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Transport theory of interacting mesoscopic systems: A memory-function approach
to charge-counting statistics
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We address the subtle problem of formulating mesoscopic transport phenomena in the language of many-
body physics. We propose a microscopic description in which the whole system~sample, leads, and detectors!
is given fully-quantum-mechanical treatments. The dynamics of the system is obtained from the projection, or
memory-function, formalism of nonequilibrium statistical mechanics combined with recent prescriptions for
measurements that are extended in the time domain. The associated irreversible quantum dynamics contains an
intrinsic doubling of the degrees of freedom identical to the real-time path-integral representation of the
Keldysh formalism. We derive a simple formula relating the generating function of the charge-counting sta-
tistics to the single-particle matrix Green’s function of the interacting system, thereby generalizing the Levitov-
Lesovik functional determinant formula. We report an interesting sample-leads duality in our description,
which has a simple interpretation in the regime of noninteracting particles, thus establishing the equivalence
between the Green’s-function technique and the random scattering-matrix approach. We discuss the physical
conditions, within the present scheme, for the validity of the Landauer-Bu¨ttiker description of mesoscopic
transport. We conclude by providing an exact solution for the problem of charge transfer into a noninteracting
ballistic cavity in the presence of a periodic time-dependent voltage, using the supersymmetry method.

DOI: 10.1103/PhysRevB.69.155309 PACS number~s!: 73.23.2b, 05.60.Gg, 03.65.Ta
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I. INTRODUCTION

The physics of bulk many-body systems has reache
staggering level of maturity both at the phenomenologi
level of response functions and relaxation processes and
of rigorous microscopic calculations of correlation functio
using quantum-field-theoretical methods. Achievements
clude an essentially complete understanding of equilibri
and nonequilibrium phenomena in systems as varied as
mal quantum fluids, magnetic materials, liquid crystals,
perfluids, and superconductors, both at stable phases a
the vicinity of critical points. To be sure, much of our curre
understanding of irreversible transport processes in th
systems stems from unifying concepts derived from line
response theory and time-dependent correlation functi
such as Onsager’s reciprocity relations, dynamic stab
conditions, fluctuation-dissipation theorems, causality re
tions, Kubo formulas, sum rules, Goldstone modes, and
drodynamic collective fluctuations.

In the 1980s, however, technological breakthroughs
nanolithographic processes made available electron dev
in which novel nonequilibrium conditions became expe
mentally accessible.1 It was soon realized that for these s
called mesoscopic systems new theoretical tools were ne
to account for challenging experimental data in new tra
port regimes. An important step forward in this direction w
the early recognition of the inadequacy of the conventio
Boltzmann picture in which one neglects the microsco
details of the impurity potential by replacing it by an avera
smooth function with a constant gradient along the sam
i.e., a homogeneous transport field that accelerates the c
ers throughout the whole device. Such an approach is
tirely justified for bulk systems, in which the many-bod
0163-1829/2004/69~15!/155309~13!/$22.50 69 1553
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description is contracted by projecting the dynamics of
initially well-controlled density matrix onto a subspace
states perturbed only on scales much larger than atomic
tances. These semiclassical concepts cannot, however
count for the coherent processes inside the sample that li
the heart of mesoscopic phenomena.

The correct procedure came with the rediscovery of L
dauer’s pioneering insight on the conduction problem2,3

which consisted of inverting the traditional viewpoint of r
garding the transport field as a cause and the current flow
a response. In Landauer’s approach, self-consistent inho
geneous transport fields appear as a many-body resp
~Coulomb screening! to carrier injection in the contacts im
plying that transport coefficients could be calculated by c
sidering a sequence of highly localized voltage drops acr
impurity barriers. For a one-dimensional disordered cond
tor, this prescription leads, at zero temperature, to a di
connection between the conductanceG and the transmission
coefficient T of the sample,G5G0T/(12T), where G0
52e2/h is the conductance quantum. The singlemost app
ing feature of this approach is the ease with which quantu
mechanical coherence effects can be accounted for. If
assumes that the phase-breaking length is larger than
sample itself, one may neglect many-body effects and ca
late the conductance from the transmission coefficient of
corresponding single-particle scattering problem. Such p
cedure turned out to be highly successful.

After this initial breakthrough, it was soon realized th
the usefulness of the Landauer scattering approach in
scribing mesoscopic phenomena hinged upon the possib
of generalizing it to conductors of finite cross sections, i
with a finite number of open transport channels. This en
prize, however, turned out to be much harder and contro
sial than expected.3 The correct answer was finally put for
©2004 The American Physical Society09-1
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ward by Büttiker,4 who explained in the process the puzzlin
manifestation of Onsager-Casimir reciprocity relations in
sistance coefficient measurements. Bu¨ttiker’s solution dem-
onstrated the crucial role played by the measurement pro
in the description of mesoscopic dynamics. By assuming
measurement time, i.e. the average time it would take for
signal in the detector to be distinguished from the ba
ground noise, to be equal to the dephasing time~in modern
language this is equivalent to assuming an ideal detec!,
Büttiker established a direct link between the measurem
process and Landauer’s scattering formalism. Furtherm
the spatial separation of phase-breaking events allowed
as pointed out earlier by Landauer, a specification of bou
ary conditions in terms of certain fictitious reservoirs, whi
were supposed to incorporate all the complexities of the
derlying many-body problem. In particular, the existence
well-defined electrochemical potentials in these reservo
which after all are integral parts of a connected many-bo
system, could, at least, in principle, be justified by appea
to hidden irreversible phase-breaking scattering proces
similar to the way local equilibrium conditions appear in t
hydrodynamic regime of quantum fluids. The remarka
simplicity of such formalism, which absorbs many-body e
fects as boundary conditions and allows transport obs
ables such as conductance and noise power spectrum
directly related to the scattering characteristics of a nonin
acting system, is only matched by its surprising experime
accuracy. In the trail of this success a massive amoun
work both theoretical and experimental followed, exploiti
essentially all aspects of the single-particle description
bringing the area of mesoscopic transport to the level o
mature research field.

