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We use a spin-rotational invariant Gutzwiller energy functional to compute random-phase-approximation-
like (RPA) fluctuations on top of the Gutzwiller approximatid¢®A). The method can be viewed as an
extension of the previously developed GA&RPA approach for the charge secf@. Seibold and J. Lorenzana,

Phys. Rev. Lett86, 2605(2001)] with respect to the inclusion of the magnetic excitations. Unlike the charge
case, no assumptions about the time evolution of the double occupancy are needed in this case. Interestingly,
in a spin-rotational invariant system, we find the correct degeneracy between triplet excitations, showing the
consistency of both computations. Since no restrictions are imposed on the symmetry of the underlying
saddle-point solution, our approach is suitable for the evaluation of the magnetic susceptibility and dynamical
structure factor in strongly correlated inhomogeneous systems. We present a detailed study of the quality of our
approach by comparing with exact diagonalization results and show its much higher accuracy compared to the
conventional Hartree-FoekRPA theory. In infinite dimensions, where the GA becomes exact for the
Gutzwiller variational energy, we evaluate ferromagnetic and antiferromagnetic instabilities from the transverse
magnetic susceptibility. The resulting phase diagram is in complete agreement with previous variational com-
putations.
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[. INTRODUCTION of the bosons and with respect to the correct continuum limit
of the functional integral® These difficulties have severely
It is now about 40 years ago that Gutzwiller proposed aéhampered the computation of charge fluctuations within the
variational wave function for correlated electronic modelsslave boson approach. To our knowledge this technique has
with a purely local interaction, i.e., for the Hubbard-like therefore only been applied toy model¥’ and to compute
models™? The basic idea is to partially project out configu- the optical conductivity in the paramagnetic regitfé! The
rations with doubly occupied sites from the Fermi sea inlatter, however, did not lead to controlled sum rules due to
order to optimize the contributions from kinetic and potentialthe above mentioned difficulties.
energy. As a consequence, in contrast to the conventional In Refs. 16,17 we have developed an alternative scheme
Hartree-FockHF) theory, the Gutzwiller wave function cap- for the computation of random-phase-approximation-like
tures correlation effects such as the band narrowing alreadyRPA) fluctuations beyond the GA. Our approach, labeled
on the variational level. However, the exact evaluation of theGA+ RPA, is based on well-developed techniques in nuclear
ground-state energy within the Gutzwiller wave function is physic$® and RPA fluctuations are obtained in the small os-
fairly difficult and up to now has only been achieved in onecillation limit of a time-dependent GA. By comparing with
and infinite dimension3.In the latter case the solution is exact diagonalization results, we have shown that the com-
equivalent to the so-called Gutzwiller approximati6®A)  putation of static and dynamical correlation functions per-
which has been applied to describe a variety of finite-forms much better within the GARPA than within conven-
dimensional systems ranging from the properties of normational HF RPA theory'® Since no restrictions are imposed
3He (see Ref. Jto the stripe phase of highz cuprates:® on the symmetry of the saddle-point solution, the GA
The GA in its original formulation was restricted to ho- + RPA method is also suitable for the investigation of
mogeneous paramagnetic systems and only later on generalrongly correlated electronically inhomogeneous systems.
ized to arbitrary Slater determinants by GebKamd, more  Based on this formalism, two of us have recently explained
recently, by Attaccalite and FabrizidThe same energy func- the evolution of the optical conductivity with doping in high-
tional was obtained from the Kotliar-RuckensteikR) T, cuprate compound.
slave-boson formulation of the Hubbard model when the Our previous investigations were restricted to the evalua-
bosons are replaced by their mean valstreover, the KR tion of RPA fluctuations in the charge sector where the
slave-boson approach provides a controlled scheme for irsomponent of the spin is conserved by the particle-hole
cluding fluctuations beyond the mean-field solution. For-excitations:®'” However, in general, one has to distinguish
mally this has been achieved by several authors within thé@etween longitudinafi.e., with AS,=0) and transverse spin
functional integral formalism®-* However, the expansion excitations (i.e., with AS,=+1), the latter involving
of the KR hopping factozS8 turned out to be a highly non- particle-hole pairs with opposite spins. Longitudinal excita-
trivial task, both with respect to the proper normal orderingtions are optically allowed by dipole selection rules whereas
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transverse excitations can be excited by spin-carrying pakvith exact diagonalization and HFRPA results, respec-

ticles such as neutrons. For spin-rotational invariant systemsively. Concluding remarks appear in Sec. IV.

the triplet transverse excitations wityS,= =1 are degener-

ate with the triplet longitudinal excitation withS,=0 and,

therefore, it is enough to solve the problem in the longitudi- II. FORMALISM

nal channel. As discussed below, the solution in the trans- A. Spin-rotational invariant GA

verse channel is useful for a consistency check. If spin-

rotational symmetry is broker(e.g., for ferromagnetic or

spin-density-wave statpthe triplet excitations will split and

one has to solve both channels to obtain the whole spectrum. _ +
The present paper is therefore devoted to the computation H= i’jZU G CioCj.ot Uzi Mi i (1)

of transverse magnetic excitations on top of the GA. Various

approaqhes have been already adopted in order to acCoOMherec; (CiTa) destroys(createsan electron with spimr at

plish this t_asl§. In R_ef._ 21, Biemann has evaluated the SPIN- gjte |, aﬁdni ;=ciTUci »- U is the on-site Hubbard repulsion

wa\./e.excnatlons in itinerant ferrqmagnets by determmmgandti_ denotes the hbpping parameter between $itexd].

