grassmann fields have been introduced as Lagrange | ) o L , )
multipliers. The average values of the electron fields ardVhich, in turn, implies the validity of Dyson’s equation

given by x,(r,t)=(ea(r)sor Xa(r)=(el(r,))s s, oo S* GOt G 3

L1 D)= (1,0} 30, ANAZZ (1) = (11,33, n which CrorgrTergreTie 20

we defined the following vector field= (7, ... ,7u,&s)- expressed here in a self-evident compact notation. The
The expectation valué- - -); 5« is calculated with the fol- memory function is a central concept in the projection tech-
lowing canonical density matri% nique, since it contains detailed information about the relax-
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ation processes and can thus be used to exploit separations in ~ :52 G.=G>S. g(—x) (33)

time scales and to describe retardation effects. sTEIZIsEs T HISIsIs
We are now in position to make contact with the Keldysh e SR

Green's-function formalism. As can be shown, by using Len- Gsi=0s "25iG=Gs2g01, (34)

greth theorent? adopting the Keldysh contour in the above 4nq

derivations leads to matrix equations in a fictitioux 2

space. We shall take the standard definition Ge=gl V+gi V3 Ge=gl V+Ge3 0t Y, (35)
x (A’ AK> @7 where the gauge transformation is defined by
\ooAR) o =
gh(x,x") =g (x,x")e M, (36)

where A"® s the retardedadvanceyl component andAk
=A~+A" is the Keldysh component. The less-th@amore-
than functionsA~() satisfy the following relatiorA"— A2 LM
=A~—A~. We may thus write Dyson’s equati¢@6) using a(x)==7> A (1) 6 (1)) (37)
Keldysh matrix functions as follows: § 2410 ¢ “

with

- - —_ where
G=g+g*3*G=g+G*2*g. (28
_ _ (0 1
Note that the self-energy matriX of the Keldysh-Green’s T:(l O)' (38

function formalism plays a role similar to that of the memory
function in the projection technique. We stress that thecombining Eqs(32) and(35) with Egs.(33) and(34) we get
Keldysh method, although less general, has the advantage ﬂfe renormalized Dyson equations

being perfectly adapted to powerful field-theoretical methods

such as path-integral representations, saddle-point analysis, G|=g|+g|E|G|—g|+§|2@ (39)
and Feynman diagrams. This is particularly relevant in ap-

plications that require implementations of sophisticated techand

nigues such as the dynamical renormalization-group _ _ R

approactf” Gi=g{ M +gl VG =gl M+ G gl Y, (40

where the renormalized self-energy functions are given by
IV. ADIFFERENT FORMULA FOR THE GENERATING

FUNCTION OF CHARGE-COUNTING STATISTICS S N AN
E|=2|5§(S )\)Esl (41)
In this section we shall derive an explicit connection be—and
tween Eq(15) and the single-particle Green'’s function of the
Keldysh formalism, thereby providing a different useful for- T T —<
/ yP J 2szzslglzls.- (42)

mula for charge-counting statistics. We begin by writing all
matrices in Dysons’s equatioi28) in a leads-sample block |n the Keldysh formalism it is usual to define a matrix cur-

structure, so that we get rent that satisfies extended conservation laws thus generaliz-
ing standard charge conservation. For the present system the

— 6| 6|s total matrix current inside the sample at timén the pres-
G=|—- = (29 ence of the counting fieldl ,(t) reads simply
Gsl Gs
, : e__ — —
for the coupled Green'’s function, ()= ﬁTL) A G -GS (r i b, 43)
N 0 )
G= ( g _) (30)  in which the gauge transformed functions are defined as in
0 g Eqg. (36). The total charge transferred to the system during

the measurement is given bQS(T0)=IimHOQ§(TO),

for the uncoupled Green'’s function, and where

3= ° 2 NT —EJTOdtT 1t 44
= §SI 0 (31) Qs( 0)_2 B rK( s( ))! ( )