Notwithstanding the fully experimental corroboration
the quantitative predictions of the Landauer-Bu¨ttiker scatter-
ing approach and its close relatives, such as the impu
average single-particle Green’s-function technique with r
ervoir boundary conditions,1 its true microscopic foundation
in terms of a controlled sequence of conserving approxim
tions starting from a full-fledged many-body description
largely unknown. This fundamental problem might be co
sidered, from a practical point of view, somewhat academ
was it not for the fact that recent experimental observati
may well be stretching the current theory beyond its break
point. These include nonlinear-response measurements
as charge pumping into quantum dots5 and the integer quan
tum Hall effect at large currents, time-dependent effects
photon-assisted tunneling through single6 and double7 quan-
tum dots, interaction driven phenomena such as the me
copic Coulomb drag effect,8 phase relaxation in open ballis
tic cavities,9 Fermi-edge singularities in impurity assiste
tunneling through tunnel junctions,10 transport properties in
hybrid normal-superconductor systems,11 tunneling magne-
toresistance in quantum dots coupled to ferromagn
leads,12 and electron transmission through atomic-siz
conductors,13 to mention just a few. Although much effor
has been made to account for these effects by generatin
appropriate extensions to the theory via suitable, phen
enology guided, generalizations of the boundary conditi
and scattering characteristics with reasonable success
15530
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general expectation is that eventually irreducible many-bo
effects will become dominant and the use of sophistica
nonperturbative tools, such as field-theoretic
renormalization-group procedures, shall be imperative.
that, one would need a more general theory in which
dynamical aspects of the many-body problem appear in
natural form. In this way, one would, in principle, be able
establish the precise physical conditions, in terms of ratios
relevant time scales, for the validity of the local equilibriu
conditions underlying the Landauer-Bu¨ttiker approach.

Interesting efforts in this direction can already be seen
the recent literature, where extensions of the Landau
Büttiker formalism were introduced by admitting arbitra
interactions in the mesoscopic region, but maintaining
leads as noninteracting and by using reservoir boundary c
ditions with different electrochemical potentials. Within th
Kubo formalism, for instance, Oguri14 developed a finite-
temperature linear-response approach and expressed
transmission probability in terms of a three-point correlati
function. Using the more general Keldysh formalism, Me
and Wingreen15 managed to go beyond the linear-respon
regime and expressed the finite-temperature differential c
ductance in terms of nonequilibrium Green’s functions. Th
approach was later extended to address time-dependent
nomena as well.16 Much effort has also been devoted to d
veloping efficient calculation schemes, such as numer
procedures and renormalization-group techniques. In R
17, the authors expressed the zero-temperature lin
response conductance in terms of the persistent current o
auxiliary noninteracting system. This method turned out
be well suited for numerical studies. In Ref. 18, a numeri
recipe was put forward for an approximate evaluation of
Meir-Wingreen conductance formula. In Ref. 19 a power
framework was presented to study transport of interact
electrons through nearly closed ballistic chaotic quant
dots. By separating the regimes in which interactions can
described by Landau Fermi-liquid parameters, these aut
were able to recover the universal Hamiltonian descriptio20

in a weak-coupling phase and predicted a surprising stro
coupling phase with a spontaneous Fermi-surface distort
For open systems, time scales related to electron de
widths enter the picture leading to much complex transp
regimes. An important progress in this problem has rece
been reported by Kindermann and Nazarov,21 who developed
a renormalization-group approach to address the weak in
acting regime. They showed the existence of two universa
classes for the power-law behavior in the low-voltage a
low-temperature differential conductance. A third univers
ity class, related to a quantum transition at intermediate c
pling and driven by resonance trapping, has recently b
reported.22

In this work, we address the problem in its full general
and propose a formulation of mesoscopic transport in
language of many-body physics. In Sec. II, we describe
physical system together with its measurement setup. U
the language of modern quantum measurement theory,25 we
relate the internal dynamics of the system to the redu
density matrix of the detector. The resulting doubling of d
grees of freedom is conveniently accommodated in
9-2
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TRANSPORT THEORY OF INTERACTING MESOSCOPIC . . . PHYSICAL REVIEW B69, 155309 ~2004!
Keldysh time-contour formalism.26 In Sec. III, we apply the
memory-function technique27 to deduce the relevant Dyson
equation for the coupled leads-sample-detector system
generalization of Levitov-Lesovik determinant formula28 for
the generating function of charge-counting statistics is
rived in Sec. IV. This formula includes interaction effects a
uncovers a striking duality in the problem that allows t
development of two equivalent approaches: one that el
nates the degrees of freedom in the leads~inside problem!
and another that eliminates the degrees of freedom in
sample~outside problem!. In Sec. V, we adopt the approac
of eliminating the degrees of freedom in the leads and p
pose an approximation, for its influence on the dynamics
the remaining degrees of freedom, that exploits a wide se
ration of certain relevant time scales. The Landauer-Bu¨ttiker
regime is obtained as a particular limit. We analyze, in S
VI, an exactly solvable model of a noninteracting ballis
chaotic cavity and compute the average transmitted cha
during a finite observation time, in the presence of a perio
time-dependent voltage. A discussion and a summary
presented in Sec. VII.

II. THE MODEL SYSTEM AND THE MEASUREMENT
PROCEDURE

One of the fundamental problems of a quantum desc
tion of a given physical system is to establish the prec
connection between the dynamics of the information acq
sition process of its observable features and the quan
dynamics of the coupling to the associated measurem
probes. In general, both the quantum system and the pr
are complex many-body systems and the resulting irrev
ible dynamics of the measurement process must, in princ
be dealt with using techniques from nonequilibrium statis
cal mechanics. Although a universal scheme for solving s
a problem is not yet available, significant progress have b
made recently by considering certain simple processes,
as indirect quantum measurements.25 In this case, the mea
surement is described as a two-step process consisting~i!
an interaction with a previously prepared quantum pro
described by a unitary evolution that produces correlati
between quantum states of both the system and the probe
~ii ! a direct measurement of a chosen observable in the p
leading to an entropy production associated with informat
extraction and thus causing, via back-action effects, an i
versible change in the system’s initial quantum state.

The great advantage of the indirect quantum measurem
formalism in comparison with the traditional ensemble a
proach is the possibility to address processes that are
tended in the time domain and therefore one can ac
subtle time-dependent correlations in the system. Follow
the time evolution of the system plus detector one reali
the existence of three distinct time scales:29 the dephasing
time tw over which the system loses phase coherence;
measurement timetmeas after which information about the
system’s state is extracted, and finally there is the detec
back-action on the system destroying the information ab
the initial state on a mixing time scaletmix . The question of
the efficiency of a quantum measurement, i.e., finding
15530
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conditions for minimal detector-induced dephasing, has
ceived much attention of the recent literature, particularly
connection with quantum state engineering29 and with the
quest to construct quantum-limited devices.30

In the context of mesoscopic physics, Bu¨ttiker was the
first to realize the importance of the measurement proces
describing transport observables. He pointed out4 that the
Landauer conductance formula encompasses a scatte
matrix description of the system-detector interaction and t
the very notion of particle reservoirs in the presence of tra
port currents can only make physical sense in such a con
More recently, Levitov and Lesovik,28 building on the simi-
larity between the theory of photodetection in quantum o
tics and current measurement in mesoscopic devices,
posed the concept of full counting statistics of partic
transfer through the system during a given time intervalT0.
Using a current detection scheme based on the dynamics
spin-1/2 galvanometer electromagnetically coupled at
system’s interface, they derived a microscopic representa
of the counting statistics generating function, defined as

xl~T0!5(
n

einlpn~T0!, ~1!

