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Entropy of point defects calculated within periodic boundary conditions

E. Raul$ and Th. Frauenheim
Theoretical Physics, Physics Department, Faculty of Science, University of Paderborn, Warburger Strasse 100,
D-33098 Paderborn, Germany
(Received 30 September 2003; revised manuscript received 22 December 2003; published 30 April 2004

A possibility to calculate both the entropies of formation and migration of point defects in semiconductors
is presented. Knowledge of the entropic contributions is especially important for the correct description of
high-temperature processes like growth or annealing. Using the self-consistent charge density-functional based
tight-binding method SCC-DFTB we have calculated the predominant part of the entropy, resulting from
lattice vibrations. Strong finite-size effects have been observed while investigating the formation entropies of
isolated vacancies in diamond and silicon. We demonstrate how these problems can be overcome with the help
of linear elasticity theory.
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[. INTRODUCTION We describe how a systematic study of the influence of
entropic contributions is possible within common supercell
In common computer simulations of point defects inmethods. As it is still a rather time consuming task, we have
semiconductors, the total energy obtained from quantumused the computationally efficient self-consistent charge—
mechanical calculations at a temperatlire0 K is used for ~ density-functional-based  tight-binding (SCC-DFTB
calculating the formation energies or the migration energynethod for our investigations.
barriers in diffusion processes, respectively. It would, admit- This paper is organized as follows. Section Il gives a short
tedly, be thermodynamically correct to consider also thedescription of the computational method and the theoretical
temperature-dependent contributions of entropy. In the pasbackground of how the vibrational entropy can be obtained.
calculations were computationally too demanding to take thign Sec. Ill, we calculate the specific heat for silicon, dia-
term (fully) into account. Its neglect can often be justified bymond, and SiC, and validate the use of our approximate
the similarity of the compared structures, which suggestgnethod with first-principle calculations and experimental
comparable entropic contributions and thus only small endata. In Sec. IV, we derive the correction terms to the forma-
tropy differences. In some cases, though, it is important tdion entropy from elasticity theory at the example of isolated
consider the entropic corrections to the total energy. For th#acancies. The results for the vacancy in diamond and in
correct description of high-temperature processes, i.e., defegtlicon are discussed in Sec. V. Finally, in Sec. VI, we briefly
migration processes during the postimplantation annealingummarize the influence of the vibrational entropy on acti-
phase, entropic corrections can become quite large, sinceV&tion energies for migration processes.
substantial rearrangement of the bonding situation around the
defects can occur. This can result in strong changes in the |I. LATTICE VIBRATIONS AND FREE ENERGIES
local vibrational modes linked to the defect, and the elevated . . .
temperatures amplify this effect, so that the entropic contri- FOr the calculation of formation energies of defects or
bution —T-AS is no longer negligible. In our previous in- activation energies of migration processes, _th(_a energies of
vestigations of annealing processes in silicon car&e), different st_ructures have_ to be compared. T_hls is m(_)st often
we have found that activation energies in the range ofione by simply comparing the total energigg, obtained
~5 eV for vacancy- and antisite-related processes are lowToM: €.g., supercell calculations. Spoken thermodynami-
ered by up to 1.3 eV at common annealing temperatufes (cally, however, the grystaW|th the defectis a great canoni-
—1800 K), if one considers the entropic contributidrizur- cal ensemble, and it would be thermodynamlcally correct to
thermore, knowing the formation entropy of a defect allowsCompare the Gibbs free enthalpies
the calculation of its concentration. In case of migration pro-
cesses, it permits the caICl_JIation of diffusivities that can be G=U-T-S+ P'V+E wiN; (1)
directly compared to experimental ddtee also Ref.)1 [
In this work, we present the theoretical background of ; -
these calculations, and further considerations about the ca?—f the structures. Herd) is the internal energy
culation of formation entropi_es \_/vithin sup_ercell methods. In U=Et Uy, )
contrast to the case of activation energies, the number of
atoms can be different in the structures that have to be conwhere the first term, the static part, is the total endtgy, as
pared in order to calculate the formation entropy. Due to thedbtained from quantum-mechanical calculati¢as usual at
long range character of the entropy and additional finite-sizd =0 K). The termU,;, is caused by lattice vibrations. The
effects, i.e., a strong dependence of the results on the size sécond term in Eq(l) accounts for the temperature depen-
the supercell used, elasticity theory has to be used in combdence and the entropic contributions. The tgrnV, i.e., the
nation with quantum-mechanical calculations. dependence ofz on pressure and volume is usually ne-
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glected, since most often systems are treated for constamthich is defined by the second derivatives of the energy
pressure and/or volume conditions. The last term accountsaving the eigenvalueeiz. The most common way to con-
for the change in particle numbét; with the chemical po-  struct the Hessian matrix is to displace each ai@mthe
tential w; . defective region by *=Ar, in six directions. Based on the
Due to the immense computational effort needed to calfijte differences in the forces in these slightly different ge-
culate the entropand the vibrational part dfl, these terms g metries, the Hessian matrix can easily be constructed. Its
are usually neglected. In many cases, this is justified by the,psequent diagonalization yields the desired frequencies.
similarity of the structures that are compared, so that the 5 4 ¢ the high computational demands, initio meth-