for the self-energy describing the coupling. Inserting Egsin Which Tr is the trace over Keldysh’22 matrix space.
(29)—(31) into Eq.(28) and gauging out the influence of the 'Nserting Eq.(43) into Eq. (44) and using Eq(36) we get
detector we obtain the following matrix equations: " 5
—Jd
— - —T = — =T MNTo)=—ie Tr(G”—s), 45
Gi=01+92sGs1= 91+ Gis250 (32 Qs(To) o;l SaN, 49
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where Te=Try S dx. This expression can be further simplified G0 e de(1+§°§°)
by using the following relation obtained from Dyson’s equa- Xll(To):dG< :S) =de< B b
tion (40): s Gs/ de(1+3Gy)

36)5\ - &2—:;\_)\ _ de(1+25@2|s€2) _ de(l"'azlsagzsl)

- =G —Gl, (46) det(1+340 3Gy  del1+g,3Ge3y)

G? G?
thus we get =dew(gI :de<§ , (53
Moy o therefore
Qi(To)=—ie 2, —=TrIn(Gy). (47) -
@t e XH(To)=def1+ G} -39 7L, (54)

Defining Q. (To) =lim, _oQ2 (To) as the charge transferred where30=3,.9.3 ;.

into the sample through interface during measurement  The existence of such duality in the description of meso-
time Ty, we may writeQg(To)=2,_1Qq,(To) and there- scopic transport underlines the equivalence of two well-

fore developed approaches to describe coherent transport of non-
interacting particles: the scattering-matrix metffoand the
P o impurity average Green’s-function techniqutn the former

Q) (To)=—ie Y Trin(GY). (48)  free asymptotic states are defined in the leads and the micro-

scopic details of the dynamics inside the sample are elimi-
nated by introducing scattering matrices with certain stochas-
From the measurement prescription, i.e., Bd), we get tic properties, which can be justified by means of maximum-
entropy arguments. The impurity average Green'’s function,
9 on the other hand, satisfies a microscopic equation of motion
an(To)zieWIn Xll(To). (490  with open boundary conditions, derived from an appropriate
@ elimination of degrees of freedom in the leads. These meth-
o . ) ) ods are considered complementary and have been used to

Combining Eq.(48) with Eq. (49) and using the normaliza- produce a number of reliable results both perturbative, such

tion conditionx'(To)=1, we obtain as conductance fluctuations and weak localization effefs,
and nonperturbative, such as the full scaling function for the

Qv ballistic-diffusive crossover in quantum wifésand nonana-
Xll(To)Zde< :i) (50)  Iytic scaling of conductance cumulants in dirty unconven-

Gg tional superconductord.

From Dyson’s equation one can show that V. TRANSFERRED CHARGE DRIVEN BY A PERIODIC
TIME-DEPENDENT VOLTAGE

Gr=G2+Gr(32-39GY, (51) In this section we carry out our approach in a concrete
example. Needless to say that the exactness of the equations
cannot be maintained indefinitely and approximations will
eventually be necessary to perform actual calculations of ob-
servable quantities. An important merit of the present formal-
ism is the physical transparendgonservation laws, sum

_ Py Wy ey N rules, eto. with which such approximations can be intro-
Xll(TO)_de{HGS(Es_Es)] ' (52 duced, thus allowing unrestrict?egl use of the traditional litera-

ture on nonequilibrium many-body physics.

It represents a generalization to many-body physics of the Assuming absence of direct processes between different
Levitov-Lesovik functional determinant formuf&®’ which  |eads, we may decompose the self-energy in terms of func-

has been successfully used to describe charge-counting sta- : . s\

tistics in noninteracting mesoscopic systems in both dc anhoﬂs localized at the interfaces as folloig =35, + - --

ac transport regime¥.We remark that Eq(52) can be used +34y. The charge transferred into the sample through in-

to establish a link between physical observalftesnsferred terfacea during measurement timg, is thus given by

charge, conductance, shot noise, )Jedmid many-body corre-

lation functions. O (To)— llimf
There is a remarkable duality in this problem that can be sat 10 2, o

demonstrated by using E0) and Dyson’s equation82)—

(35) as follows: where

Where§g=§s=i@§|s. Inserting Eq.(51) into Eq. (50)
we get the central result of this section