wherepn(T0) is the probability that a discrete numbern of
particles traverse the interface during the observation t
T0. Adopting the Landauer-Bu¨ttiker scattering formalism,
they were able to derive a very useful determinant form
for xl(T0), which could be generalized to time-depende
problems and was successfully applied to ac transport31 and
quantum pumps.32

In this section we shall formulate the above current det
tion scheme as a nonequilibrium mesoscopic many-b
problem. Our model system is a many-body generalization
that of Ref. 33 and consists of a phase-coherent sample
nected viaM macroscopic conducting leads to the termin
of M /2 generators supplying time-dependent electromo
forces. The system has thus the topology of a multiply c
nected network in which, as shown in Ref. 34, Maxwel
equations, though locally conservative, admit globally dis
pative solutions. As pointed out in Ref. 23, the importance
the latter result resides in the fact that it provides the phys
grounds for using quantum kinetic methods with locally co
servative Hamiltonians~such as the Keldysh technique! to
describe the globally dissipative dynamics in the system.

Following the standard prescription for applying th
Keldysh formalism,35 we assume that at times prior tot0 the
macroscopic leads and the sample are uncoupled and
system is taken to be in contact with a thermal bath at te
peratureT and with auniqueparticle reservoir of chemica
potentialm. The Hamiltonian of the uncoupled system rea
Hsys

0 5Hl1Hs , where Hl5Hleads
0 1Hleads

int and Hs

5Hsample
0 1Hsample

int are the Hamiltonians for the electrons
the leads and sample, respectively. More specifically, in
ducing the field operatorswa(r ) and cs(r ) for electrons in
leada and in the sample, respectively, we may write
9-3
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Hleads
0 5 (

a51

M E
Va

drwa
†~r !F 1

2m S p1
e

c
Aa~r ,t ! D 2

1Ua~r !Gwa~r ! ~2!

and

Hleads
int 5 (

a51

M E
Va

drdr 8ua~r ,r 8!wa
†~r !wa

†~r 8!wa~r 8!wa~r !

~3!

for the leads, and

Hsample
0 5E

Vs

drcs
†~r !F p2

2m
1Vs~r !Gcs~r ! ~4!

and

Hsample
int 5E

Vs

drdr 8vs~r ,r 8!cs
†~r !cs

†~r 8!cs~r 8!cs~r !

~5!

for the mesoscopic sample. The total configuration spac
given by V5VsøV l , where V l5øa51

M Va and
]Vsù]V l50. The electron spin can be accounted for
introducing two identical copies ofV one for each spin pro
jection, so that V5V(↑)øV(↓). The vector potential
Aa(r ,t) describes the effect, in leada, of switching on the
emf, while the scalar functionsUa(r ) and Vs(r ) represent
internal potential profiles in leada and in the sample, respec
tively. We remark that the quantum dynamics of this u
coupled system can, in principle, be described by conv
tional many-body techniques.

Let us now turn to the measurement problem associate
the emergence of current-carrying states in the coupled le
plus sample system. Following Levitov and Lesovik,28 we
consider a spin-1/2 galvanometer, represented by the foll
ing fictitious vector potential in the sample region:

As~r ,t !5
F0

4p
sz(

a51

M

la~ t !“u„f a~r !…, ~6!

in which F05hc/e is the flux quantum,sz is a Pauli spin
matrix, and the equationf a(r )50 specifies the leads-samp
interfaceCa5]Vsù]Va . The counting fieldla(t) has a
constant valuela in the measurement time interval 0<t
,T0 and goes smoothly to zero fort0<t,0 andt.T0. We
assume that at timet0 both the system-detector and the lead
sample couplings are switched on and the total tim
dependent Hamiltonian is given by

Htot5Hsys1Hsd1Hd , ~7!

where Hsys5Hsys
0 1Hls5Hl1Hs1Hls is the Hamiltonian

of the coupled leads plus sample system andHsd represents
the system-detector interaction. We neglect, in the followi
the internal dynamics of the spin system by settingHd50.
The total density matrix att5t0 is prepared so that it read
15530
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r tot
0 5rsys

0
^ rd

0 , ~8!

wherersys
0 is diagonal in charge representation.36 For t.t0

we may describe the first step of the indirect measurem
prescription by using von Neumann’s equation

r tot~ t !5U~ t,t0!r tot
0 U~ t0 ,t !, ~9!

in which the evolution operatorU(t,t0) satisfies

i\
]

]t
U~ t,t0!5HtotU~ t,t0!. ~10!

In the second step, a direct measurement is performed on
detector to extract information about the system. Acco
ingly, we may thus project the total density matrix onto t
subspace of the detector’s degrees of freedom by perform
the partial trace

rd~ t !5Trsys„U~ t,t0!r tot
0 U~ t0 ,t !…. ~11!

Expressing the evolution operator in the interaction pict
with respect toHsys, we get

U~ t,t0!5U0~ t,t0!T
→

expF2
i

\Et0

t

dt8Hsd
0 ~ t8!GU0~ t0 ,t !

~12!

and

U~ t0 ,t !5U0~ t0 ,t !T
←

expF i

\Et0

t

dt8Hsd
0 ~ t8!GU0~ t,t0!,

~13!

where TW (TQ ) is the ~anti!time-ordering operator. Using th
above expressions in Eq.~11! we get

^surd~ t !us8&5^surd
0us8&xl

ss8~ t !, ~14!

wherexl
↑↑(t)515xl

↓↓(t) andxl
↑↓(t)5x2l

↓↑ (t) with

xl
↑↓~ t !5K TgexpS 2

i

\Eg
dt8Hsd

0 ~ t8! D L
sys

, ~15!

whereg5@ t0→t→t0# is the Keldysh time contour, and

^•••&sys[Tr„rsys
0 ~ t ! . . . …, ~16!

in which

rsys
0 ~ t !5U0~ t0 ,t !rsys

0 U0~ t,t0!. ~17!

The counting field has been redefined so that it changes
when going from the lower to the upper part of the Keldy
contour.