variationally the energy of the excited st8§|\lf6>, where )

W) denotes the Gutzwil func ISJ s th Our investigations are based on the spin-rotational invariant
o) denotes the Gutzwiller wave function ai®j is the

G/ - - _ form of the slave-boson approach introduced by RR.
spin-flip operator with momenturg. Furthermore, spin x- \wjithin this formalism one introduces auxiliary bosoas
qtaﬂons_; around paramagngth saddle p0|.nts have been |nve€éi*r) andd, (diT) which represent the annihilaticiereation
tlgated t;n szs. 11}12’22 .W'th'n t_he flurycnon_al mtelgral LECh'of empty and doubly occupied sites, respectively. In addition,
nique based on the spin-rotational invariant slave-bosog, e singly occupied states are represented by two particles, a

3
schemé. L . . spin-1/2 fermion and a bosgmwhich can have either spin
Our investigations below are related to these previous iNng_ 4 or s=1 in such a way that the combination has spin-

vgst@gations but differ in two important aspects. First we will 1/2. The fourp states(a singlet and a triplgtare combina-
S“mt')rllate the bOSOﬂfIC de%rees of frfeedo?excvlapt r:‘prhtrrl]e tions of the elementg; ,,» of a 2X2 matrix p;. In the
ouble occupanc) from the energy functional, which thus saddle-point approximation all boson operators are treated as

only dependg on the density 'matnx and the. paramd]?ers numbers and the matrig; can be parametrized as
Formally, this procedure defines an effective Gutzwiller

Hamiltonian, which can be expanded with respect to both
charge and spin fluctuations. As usual, both types of excita-

The starting point is the one-band Hubbard model:

tions are decoupled in case of saddle points with collinear Pip ﬁpiexq_"ﬁi)

spin structure. Second, the density matrix can be constructed pi= 7 2)
from arbitrary Slater determinants, and, therefore, the 1 .

method is suitable for the investigation of magnetic excita- Epiexq“‘ﬁi) Pi,|

tions in inhomogeneous systems. In this respect, the size
limitations in numerical solutions are exactly the same than .
for the inhomogeneous HFRPA approach? with p;, pi,, and; real. .

The paper is organized as follows. In Sec. Il we derive the Besides the completeness condition
GA energy functional from the spin-rotational invariant
slave-boson Hamiltonian and show how RPA fluctuations in ei2+tr(pi* pi)+D;=1, (©)
the charge and spin channel can be obtained within the time-
dependent Gutzwiller approach. In particular, we focus orthe boson fields are constrained by the following relations
the magnetic excitation spectrum obtained in this way from
the Hubbard model. Results for specific systems are pre- ,
sented in Sec. lIl. As a first example, we consider in Sec. (7P p)+28,0i= 2 (1) 0Pl 4
[l A the two-site Hubbard model, where the analytical solu- o0
tion is available for comparison. Since at smalthe mean-
field ground state is spin-rotationally invariant, the expectedyhere, in generabﬁ""szgcj,,,,) denotes the density ma-
degeneracy between longitudinal and transverse spin excitgi, 7, are the Pauli matrice§including 7,=1), and D;
tion allows us to check the consistency among charge angdiZ_
magnetic channel computations. Then, in Sec. Il B, the after rewriting the Hamiltonian(1) in terms of fermion
method is applied to a homogeneous and paramagnetic GAhg hoson operatofe,we can construct @pin-rotational
solution, where it turns out that the evaluation of transversen,ariant Gutzwiller functionalby eliminating the boson

mag_netic susceptibilities is g_reatly simplified as compared tgjg|gs except foD; via the constraints, Eq&3) and(4). As a
previous approaches. In particular, we evaluate the ferromaggsit. one obtains

netic and antiferromagnetic instability lines for an infinite-

dimensional hypercubic system, and demonstrate the exact

agreement Wlth variational results. Se_ctlon _III C is devoted EGA— E tiZ o o) 0 pia_'lvO'Z_l_ UE D;, (5
to a comparison of the GARPA magnetic excitation spectra i.j,0,01,07 RERER A i
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where the matrix; reads as

EGA:% €O ot UEi D, (13
() D .
ztcod—+z sif5  —[z —z Jcosd _ o N _

2 2 S where the superscript(0)” indicates quantities evaluated in
zi= . @ e the stationary statek=p,h labels particle and hole states,
S—Z[ZiJr—Zi_]COS‘I’ zrsin2§+zi_co§§ and ¢, are the corresponding one-particle energies.

Si
©) B. Calculation of RPA fluctuations around general GA saddle
with points and magnetic excitations
L The energy functional Eq(5) is a convenient starting
o= S'S . point for the calculation of charge and spin excitations on top
tarrd = (592’ (7) of general GA wave functions. In Refs. 16,17, we have al-
! ready given a detailed derivation of the G/RPA formalism
P in the charge sector, which, in the following, we extend to
7t V1= pii+ Dikim +A, \/5, ®) include the spin fluctuations.
! VA=Di—= (A (pii—Di—(A")3) We thus study the response of the system to an external
time-dependent perturbation
(\)?=p;/2—D; = S/1+tarfd, (9)
and for clarity spin expectation values are denotedSpy F(t)= 2 [fij.00 ()G ,Cj oo +H.C, (14)
=pit. S =o' S'=(pir' = pir1)/2, andpi=pii +piyt hhee
Note that in the limitS;” =0, where the matrix; is diagonal, _
one recovers the standard Gutzwiller energy functional as fijm,(t)zfijvwl(O)e*"“‘, (15

derived by Gebhardor KR.? Furthermore, it has been shown
that the spin-rotational invariant slave-boson scheme can Oghich induces small amplitude oscillations & and p
derived from the KR(or alternatively Gebhardisenergy  around the GA saddle point
functional when the spin rotation is applied to the underlying
Slater determinarft: Therefore, Eq(5) can be viewed as the 0
more general GA-like energy functional for a Hubbard D=D{®+sD(1), (16)
Hamiltonian.