TOdtTrK(l_ga(t)), (55)
0
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— e_ — = == time-dependent mean-fieM,(t), which, in principle, could

lsa(t)= ng dr[25,Gs—Ge2g,I(rt[r,t).  (56)  pe related to the local electrostatic potential associated with
s the formation of Landauer dipoléa many-body effegt so

Let us now introduce our central approximation. Taking in-that

spiration from the general theory of quantum dissipative

systems* we can emulate the influence of the leads in the Al(tt) =@ () = @u(t"), (60)

sample by means of an effective electromagnetic environgnhere

ment, which acts as the source and sink of the current flow-

ing through the system. From a physical point of view, one , ,

expects that the many-body dynamitguasiparticles and @a(t)Z—g %dt V,(t"). (61)

collective modekin the leads should imply a wide separa-

tion of time scales associated wit) tunneling into the In the linear regimeV (t) is proportional to the external ac

sample,(ii) occupation and pinning of single-particle statesvoltage.

at the interfaces, andiii) quantum coherence of charge Let ®,(t,t")=z,(t)f (t—t")Z5(t"), where z,(t)=exp

propagation. In principle, one could set up a projection for{ —ig,(t)] and define

malism to rigorously derive the reduced dynamics of the )

measurement process and exploit the resulting time-scale CDQ(E,E’)sz ﬂJ’m d—te‘(Et*E"')”lCI)a(t,t’), 62

separation by performing expansions about the Markovian —wh J_xh

limit. Here, we shall instead take advantage of the conve- . ) . )

nient structure of the Keldysh formalism and propose a symthen; in the above-described approximation, &%) can be

metry guided conserving approximation for the memoryWitien as

function that implements the separation in time scales de- T = dE (= d

. . . . 0 w .
scribed above, and then use it to derive the appropriate Qsa:eJ dtJ _J —e “'R(E+fow,E),
boundary condition for charge transport through the open 0 ~ 2 ) 27T
sample. It goes without saying that a rigorous microscopic (63
many-body justification for this approximation together with \yyere
its regime of validity, which will probably involve ratios of
the above time scales, is an important issue for future re- M
search. We remark that this approximation is physically R(E,E’):Z (DB(E,E’)Tr{FSaGgr(E)
equivalent to the wide-band limit, introduced by Jauho, Win- p=1
green, and Mej‘f’ within a nonequilibrium Green’s-function X[Tes+ 5aﬁ(i(E—E’)—FS)]Gga(E’)}. (64)
formalism for time-dependent transport.

The components of the self-energy matrix function, This expression can be further simplified by assumipgt)
ia(t,t’)fia(r,tlr’,t’), describing the coupling of the to be a period.ic function of periody, and by taking_the
system to the leads during the measurement filgeare ~ measurement time to cover several cycles, Tg=n7o with
approximated as follows: n an arbitrary integer. We obtain

. ’ ' M o)
ESKa(t,t/)zirsa[zfa(t_t/)eflAa(tvt )—ﬁﬁ(t_t )] (57) QSQZE BZ]_ j_ochCllﬁ(E)[Ka(E)_K.B(E)]’ (65)

and where

if — or Oa
ng(t,t’): Il?l—*saé(t_t/), (58) CaB(E) Tr[FSaGS (E)FSﬂGS (E)] (66)

and

in which I'g,=T"g,(r,r") is the linewidth function that con-

trols the tunneling rates between leadnd the sample. Note K (E)= fTOdtz (t)exr{iﬁ J
that only the Keldysh compone®X (t,t') contains finite “ 0 “ JEat
memory effects. The single-particle occupation function at . . .
lead ai,yfa(t), is definedgas pthe Fourier li')ransform of the Applying the Hubbard-Stratonovitch transformation
reduced distribution functiom,(E), which is considered o dzde* 4 9 P
constant during the observation tirfg and includes inter- gl 1B = J —ex;{ —|Z]P= = —=—i ng—),
action effects, 2m n- E at

