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Entropy of point defects calculated within periodic boundary conditions
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A possibility to calculate both the entropies of formation and migration of point defects in semiconductors
is presented. Knowledge of the entropic contributions is especially important for the correct description of
high-temperature processes like growth or annealing. Using the self-consistent charge density-functional based
tight-binding method~SCC-DFTB! we have calculated the predominant part of the entropy, resulting from
lattice vibrations. Strong finite-size effects have been observed while investigating the formation entropies of
isolated vacancies in diamond and silicon. We demonstrate how these problems can be overcome with the help
of linear elasticity theory.
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I. INTRODUCTION

In common computer simulations of point defects
semiconductors, the total energy obtained from quantu
mechanical calculations at a temperatureT50 K is used for
calculating the formation energies or the migration ene
barriers in diffusion processes, respectively. It would, adm
tedly, be thermodynamically correct to consider also
temperature-dependent contributions of entropy. In the p
calculations were computationally too demanding to take
term ~fully ! into account. Its neglect can often be justified
the similarity of the compared structures, which sugge
comparable entropic contributions and thus only small
tropy differences. In some cases, though, it is importan
consider the entropic corrections to the total energy. For
correct description of high-temperature processes, i.e., de
migration processes during the postimplantation annea
phase, entropic corrections can become quite large, sin
substantial rearrangement of the bonding situation around
defects can occur. This can result in strong changes in
local vibrational modes linked to the defect, and the eleva
temperatures amplify this effect, so that the entropic con
bution 2T•DS is no longer negligible. In our previous in
vestigations of annealing processes in silicon carbide~SiC!,
we have found that activation energies in the range
'5 eV for vacancy- and antisite-related processes are l
ered by up to 1.3 eV at common annealing temperaturesT
51800 K), if one considers the entropic contributions.1 Fur-
thermore, knowing the formation entropy of a defect allo
the calculation of its concentration. In case of migration p
cesses, it permits the calculation of diffusivities that can
directly compared to experimental data~see also Ref. 1!.

In this work, we present the theoretical background
these calculations, and further considerations about the
culation of formation entropies within supercell methods.
contrast to the case of activation energies, the numbe
atoms can be different in the structures that have to be c
pared in order to calculate the formation entropy. Due to
long range character of the entropy and additional finite-s
effects, i.e., a strong dependence of the results on the siz
the supercell used, elasticity theory has to be used in com
nation with quantum-mechanical calculations.
0163-1829/2004/69~15!/155213~9!/$22.50 69 1552
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We describe how a systematic study of the influence
entropic contributions is possible within common superc
methods. As it is still a rather time consuming task, we ha
used the computationally efficient self-consistent charg
density-functional-based tight-binding ~SCC-DFTB!
method2 for our investigations.

This paper is organized as follows. Section II gives a sh
description of the computational method and the theoret
background of how the vibrational entropy can be obtain
In Sec. III, we calculate the specific heat for silicon, di
mond, and SiC, and validate the use of our approxim
method with first-principle calculations and experimen
data. In Sec. IV, we derive the correction terms to the form
tion entropy from elasticity theory at the example of isolat
vacancies. The results for the vacancy in diamond and
silicon are discussed in Sec. V. Finally, in Sec. VI, we brie
summarize the influence of the vibrational entropy on a
vation energies for migration processes.

II. LATTICE VIBRATIONS AND FREE ENERGIES

For the calculation of formation energies of defects
activation energies of migration processes, the energie
different structures have to be compared. This is most o
done by simply comparing the total energiesEtot obtained
from, e.g., supercell calculations. Spoken thermodyna
cally, however, the crystal~with the defect! is a great canoni-
cal ensemble, and it would be thermodynamically correc
compare the Gibbs free enthalpies

G5U2T•S1p•V1(
i

m iNi ~1!

of the structures. Here,U is the internal energy

U5Etot1Uvib , ~2!

where the first term, the static part, is the total energyEtot , as
obtained from quantum-mechanical calculations~as usual at
T50 K). The termUvib is caused by lattice vibrations. Th
second term in Eq.~1! accounts for the temperature depe
dence and the entropic contributions. The termp•V, i.e., the
dependence ofG on pressure and volume is usually n
©2004 The American Physical Society13-1
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E. RAULS AND Th. FRAUENHEIM PHYSICAL REVIEW B69, 155213 ~2004!
glected, since most often systems are treated for cons
pressure and/or volume conditions. The last term acco
for the change in particle numberNi with the chemical po-
tential m i .