In order to obtain the stationary solution of E&) one
has to minimizeE®* with respect to the double occupancy

parameter® and the density matrip. The latter variation ) i
has to be constrained to the subspace of Slater determinarfg@rrespondingly, we have to expand the energy functional

p=pD+5p(t). (17)

by imposing the condition Eq. (5) around the stationary solution up to second order in
the density and double-occupancy deviations. Due to the fact
p=p, (100  that we restrict to collinear saddle-point solutions, the charge

and spin sectors in the expansion are decoupled and one
which is equivalent to the diagonalization of the electronicobtains
problem supplemented by the variation with respecDto
only. A detailed description of the corresponding formalism
can be found in Ref. 25.

Regarding the stationary solutions, we will restrict to ) . ) g
Slater determinants which are diagonal in spin space, i.eWhere we have introduced the Gutzwiller Hamiltonfdr’

E[p,D]=Ey+tr(h%8p)+ SECNar9et sESPIN - (18)

p?""(o):pi‘}*"(o)ém,, . Thus we do not consider spin canted

I
solution€® which would mix charge and spin excitations. , HEGA
The diagonalized density matrices have eigenvalue 1 below hii [p.D]= —— 650 - (19
the Fermi level & hole statesh) and zero above=f par- Pii
ticle states:p) and consequently are also diagonal in spin
space: SECN319€ contains the expansion with respect to the double-
occupancy parameters and the part of the density matrix,
P, =1, (11)  which is diagonal in the spin indices. This part of the RPA
problem has already been studied in detail in Refs. 16,17,
pE)?r),po-:O' (120  where it was shown that théD fluctuations can be elimi-

nated by assuming that they adjust instantaneously to the
Within this notation we can formally write the stationary GA evolution of the density matrixantiadiabaticity condition
energy as The spin part of the expansion reads

155113-3



G. SEIBOLD, F. BECCA, P. RUBIN, AND J. LORENZANA PHYSICAL REVIEW B9, 155113 (2004

=3 ,€,0p., N EQ.(18) (which is first order in thgpp andhh
T, M. I MM. . . . . . .
SESPIN= E tip 72 . 062250+ 2 .60221 5,0] density projectionsyields a quadratic contribution in theh
andhp matrix elements:

"2, e 8121000 (h°3p)= 050+ endply,
pU'
+ 612 4,095 "]
=2 (€)oo, (29
+ 2 tIJPIO)U 0512| o, 70-512] — 0,0 (20) phoo’
The fluctuations which are diagonal in the spin indices
with the following abbreviations for the quadratic parts of (3pfy and dp}>) contribute to the expansion in the charge

the z-factor expansion channelt’ whereas the nondiagonal elements describe the
zero-order (noninteracting spin-flip excitations of the
0Zi g — g _ saddle-point Slater determinant.

01Zig 0= 5y OPi 77, (21 Thus, up to second order in the particle-h¢gin) den-

Pii sity fluctuations, one obtains for the energy expansion

azzi o, — 1 A 5pp'h'
8,7, Spii” Topi 77 . 22 spin—Z( 5,NP §,Ph
24,00 9 ioi',—a'apiTa'U P Pii ( ) oE —2(513 ,5[) )(B* A*) 5phrpr)l (30)

The explicit results for the derivatives are given in Appendixwhere the explicit expressions for the RPA matridesnd B

A. It is interesting to observe that, in contrast to the chargeare given in Appendix B. Note that the shorthand notation in
excitations, the evaluation of the magnetic excitations can bgq. (30) and below implies thagp andh states have opposite
performed without any adjustment 6D to Jp, i.e., without spin i.e. 5pph represent the joint set of elements of types
any assumption on the time evolutiondf Only in the case and 5p . Following Ref. 17, we can now evaluate the
of noncollinear saddle points one would have a coupllngesponse funcnon corresponding to the perturbationE4).
between spin and charge fluctuations and, therefore, the ngq case of nondiagonal perturbatiofss the coupling to a
cessity to invoke the antiadiabaticity condition to eliminatecurreny, one has to define an associated Gutzwiller operator
the oD deviations. which contains the GA hopping matrices However, in the

The density fluctuationsp in the expansion E¢18) are  spin channel the most relevant perturbations couple an exter-
restricted to the subspace of Slater determinants, i.e., thaya| field locally to some spin operator. The fief

have to obey the constraint ELO). One can therefore di- =fii.40r8; is therefore diagonal in the site representatlon
vide op into the particle(p) and hole(h) sectors using the and remains unchanged within the GA. Upon transforming
property of the density matrices Eq4.1) and(12): the perturbation to the particle-hole representation one can
N 0 ) derive the following linear response equation:
{800k =p500p(1=py),), (23
(A B " 1 o)((spph fon
{8pbny=(1=pShdpp),. (24) B A "“lo 1/l Tk,
{5132?, t=psp(1- P(O) ) (25  The inversion of Eq(31) yields a linear relation between the
external field and the change in the density