2

)na(E)Z’;(t)- (67)

(68)
f (t):fw d_En (E)e IEVA (59) with —07, we get
@ 703277 @ ' N
0
The functionA (t,t') accounts for the phase accumulated Ko(E)= fo dtn,[E+eV,(1)], (69

by the carrier as it transverses the lead-sample interface in
the presence of an effective self-consistent inhomogeneouwshich together with Eqs(65) and (66) is our final result.
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From a formal point of view it coincides exactly with a VI. AN EXACT SOLUTION: BALLISTIC CHAOTIC
multiprobe generalization of the time-average conductance CAVITY

formula derived in Ref. 16 in the wide-band limit and assum- A central topic in mesosconic phvsics is the description of
ing barrier heights that are time independent. As such, all P pic phy P

numerical methods available in the literature, such as, fOIl,mlt\:]eersarIgg:fel 'ggi%?dézfiﬁggﬁs 3f ﬁgﬁgﬂtlziﬂ?spzrée_
instance, that of Ref. 18, to evaluate such expressions can be the P . P ; y :
ario, two categories of physical systems stand out as par-

used here as well. One should be mindful, however, of th(%cularl relevant from an experimental point of view: disor-
different physical conditions under which this result was de- y P P )

rived here. First, in our derivation we found no necessity todered conductors with elastic impurity scattering and

introduce different local chemical potentials in the System_balllstlc cavities with specular boundary scattering. A funda-

This crucial point has been the center of much debate in thrgnental problem in the field is to account for the interplay
recent literaturé>?* Second, the projection technique offers inetv]\!s)erg 'n;:g?ggﬁe?gﬁffhgggcﬂé‘g::tztr'i?]g Fi)r:]zrlﬁrr?esnés‘tgrr]g
a systematic method to reintroduce the memory effects neN?hou hpconsiderable rogress has beeng achieved )rlecentll
glected in the wide-band limit, if they turn out to be re_levaqtin the %erturbative regirﬁ)]e g\l/vith the development of a field- g
: - . 1ONS N eory approadt to the Keldysh formalism, the nonpertur-

ratios of widely separaj[ed time scales. The apprOX|mat_|onbativg sepcptor of the theory agpears beyond the reacph of cur-
therefore, can, at least, in principle, be well controlled. Th|rd,rent technique® This is rather unfortunate, since it is

when combined with the many-body extension of Levitov- . : . . \ .
Lesovik functional determinant formula, E62), our for- precisely in the nonperturbative regime that beautiful univer-
’ : sal quantum transport effects are observed.

mal?sm allows for a unified description of the full counting In this section, we shall illustrate such universal features
statistics of the charge measurement, not just the condu%- '

. N . . calculating exactly the average total charge transferred,
tance. Finally, th_e projection formalism provides a na.turaldﬁring an ob%ervatio% time&,, to g noninteract?ng ballistic
gﬁ)mug\zvsg() ngrr] er'nnézlegjiwlgg ﬂ? :S\‘/(veegf]y lR er;esnolr;n ?rllzdatzlcin_bghaotic cavity coupled to an arbitrary number of terminals
: : ' P ' _and in the presence of a time-dependent periodic field. As a
interpreting each RG step as a pl’Oje.Ct.IOI’l n Llouw”e.Spa}cemotivation E))ne could regard the Eesult of I?his problem as a
o e ey o o B oot"necessay 1S step owards the developnent f a ot