Equation~15! is, as expected, in agreement with the res
of Ref. 37. Note that the doubling of degrees of freedo
characteristic of the Keldysh approach, is generated dire
from the dynamics and, as pointed out by Rammer,38 this is a
generic feature of the density-matrix description to quant
dynamics. Interestingly, the authors of Ref. 39, analyzing
microscopic foundations of this formula, concluded that it
9-4
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TRANSPORT THEORY OF INTERACTING MESOSCOPIC . . . PHYSICAL REVIEW B69, 155309 ~2004!
independent of the specific charge detection scheme,
vided one neglects the internal dynamics of the detector

We remark that the measurement problem in mesosc
physics has become an area of its own, with several inter
ing recent developments such as optimal quantum detec
and controlled entanglement effects, topics of great inte
in quantum-information theory.40

III. THE MEMORY-FUNCTION FORMALISM

The measurement prescription described in Sec. II sp
fies rigorously the observational level. The information e
tracted in the detection process must be obtained from
full many-body dynamics of the coupled system via a su
ably defined projection. The memory-function formalism27 is
a systematic way of implementing such a program. T
technique, also known as the projection method, was de
oped in the 1960s by Nakajima, Zwanzig, Mori, an
Robertson41 and is one of the cornerstones of no
equilibrium statistical mechanics. Its main features can
summarized as follows:~i! it allows for a detailed analysis o
the time scales in the problem,~ii ! it provides a well-
controlled procedure to exploit possible separations of t
scales; and~iii ! it permits systematic inclusion of finite
memory effects in the dynamics. This method has been g
a powerful geometric interpretation in Ref. 42 which allow
for many useful generalizations. In the present problem
will prove convenient to introduce a geometrical extens
of the formalism by using noncommutative Grassmann co
dinates.

In the projection technique the dynamics of the system
projected onto a level of description, defined by a sm
selected set of relevant operators. We choose the follow
set:

B5$w1~r !,w1
†~r !, . . . ,wM~r !,wM

† ~r !,cs~r !,cs
†~r !%.

~18!

The expectation values of the relevant operators are fun
mental constraints on the projected dynamics and thus
order to get a well-posed problem with nonvanishing aver
values, we must introduce the following fictitious tim
dependent perturbation in the system:43

dHt5 (
a51

M E
Va

dr @ha~r ,t !wa~r !1ha* ~r ,t !wa
†~r !#

1E
Vs

dr @js~r ,t !cs~r !1js* ~r ,t !cs
†~r !#, ~19!

in which Grassmann fields have been introduced as Lagra
multipliers. The average values of the electron fields
given by xa(r ,t)5^wa(r ,t)&J,J* , xa* (r ,t)5^wa

†(r ,t)&J,J* ,
zs(r ,t)5^cs(r ,t)&J,J* , andzs* (r ,t)5^cs

†(r ,t)&J,J* , in which
we defined the following vector fieldJ5(h1 , . . . ,hM ,js).
The expectation valuê•••&J,J* is calculated with the fol-
lowing canonical density matrix:43
15530
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Z~0!

Z~J,J* !
r~0!TgexpS 2

i

\Eg
dt8dHt8~ t8! D .

~20!

The canonical partition functionZ(J,J* ) is determined from
the identity Trr(J,J* )51.

Following up the conventional implementation of the pr
jection formalism the next step would be to project out t
evolution equation of the vector field of average values,K
5(x1 , . . . ,xM ,zs), and thus derive the associated memo
function. Here, we shall instead take an alternative route
has the advantage of allowing a direct link with Keldy
Green’s-function technique. We start by defining the co
nected contour-ordered Green’s function44

Gss8(r ,tur 8,t8)5 i
d2ln Z~J,J* !

dJs8
* ~r 8,t8!dJs~r ,t !

U
J,J* 50

, ~21!

wheres,s851,2, . . . ,M11. Since the mathematical struc
ture of the projection formalism is quite similar to that
equilibrium statistical mechanics, we may define differe
‘‘thermodynamic potentials’’ via generalized Legendre tran
formations. Introducing the compact notation,x5(r ,t/\),
we consider the following potential:

F~K ,K* !52 ln Z~J,J* !1 i E dx@K ~x!•J~x!

1K* ~x!•J* ~x!#. ~22!

The Legendre transformation is completed by using
relations J(x)52 idF(K ,K* )/dK (x) and J* (x)
52 idF(K ,K* )/dK* (x). TakingF(K ,K* ) as a generating
functional we may define the contour-ordered vert
function44

Gss8(r ,tur 8,t8)52 i
d2F~K ,K* !

dKs8~r 8,t8!dKs* ~r ,t !
U

K ,K* 50

.

~23!

Combining Eq.~21! with Eq. ~23! we obtain the important
relation

(
n
E dyGsn~xuy!Gns8~yux8!5dss8d~x2x8!. ~24!

We remark that a similar equation applies for the Gree
function gss8(xux8) and the vertex functiongss8(xux8) of
the uncoupled leads-sample system at times prior tot0. We
proceed by introducing the contour-ordered memory funct

Sss8~xux8![gss8~xux8!2Gss8~xux8!, ~25!

which, in turn, implies the validity of Dyson’s equation

G5g1g* S* G5g1G* S* g, ~26!

expressed here in a self-evident compact notation.
memory function is a central concept in the projection te
nique, since it contains detailed information about the rel
9-5
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ation processes and can thus be used to exploit separatio
time scales and to describe retardation effects.

We are now in position to make contact with the Keldy
Green’s-function formalism. As can be shown, by using Le
greth theorem,45 adopting the Keldysh contour in the abov
derivations leads to matrix equations in a fictitious 232
space. We shall take the standard definition35

Ā5S Ar AK

0 Aa D , ~27!

where Ar (a) is the retarded~advanced! component andAK

5A.1A, is the Keldysh component. The less-than~more-
than! functionsA,(.) satisfy the following relationAr2Aa

5A.2A,. We may thus write Dyson’s equation~26! using
Keldysh matrix functions as follows:

Ḡ5ḡ1ḡ* S̄* Ḡ5ḡ1Ḡ* S̄* ḡ. ~28!

Note that the self-energy matrixS̄ of the Keldysh-Green’s
function formalism plays a role similar to that of the memo
function in the projection technique. We stress that
Keldysh method, although less general, has the advantag
being perfectly adapted to powerful field-theoretical metho
such as path-integral representations, saddle-point ana
and Feynman diagrams. This is particularly relevant in
plications that require implementations of sophisticated te
niques such as the dynamical renormalization-gro
approach.46

IV. A DIFFERENT FORMULA FOR THE GENERATING
FUNCTION OF CHARGE-COUNTING STATISTICS

In this section we shall derive an explicit connection b
tween Eq.~15! and the single-particle Green’s function of th
Keldysh formalism, thereby providing a different useful fo
mula for charge-counting statistics. We begin by writing
matrices in Dysons’s equation~28! in a leads-sample block
structure, so that we get

Ḡ5S Ḡl Ḡls

Ḡsl Ḡs
D ~29!

for the coupled Green’s function,

Ḡ5S ḡl 0

0 ḡs
D ~30!

for the uncoupled Green’s function, and

S̄5S 0 S̄ ls

S̄sl 0
D ~31!

for the self-energy describing the coupling. Inserting E
~29!–~31! into Eq. ~28! and gauging out the influence of th
detector we obtain the following matrix equations:

Ḡl5ḡl1ḡlS̄ lsḠsl5ḡl1ḠlsS̄slḡl , ~32!
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Ḡls5ḡlS̄ lsḠs5ḠlS̄ lsḡs
(2l) , ~33!