Due to the immense computational effort needed to c
culate the entropySand the vibrational part ofU, these terms
are usually neglected. In many cases, this is justified by
similarity of the structures that are compared, so that
change in entropyDS is, indeed, very small. In some cas
however, as, e.g., strong rearrangements of the lattice,
important to consider the termT•S explicitly, in particular at
high temperatures. In this work, we present a way to ca
lateU andSand obtain, thus, the free energy of formation
a defect and the free activation energy for migration p
cesses of defects.

The entropy S consists of the configurational, th
electron-hole pair, and the vibrational entropy~cf. Refs.
3–5!. The configurational term is given by the number
possible configurations in which the defect can exist. T
second term is usually negligibly small4 and shall also not be
discussed further. The prevailing contributions to the entro
arise from the lattice vibrations.

Assuming a Planck distribution of harmonic oscillato
Uvib can be written as

Uvib5(
i 51

3N H \v i

exp~\v i /kBT!21
1

1

2
\v i J , ~3!

~compare, e.g., Ref. 6!. Here, v i are the eigenfrequencie
obtained from the calculation of the vibrational spectrum
the defect.T is the temperature.

From this equation, the entropyS can be calculated ac
cording to the thermodynamic relation

S ]S

]U D
V,N

5
1

S ]U

]SD
V,N

5
1

T~U,V,N!
, ~4!

assuming constant volumeV ~as already stated above! and
constant number of particlesN.

With Eqs. ~3! and ~4!, the expression for the vibrationa
entropySvib becomes

Svib5kB(
i 51

3N H \v i

kBT FexpS \v i

kBTD21G21

2 lnF12expS 2\v i

kBT D G J . ~5!

Although this expression can be derived from simple th
modynamics, the entropy is not easily accessible, neither
perimentally nor theoretically. The calculation of the loc
vibrational frequenciesv i of the defect structure, which de
termineUvib andSvib , is a very time consuming task. The
can be calculated from the dynamical~Hessian! matrix

Di j 5
1

Amkml

]2E

]r ik]r j l
, ~6!
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which is defined by the second derivatives of the ene
having the eigenvaluesv i

2 . The most common way to con
struct the Hessian matrix is to displace each atom~in the
defective region! by 6Dr i in six directions. Based on the
finite differences in the forces in these slightly different g
ometries, the Hessian matrix can easily be constructed
subsequent diagonalization yields the desired frequencie

Due to the high computational demands,ab initio meth-
ods are often limited to the use of small supercells and
calculation of the local vibrational modes for small defecti
regions only. Furthermore, the diagonalization of large m
trices can make numerical problems. A common approach
therefore, to use the local harmonic approximation~LHA !
for the nearest and next-nearest neighbors of the defec
which the atoms are treated as independent oscillators~see,
e.g., Refs. 7,8!. The advantage is that the diagonalization
large matrices in order to obtain the frequencies is circu
vented. As shown, e.g., in Ref. 9, this approximation yie
in some cases rather poor results.

Other, more approximate methods often do not reach
necessary accuracy in the description of the forces, whic
required for the calculation of vibrational frequencies. A ve
efficient method which at the same time in its accuracy
close toab initio methods is the SCC-DFTB method.2 In this
work, we have used the SCC-DFTB method for the calcu
tion of the relaxed geometries, the migration paths, and
vibrational spectra of all defects discussed. The vibratio
frequencies are obtained from the calculation and diago
ization of the complete dynamical matrix for the superce
used. Throughout this work, a minimal basis set and
G-point approximation were used.~A detailed discussion of
the accuracy of this approach in comparison to commonab
initio approaches can be found in Ref. 1.! If not otherwise
stated, defects were modeled using cubic (33333) super-
cells containing 216 atoms. Since the potential-energy
face of silicon is extremely flat, we have checked conv
gence by repeating the same calculations for the isola
vacancy within the (43434) supercell containing 512 at
oms.