: . . . . ative renormalization-group treatment of the interactin
clents c_)f noninteracting systems. Tgklng_ the dc lipwit,(t) system. Furthermore itgmaypalso help by setting the apprg—
i;/(aé):llnwgqolb(tg?r)\ and assuming identical leads,(E) priate language and concepts, on which to build the full

theory. Note that the absence of nontrivial interaction effects,
_ i.e., beyond setting up the relevant quasiparticles and stabi-
= + . = o ) . )
Ka(E)=Ton(E+eVa) (70 lizing the boundary conditions, in the dynamics of the carri-
Inserting Eq(70) into Eq.(65) using the definition of current ers inside thg sample, makes it possible to use the powerful
| ,= Q.. /T, and taking the linear regime limit we get nonperturbative supersymmetry metidd.
We start by making the standard simplifying assumption
M that chaotic scattering is confined to the sample region, so
lo= >, GopAVg, (71)  thatC,g4(E) is a strongly fluctuating function, whilk ,(E)
p=1 is sharp. Our objective is then to calculate the average value
whereAVg,=V,;—V,, and the conductance coefficiet@ (Cap). From Eq.(66) one can easily verify that
are given by 5

P
(Cap)= m(z(fm ) (74)

Gy (= dn

Gaﬁ=7J dEC,4(E) ~4E) aFB. (72
o where Z(h) is a generating function, represented by the fol-

lowing superdeterminar(see Ref. 55 for the definitions of

Assuming further that the electrons in the sample are nonin ; _ ) ; .
he basic operations and functions in supermathematics

teracting, the self-energy contribution to the Green’s functiort

in C,z(E) contains only terms related to tunneling pro- 1 0
af =

cesses, which can be described as a scattering problem. Us- Z(h)=Sdet "1+ 34(h)G], (79

ing the Weidenriiller-Mahaux relatioff between the on- in which we have defined a block-diagonal matrix of re-

shell scattering matrix8%2 of the leads-sample system and tarded and advanced Green’s functions

the corresponding Green’s function and taking the zero-

temperature limit, we recover the Landauettiker formula Gl=diag 1, GY 1,0 G2, (76)
N, Ng where 1, is the 4x4 unit matrix. The source field is repre-
Gus=Go>, X ISial (73 sented by
n=1m=1
M 2
in which the sums run over the propagating channels in the Jo(h)= 2 2 2 hyioF 1@ (77)
leads. a=11=1o== ao e “r
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where whereU is an 8<8 supermatrix containing all Grassmann
and phase variables, integration over which can be done ex-
= :( 0 Kz") o= 0 Kl”) (79 plicitly in our problem. The matrixd contains the relevant
oKy, 0 ) 7 \Ky 0 )7 variables and is given by
and the submatricds, , are defined as A_( 0 O ) , _(01 92) P
< (kI 0) < (O O) 79 0o o) B le, 6 F ol2;
1o o) T lo k) where,,6,>0 and 0< ,< . The integration measure in

with k, = diag(1,0) andk,=diag(0,1). these coordinates reads

The average generating functiog(h)) can be calculated 2
using the standard supersymmetry technique. It consists of dQ= (1=A5)dAgdA;dN,dU (88)
performing a map onto a nonlinear model defined in a 25(A5+)\§+)\§—2)\0)\1)\2—1)2'

coset manifold that describes the target space of massless
Goldstone modes associated with a spontaneously brokei€r€ho=Ccosép, 1= coshf, andh,=coshé,. It turns out
hidden global symmetry. There are ten universality classes df P& convenient to perform a further change of variables
such o models, as has recently been pointed out by"ough

Zirnbauer® Here we shall consider the orthogonal Wigner-
Dyson class, appropriate to systems with time-reversal sym-
metry and spin-rotation invariance. We end up with a repre-
sentation of Z(h)) as an integral over a coset space, whose
points are parametrized by supermatri€@ssatisfying the