Ḡsl5ḡs
(2l)S̄slḠl5ḠsS̄slḡl , ~34!

and

Ḡs5ḡs
(2l)1ḡs

(2l)S̄slḠls5ḡs
(2l)1ḠslS̄ lsḡs

(2l) , ~35!

where the gauge transformation is defined by

ḡs
l~x,x8!5eiāl(x)ḡs~x,x8!e2 i āl(x), ~36!

with

āl~x!5
1

2
t̄ (

a51

M

la~ t !u„f a~r !…, ~37!

where

t̄5S 0 1

1 0D . ~38!

Combining Eqs.~32! and~35! with Eqs.~33! and~34! we get
the renormalized Dyson equations

Ḡl5ḡl1ḡlS̄ l Ḡl5ḡl1ḠlS̄ l ḡl ~39!

and

Ḡs5ḡs
(2l)1ḡs

(2l)S̄sḠs5ḡs
(2l)1ḠsS̄sḡs

(2l) , ~40!

where the renormalized self-energy functions are given b

S̄ l5S̄ lsḡs
(2l)S̄sl ~41!

and

S̄s5S̄slḡlS̄ ls . ~42!

In the Keldysh formalism it is usual to define a matrix cu
rent that satisfies extended conservation laws thus gener
ing standard charge conservation. For the present system
total matrix current inside the sample at timet in the pres-
ence of the counting fieldla(t) reads simply1

Ī s
l~ t !5

e

\
t̄E

Vs

dr @S̄s
lḠs

l2Ḡs
lS̄s

l#~r ,tur ,t !, ~43!

in which the gauge transformed functions are defined a
Eq. ~36!. The total charge transferred to the system dur
the measurement is given byQs(T0)5 liml→0Qs

l(T0),
where

Qs
l~T0!5

1

2E0

T0
dtTrK„Ī s

l~ t !…, ~44!

in which TrK is the trace over Keldysh 232 matrix space.
Inserting Eq.~43! into Eq. ~44! and using Eq.~36! we get

Qs
l~T0!52 ie (

a51

M

TrS Ḡs
l
]S̄s

l

]la
D , ~45!
9-6
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where Tr[TrK*dx. This expression can be further simplifie
by using the following relation obtained from Dyson’s equ
tion ~40!:

]Ḡs
l

]la
5Ḡs

l
]S̄s

l

]la
Ḡs

l , ~46!

thus we get

Qs
l~T0!52 ie (

a51

M
]

]la
Tr ln~Ḡs

l!. ~47!

DefiningQsa(T0)5 liml→0Qsa
l (T0) as the charge transferre

into the sample through interfacea during measuremen
time T0, we may writeQs

l(T0)5(a51
M Qsa

l (T0) and there-
fore

Qsa
l ~T0!52 ie

]

]la
Tr ln~Ḡs

l!. ~48!

From the measurement prescription, i.e., Eq.~15!, we get

Qsa
l ~T0!5 ie

]

]la
ln xl

↑↓~T0!. ~49!

Combining Eq.~48! with Eq. ~49! and using the normaliza
tion conditionx0

↑↓(T0)51, we obtain

xl
↑↓~T0!5detS Ḡs

0

Ḡs
lD . ~50!

From Dyson’s equation one can show that

Ḡs
l5Ḡs

01Ḡs
l~S̄s

l2S̄s
0!Ḡs

0 , ~51!

where S̄s
05S̄s5S̄slḡlS̄ ls . Inserting Eq.~51! into Eq. ~50!

we get the central result of this section

xl
↑↓~T0!5det@11Ḡs

l~S̄s
l2S̄s

0!#21. ~52!

It represents a generalization to many-body physics of
Levitov-Lesovik functional determinant formula,28,37 which
has been successfully used to describe charge-counting
tistics in noninteracting mesoscopic systems in both dc
ac transport regimes.47 We remark that Eq.~52! can be used
to establish a link between physical observables~transferred
charge, conductance, shot noise, etc.! and many-body corre
lation functions.

There is a remarkable duality in this problem that can
demonstrated by using Eq.~50! and Dyson’s equations~32!–
~35! as follows:
15530
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xl
↑↓~T0!5detS Ḡs

0

Ḡs
lD 5detS Ḡs

0

Ḡs
D 5

det~11S̄s
0Ḡs

0!

det~11S̄sḠs!

5
det~11S̄slḡlS̄ lsḠs

0!

det~11S̄slḡlS̄ lsḠs!
5

det~11ḡlS̄ lsḠs
0S̄sl!

det~11ḡlS̄ lsḠsS̄sl!

5detS Ḡl
0

Ḡl
D 5detS Ḡl

0

Ḡl
lD , ~53!

therefore

xl
↑↓~T0!5det@11Ḡl

l~S̄ l
l2S̄ l

0!#21, ~54!

whereS̄ l
05S̄ lsḡsS̄sl .

The existence of such duality in the description of me
scopic transport underlines the equivalence of two w
developed approaches to describe coherent transport of
interacting particles: the scattering-matrix method48 and the
impurity average Green’s-function technique.1 In the former
free asymptotic states are defined in the leads and the m
scopic details of the dynamics inside the sample are eli
nated by introducing scattering matrices with certain stoch
tic properties, which can be justified by means of maximu
entropy arguments. The impurity average Green’s functi
on the other hand, satisfies a microscopic equation of mo
with open boundary conditions, derived from an appropri
elimination of degrees of freedom in the leads. These me
ods are considered complementary and have been use
produce a number of reliable results both perturbative, s
as conductance fluctuations and weak localization effects1,48

and nonperturbative, such as the full scaling function for
ballistic-diffusive crossover in quantum wires49 and nonana-
lytic scaling of conductance cumulants in dirty unconve
tional superconductors.50

V. TRANSFERRED CHARGE DRIVEN BY A PERIODIC
TIME-DEPENDENT VOLTAGE

In this section we carry out our approach in a concr
example. Needless to say that the exactness of the equa
cannot be maintained indefinitely and approximations w
eventually be necessary to perform actual calculations of
servable quantities. An important merit of the present form
ism is the physical transparency~conservation laws, sum
rules, etc.! with which such approximations can be intro
duced, thus allowing unrestricted use of the traditional lite
ture on nonequilibrium many-body physics.