change in entropAS is, indeed, very small. In some CasSes 4ds are often limited to the use of small supercells and the
however, as, e.g., strong rearrangements of the lattice, it is

: tant t er the terf S licitly. i dcular at alculation of the local vibrational modes for small defective
Important to consider the term- S explicitly, in particular a regions only. Furthermore, the diagonalization of large ma-
high temperatures. In this work, we present a way to calcu

. . trices can make numerical problems. A common approach is,
late U andSand obtain, thu.s, the free energy of formgﬂon Oftherefore, to use the local harmonic approximatithiA)
a defect and the free activation energy for migration pro

f defect for the nearest and next-nearest neighbors of the defect, in
cesTsr:as 0 te ecg ist £ th f tional. th which the atoms are treated as independent oscilldtas,
e entropy > consists of the configurational, the e.g., Refs. 7,8 The advantage is that the diagonalization of
electron-hole pair, and the vibrational entropgf. Refs.

3-5. The configurational term is given by the number of large matrices in order to obtain the frequencies is circum-
- . ; . ) . vented. As shown, e.g., in Ref. 9, thi roximation yiel
possible configurations in which the defect can exist. Th ented. As shown, e.g., ef. 9, this approximation yields

8n some cases rather poor results.
second term is usually negligibly snfa#ind shall also not be P

. - Lo Other, more approximate methods often do not reach the
d|§cussed further. .The _prev.allmg contributions to the entromﬁecessary accuracy in the description of the forces, which is
arise from the lattice vibrations. '

A ) Planck distributi fh . illat required for the calculation of vibrational frequencies. A very
ssuming a Flanck distribution of harmonic 0SCIllalors, qiciant method which at the same time in its accuracy is

Uvip Can be written as close toab initio methods is the SCC-DFTB methddi this
3N ho 1 work, we have used the SCC-DFTB method for the calcula-
Uyp= > [ ! +ho, (3y  tion of the relaxed geometries, the migration paths, and the
=1 |expfiw/kgT)—1 2 vibrational spectra of all defects discussed. The vibrational

frequencies are obtained from the calculation and diagonal-
ization of the complete dynamical matrix for the supercells
used. Throughout this work, a minimal basis set and the
I'-point approximation were use@A detailed discussion of
the accuracy of this approach in comparison to comrmalon
initio approaches can be found in Ref) If. not otherwise

(compare, e.g., Ref.)6Here, w; are the eigenfrequencies
obtained from the calculation of the vibrational spectrum of
the defect.T is the temperature.

From this equation, the entrofy can be calculated ac-
cording to the thermodynamic relation

9S 1 1 stated, defects were modeled using cubix@&@x 3) super-
(_> = = , (4) cells containing 216 atoms. Since the potential-energy sur-
Ju VN (ﬂ T(U,V.N) face of silicon is extremely flat, we have checked conver-
s gence by repeating the same calculations for the isolated

VN o s
) vacancy within the (& 4x4) supercell containing 512 at-
assuming constant volumé (as already stated abovend  gms.

constant number of particles. By comparing our resultsfor a perfect crystal with
With Egs. (3) and (4), the expression for the vibrational ayailable data of first-principle methods AIMPR@ef. 10
entropy Sy, becomes and FHI we will show in the following that the accuracy of
3N . the calculated vibrational frequencies is sufficient to obtain
Su=k E (@ exp( @) _ } the derived quantities, such as the heat capacity and the en-
TP | kT kg T tropy, with deviations between the different methods of sub-

stantially less than 0.1 eV.