)\O: 1_2,(,L0,

N =1 g+ ot 2 i+ 2V (1 ) o(1+ ),

constraintQ?=1 7\§:1+,U~1+Mz"‘2#1#2_2\/#1(1"’#1)#2(1"'#2)(, )
' 89
M N
_ T where uq,u,>0 and 0< up<1. Evaluating Eq(83) using
<Z(h)>_f dQﬂl nl:[l Zan(Q.Pa), 80 the coordinates above, we obtain
where Ny, Ng N,
P (Cap)=2, 2 ARt 0452 (ART+B+e Ty,
Z.n(Q,Q")=Sdet "A1+e *«QQ"), (81) n=1m=1 n=1 (©0)
with «,, being parameters related to the tunneling probabili-, )
ties as followsT ,,=secl(«x,,/2). Furthermore in which
2 F(Tan Am) = H(Tpm du)
PoA-2iS 3 hF. @ A | PT ettt gy
I=1 o==* {u} Tﬁm_Tan
where A =diag(14,—1,). Inserting Eq.(80) into Eq. (74  and
yields . )
f(Tan 1))
Na 2o L ) Bﬁ:f P({T}'{M})%- (92
(Capd=—2 2 (SMO)SUMO%))o w Tan(Ten—1)
n=1m=1
N We defined
—26,5>, (SMOLIO21)),, (83 1 ” =
'Bn:l " n’/Q L }= fo dﬂofo dﬂlfo dﬂzj({:“})v (93
o
where
where
0!7 =(1+e anAQ) *AF,, (84)
1— )| p1—
and the average- - - )q is defined as J{uh= ZMO( Ho)l sz . (99
Mo N, 2351:[1 (ot pms)*Vies(1+ pg)
(A)o= f dQAQII II Z.(QA). (89
a=1n=1 Furthermore
The matrix conditionQ?=1 can be solved explicitly using MON, 1T
Efetov's parametrization _ ~ lanMo
P{T}, = ,
. AThAed) Hl nl:[l VLT npn) (14 Ty o)
coshfd isinhé (95)
Q=u"t .U, (86) _
i sinh@ —coshd and finally
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VIl. DISCUSSION AND SUMMARY

2 21
-2

. 96
X— o =1 X+ s 98

f(x,{u}h)=x(1-x) Mesoscopic transport is a very challenging and fast grow-

] ] ] ] ) ing field of research. From an experimental point of view it
Equation(90) is the central result of this section. Combined provides an almost unique and versatile ground to address

with Eq. (69) it represents the exact result for the problem ofg, 42 mental issues related to quantum kinetics and has led to
charge transfer into a noninteracting chaotic ballistic cavity, < \hstantial enhancement in our understanding of subtle
in the presence of a periodic time-dependent driving field. A opics such as measurement theory and decoherence phe-
such, It may serve as a useful starting point to a_ddress thr?omena. From a theoretical viewpoint, it gives unprec-

gg:,]'crggtr:cflnqgrggi?]lgl? it?]ytrr;n ee?:r;sljlzfmrgn;;rgs ;éztggi%gu?nedented opportunities to test in laboratories the consequences
which the system is weakly coupled to the leads, of highly abstract mathematical constructions such as Rie-

== T,.<1, so that the electron decay widths are muchmannian supermanifolds and Liouville operator space. In this
—“~n'an 1 Er.
smaller than the charging energy, a working framework forcOntext, the Landauer-Biker approachLBA) stands out as

treating the interplay between interaction and phase cohef 9réat intellectual achievement. Its phenomenological suc-
ence in the presence of chaotic dynamics is already availabl§€SS helped shaping up the field during the last decade and
with remarkable predictions. In the other extreme of has, as a by-product, deeply influenced an entire generation
weakly interacting systems, strongly coupled to the measure?f researchers in mesoscopic physics. However, pressing
ment leads, charging effects, such as the dynamical Coulomiew challenges brought about by recent experiments and
blockade, are irrelevant and the RG approach of Ref. 21 catechnological demands may be stretching the theory well be-
be used to study the low-frequency behavior of charge transrond its regime of validity. Generalizing LBA, while keeping
port. For systems with arbitrary coupling to the leads andas much as possible its conceptual simplicity, has proved to
interaction strength, however, competitions of several relbe a very hard problem indeed. The crux of the matter is the
evant time scales will lead to a very rich diagram of physicalfact that LBA is deeply founded upon single-particle physics
regimes, which appears to be beyond the reach of currerand on a phenomenological description of the measurement
frameworks. The projection technique, implicit in the presentprocess. As such, there appears to be no simple derivation of
approach, has the potential to handle such difficulties and thigs results following from standard many-body physics
development of the associated RG scheme is an exciting subirough a well-defined logical sequence of conserving ap-

ject for future research. proximations. This unfortunate state of affairs has led to
We conclude this section by presenting an important relamuch controversy and criticisms in recent literattie.
tion between the average coefficientS,;) that follows In this work, we proposed a formulation of mesoscopic
from a Ward identity. It reads transport using the language of nonequilibrium many-body
physics combined with recent developments in measurement