Assuming absence of direct processes between diffe
leads, we may decompose the self-energy in terms of fu

tions localized at the interfaces as followsS̄s
l5S̄s1

l 1•••

1S̄sM
l . The charge transferred into the sample through

terfacea during measurement timeT0 is thus given by

Qsa~T0!5
1

2
lim
l→0

E
0

T0
dtTrK„Ī sa

l ~ t !…, ~55!

where
9-7
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Ī sa
l ~ t !5

e

\
t̄E

Vs

dr @S̄sa
l Ḡs

l2Ḡs
lS̄sa

l #~r ,tur ,t !. ~56!

Let us now introduce our central approximation. Taking
spiration from the general theory of quantum dissipat
systems,51 we can emulate the influence of the leads in
sample by means of an effective electromagnetic envir
ment, which acts as the source and sink of the current fl
ing through the system. From a physical point of view, o
expects that the many-body dynamics~quasiparticles and
collective modes! in the leads should imply a wide separ
tion of time scales associated with~i! tunneling into the
sample,~ii ! occupation and pinning of single-particle stat
at the interfaces, and~iii ! quantum coherence of charg
propagation. In principle, one could set up a projection f
malism to rigorously derive the reduced dynamics of
measurement process and exploit the resulting time-s
separation by performing expansions about the Markov
limit. Here, we shall instead take advantage of the con
nient structure of the Keldysh formalism and propose a sy
metry guided conserving approximation for the memo
function that implements the separation in time scales
scribed above, and then use it to derive the appropr
boundary condition for charge transport through the op
sample. It goes without saying that a rigorous microsco
many-body justification for this approximation together w
its regime of validity, which will probably involve ratios o
the above time scales, is an important issue for future
search. We remark that this approximation is physica
equivalent to the wide-band limit, introduced by Jauho, W
green, and Meir16 within a nonequilibrium Green’s-function
formalism for time-dependent transport.

The components of the self-energy matrix functio

S̄sa(t,t8)[S̄sa(r ,tur 8,t8), describing the coupling of the
system to the leads during the measurement timeT0, are
approximated as follows:

Ssa
K ~ t,t8!5 iGsa@2 f a~ t2t8!e2 iDa(t,t8)2\d~ t2t8!#

~57!

and

Ssa
r ,a~ t,t8!57

i\

2
Gsad~ t2t8!, ~58!

in which Gsa[Gsa(r ,r 8) is the linewidth function that con
trols the tunneling rates between leada and the sample. Note
that only the Keldysh componentSsa

K (t,t8) contains finite
memory effects. The single-particle occupation function
lead a, f a(t), is defined as the Fourier transform of th
reduced distribution functionna(E), which is considered
constant during the observation timeT0 and includes inter-
action effects,

f a~ t !5E
2`

` dE

2p
na~E!e2 iEt/\. ~59!

The functionDa(t,t8) accounts for the phase accumulat
by the carrier as it transverses the lead-sample interfac
the presence of an effective self-consistent inhomogene
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time-dependent mean-fieldVa(t), which, in principle, could
be related to the local electrostatic potential associated w
the formation of Landauer dipoles~a many-body effect!, so
that

Da~ t,t8!5wa~ t !2wa~ t8!, ~60!

where

wa~ t !52
e

\E2`

t

dt8Va~ t8!. ~61!

In the linear regimeVa(t) is proportional to the external a
voltage.

Let Fa(t,t8)5za(t) f a(t2t8)za* (t8), where za(t)5exp
@2iwa(t)# and define

Fa~E,E8!5E
2`

` dt

\ E
2`

` dt8

\
ei (Et2E8t8)/\Fa~ t,t8!, ~62!

then, in the above-described approximation, Eq.~55! can be
written as

Qsa5eE
0

T0
dtE

2`

` dE

2pE2`

` dv

2p
e2 ivtR~E1\v,E!,

~63!

where

R~E,E8!5 (
b51

M

Fb~E,E8!Tr$GsaGs
0r~E!

3@Gsb1dab„i ~E2E8!2Gs…#Gs
0a~E8!%. ~64!

This expression can be further simplified by assumingVa(t)
to be a periodic function of periodt0 and by taking the
measurement time to cover several cycles, i.e.,T05nt0 with
n an arbitrary integer. We obtain

Qsa5
e

h (
b51

M E
2`

`

dECab~E!@Ka~E!2Kb~E!#, ~65!

where

Cab~E!5Tr@GsaGs
0r~E!GsbGs

0a~E!# ~66!

and

Ka~E!5E
0

T0
dtza~ t !expS i\

]2

]E]t Dna~E!za* ~ t !. ~67!

Applying the Hubbard-Stratonovitch transformation

ei\]2/]E]t5E dzdz*

2p
expS 2uzu22

\

h
z*

]

]E
2 ihz

]

]t D ,

~68!

with h→01, we get

Ka~E!5E
0

T0
dtna@E1eVa~ t !#, ~69!

which together with Eqs.~65! and ~66! is our final result.
9-8
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From a formal point of view it coincides exactly with
multiprobe generalization of the time-average conducta
formula derived in Ref. 16 in the wide-band limit and assu
ing barrier heights that are time independent. As such,
numerical methods available in the literature, such as,
instance, that of Ref. 18, to evaluate such expressions ca
used here as well. One should be mindful, however, of
different physical conditions under which this result was d
rived here. First, in our derivation we found no necessity
introduce different local chemical potentials in the syste
This crucial point has been the center of much debate in
recent literature.23,24 Second, the projection technique offe
a systematic method to reintroduce the memory effects
glected in the wide-band limit, if they turn out to be releva
for comparison with experimental data, via expansions
ratios of widely separated time scales. The approximat
therefore, can, at least, in principle, be well controlled. Thi
when combined with the many-body extension of Levito
Lesovik functional determinant formula, Eq.~52!, our for-
malism allows for a unified description of the full countin
statistics of the charge measurement, not just the con
tance. Finally, the projection formalism provides a natu
framework for implementing powerful renormalization
group ~RG! schemes, such as those of Refs. 19 and 21
interpreting each RG step as a projection in Liouville spa

We conclude this section by providing a short derivati
of the Landauer-Bu¨ttiker formula for conductance coeffi
cients of noninteracting systems. Taking the dc limit@Va(t)
5Va# in Eq. ~69! and assuming identical leads@na(E)
5n(E)# we obtain

Ka~E!5T0n~E1eVa!. ~70!

Inserting Eq.~70! into Eq.~65! using the definition of curren
I a5Qsa /T0 and taking the linear regime limit we get

I a5 (
b51

M

GabDVba , ~71!

whereDVba[Vb2Va and the conductance coefficientsGab
are given by

Gab5
G0

2 E
2`

`

dECab~E!S 2
dn

dED , aÞb. ~72!