By comparing our results~for a perfect crystal! with
available data of first-principle methods AIMPRO~Ref. 10!
and FHI,11 we will show in the following that the accuracy o
the calculated vibrational frequencies is sufficient to obt
the derived quantities, such as the heat capacity and the
tropy, with deviations between the different methods of su
stantially less than 0.1 eV.

III. RESULTS

Because of the computational problems described in
preceding section, there are only few data available in
literature. While there exist several theoretical papers for
isolated vacancy in silicon~compare Secs. III C and III D!
and in copper, only sporadic work has focussed on vacan
in other materials. Also experimentally, almost no data t
could be used for comparison with our theoretical results
available. Nevertheless, experimental values are known
the heat capacityCv which can be derived fromUvib .
3-2



ed

,
0

t
te

-
7

e
lit
ri
f

he
n
w
th

na
cu

pe

lso
-

ted
ies,
as a
tly
in
me

he
tly.

e-
w-
cor-
the

t of

ern
ay,

ent

th
a-

-
t

-

e

ENTROPY OF POINT DEFECTS CALCULATED WITHIN . . . PHYSICAL REVIEW B69, 155213 ~2004!
A. Heat capacity of diamond, silicon, and SiC

The heat capacityCv at constant volume can be calculat
from Eq. ~3! as the derivative ofUvib with respect toT:

Cv5S ]Uvib

]T D
V

5(
i 51

3N H kBS \v i

kBTD expS \v i

kBTD
FexpS \v i

kBTD21G2J .

~7!

For high temperatures,Cv approaches 3NkB , in agreement
with the rule of Dulong and Petit.6

In Fig. 1, the calculatedCv is plotted for diamond, silicon
and 3C-SiC in a temperature range between 0 and 200
The shape and the asymptotic behavior of the curves and
differences between the materials, as, e.g., the Debye
peratureQD @Si, 741 K~expt, 650 K!; C, 2021 K~expt, 2230
K!; SiC, 1456 K~expt, 1600 K!#, are described correctly.

Calculating now the~mass-dependent! specific heatc, we
obtain c50.450 J/(g K) for diamond,c50.699 J/(g K) for
silicon, and 0.563 J/~g K! for 3C-SiC, which agrees reason
ably with the experimental values of 0.502, 0.703, and 0.6
J/~g K! as given in Ref. 12 forT5300 K. The whole curves
are shown in Fig. 2.

Experimental results and the temperature dependenc
predicted by the Einstein model are, thus, described qua
tively correct by the vibrational spectrum calculated nume
cally within SCC-DFTB. From the experimental point o
view, this gives the validation for using this method for t
calculation of the vibrational parts of the internal energy a
the entropy. Before turning to the investigation of defects,
first mark the expectable accuracy of our results from
theoretical side also.

B. Absolute entropy in different methods

Following the procedure described above, the vibratio
entropy and the internal energy of vibration can be cal
lated. Figure 3 shows the temperature dependence of the
solute entropy, scaled by the number of atoms in the su

FIG. 1. ~Color online! Calculated temperature dependence ofCv

for diamond, silicon, and 3C-SiC. The dashed line denotes the
oretical limit of 3NkB , which is reached by any solid for temper
tures above the material dependent Debye temperatureQD .
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cell used. For comparison to our data, we have a
calculatedUvib andSvib from the vibrational frequencies ob
tained by AIMPRO~Ref. 13! and FHI~Ref. 14! calculations
of 64-atom supercells. The vibrational spectrum calcula
with the FHI-code reproduces the experimental propert
i.e., the phonon band gap, best, and is therefore used
reference curve. The slope of the AIMPRO curve is sligh
too large, while that of the SCC-DFTB curve, calculated
the equal sized 64-atom supercell, is by about the sa
amount too flat. However, the SCC-DFTB calculation in t
216-atom supercell reproduces the FHI curve nearly exac
The internal energyU does not show strong deviations b
tween the different methods, except for the very lo
temperature range. This range is, actually, not described
rectly in the underlying theoretical model, since, here,
Debye model would have to be used instead~cf. Ref. 6!. For
applications, this low-temperature range is, however, no
high relevance, because the approximationDG'DEtot be-
comes valid.