—In

1 - ﬁwi
O LT
Although this expression can be derived from simple ther- ] ] )
modynamics, the entropy is not easily accessible, neither ex- Because of the computational problems described in the

perimentally nor theoretically. The calculation of the local Preceding section, there are only few data available in the
vibrational frequencies; of the defect structure, which de- literature. While there exist several theoretical papers for the

termineU,;, andS,;,, is a very time consuming task. They isolated vacancy in silicoicompare Secs. 1llC and 11D

]. (5
IIl. RESULTS

can be calculated from the dynamicilessian matrix gnd in copper,.only sporadic V\{ork has focussed on vacancies
in other materials. Also experimentally, almost no data that
1 5°E could be used for comparison with our theoretical results is
= , (6)  available. Nevertheless, experimental values are known for
mym; 9FikdT the heat capacitg, which can be derived frorty,;, .
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FIG. 1. (Color onling Calculated temperature dependenc€pf FIG. 2. (Color onling Calculated specific-heat capacity for dia-

for diamond, silicon, and 3C-SiC. The dashed line denotes the thanond, silicon, and 3C-SiC compared to experimental valuek at
oretical limit of 3Nkg, which is reached by any solid for tempera- =300 K.

tures above the material dependent Debye temperéltgre

cell used. For comparison to our data, we have also
calculatedU;, andS,;, from the vibrational frequencies ob-
The heat capacitZ, at constant volume can be calculated tained by AIMPRO(Ref. 13 and FHI(Ref. 14 calculations

A. Heat capacity of diamond, silicon, and SiC

from Eq. (3) as the derivative oU,;, with respect tor: of 64-atom supercells. The vibrational spectrum calculated
with the FHI-code reproduces the experimental properties,
h w; i.e., the phonon band gap, best, and is therefore used as a
Ui SN ho ex kB_T reference curve. The slope of the AIMPRO curve is slightly
C,= :E kgl —=|r—F5—V3( - too large, while that of the SCC-DFTB curve, calculated in
t?T v i=1 kBT ﬁ(})i . .
exg — | — the equal sized 64-atom supercell, is by about the same
kgT amount too flat. However, the SCC-DFTB calculation in the

() 216-atom supercell reproduces the FHI curve nearly exactly.

For high temperaturess, approaches kg, in agreement The internal (_energy,l does not show strong deviations be-
with the rule of Dulong and Pefit. tween the different methods,_ except for the very low-

In Fig. 1, the calculate@, is plotted for diamond, silicon, {€Mperature range. This range is, actually, not described cor-
and 3C-SiC in a temperature range between 0 and 2000 gectly in the underlying theoretical model, since, here, the
The shape and the asymptotic behavior of the curves and t2€Pye model would have to be used instéefd Ref. §. For
differences between the materials, as, e.g., the Debye terfiPPlications, this low-temperature range is, however, not of
perature® p, [Si, 741 K (expt, 650 K: C, 2021 K(expt, 2230 high relevance, because the approximatio@~AE,, be-
K): SiC, 1456 K(expt, 1600 K], are described correctly. ~ comes valid. _ L _

Calculating now thémass-dependenspecific heat, we Since the errors in the Qegcrlptlon of freq_uenues concern
obtain c=0.450 J/(gK) for diamondc=0.699 J/(gK) for &Y structure calculated w|th|n one method in the same way,
silicon, and 0.563 0¢ K) for 3C-SiC, which agrees reason- the variations of the quantity of interest between the different
ably with the experimental values of 0.502, 0.703, and 0.678
J(gK) as given in Ref. 12 fof =300 K. The whole curves 0.5
are shown in Fig. 2.