Assuming further that the electrons in the sample are no
teracting, the self-energy contribution to the Green’s funct
in Cab(E) contains only terms related to tunneling pr
cesses, which can be described as a scattering problem
ing the Weidenmu¨ller-Mahaux relation52 between the on-
shell scattering matrixSnm

ab of the leads-sample system an
the corresponding Green’s function and taking the ze
temperature limit, we recover the Landauer-Bu¨ttiker formula

Gab5G0(
n51

Na

(
m51

Nb

uSnm
abu2, ~73!

in which the sums run over the propagating channels in
leads.
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VI. AN EXACT SOLUTION: BALLISTIC CHAOTIC
CAVITY

A central topic in mesoscopic physics is the description
universal~model independent! features of coherent transpo
in the presence of complex chaotic dynamics. In this s
nario, two categories of physical systems stand out as
ticularly relevant from an experimental point of view: diso
dered conductors with elastic impurity scattering a
ballistic cavities with specular boundary scattering. A fund
mental problem in the field is to account for the interpl
between interaction effects and fluctuating phenomena a
ing from phase-coherent chaotic scattering in such syste
Although considerable progress has been achieved rece
in the perturbative regime with the development of a fie
theory approach53 to the Keldysh formalism, the nonpertu
bative sector of the theory appears beyond the reach of
rent techniques.54 This is rather unfortunate, since it i
precisely in the nonperturbative regime that beautiful univ
sal quantum transport effects are observed.

In this section, we shall illustrate such universal featu
by calculating exactly the average total charge transfer
during an observation timeT0, to a noninteracting ballistic
chaotic cavity coupled to an arbitrary number of termin
and in the presence of a time-dependent periodic field. A
motivation one could regard the result of this problem a
necessary first step towards the development of a nonpe
bative renormalization-group treatment of the interact
system. Furthermore, it may also help by setting the app
priate language and concepts, on which to build the
theory. Note that the absence of nontrivial interaction effe
i.e., beyond setting up the relevant quasiparticles and st
lizing the boundary conditions, in the dynamics of the car
ers inside the sample, makes it possible to use the powe
nonperturbative supersymmetry method.55

We start by making the standard simplifying assumpt
that chaotic scattering is confined to the sample region
that Cab(E) is a strongly fluctuating function, whileKa(E)
is sharp. Our objective is then to calculate the average va
^Cab&. From Eq.~66! one can easily verify that

^Cab&5
]2

]ha11]hb21
^Z~h!&U

h50

, ~74!

whereZ(h) is a generating function, represented by the f
lowing superdeterminant~see Ref. 55 for the definitions o
the basic operations and functions in supermathematics!:

Z~h!5Sdet21/2@11Js~h!Gs
0#, ~75!

in which we have defined a block-diagonal matrix of r
tarded and advanced Green’s functions

Gs
05diag~14^ Gs

0r ,14^ Gs
0a!, ~76!

where 14 is the 434 unit matrix. The source field is repre
sented by

Js~h!5 (
a51

M

(
l 51

2

(
s56

ha lsFls ^ Gsa , ~77!
9-9
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where

F1s5S 0 K2s

K1s 0 D , F2s5S 0 K1s

K2s 0 D , ~78!

and the submatricesKls are defined as

Kl 15S kl 0

0 0D , Kl 25S 0 0

0 kl
D , ~79!

with k15diag(1,0) andk25diag(0,1).
The average generating function^Z(h)& can be calculated

using the standard supersymmetry technique. It consist
performing a map onto a nonlinears model defined in a
coset manifold that describes the target space of mas
Goldstone modes associated with a spontaneously bro
hidden global symmetry. There are ten universality classe
such s models, as has recently been pointed out
Zirnbauer.56 Here we shall consider the orthogonal Wigne
Dyson class, appropriate to systems with time-reversal s
metry and spin-rotation invariance. We end up with a rep
sentation of̂ Z(h)& as an integral over a coset space, who
points are parametrized by supermatricesQ satisfying the
constraintQ251,

^Z~h!&5E dQ)
a51

M

)
n51

Na

Zan~Q,Pa!, ~80!

where

Zan~Q,Q8!5Sdet21/2~11e2kanQQ8!, ~81!

with kan being parameters related to the tunneling probab
ties as followsTan5sech2(kan/2). Furthermore

Pa5L22i(
l 51

2

(
s56

ha lsFls , ~82!

where L5diag(14 ,214). Inserting Eq.~80! into Eq. ~74!
yields

^Cab&52 (
n51

Na

(
m51

Nb

^Str~Qan
11!Str~Qbm

21!&Q

22dab (
n51

Na

^Str~Qan
11Qan

21!&Q , ~83!

where

Qan
ls 5~11ekanLQ!21LFls ~84!

and the averagê•••&Q is defined as

^A&Q5E dQA~Q! )
a51

M

)
n51

Na

Zan~Q,L!. ~85!

The matrix conditionQ251 can be solved explicitly using
Efetov’s parametrization

Q5U21S coshû i sinhû

i sinhû 2coshû
D U, ~86!
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whereU is an 838 supermatrix containing all Grassman
and phase variables, integration over which can be done
plicitly in our problem. The matrixû contains the relevan
variables and is given by

û5S uB 0

0 uF
D , uB5S u1 u2

u2 u1
D , uF5 iu012, ~87!

whereu1 ,u2.0 and 0,u0,p. The integration measure in
these coordinates reads

dQ5
~12l0

2!dl0dl1dl2dU

25~l0
21l1

21l2
222l0l1l221!2

, ~88!

wherel05cosu0, l15coshu1, andl25coshu2. It turns out
to be convenient to perform a further change of variab
through

l05122m0 ,

l1
2511m11m212m1m212Am1~11m1!m2~11m2!,

l2
2511m11m212m1m222Am1~11m1!m2~11m2!,

~89!

wherem1 ,m2.0 and 0,m0,1. Evaluating Eq.~83! using
the coordinates above, we obtain

^Cab&5 (
n51

Na

(
m51

Nb

Anm
ab1dab (

n51

Na

~Ann
aa1Bn

a1e2kanTan!,

~90!

in which

Anm
ab5E

$m%
P~$T%,$m%!

f ~Tan
21 ,$m%!2 f ~Tbm

21 ,$m%!

Tbm
212Tan

21
~91!

and

Bn
a5E

$m%
P~$T%,$m%!

f ~Tan
21 ,$m%!2

Tan
21~Tan

2121!
. ~92!

We defined

E
$m%

5E
0

1

dm0E
0

`

dm1E
0

`

dm2J~$m%!, ~93!

where

J ~$m%!5
m0~12m0!um12m2u

23)
s51

2

~m01ms!
2Ams~11ms!