Since the errors in the description of frequencies conc
any structure calculated within one method in the same w
the variations of the quantity of interest between the differ

e-
FIG. 2. ~Color online! Calculated specific-heat capacity for dia

mond, silicon, and 3C-SiC compared to experimental values aT
5300 K.

FIG. 3. ~Color online! The perfect SiC bulk: Temperature de
pendence of the absolute entropyS ~left ordinate! and the internal
energyU ~right ordinate!, scaled by the number of atoms in th
supercell used.
3-3
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E. RAULS AND Th. FRAUENHEIM PHYSICAL REVIEW B69, 155213 ~2004!
methods, i.e., the entropy differenceDS between two struc-
tures, can be expected to be even smaller.

C. Formation entropy

The calculation of formation entropies of defects is by
more complicated and not as straightforward as the calc
tion of formation energies. First, the entropies of the def
tive crystal and of the perfect crystal have to be calculated
described in Sec. II. Analogous to the formation energy,
formation entropy is then calculated as the difference

Sform5Sdefect2Sperfect, ~8!

with additionally invoking an appropriate scaling factor
account for the different numbers of atoms in the two str
tures. To calculate, e.g., the formation entropy of an isola
vacancy, the dynamical matrices have to be calculated b
for the supercell with the vacancy and for the perfect sup
cell. The absolute entropies can then be calculated as
scribed in Sec. II. To correct the different numbers of ato
in the two cells, the results for the perfect lattice have to
multiplied by (N21)/N, whereN is the number of atoms in
the perfect lattice cluster.

Because of the artificial periodic images caused by
finite supercells used, the treatment of these small dif
ences is affected by strong finite-size effects. This is, e
well known from the case of electrostatic Coulombic inte
actions, where the evaluation of the Coulombic integrals
some cases necessitates the definition of a cutoff radiu
avoid artificial interactions with the periodic images.15 As
already described in Refs. 9,17, we have found a strong
pendence on the cluster and supercell size. The reason
this and how to correct for it is discussed in the following
the example of an isolated vacancy in diamond and in s
con.

The periodic images of a defect strongly influence
formation entropy which is an unavoidable artifact due to
supercell approach. This is certainly also true for format
energies, but the effect is by far not as large as for the lo
range character of formation entropies. Because of
change in thecollectivevibrational properties of the defec
the entropy is to a large extent stored in the material outs
the defect region. It has been found that, in order to simu
the behavior of a defect in a nearly infinite crystal, modeli
is done best by using anembedded cluster scheme, i.e., di-
viding the fully relaxed supercell with the defect into a r
gion around the defect, the ‘‘cluster,’’ in which all atoms a
treated dynamically, and an outer region in which the ato
are treated as static,9,17,18compare Fig. 4.

Calculations with several different methods for the mo
eling of the vibrational behavior have shown that the clus
size must be essentially smaller than the size of
supercell.9,17 On the other hand the cluster size must be la
enough to provide a correct description of the defect. In R
18, the authors used cells of about 5000 atoms to mode
isolated vacancy in copper, whereof only about 100 to 5
atoms were then included in the calculation of the vibratio
spectra. In Ref. 9, cells of up to 16 384 atoms were us
15521
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treating up to 1289 atoms dynamically. In these calculatio
Born-Mayer and Morse potentials were used for the entro
calculations.

Such large supercells are, of course, far beyond the su
cell sizes that can be treated within atomistic calculatio
especially since the diagonalization of the dynamical ma
does not only take a very long time but is also associa
with numerical problems.