{595-5- } (1- p(O)) 5PP(0) . (26) Sp=R(w)f, (32)
where by{5p '} we mean a matrix whose nonzero genericand defines the linear response funct®fw) which in the
elements are of the form‘p . Moreover, one can show Lehmann representation reads as

[see Eqs(34)—(36) in Ref. 1ﬂ that thepp and hh density

projections yield a quadratic contribution in tipd and hp R -y XpnXprn B Yo Yo 33
matrix elements in the small amplitude approximation (“’)thp’h’_mo w—Qptie o+tQ,tiel (33
where we have introduced the eigenvectors of the RPA ma-
5PT;/~ _2 5P22H5P‘;DU/ ’ (27) trix
pU_H
<0|ahap|n> Xoh (34
b, ~E 3P 0Py - (28)
(0lafap|n)y=Yp,. (35)
Hence, although the Gutzwiller Hamiltonian EG.9) is di-  and|n) denote the unprojecte@e., without Gutzwiller cor-

agonal in spin space, it turns out that the termhdp) relations excited states of the RPA problem.
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Il RESULTS the mentioned limitation of mean-field in a low-dimensional
. . . . . system. In the GA approximation, the electronic correlations
s o o o e e e o oy 1 POXIMate ' belr v an e range of e pare
excitations on top of the GA. One of the advantages of the agnetic solution is extended, giving rise to
present approach is that it is suitable for general Slater de- GA 1V~
terminants, i.e., without any restriction on translational and Ugh/t=8(y2-1)~331
(longitudina) spin symmetries. The system siZéshich can

be treated are the same than for the traditionaH-HRPA
approximationt® However, also for homogeneous and para-
magnetic saddle points the GA based RPA approach provid
a convenient method for the evaluation of spin fluctuations.
Our method is solely based on the expansion of the density

Since the analytic expressions for the symmetry-broken
regime become quite lengthy, we restrict the derivation be-
low to the paramagnetic case, where the expansion of the
ergy functional is given by

matrix in terms of particle-hole fluctuations and does not EESF"”:WS 2 5Sq+ 3S_,,
involve other degrees of freedom as in the related functional 4=0m
integral slave-boson schere!?22

First, this advantage is demonstrated for a two-site Hub- US= —u (2+u)(1—u)t u=U/(8t)
bard model which is also a convenig¢ay modeffor the RPA 1+u ' '

formalism derived in the preceding section. However, the - L
GA+RPA approach can glso be gpplied within the moreNote that within the HF- RPA approximation, we have®
conventional Green’s function technique which is used in:_U/4' .

Sec. Il B to evaluate spin susceptibilities for a homogeneous 1€ RPA matrices read as

and paramagnetic hypercubic lattice in infinite dimensions.

In this case the GA becomes exact for the energy functional 5 _—
within the Gutzwiller wave function, and we recover the 0 AE+2U°
magnetic instability lines determined previously by Fazekas . . o .
and collaborators? The remainder of this section is then W|thhthed_one-palrt|clv_a excflt?]non_ energ:A£=2'tt)(|1—u?) "
devoted to a detailed analysis of the quality of our approacfa The lagonalization of the eigenvalue problem yields two
by comparing with HF-RPA and exact results for small egenerate excitation energies

clusters, where the exact solution is known by exact diago-
nalization techniques.

AE+2US 0 0 2us
o o\aus 0 )

wi_; ,=0%=AE[AE+4U°S]. (38)

Since the ground state is a singlet, these energies in the spin
A. Two-site Hubbard model channel coincide with the longitudinal magnetic excitations
As a first example, we consider the two-site Hubbardfzompmeo| in the chargg chanr(gbe_ Ref: 1x Corrgspond-
model at half filling which can be solved exactly and can be'ngly’ one h_as_thfee triplet excnatlo_ns n tptal,_ W"m.SZ: .
studied analytically with both the GARPA and HF- RPA -1,0,1. Thls |nd|cates_ that the spin-rotation invariance is
approximations. On general grounds a mean-fieldtime- CoffeC“Y !mpler_rlented In our approgch, a fact that is far from
dependent mean-figldapproach is expected to improve as being trivial. It is worth noting that in the charge_channe! an
the dimensionality of the space increases, and, therefore, thfglra assumption was needed, namely, thg antladlabgtlc ad-
zero-dimensional problem is the worst case and may give stment of the double occupancy to the time evolution of

estimation of the maximum error which can be expected fofe den_sity matrix, which was not necessary for_the present
these mean-field approaches calculation. Therefore, the fact that the spin-rotation symme-

The exact ground-state energy is given by try is preserved among both independent computations can
be used as a justificatiaposterioriof the previous assump-

EO: %[U _ /U2+ 16t2], (36) tion.
and only the antisymmetric combination of the spin-flip op- B. Paramagnetic regime in infinite dimensions

erators — Lo
As a further application and to get more insight into our

1 approximation, we apply the GARPA method to an
St=—[ST-S,] (37)  infinite-dimensional hypercubic lattice, where the perfor-
V2 mance is expected to be the best. We consider a partially
filled system with densith=1- 6.
The on-site elements of the density matrix for a paramag-

r{1_etic saddle-point solution are given bf]’”' =n/268,, , SO
that the matrixz; of Eq. (6) reads as

induces a transition to a state with eneigy 0, so that the
excitation energy is given bgoggmz —E,.
Note that the exact solution does not display a phase tra

sition but remains paramagnetiand analyti¢ in U/t. On

the other hand, in the HF theory, one finds a paramagnetic 2 0
solution belowU"F /t=2 and a Nel-type ordered solution Z.=( 0 ' (39)
for U>UHE . The latter is clearly nonphysical and related to 0 1z
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where, by using the notation introduced by Vollhardt in Ref. . N ‘
4, we have 5Sq —>Sq :g Ck+q,TCk,L )