Experimental results and the temperature dependence ¢ 04
predicted by the Einstein model are, thus, described qualita

tively correct by the vibrational spectrum calculated numeri- < 03 _
cally within SCC-DFTB. From the experimental point of 2 2
view, this gives the validation for using this method for the & - >

calculation of the vibrational parts of the internal energy and M -
the entropy. Before turning to the investigation of defects, we W = 324224 X
first mark the expectable accuracy of our results from the Z < DFTB 216 &
theoretical side also.

0 o=t 0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
B. Absolute entropy in different methods Temperature T [K]

Following the procedure described above, the vibrational FiG. 3. (Color online The perfect SiC bulk: Temperature de-

entropy and the internal energy of vibration can be calcupendence of the absolute entroByleft ordinate and the internal
lated. Figure 3 shows the temperature dependence of the adnergyU (right ordinate), scaled by the number of atoms in the
solute entropy, scaled by the number of atoms in the supesupercell used.

155213-3



E. RAULS AND Th. FRAUENHEIM PHYSICAL REVIEW B69, 155213 (2004

methods, i.e., the entropy differendes between two struc-
tures, can be expected to be even smaller. /

C. Formation entropy

The calculation of formation entropies of defects is by far
more complicated and not as straightforward as the calcula-
tion of formation energies. First, the entropies of the defec-
tive crystal and of the perfect crystal have to be calculated as
described in Sec. Il. Analogous to the formation energy, the

formation entropy is then calculated as the difference
su%ercell I /
with equal
Storm™= Sdefect™ Sperfectv (8) volume as sphere

with additionally invoking an appropriate scaling factor to  FIG. 4. (Color online The supercell used for modeling the de-
account for the different numbers of atoms in the two strucfect is divided into a sphericalusterwith radiusR; (containing the
tures. To calculate, e.g., the formation entropy of an isolatedefect corg which is treated dynamically within the atomistic cal-
vacancy, the dynamical matrices have to be calculated botgplation, and an outer sphere with radiRg, which is treated by

for the supercell with the vacancy and for the perfect superLinear elasticity theory and is supposed to have the same volume as
cell. The absolute entropies can then be calculated as dée supercell.

scribed in Sec. II. To correct the different numbers of atoms

in the two cells, the results for the perfect lattice have to bereating up to 1289 atoms dynamically. In these calculations
multiplied by (N—1)/N, whereN is the number of atoms in Born-Mayer and Morse potentials were used for the entropy
the perfect lattice cluster. calculations.

Because of the artificial periodic images caused by the Such large supercells are, of course, far beyond the super-
finite Superce”s used, the treatment of these small differce” sizes that can be treated within atomistic calculations,
ences is affected by strong finite-size effects. This is, e.g&specially since the diagonalization of the dynamical matrix
well known from the case of electrostatic Coulombic inter-does not only take a very long time but is also associated
actions, where the evaluation of the Coulombic integrals ifvith numerical problems.
some cases necessitates the definition of a cutoff radius to Nevertheless, based on the corrections proposed by these
avoid artificial interactions with the periodic imag€sAs  authors, entropy calculations can also be performed in our
already described in Refs. 9,17, we have found a strong d&maller supercells containing 216 atoms. The comparison
pendence on the cluster and supercell size. The reasons ffth the calculation in a supercell with 512 atoms for the
this and how to correct for it is discussed in the following atvacancy in silicon shows that a consistent picture can be
the example of an isolated vacancy in diamond and in siliobtained. Due to the long-range character of the entropy,
con. however, a large part of it is stored in the region outside the

The periodic images of a defect Strong|y influence theClUSter, which is not included in the atomistic calculation.
formation entropy which is an unavoidable artifact due to theThis elastic part has, therefore, to be calculated separately
supercell approach. This is certainly also true for formationand added to the values obtained by the atomistic calcula-
energies, but the effect is by far not as large as for the |0ngﬂ0n. It can be divided into two “correction terms” that can
range character of formation entropies. Because of th€e derived within linear elasticity theory, compare the Ap-
change in thecollectivevibrational properties of the defect, Pendix. As described in detail in, e.g., Ref. 19, Relepen-
the entropy is to a large extent stored in the material outsiddence of the elastic constarits. Egs.(A2) and(A5)] trans-
the defect region. It has been found that, in order to simulat&its to the entropy, such that the entropy stored outside a
the behavior of a defect in a nearly infinite crystal, modelingSPhere with radiug is proportional to 1%®. Since the num-
is done best by using aembedded cluster schemriee., di-  ber N of atoms is proportional t&®, the correction
viding the fully relaxed supercell with the defect into a re-
gion around the defect, the “cluster,” in which all atoms are K
treated dynamically, and an outer region in which the atoms ASl:N ©)
are treated as static’®compare Fig. 4.