Nevertheless, based on the corrections proposed by t
authors, entropy calculations can also be performed in
smaller supercells containing 216 atoms. The compari
with the calculation in a supercell with 512 atoms for t
vacancy in silicon shows that a consistent picture can
obtained. Due to the long-range character of the entro
however, a large part of it is stored in the region outside
cluster, which is not included in the atomistic calculatio
This elastic part has, therefore, to be calculated separa
and added to the values obtained by the atomistic calc
tion. It can be divided into two ‘‘correction terms’’ that ca
be derived within linear elasticity theory, compare the A
pendix. As described in detail in, e.g., Ref. 19, theR depen-
dence of the elastic constants@cf. Eqs.~A2! and~A5!# trans-
mits to the entropy, such that the entropy stored outsid
sphere with radiusR is proportional to 1/R3. Since the num-
ber N of atoms is proportional toR3, the correction

DS15
k

N
~9!

is obtained for the formation entropy with a constantk de-
pending on the material.18

Following the procedure proposed by Hatcheret al.,18 the
entropy values obtained like this require a further correct
DS2 that accounts for the image forces introduced by
periodic images of the defect and the entropy stored in the
to now neglected region of the crystal outside the def
cluster. The size of this correction can be calculated from
free energy,19 resulting in

FIG. 4. ~Color online! The supercell used for modeling the d
fect is divided into a sphericalclusterwith radiusRi ~containing the
defect core!, which is treated dynamically within the atomistic ca
culation, and an outer sphere with radiusRa , which is treated by
linear elasticity theory and is supposed to have the same volum
the supercell.
3-4
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ENTROPY OF POINT DEFECTS CALCULATED WITHIN . . . PHYSICAL REVIEW B69, 155213 ~2004!
DS25BaDVimage, ~10!

with the bulk modulusK, the thermal expansion coefficien
a, and the volume changeDVimagedue to image forces. This
term can be split into two parts as motivated in the follo
ing. The idea for this finite-size correction comes again fr
linear elasticity theory: at the boundary of the supercell—
simplicity we regard the boundary of an outer sphere of
dius Ra and assume isotropic dilatation~compare Fig. 4!—
the inevitably vanishing displacements of the atoms int
duce a volume change

DV52S Ri

Ra
D 3

DVtot'2S N

NZ
DDVtot ~11!

at the inner sphere of radiusRi ~which contains the dynami
cally treated cluster in our calculations! ~Refs. 18,19!. DVtot

is the relaxation volume of the defect in an infinitely e
tended crystal.

In reality however, we always have a finite crystal term
nated by the crystal surfaces. In supercell calculations,
simulated region is limited by the supercell boundaries. T
volume change introduced by the defect is influenced
these constraints, and as derived in the Appendix, the f
tion 2

3 @(122n)/(12n)# of the volume changeDVtot is the
dilatation part that is caused by image forces~with the Pois-
son ration).

For these considerations a sphere of radiusR was used,
but the atomistic calculations were as usual performed
cubic supercells with the same volume and edge lengta.
Due to the influence of neighboring cells, the postulation
isotropy may not apply to the marginal regions of the sup
cell. We, therefore, have to go over to a sphere with rad
a/2 that is inscribed in the supercell, as denoted in Fig
Since the ratio of these volumina is

VK8

VK
5

VK8

Vsupercell
5

4p

3 S a

2D 3

a3
5

p

6
, ~12!

the smaller volume (p/6)•DVd has to be used in Eq.~10!.
Expressing the total volume change by the volume cha

of the defect core

DVtot

DVcore
'

Ra
3

r core
3

'
NZ

ncore
, ~13!

FIG. 5. Sphere inscribed in a supercell.
15521
-

r
-

-

-
e
e
y
c-

in

f
r-
s
.

e

and inserting Eqs.~11! and ~A17! into Eq. ~10!, the final
expression for the correction of the formation entropy b
comes

DS5
k

N
1BaS 2

3

~122n!

~12n!

p

6
2

N

NZ
D NZ

ncore
DVcore. ~14!

Due to the numerous assumptions and approximatio
i.e., spherical symmetry of the defect core, the cluster and
complete supercell in order to use the macroscopic c
tinuum theory for a furthermore rather small number of
oms as can be treated in our supercell calculations, res
can only be expected to be of qualitative accuracy. Never
less, the results for isolated vacancies in diamond and sili
presented in the following section are quite encouraging.

D. The vacancy in diamond and silicon

The procedure described above has been applied to
calculation of the formation entropy of isolated vacancies
diamond and silicon, using the data given in Table I. A te
perature ofT52000 K has been chosen, where the hig
temperature approximation is valid and the formation e
tropy becomes temperature independent~compare Fig. 1 and
the discussion of the Debye temperatures in Sec. III A!.