2x2—x4— 82

Z f—
0 1- &2

, (40 5T;HT;=; (k+q+ €K)Ch+ q1Ck,| -

x=y1-n+D+D. (41 Since the energy expansion E45) is a quadratic form in
8S, and 8T, it is useful to define the following matrix for

For the Gutzwiller approximated energy one obtains the bare time-ordered correlation functions

ECA=NZze,+NUD, (42) . i((TS;(t)sq(o»o <7s;(t)Tq(0)>0)
t)=— '
. X(U= (TT4(1)SZ4(0))o (TT4(H)TZ4(0))o
deo:N % EKPRK (43 49

where, the notation(- - -), indicates that the correlation
where e, denotes the energy per site of the noninteractingunctions are calculated from the excitation spectrum of the
system, e, is the electronic dispersion corresponding to theGutzwiller Hamiltonian Eq(19) and (29) and as a function
Gutzwiller Hamiltonian(19) and N is the number of sites. of frequency one obtains
The minimization of Eq(42) yields
1
41— x2 Xq(@)=— <
)((1—)():(1_52)L5u’ (44) K N %
x4— 82 8leg|
nk+q,‘((1_nk,l) _ nk,l(l_nk+q,T)
oteq—etid wteg—e—id)

1 8k+8k+q )

2
ekt ekrg (8kTekiq)

which, by using Eq(41), determines the double-occupancy

parameteD. (50)
The energy expansion E¢RO) in the momentum space is
given by The RPA series for the spin excitations then corresponds to
the following Dyson equation:
5Espin=£ z N.S8SH8S™ + E Z_’ 0 0
N a%=a 7m0 TN g, Xq() = xg(®) = xg(@)Mgxg(w), (51)
with the interaction kernel
XD (8T 8S-,+0S 6T ), (45
q N z'
with the following definitions: 4z
M= _, . (52
AW z
" z 1 o0 — 0
Ng=2€920Z" + Z_o N % €kt qPKK (46) Zy

As a check of the consistency of our approach, we deter-

6S”=Z SoT =7 47) mir!e the para_magnetic-ferromagnetic _and paramagnetic-

a4 Py+q,k antiferromagnetic phase boundaries. This can be compared
with previous results within the GA obtained by evaluating

the vanishing of the corresponding order parameter. In case

oTg= 2 (8k+qT &) OPKiq ks (48) of the ferromagnetic instability we have to analyze the limit
K Iimqﬂoxq(w=0) so that the susceptibility matrix simplifies
and the derivativeg’ andz” are given in Appendix A. to

Within the RPA approach presented in Sec. Il, one always
computes all excitation energies, which constitutes a suitable 0
procedure for the solutions on finite clusters. In infinite sys- Xo(@=0)=N(&F)
tem it is usually more convenient to treat the RPA problem in
terms of a conventional Dyson approach. Therefore, we us@hereN(er) denotes the density of states at the Fermi level
the well-known equivalence between both formulatidite ¢, . The inversion of Eq(51) yields as a condition for the
set up a Dyson equation. The interaction kernel which entergxistence of a pole ab=0 andq=0
the S matrix in the Green’s function description can be for-

1 2¢e
F) , (53

2ep  A4deg

mally obtained from Eq(45) by substituting the density- Def 1+ x3(@=0)My]=1+F3=0, (54)
matrix fluctuations by the corresponding operator expres-
sions, for instance with the Landau parametéi; :
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FIG. 1. Landau parameté& as function ofu/B for an infinite- u/B
dimensional hypercubic lattice. The inset shows the paramagnetic-
ferromagnetic instability line. FIG. 2. RPA static susceptibilityxq(w=0)],; as function of
U/B for an infinite-dimensional hypercubic lattice. The inset shows
z' the paramagnetic-antiferromagnetic instability line.
FSZN(EF) 60(2202”4'2’2)"'48':2_ . (55)
0

_ _ _ We show the behavior ofx3(w=0)]y; for various & in
In the half-filled case §=0) and a symmetric density of Fig. 2

states £=0) this express_:ion naturally coincidgs with \a/oII- Due to the complete nesting, the bare susceptibility
hardt's resulfsee Eq.(61) in Ref. 4. Figure 1 displays~g [xQ(@=0)]y; diverges fors=0. Hence in this case the sin-
for a Gaussian density of states gularities of[ xo(w=0)];; are determined by the zeros of
1 2 the interaction kerneNg, which naturally vanishes for
eXp( @ ) (56) U/B=0 but also at the Brinkman-Rice transition whexe
\/ZB 2B? —0. The latter, however, is irrelevant since it occurs in the
which corresponds to an infinite-dimensional hypercubic Iat_antiferromggnetic phase._The poleuajt5=0 indicat9§ that
the instability toward antiferromagnetism at half filling oc-

tice. In this case the GA becomes exact for the energy func-

tional of the Gutzwiller wave function. Due to the occur- cUrS at arbitrarily small interaction also in infinite dimen-
; : e ..o sions. For finited the bare magnetic susceptibility is finite
rence of the Brinkman-Rice transition at half fillingg

A T : and consequently the pole gf(w=0) is due to the vanish-
saturates at a valugy>—1 for U>1. Thus, in this particu- jnq of the RPA denominator in EG58). It turns out that the
lar case, there is no second-order