. ~94!

Furthermore

P~$T%,$m%!5 )
a51

M

)
n51

Na 12Tanm0

A~11Tanm1!~11Tanm2!
,

~95!

and finally
9-10
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f ~x,$m%!5x~12x!S 2

x2m0
2(

s51

2
1

x1ms
D . ~96!

Equation~90! is the central result of this section. Combine
with Eq. ~65! it represents the exact result for the problem
charge transfer into a noninteracting chaotic ballistic cav
in the presence of a periodic time-dependent driving field.
such, it may serve as a useful starting point to address
full interacting problem by means of renormalization-gro
concepts. Interestingly, in the Coulomb blockade regime
which the system is weakly coupled to the leads,Ta
[(nTan!1, so that the electron decay widths are mu
smaller than the charging energy, a working framework
treating the interplay between interaction and phase co
ence in the presence of chaotic dynamics is already availa
with remarkable predictions.19 In the other extreme o
weakly interacting systems, strongly coupled to the meas
ment leads, charging effects, such as the dynamical Coul
blockade, are irrelevant and the RG approach of Ref. 21
be used to study the low-frequency behavior of charge tra
port. For systems with arbitrary coupling to the leads a
interaction strength, however, competitions of several
evant time scales will lead to a very rich diagram of physi
regimes, which appears to be beyond the reach of cur
frameworks. The projection technique, implicit in the pres
approach, has the potential to handle such difficulties and
development of the associated RG scheme is an exciting
ject for future research.

We conclude this section by presenting an important re
tion between the average coefficients^Cab& that follows
from a Ward identity. It reads

(
b51

M

^Cab&5 (
b51

M

^Cba&5 (
n51

Na 4

ekan11
. ~97!

To appreciate the usefulness of Eq.~97!, consider the simple
limit of ideal contacts,Tan51, in which case Eq.~90! reads

^Cab&52NaNbAN1dabNa~112AN!, ~98!

where AN is a constant andN5N11•••1NM . From Eq.
~97! we get

(
b51

M

^Cab&52Na , ~99!

thereforeAN51/@2(N11)# and from Eq.~98! we obtain

^Cab&5
NaNb

N11
1dab

Na~N12!

N11
. ~100!

In the Landauer-Bu¨ttiker regime, the resulting average co
ductance coefficientsGab /G05NaNb /(N11) agree with
independent calculations using a maximum-entro
approach.57 For systems with broken time-reversal symm
try, a detailed analysis of the multiterminal average cond
tance coefficients in several regimes of interest has been
ried out in Ref. 58 and most conclusions apply here mut
mutandi.
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VII. DISCUSSION AND SUMMARY

Mesoscopic transport is a very challenging and fast gro
ing field of research. From an experimental point of view
provides an almost unique and versatile ground to add
fundamental issues related to quantum kinetics and has le
a substantial enhancement in our understanding of su
topics such as measurement theory and decoherence
nomena. From a theoretical viewpoint, it gives unpre
edented opportunities to test in laboratories the conseque
of highly abstract mathematical constructions such as R
mannian supermanifolds and Liouville operator space. In
context, the Landauer-Bu¨ttiker approach~LBA ! stands out as
a great intellectual achievement. Its phenomenological s
cess helped shaping up the field during the last decade
has, as a by-product, deeply influenced an entire genera
of researchers in mesoscopic physics. However, pres
new challenges brought about by recent experiments
technological demands may be stretching the theory well
yond its regime of validity. Generalizing LBA, while keepin
as much as possible its conceptual simplicity, has prove
be a very hard problem indeed. The crux of the matter is
fact that LBA is deeply founded upon single-particle phys
and on a phenomenological description of the measurem
process. As such, there appears to be no simple derivatio
its results following from standard many-body physi
through a well-defined logical sequence of conserving
proximations. This unfortunate state of affairs has led
much controversy and criticisms in recent literature.23

In this work, we proposed a formulation of mesoscop
transport using the language of nonequilibrium many-bo
physics combined with recent developments in measurem
theory. To be concrete, we focused on the problem of m
suring the counting statistics of particle transfer through
phase-coherent sample, during a finite observation time
the presence of a time-dependent inhomogeneous dri
field. Following pioneering ideas by Levitov and Lesovik,28

we derived the fundamental connection between an obs
able quantity, the off-diagonal components of the detecto
reduced density matrix, and the generating function
charge-counting statistics. The final expression is largely
dependent from the specific charge detection scheme
provides the microscopic foundation for the phenomenolo
cal measurement description that is implicit in LBA. Furthe
more, it brings out the singlemost important feature of o
approach, which is the systematic exploitation of the tim
scale separations in the underlying many-body problem le
ing ultimately to simplified effective descriptions, with LBA
being just the simplest case, i.e., single particles in con
with local reservoirs.

The formalism is set up using a conjunction of th
memory-function approach with Keldysh Green’s-functi
technique, thereby circumventing the need to specify the
tails of the system-detector and system-leads couplings.
permitted us to derive a different formula for charg
counting statistics that generalize, by including many-bo
effects, the determinant formula by Levitov and Lesovik28

Our fully quantum-mechanical description of both th
sample and the leads helped us in uncovering a fundame
9-11
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duality in the problem, thereby providing a justification f
the equivalence between two complementary description
single-particle mesoscopic transport:~i! the Green’s-function
technique, which contains an implicit elimination of th
leads by adopting a specific set of boundary conditions in
diffusionlike equations for diffusons and cooperons, and~ii !
the scattering-matrix approach, which contains hypothesi
stochastic nature that implies an elimination of the degree
freedom inside the sample.

We illustrated the use of the approach by studying in
tail the average charge transferred to a sample, during
observation timeT0, in the presence of a time-depende
voltage. We adopted the point of view of eliminating th
leads and approximated its influence on the sample by
posing a mathematical expression for the memory func
~or self-energy function! that accommodates a wide sepa
tion in time scales associated with tunneling, occupation
single-particle states at the boundaries, and phase mem
J

c

. M

wa

C

.H
A.

hy

L.
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Interestingly, our hypothesis bears some similarity with th
of Ref. 39, in which the influence of the leads was simula
by a fluctuating electromagnetic environment. Our cen
result, Eq.~65!, is physically equivalent to a multiprobe gen
eralization of the time-average conductance formula deri
in Ref. 16 and reduces to the Landauer-Bu¨ttiker expression
in the noninteracting linear time-independent limit. We co
pleted the analysis by calculating an exactly solvable syst
a noninteracting ballistic cavity with chaotic dynamics. T
results, obtained using the supersymmetry method, may
used to set the standards of the kind of universal descrip
we are looking for in a yet to be constructed nonperturbat
approach to interacting systems with chaotic single-part
dynamics.
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