The results of these calculations are shown in Fig. 6.
the upper diagram, the values ofSform of the vacancy in
diamond obtained from the calculation without any corre
tions are plotted over the relative cluster sizeN/NZ ~black
diamonds!, the corrected values are plotted in gray. The so
line has been fitted to these values, so that the desired v
for N5NZ can be extrapolated, resulting inSform52.85kB .
Variations of the corrected values are less than60.3kB . The
two corrections are plotted separately in the upper diagram
Fig. 7. The first correctionDS1 is only important for very
small cluster sizes, and even there it is to a great ex
compensated by the second correctionDS2, which becomes
important for large cluster sizes.

Due to the problems discussed in the Introduction, o
few data, both experimental and theoretical are available
the literature—most of them for the isolated vacancy in s
con. For a comparison of our results with reference val

TABLE I. Data used for the calculation of the entropy of fo
mation of an isolated vacancy in diamond and silicon. The b
modulusB has been calculated within SCC-DFTB. Experimen
values ~Poisson ration, thermal expansion coefficienta) were
taken from Ref. 16.

Diamond Silicon

B 536 GPa 100 GPa
n 0.1 0.29
a 7.131026 K21 2.631026 K21

NZ 216 216, 512
ncore 17 17
DVcore 21.330 Å3 221.37 Å3

Vtot 1226 Å3 4310 Å3 ~216!
10240 Å3 ~512!
3-5
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E. RAULS AND Th. FRAUENHEIM PHYSICAL REVIEW B69, 155213 ~2004!
we have to perform the same investigations for the vaca
in silicon as for the vacancy in diamond.

In Refs. 3 and 20, the entropy of formation~in the high-
temperature approximation! is calculated for the unrelaxe
vacancy in silicon, based on a force constant model and
cluding the nearest or next-nearest neighbors of the vaca
only. In Ref. 20 a Green’s function technique is used to
vestigate the influence of the force-constant model on
formation entropy. Although in most simple force-consta
models a value of'1.7kB can be derived for an unrelaxe
vacancy in any tetrahedrally bonded material, the results
tained with different methods vary between 1.5kB and up to
8kB and are highly sensitive to the force constants used.
the relaxed vacancy a value of'3kB , as is also obtained by
first-principle calculations,4 is commonly accepted. Small lo
cal changes in the force constants can result in large cha
in the formation entropy, making a good description of t
forces desirable.

The reason for the discrepancies between the forma
entropies calculated for the silicon vacancy within differe
methods is to find in the fact that the vacancy in silicon
one of the most delicate defects with respect to a conver
energetical and electronic structure. Even for the less se

FIG. 6. ~Color online! Formation entropy of the vacancy in dia
mond ~upper diagram! calculated in a supercell withNZ5216 at-
oms and in silicon~lower diagram! calculated in a supercell with
NZ5216 atoms ~blue, dashed lines! and with NZ5512 atoms
~black, dash-dotted lines!, restricting the vibrations toN atoms in
the shells surrounding the vacancy. The solid lines in both diagr
show linear fits to the corrected data.
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tive formation energies convergence starts at supercell s
larger than 216 atoms, as has been extensively investig
in Refs. 21 and 22. Convergence problems have to be
cribed to the extremely flat potential-energy surface of s
con, which to a high degree influences the quality of t
dynamical matrix and, thus, the vibrational frequencies.

Therefore, the calculation of the formation entropy of t
vacancy in silicon turns out to be much more complica
than in the case of diamond. Knowing of the convergen
problems in silicon, we performed additional calculations
a larger supercell with 512 atoms. For both supercells,
results are plotted in the bottom diagram in Fig. 6. A mu
stronger divergence compared to the vacancy in diamon
observed here. In the larger supercell with 512 atoms,
diverging behavior of the uncorrected values for the entro
is found to be even worse than in the supercell with 2
atoms. This—at the first view surprising—observation w
made by, e.g., Ferna´ndezet al., as well.17 Regarding cluster
sizes of'0.5NZ , even negative values occur forSform in the
512 atom cell. Taking a closer look at the corrections deriv
in the preceding section, these observations can be un
stood, because the second term of the correction is pro
tional to NZDVcore, which is by about one order of magn
tude larger for the vacancy in silicon than for the vacancy
diamond~see Table I! and explains the dependence on t
supercell sizeNZ as well.