_ . 2r_paramagneticsgatic magnetic susceptibility has exactly one pole in the
ferromagnetic phase transition. The conditiéf=—1 can range 0<5<0.117, two poles in the range 0.147P
be fulfilled in a restricted doping range, i.e.<<0.418,  <0.2048 and no pole fof=0.2048. For completeness, Fig.
and the corresponding instability line is shown in the inset ofy z/50 displaysyo(w=0) for §=0.25, where there is a
Fig. 1. We find complete agreement of our RPA approachyma|| enhancement for those values B where the insta-
with the phase diagram determined by a variational approachjjity occurred for smallers. The inset of Fig. 2 shows the
in Ref. 30. ) ) - ) antiferromagnetic-paramagnetic instability line constructed
In order to investigate the instability toward antiferromag- from the poles ofyo(w=0). Again we find complete agree-
netism, we study the=0 susceptibility at wave vectd®  ment with the variational approach of Ref. 30. Note that one
=(m,m,m, ...). Theinspection of Eq(50) reveals that in  shoyld also determine the first-order boundaries between the
the case of a nearest-neighbor hopping tight-binding bangromagnetic and antiferromagnetic phases. Since our inten-
with & q=— & only the (1,1) matrix element of the bare tjon js limited to a demonstration of the consistency of the

N(w)=

susceptibility is different from zero GA+RPA approach, we refer the reader to Ref. 30, where
1 12 the antiferromagnetic-ferromagnetic phase boundaries have
0/ _ _ L E8F been determined by comparing the respective ground-state

[XQ(w 0)]11 \/@B El( 2 Bz> ’ (57) energies.

where E;(x) denotes the exponential integfalThe RPA

series of Eq(51) then leads to C. Comparison with HF+RPA and exact diagonalization
0(w=0 In the preceding section we have mainly focused on the
[xo(w=0)]y,= [xo(@=0)1u static limit of our RPA approach. This final part is devoted to
N 1+ NQ[XOQ(w=O)]11’ an analysis of the magnetic properties of the GRPA
method, which is compared to the HIRPA and the exact
NQzeo{Zzoz"—(z’)z}. (58) results on a &4 Hubbard cluster with nearest-neighbor
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FIG. 3. Magnetic excitations a=(=/2,0) andq=(,0) as a
function of U/t for a half-filled 4x 4 cluster: GA+ RPA (solid line),
HF+ RPA (dashed ling and exact diagonalizatioffull circles and
full square$. The exact diagonalization results for the excitation at
g=(w/2,m) are also reportedempty squares In the inset: the

g-point mesh of the 44 cluster and the dashed square indicates
the doubled Brillouin zone. Grey points indicate the important wave

vectors of the magnetic excitations.

hopping. For the half-filled system we additionally compare

our results with quantum Monte Carlo simulations for the
spin-wave velocity.

1. Half-filled system

We start with the half-filled system with eight spin-up and

PHYSICAL REVIEW B9, 155113 (2004

tween theq=(7/2,7/2) andq=(,0) excitations. Further-
more, the SDW ground state of the GA and HF solution leads
to the doubling of the Brillouin zonésee inset of Fig. Bso
that, besides the antiferromagnetic wave ved@ronly g
=(m/2,0) andg=(,0) correspond to independent excita-
tions. On the other hand, on thex4l lattice, we have that
the exact energies gt=(7/2,0) andq= (7/2,7) are slightly
different.

The smallJ behavior of the lowest excitation energy in
Fig. 3 can be well understood from the SDW picture. Within
this approximation, the band structure in the reduced Bril-
louin zone is given byE,==* \/sq2+ A?, with £q=
—2t[cos)+cos,)] and A denotes the SDW gap. Since
we study a half-filled system, all states wily <O are oc-
cupied. Consider first thg=(,0) excitation which can be
attributed to a spin-flip transition fromy = (— 7/2,= 7/2) to
d,=(m/2,=m/2) so that the excitation energy is given by
w=Ey —Eq =2A. The SDW gap in the HF approximation

1 2
is related to the on-site magnetization""=2U|S,|,
whereas within the KR formulation of the GA it is deter-
mined by the difference in the local spin-dependent Lagrange
multipliers A®#=X\, -\ . Since in the limitU—0 the GA
reduces to the HF approximation, both excitation energies
coincide in this regime and also agree with the exact result.
On the other hand, fod/t=1, where RPA corrections be-
come important, it can be seen from Fig. 3 that the GA
+RPA is in much better agreement with exact diagonaliza-
tion than the corresponding HFRPA result. As a conse-
quence, the GA RPA gives a quite accurate description of
the crossovefat U/t=~6) from the SDW regime, where a
gap proportional tdJ opens along the Fermi surface, to the

eight spin-down particles. The ground-state Slater determ'Heisenberg regime, where there are low-energy magnetic ex-
nant for the GA and the HF approximation corresponds t0 &itations with energy scalé/U.

spin-density wavegSDW), which breaks the spin-rotational

For the higher-energy triplet excitation@t (7/2,0), the

symmetry of the Hamiltonian. As a consequence the transsa 4 RpA yields energies which are slightly lower than the
verse magnetic excitations contain zero-energy Goldstongy,qt result. However, whereas the discrepancy for the GA

modes at wave vectdD = (7,7). To avoid numerical insta-

bilities, we have added a small perturbation to the Hamil-

tonian

V=a, (§)?, (59

I
with a~10 %, which shifts the Goldstone modes to small
but finite energies € «). In the exact solution an analog
pole appears at small but nonzero frequenayt0.145)

+RPA atU/t=6 is around 10%, the HFRPA deviates by
almost 20% from the exact diagonalization result.