Calculations with several different methods for the mod-is obtained for the formation entropy with a constande-
eling of the vibrational behavior have shown that the clustepending on the materiaf.
size must be essentially smaller than the size of the Following the procedure proposed by Hatckeal.'® the
supercelfl” On the other hand the cluster size must be largeentropy values obtained like this require a further correction
enough to provide a correct description of the defect. In RefAS, that accounts for the image forces introduced by the
18, the authors used cells of about 5000 atoms to model gperiodic images of the defect and the entropy stored in the up
isolated vacancy in copper, whereof only about 100 to 50@0 now neglected region of the crystal outside the defect
atoms were then included in the calculation of the vibrationakluster. The size of this correction can be calculated from the
spectra. In Ref. 9, cells of up to 16384 atoms were usedree energy? resulting in
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TABLE |. Data used for the calculation of the entropy of for-
mation of an isolated vacancy in diamond and silicon. The bulk
modulusB has been calculated within SCC-DFTB. Experimental
values (Poisson ratiov, thermal expansion coefficient) were
taken from Ref. 16.

Diamond Silicon

B 536 GPa 100 GPa
Vsupercell = Vk v 0.1 0.29

—6 1 —1 —6 1 —1

FIG. 5. Sphere inscribed in a supercell. @ 7 Ix107K 2.6X107 K

N5 216 216, 512

; n 17 17
— image core

AS,=BaAVIEH 10 v, ~1.330 B 2137 R
with the bulk modulux, the thermal expansion coefficient Vo 1226 R 4310 & (216)
«, and the volume changkV'™2%€due to image forces. This 10240 R (512

term can be split into two parts as motivated in the follow-
ing. The idea for this finite-size correction comes again from , ) , ,

linear elasticity theory: at the boundary of the supercell—for@"d inserting Egs(11) and (A17) into Eq. (10), the final
simplicity we regard the boundary of an outer sphere of ra&Xpression for the correction of the formation entropy be-
dius R, and assume isotropic dilatatidnompare Fig. #—  COMeS

the inevitably vanishing displacements of the atoms intro-

k 2(1-2v) m N\ N
duce a volume change -4 < R B4 core
AS=+Ba| 3 T, 5 N AV (19
i\° N
AV=—| = AVt°t~—(,\l—>AVt°t (11 Due to the numerous assumptions and approximations,
a A

i.e., spherical symmetry of the defect core, the cluster and the

at the inner sphere of radi® (which contains the dynami- complete supercell in order to use the macroscopic con-
cally treated cluster in our calculation@efs. 18,19 AVt  tinuum theory for a furthermore rather small number of at-
is the relaxation volume of the defect in an infinitely ex- ©MS as can be treated in our supercell calculations, results
tended crystal. can only be expected to be of qualitative accuracy. Neverthe-
In reality however, we always have a finite crystal termi- €SS, the results for isolated vacancies in diamond and silicon

nated by the crystal surfaces. In supercell calculations, thBresented in the following section are quite encouraging.
simulated region is limited by the supercell boundaries. The
volume change introduced by the defect is influenced by D. The vacancy in diamond and silicon
these constraints, and as derived in the Appendix, the frac-
tion 3[(1—2v)/(1—v)] of the volume changd V™ is the
dilatation part that is caused by image for¢esth the Pois-
son ratiov).