The bottom diagram in Fig. 7 shows the two correctio
to the formation entropy separately. Again, the first corr
tion DS1 is largely compensated byDS2 for small cluster
sizesN. For larger cluster sizesN, correctionDS1 is negli-

s

FIG. 7. ~Color online! Corrections to the formation entropy fo
the vacancy in diamond~upper diagram! and silicon~bottom!.
3-6
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gible. Here,DS2 is overweighing. In case of diamond, th
correction is rather small. However, for the vacancy in s
con, DS2 is of the same order of magnitude as the co
entropy itself. A possible reason is the poor convergence
havior caused by the flat potential-energy surface as m
tioned above combined with substantially stronger finite s
effects.

Nevertheless, with the described corrections, we can
tain a consistent picture even in this case: The total forma
entropy of the vacancy in silicon, obtained by extrapolat
of the corrected values toN5NZ , results in 3.32kB ~216
atoms! and 3.33kB ~512 atoms!, compare Fig. 6. These va
ues are in good agreement with the reference data discu
above. Variations are slightly larger than in case of diamo
but still in the range of60.5kB .

E. Migration entropies

The vibrational entropy cannot only be calculated
minimum-energy structures, but also for saddle-point c
figurations. This enables us to calculate the free energ
activation for migration processes of point defects. The c
culation of migration entropies is a much easier task than
calculation of formation entropies, since it does not suf
from the problems discussed in the preceding sect
Errors due to artificial constraints by the supercell bou
aries or by periodic images can be expected to be of sim
magnitude in the compared structures~and thus cance
in DS), whereas the comparison of a defective and a per
supercell as required for the calculation of formati
entropies is more sophisticated. The most important quan
to influence the calculated entropies is the accuracy of re
ation of the atoms surrounding the defect, compare, e
Ref. 23.

As an example of how the entropy influences migrat
processes, we discuss the transformation of the isolated
con vacancy in SiC to the carbon vacancy—carbon anti
(VCCSi) pair.24,25Calculations were performed in a 240 ato
supercell of 4H-SiC where—for the entropy calculations
all atoms but those on the supercell edges were allowe
vibrate. Differences in calculations including all atoms we
found to be in general less than 0.2 eV, most often even
than 0.1 eV, and the same holds for a calculation in a tw
as large supercell. Figure 8 shows the structures of the e
ronment of the defect and the energy diagram of the proc
Without considering the entropic contributions to this pr
cess, the transformation can be activated with 1.7 eV, and
resultingVCCSi pair is by 1.8 eV more stable thanVSi ~com-
pare the solid line in Fig. 8! ~Ref. 24!. By calculating the
vibrational spectra ofVSi , VCCSi , and the saddle-point struc
ture ~obtained as described in Refs. 1 and 24!, the entropies
of all these structures can be deduced. Using the silicon
cancy as reference, and choosing a common annealing
perature ofT51800 K, the free activation energy for th
process is obtained~compare the dashed line in Fig. 8!. Fur-
thermore, the stabilizing effect of the entropy on the result
structure can be seen. Both the free-energy barrier and
free energy of theVCCSi pair are byDU2T•DS'0.3 eV
lower than the values obtained by calculations atT50 K
15521
-
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compared to the silicon vacancy. The free-energy barrier
the VSi → VC CSi transformation is, then, 1.4 eV. Th
VC CSi pair is by 2.1 eV lower in energy than the silico
vacancy. The recombination barrier remains unchanged.

As shown in Ref. 1, this process plays a very importa
role in the mobility and aggregation of antisites. Strong l
tice rearrangement during these processes combined
high temperatures needed for their activation, render it
portant to consider entropic contributions. For a detailed d
cussion of these topics, the reader is referred to Ref. 1.