In the Heisenberg regime we thus observe that the mag-
netic excitations within GA RPA are shifted to slightly
higher energies as compared to HRPA. The associated
renormalization constart. of the spin wave velocity can be
obtained by fitting thek-dependent spin excitations to the

dispersion relationw, = y2c\1— %[ cosk,+ cosk 2% The
spin-wave velocity extracted for a-88 lattice andJ/t=8 is

due to the finiteness of the cluster. In the thermodynami@®btained ags,=0.64 which is in excellent agreement with

limit long-range order is recoverédand a Goldstone mode
will appear as in the mean-field solution with a weight re-

the estimate from Monte Carlo simulations in Ref. 34.
In order to have information on the accuracy of the GA

lated to the order parameter. Here, we are interested in thé RPA for finite frequencies, we report in Fig. 4 the local
finite-frequency behavior and, therefore, we exclude the exmagnetic susceptibility

act and approximate “Goldstone-like” poles from the com-
parison and restrict ourselves to the finite-frequetidplet)
excitations, which, for the chosen value ®f do not sensi-
tively depend on the anisotropy field EG9).

X(@)=2 2 [(VnlSq[¥o)|*dw(En—Eo)]
(60

Figure 3 shows the magnetic excitation energies as a func-

tion of U/t evaluated within the GA RPA, the HF RPA
and the exact diagonalization. Note that the 4l system has

for the GA+ RPA and the HR- RPA approximations and the
exact diagonalization foJ/t=4. The § functions in Eq.

a further accidental symmetry, which causes degeneracy bé60) have been replaced by Lorentzians with widtht0.1
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FIG. 4. Local magnetic suscg;:ibilitx(w) for the half-filled FIG. 5. Cumulative sum of the first moment g{w) for the
4x 4 cluster calculated within exact diagonalization, GRPA and  exact result, GA-RPA, and HR-RPA. Data are for a half-filled
HF+RPA for U/t=4. The HF+RPA curve has been shifted for 4X4 cluster andJ/t=4. Inset: a detail of the low-energy part.
convenience. The two arrows indicate the energy of the lo@est

i(w,w) excitation atw/t~0.145 (exact diagonalizationand w/t to the poles and intensities. Both the HRPA and the GA
=0 (RPA Goldstone mode + RPA approximate the incoherent part of the exact spectrum

(i.e., for w/t>2) by a rather small set of excitations. How-

_The two lowest-energy excitations are quite accuralger the corresponding steplike evolution of the first mo-
within the GA+ RPA approach except for a moderate OVer- ant of y() is quite close to the exact result

estimation of the intensity which becomes much worse in
HF+ RPA. Interestingly, also the high-energy spin fluctua-
tions are in the correct frequency range.
It should be noted that the spectral weight is constrained We finally investigate a % 4 cluster with five spin-up and
by the following sum rule: five spin-down particles, corresponding to a closed-shell
configuration. The HF solution undergoes a magnetic insta-
o 1 bility with wave vector q=(m/2,7w) at U, /t~4.365,
fo dowx(w)=— §<T>GA’ (61 marked by the softening of the corresponding excitation at
this critical value. FotJ >U_,;; the HFH RPA spectrum has
where(T)ga is the average value of the kinetic energy in thea Goldstone mode and in general the performance is very
GA. The sum rule Eq(61) relates the RPA correlation func- poor consistently with the fact that a broken symmetry state
tion y(w) to the kinetic energy computed within the GA. A is not expected even in the thermodynamic limit, therefore,
similar sum rule is valid in HF- RPA with the kinetic energy ~We restrict to the more physical paramagnetic solution. In the
computed in HF. In Ref. 16, we have already demonstrate€fA case the paramagnetic solution can be stabilized for
that the GA kinetic energy is in remarkable agreement withmuch larger values obl/t providing a reasonable starting
the exact result over a large doping range which in thepoint in a broader parameter range just as in the two-site
present context gives additional support to the /GRPA  case. The GA RPA approach captures the behavior of the
approach also in the magnetic sector. On the other hand, thexact solution(namely, the softening of triplet excitationat
HF approximation is of inferior quality in describing excita- least in a qualitative way, although quantitative deviations
tion energies and the total kinetic energy. Therefore it is noincrease with increasing/t (see Fig. 6.
surprising that also spectral weights perform much worse In Fig. 7, we compare the local susceptibility of the HF

2. Doped system

than in the GA- RPA approach. +RPA, the GA+RPA, and the exact diagonalization for
Finally, Fig. 5 displays the frequency evolution of the first U/t=4, i.e., for values ofU/t smaller than the magnetic
moment of y(w) instability. The GA+ RPA not only gives a rather good esti-

mate to the lowest excitation energy but in addition provides
1 ® L o~ a good approximation for the corresponding intensity. Note
M (“’):L dowx(w), (62 that, since for the given value df/t the HF solution is
already close to the=(#/2,7) instability, we observe a
for the same parameters as in Fig. 4. Note tia{w) con-  strong softening of the lowest-energy excitation resulting in a
tains the contribution from the lowe&= (, ) excitations  significantly enhanced oscillator strength.
(i.e., the Goldstone modes in the mean-field plus RPA  Finally, we have also evaluated the cumulative integral of
which appear as the offsets at small energies. From the ins#te first moment of(w) for the GA+ RPA and exact diago-
of Fig. 5, it can be seen that, especially at low frequenciespalization, which is shown in the inset of Fig. 7. Due to the
the GA+ RPA approach provides a much better approxima-sum rule Eq.(61) and the excellent kinetic-energy approxi-
tion for the exactM'(w) than HF+ RPA, both with respect mation of the GA, the integrated weight of the GRPA
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FIG. 6. Magnetic excitations for wave vectogs= (7, 7) and
g=(w/2,7) (left pane) and forq=(,0), q=(7/2,0) (right pane)
as a function ofU/t for the exact diagonalizatio(solid line), GA
+RPA (dashed ling and HF- RPA (dotted ling. The HF RPA
are shown folJ<U_,j; .

the spectral weight as a function of the frequency.