For these considerations a sphere of raduwzas used,

The procedure described above has been applied to the
calculation of the formation entropy of isolated vacancies in
diamond and silicon, using the data given in Table I. A tem-
perature of T=2000 K has been chosen, where the high-
temperature approximation is valid and the formation en-

but the atomistic calculations were as usual performed irﬂropy becomes temperature independentpare Fig. 1 and
cubic supercells with the same volume and edge leagth e giscyssion of the Debye temperatures in Sec.)lUl A

Due to the influence of neighboring cells, t'he postulation of The results of these calculations are shown in Fig. 6. In
isotropy may not apply to the marginal regions of the SUperipq upper diagram, the values 6%, of the vacancy in
cell. We,_th_erefo_re, hgve to go over to a sphere W.'th r_ad'u%liamond obtained from the calculation without any correc-
a/_2 that is |n§cr|bed in the supergell, as denoted in Fig. Stions are plotted over the relative cluster sNM&N, (black
Since the ratio of these volumina is diamonds, the corrected values are plotted in gray. The solid

3 line has been fitted to these values, so that the desired value

4_77 a for N=N;, can be extrapolated, resulting 8,,,=2.8%Kg.
Vi _ Vi 312 Variations of the corrected values are less theh3kg . The
V_K n vsuperce”_ ad 6’ (12) two corrections are plotted separately in the upper diagram in
Fig. 7. The first correctiol\ S, is only important for very
the smaller volume £/6)- AV4 has to be used in Eq10). small cluster sizes, and even there it is to a great extent
Expressing the total volume change by the volume changeompensated by the second correctio®,, which becomes
of the defect core important for large cluster sizes.
Due to the problems discussed in the Introduction, only
AV REOONy few data, both experimental and theoretical are available in
AV 3 T (13 the literature—most of them for the isolated vacancy in sili-
core o Meore con. For a comparison of our results with reference values
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p FIG. 7. (Color online Corrections to the formation entropy for
n/Nz

the vacancy in diamon¢upper diagramhand silicon(bottom.

FIG. 6. (Color online Formation entropy of the vacancy in dia-
mond (upper diagramcalculated in a supercell with,=216 at- tive formation energies convergence starts at supercell sizes
oms and in silicon(lower diagram calculated in a supercell with larger than 216 atoms, as has been extensively investigated
N,=216 atoms(blue, dashed lingsand with N,=512 atoms in Refs. 21 and 22. Convergence problems have to be as-
(black, dash-dotted lingsrestricting the vibrations tdN atoms in  cribed to the extremely flat potential-energy surface of sili-
the shells surrounding the vacancy. The solid lines in both diagramson, which to a high degree influences the quality of the
show linear fits to the corrected data. dynamical matrix and, thus, the vibrational frequencies.

Therefore, the calculation of the formation entropy of the

we have to perform the same investigations for the vacancyacancy in silicon turns out to be much more complicated
in silicon as for the vacancy in diamond. than in the case of diamond. Knowing of the convergence

In Refs. 3 and 20, the entropy of formatigim the high-  problems in silicon, we performed additional calculations in
temperature approximatipns calculated for the unrelaxed a larger supercell with 512 atoms. For both supercells, the
vacancy in silicon, based on a force constant model and inresults are plotted in the bottom diagram in Fig. 6. A much
cluding the nearest or next-nearest neighbors of the vacanstronger divergence compared to the vacancy in diamond is
only. In Ref. 20 a Green’s function technique is used to in-observed here. In the larger supercell with 512 atoms, the
vestigate the influence of the force-constant model on theéliverging behavior of the uncorrected values for the entropy
formation entropy. Although in most simple force-constantis found to be even worse than in the supercell with 216
models a value of=1.7kg can be derived for an unrelaxed atoms. This—at the first view surprising—observation was
vacancy in any tetrahedrally bonded material, the results obmade by, e.g., Fermaezet al, as well}” Regarding cluster
tained with different methods vary betweenkz%nd up to  sizes of~0.9N,, even negative values occur 8, in the
8kg and are highly sensitive to the force constants used. Fds12 atom cell. Taking a closer look at the corrections derived
the relaxed vacancy a value sf3kg, as is also obtained by in the preceding section, these observations can be under-
first-principle calculation$,is commonly accepted. Small lo- stood, because the second term of the correction is propor-
cal changes in the force constants can result in large changéenal to N;AV.,, Which is by about one order of magni-
in the formation entropy, making a good description of thetude larger for the vacancy in silicon than for the vacancy in
forces desirable. diamond(see Table )l and explains the dependence on the