IV. CONCLUSION

Summarizing, we have shown the contributions of vib
tional entropy to be important in many cases, i.e., when
investigated process runs at elevated temperatures or w
strong lattice rearrangements occur during the process.
thermore, we have proposed a way to calculate the entr
of formation by addressing the problems of finite-size effe
arising if using common supercell approaches. These d
culties can, though, be overcome with the help of linear e
ticity theory, as we have demonstrated at the example
isolated vacancies in diamond and silicon. A good agreem
of the values obtained like this with reference data has b
found. With minor changes, the equations given in this pa
can as well be applied to other defect structures, as, e
interstitials. The treatment of dopant atoms requires furt
consideration, since the chemical potentials of the respec
dopant materials have to be included. Due to error cance
tion, the calculation of the entropy of migration does n
suffer from these problems and has been shown to be
non-negligible order of magnitude in high-temperature p
cesses.
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FIG. 8. ~Color online! Influence of the vibrational entropy on
the transformation of the silicon vacancy into theVC CSi pair. Solid
line: Etot , dashed line: free energy atT51800 K.
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APPENDIX

In linear elasticity theory, the strained material is d
scribed by a displacement field

u~r !5r 82r , ~A1!

wherer are the positions of the atoms in the unstrainedr 8 in
the strained lattice. From this displacement field, the com
nents of the strain tensor« i j are obtained as

« i j 5
1

2 S ]ui

]xj
1

]uj

]xi
D . ~A2!

The diagonal elements« i i define the volume change due
defect relaxation, the so-called dilatation

d5
dV

V
5«111«221«33. ~A3!

We consider a spherical isotropic continuum of radiusR. For
a point defect with spherical symmetry, as can be assume
good approximation for the vacancy, only radial strain o
curs, and so we obtain

¹2d50 with d5d~r !, ~A4!

for the dilatationd. Sinced5“•u, the displacement field
has to be of the form

u~r !5S A

r 3
1BD •r , ~A5!

with constantsA and B to be determined by the bounda
conditions.

Expressions for the radial strain« rr and the dilatationd
follow from Eq. ~A5!:

« rr52
2A

r 3
1B, d5“•u53B. ~A6!

Via Hooke’s law and using the Lame´ constantsl andm,
the stress tensor

s i j 52m« i j 1ldd i j ~A7!

can be calculated from the strain tensor«. With this relation
and the boundary condition that no stress is left at the sur
of the sphere withr 5R ~cf. Figs. 4 and 5!, the constantB
can be expressed in terms ofA:

s rr~r 5R!50

⇔2m« rr1ld50

⇔B5
4m

2m13l

A

R3
. ~A8!

The displacement fieldu becomes then
15521
-

-

in
-

ce

u~r !5AS 1

r 3
1

4m

2m13l

1

R3D •r5us~r !1ud~r !, ~A9!

with a shear termus and a dilatation termud .5

Let the displacement at the radiusr core of the defect core
be u(r core)5hr core, thenA can be written as

A5
1

11
4mr core

3

~2m13l!R3

hr core
3 '

r core

R !1

hr core
3 . ~A10!

Now it can be seen that the dilatation

d53B5
12mhr core

3

~2m13l!R3
~A11!

tends to zero for aninfinite crystal, but this is not true for a
finite crystal, and especially not for the from the macrosco
view small supercells.

At the surface of the outer sphere (r 5R), the shear part
of Eq. ~A9! causes the volume change

DVs54pR2
•us~R!54phr core

3 , ~A12!

i.e., the volume change the defect would cause in an i
nitely extended crystal. The dilatation term yields

DVd54pR2
•ud~R!54p

4m

2m13l
hr core

3 . ~A13!

Using instead of the Lame´ constantsm and l the poisson
ratio

n5
l

2~l1m!
, ~A14!

we get

DVd54p
2~122n!

11n
hr core

3 , ~A15!

for the dilatation part and thus the total volume change
comes

DVtot54p
3~12n!

11n
hr core

3 . ~A16!

The dilatation part arises only due to image forces at
surface of the sphere. From Eqs.~A15! and~A16! it follows
that

DVd

DVtot
5

2

3 S 122n

12n D . ~A17!

This sets the volume change due to image forces~which is
needed for the entropy correction! in relation to the total
volume change.5
3-8
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