4 theory. To be concrete, we focused on the problem of mea-
97 suring the counting statistics of particle transfer through a
phase-coherent sample, during a finite observation time, in
the presence of a time-dependent inhomogeneous driving
field. Following pioneering ideas by Levitov and Lesoffk,
we derived the fundamental connection between an observ-
(Cap)=2N N AN+ 8,5N(1+2Ay), (9g)  able quantity, the off-diagonal components of the detector’s
reduced density matrix, and the generating function of
where Ay is a constant andN=N;+---+Ny. From Eg. charge-counting statistics. The final expression is largely in-
(97) we get dependent from the specific charge detection scheme and
provides the microscopic foundation for the phenomenologi-

BZI <Ca,8>:ﬁ§=:l <C,8a>: 2

A=1 efant 1’

To appreciate the usefulness of Eg7), consider the simple
limit of ideal contacts;T ,,=1, in which case Eq90) reads

M cal measurement description that is implicit in LBA. Further-
321 (Cap)=2N,, 99 more, it brings out the singlemost important feature of our
approach, which is the systematic exploitation of the time-
thereforeAy=1[2(N+1)] and from Eq.(98) we obtain scale separations in the underlying many-body problem lead-
ing ultimately to simplified effective descriptions, with LBA
N,Ng N, (N+2) being just the simplest case, i.e., single particles in contact
(Cap)=Ni1 08 NTT (100 with local reservoirs.

The formalism is set up using a conjunction of the
In the Landauer-Bttiker regime, the resulting average con- memory-function approach with Keldysh Green's-function
ductance coefficient&,5/Go=N,Ng/(N+1) agree with technique, thereby circumventing the need to specify the de-
independent calculations using a maximum-entropytails of the system-detector and system-leads couplings. This
approactr” For systems with broken time-reversal symme-permitted us to derive a different formula for charge-
try, a detailed analysis of the multiterminal average conduceounting statistics that generalize, by including many-body
tance coefficients in several regimes of interest has been caeffects, the determinant formula by Levitov and Lesciik.
ried out in Ref. 58 and most conclusions apply here mutati©ur fully quantum-mechanical description of both the
mutandi. sample and the leads helped us in uncovering a fundamental
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duality in the problem, thereby providing a justification for Interestingly, our hypothesis bears some similarity with that
the equivalence between two complementary descriptions aif Ref. 39, in which the influence of the leads was simulated
single-particle mesoscopic transpdil:the Green’s-function by a fluctuating electromagnetic environment. Our central
technique, which contains an implicit elimination of the result, Eq.(65), is physically equivalent to a multiprobe gen-
leads by adopting a specific set of boundary conditions in thgralization of the time-average conductance formula d_erived
diffusionlike equations for diffusons and cooperons, &ind  in Ref. 16 and reduces to the Landauetttiker expression
the scattering-matrix approach, which contains hypothesis di the noninteracting linear time-independent limit. We com-

stochastic nature that implies an elimination of the degrees diléted the analysis by calculating an exactly solvable system:
freedom inside the sample. a noninteracting ballistic cavity with chaotic dynamics. The

We illustrated the use of the approach by studying in de-reSUItS' obtained using the supersymmetry method, may be
tail the average charge transferred to a sample, during aﬁ‘]sed to set the standards of the kind of universal description
observation timeT,, in the presence of a time—dependentWe are Iookln_g for In a yet to be constructed_nor_wperturbat_lve
voltage. We adopted the point of view of eliminating the approach to interacting systems with chaotic single-particle

leads and approximated its influence on the sample by prd?Ynamics.
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