The reason for the discrepancies between the formatiosupercell sizeN, as well.
entropies calculated for the silicon vacancy within different The bottom diagram in Fig. 7 shows the two corrections
methods is to find in the fact that the vacancy in silicon isto the formation entropy separately. Again, the first correc-
one of the most delicate defects with respect to a convergeiion AS; is largely compensated b%S, for small cluster
energetical and electronic structure. Even for the less senssizesN. For larger cluster sizeN, correctionAS; is negli-
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gible. Here,AS, is overweighing. In case of diamond, this
correction is rather small. However, for the vacancy in sili-
con, AS, is of the same order of magnitude as the core
entropy itself. A possible reason is the poor convergence be 2
havior caused by the flat potential-energy surface as men 15+
tioned above combined with substantially stronger finite size 1+
effects. = 05)
Nevertheless, with the described corrections, we can ob2 o
tain a consistent picture even in this case: The total formatiors -o5 |
entropy of the vacancy in silicon, obtained by extrapolation& _y|
of the corrected values tbl=Ny, results in 3.3Rz (216 _15h
atoms and 3.3%g (512 atom§ compare Fig. 6. These val- o
ues are in good agreement with the reference data discusse
above. Variations are slightly larger than in case of diamond,
but still in the range of+ 0.5 .

FIG. 8. (Color onling Influence of the vibrational entropy on
o ) the transformation of the silicon vacancy into tig Cg; pair. Solid
E. Migration entropies line: E,y, dashed linefree energy aff=1800 K.
The vibrational entropy cannot only be calculated for

minimum-energy structures, but also for saddle-point concompared to the silicon vacancy. The free-energy barrier for
figurations. This enables us to calculate the free energy ahe V5, — V. Cg transformation is, then, 1.4 eV. The
activation for migration processes of point defects. The caI\/C Cg pair is by 2.1 eV lower in energy than the silicon
culation of migration entropies is a much easier task than th@acancy. The recombination barrier remains unchanged.
calculation of formation entropies, since it does not suffer As shown in Ref. 1, this process plays a very important
from the problems discussed in the preceding sectionole in the mobility and aggregation of antisites. Strong lat-
Errors due to artificial constraints by the supercell bound+4jce rearrangement during these processes combined with
aries or by periodic images can be expected to be of similahigh temperatures needed for their activation, render it im-
magnitude in the compared structuréand thus cancel portant to consider entropic contributions. For a detailed dis-

in AS), whereas the comparison of a defective and a perfectussion of these topics, the reader is referred to Ref. 1.
supercell as required for the calculation of formation

entropies is more sophisticated. The most important quantity

to influence the calculated entropies is the accuracy of relax- IV. CONCLUSION
ation of the atoms surrounding the defect, compare, e.g., - I .
Ref. 23 9 P g Summarizing, we have shown the contributions of vibra-

As an example of how the entropy influences migrationt“onal entropy to be important in many cases, i.e., when the

processes, we discuss the transformation of the isolated Siﬁrjvestlgate_d process runs at elevated t_emperatures or when
con vacancy in SiC to the carbon vacancy—carbon antisit trong lattice rearrangements occur during the process. Fur-
(VCs) pair?*?®Calculations were performed in a 240 atom "1¢/more, we have proposed a way to calculate the entropy

supercell of 4H-SiC where—for the entropy calculations—Of formation by addressing the problems of finite-size effects

all atoms but those on the supercell edges were allowed {gMsing if using common supercell approaches. These diffi-

vibrate. Differences in calculations including all atoms WereCultles can, though, be overcome with the help of linear elas-

found to be in general less than 0.2 eV, most often even IestéClty theory, as we have demonstrated at the example of

than 0.1 eV and the same holds for a calculation in a twicéSOIated vacancies in diamond and silicon. A good agreement

as large supercell. Figure 8 shows the structures of the envE—f the values obtained like this with reference data has been

ronment of the defect and the energy diagram of the proces qund. With minor changes, the equations given in this paper
Without considering the entropic contributions to this pro-.