IV. CONCLUSION

PHYSICAL REVIEW B9, 155113 (2004

the two calculations for the spin and the charge sector give
the correct degeneracy of the excitation spectrum for a spin-
rotational invariant systengthe two-site Hubbard model
clearly indicates that such an assumption was indeed correct
i.e., other possibilities like to keep the double occupancy
fixed at the stationary valugather than to follow the time
evolution of the density matr)xwould had lead to an un-

physical breaking of spin-rotational symmetry.

The present formalism is based on a Gutzwiller-type en-
ergy functional, which can be either obtained from the spin-

rotational invariant KR slave-boson schether alternatively
from the standard GA with

ter performance of GA RPA with respect to HF RPA has

spin-rotated  Slater
determinant$? In our approach, due to the fact that all
bosonic fields have been already eliminated from the saddle-
point energy functional, it turns out that the evaluation of
RPA fluctuations around the GA solution is significantly sim-
plified. In the present paper, we have restricted the calcula-
tions of the magnetic excitations to small Hubbard clusters in
order to compare with exact diagonalization results. The bet-

been demonstrated for both excitation energies and the cor-

responding intensities. However, compared to numerical
method&® our approach can be pushed to much larger sys-
and the exact diagonalization are in excellent agreementems. In particular, it is suitable for the evaluation of mag-
Moreover, we again observe that the GRPA provides a
rather good steplike approximation to the exact evolution oHubbard-type models, where it is constrained to the same
size limitations than the unrestricted HIRPA approach.
This is interesting in connection with the magnetic suscepti-
bility in nickelates and highF; cuprates, which are both
. o ~ characterized by the presence of strong electronic correla-
In this paper, we have presented a detailed investigatiofions and inhomogeneous charge distributions in some part
of the quality of the GA- RPA approach for the computation of the phase diagram. Work in this direction is in progress.

netic excitations around

of the magnetic excitations. The present computation is
complementary to the previous computation in the charge

sectort®!” An unexpected outcome of the present work is a
further justification of the antiadiabatic assumption for the
time evolution of the double occupancy, which was neede
in the charge but not in the magnetic channel. The fact th

¥
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APPENDIX A: DERIVATIVES OF THE HOPPING FACTOR
10 b |
15 L 3 . The derivatives appearing in Eq21) and(22) are given
=~ 5, b
§ y
o e
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FIG. 7. Local magnetic susceptibility(w) for the 4x4 cluster \/Piw_ D; \/piﬂfﬂf
with ten particles calculated within exact diagonalization, GA
+RPA and HF-RPA for U/t=4. The HFRPA curve has been 1-2p7”
shifted for convenience. The inset shows the cumulative sum of the — ﬁZRW . (A2)
first moment ofy(w) for the exact result and the GARPA. pi (1=pi)
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In case of a homogeneous, paramagnetic saddle point these |

expressions simplify to

gy ., 26 (1
PRI 1—52(2_0_20)’ (A3)
Tlis e 20 |1—252<i—1>]
o opy T (1=8%)? z
. (A4)
2 (1-6-2D)?

wherez, denote the elements of tleematrix defined in Eq.
(40).

APPENDIX B: DERIVATION OF THE RPA MATRICES

PHYSICAL REVIEW B 69, 155113(2004

=850 2 Nj®i(po)®i(h,—0)
i]

In order to give explicit expressions for the RPA matrices

A andB as defined in Eq30) one has to first diagonalize the
Gutzwiller Hamiltonian Eq(19) via

U’ZE CDi(V,O')aV’(,, (Bl)
wherev refers to either particlép) or hole (h) states. Insert-
ing this transformation in the expansion ER0) leads to the
following expressions foA andB:

Ag;{p’h’=(8p0_8h,—0)5pp’6hh'500"
+5W; N;;®i(pa)®i(h,— o) ®;(p' o)
X®;(h’, g)+Rphp,h, Ry oh

ph,p’h’
X®i(p’,— o) ®j(h o)+ Ty o+ T s
(B2)
where
(9 Z;
N =286 t .70 "o
1] IJE nj na'o'pn] a'crﬁ(p“ Tl)&(p]] H)
92,11 97,11
+t|] (9P| It ap] ( Ij ﬂ+p|] u)(l 5”)
Tonerh = O 901 22 tua oL = @,(p1)®;(h1)
x[zﬁm@(p'n@j(h'1>+zi,u<bj<p'n<bi<h'i>]
0000, 2 4 ﬁp' —-)(p1)@(h1)
X[z, ®(p" | )Pi(h'T)
+2) ) ®i(p' P (h' 1)1,
R = 80101 2 t.,& '”cb( H®;(hl)

x[zf’,ﬁcbmh'ncbj(p'1>+zi,u<1>,-<h'n<bi<p'l)]

9Z;, 1,
i ;.

><[z?,m<1>i(p'T><1>,-(h'i>
+2),®(p' H)di(h' )],

+5(,_gr5012 tij <I> (pL)®;(hT)

(B3)
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