can as well be applied to other defect structures, as, e.g.,
cess, the transformation can be activated with 1.7 eV, and thlgterstltlals. The treatment of dopant atoms requires further
resultingVCg; pair is by 1.8 eV more stable thar; (com-

consideration, since the chemical potentials of the respective
pare the solid line in Fig. B(Ref. 24. By calculating the dopant materials have to be included. Due to error cancella-
vibrational spectra o¥g;, VCg;, and the saddle-point struc-

tion, the calculation of the entropy of migration does not
ture (obtained as described in Refs. 1 and,2le entropies suffer f“?”? these problems z_:md h_as I_Jeen shown to be of
of all these structures can be deduced. Using the silicon Vaqon-negllglble order of magnitude in high-temperature pro-
cancy as reference, and choosing a common annealing terfeSSEs:
perature ofT=1800 K, the free activation energy for the
process is obtaine@ompare the dashed line in Fig. &ur-
thermore, the stabilizing effect of the entropy on the resulting
structure can be seen. Both the free-energy barrier and the The author wishes to thank Prof. P. Txefor giving an
free energy of theVCg; pair are byAU—-T-AS~0.3 eV  impulse to these investigations and Dr. U. Gerstmann for
lower than the values obtained by calculationsTat0 K fruitful discussions.
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—+

u(n=A r3 2,(1,"1‘3)\%

In linear elasticity theory, the strained material is de- )-rzus(r)+ud(r), (A9)

scribed by a displacement field
with a shear termug and a dilatation ternug.°
u(ry=r’—r, (A1) Let the displacement at the radiug,. of the defect core

- . o be u(r cord = Ml core, thenA can be written as
wherer are the positions of the atoms in the unstraineih

the strained lattice. From this displacement field, the compo-

nents of the strain tensey; are obtained as 1 3 3
A= nr ~ qr (A10)
3 core core
1+ 4/J“rcore rcore<l
1 c?ui ﬁUJ 2 3 R =
= — 4 — (2u+3M)R
&ij 2((7Xj &xi) (A2)

Now it can be seen that the dilatation
The diagonal elements;; define the volume change due to

defect relaxation, the so-called dilatation R 12unr,. A1)
5V (2u+3NMR3
5:v:811+822+833. (A3)

tends to zero for amfinite crystal, but this is not true for a

We consider a spherical isotropic continuum of radiugor finite crystal, and especially not for the from the macroscopic

a point defect with spherical symmetry, as can be assumed eV small supercells.
good approximation for the vacancy, only radial strain oc- At the surface of the outer sphere<R), the shear part

curs. and so we obtain of Eq. (A9) causes the volume change
V25=0 with &=4(r), (Ad) AV =47R% uyR) =47 nrd, (A12)
for the dilatations. Since 6=V -u, the displacement field i-e., the volume change the defect would cause in an infi-
has to be of the form nitely extended crystal. The dilatation term yields
A AV = 4R Uy(R) = 4o — P 3 A13
u(r)= r—3+B T, (A5) a=47R-Ug(R)= T2+ 3N Teore (A3

with constantsA and B to be determined by the boundary Using instead of the Lameonstantsy and X the poisson

conditions. ratio
Expressions for the radial strai}, and the dilatationd N
follow from Eq. (A5): -
q v 200+’ (Al4)
2A
en=——5+B, 6=V.u=3B. (A6)  We get
r
: : ’ 2(1-2v) 4
Via Hooke’s law and using the Lanmonstants. and u, AVd=4w? N core (A15)
the stress tensor
for the dilatation part and thus the total volume change be-
O'iJZZ,LLSij+)\55ij (A?) comes

can be calculated from the strain tensorWith this relation

and the boundary condition that no stress is left at the surface AV, =41
of the sphere withr =R (cf. Figs. 4 and § the constanB ot

can be expressed in terms Af

3(1—v)

1+ 77"(?:’ore' (A16)

The dilatation part arises only due to image forces at the
surface of the sphere. From E@4.15) and(A16) it follows

Tn(r=R)=0 that
<2uer+N6=0 AV _2(1—21/) e
an A AVip 3\ 1-v )’
B= 2u+3\ R3 (A8 This sets the volume change due to image for@dsich is
needed for the entropy correctjom relation to the total
The displacement field becomes then volume changé.
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