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Time-dependent Gutzwiller theory of magnetic excitations in the Hubbard model
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We use a spin-rotational invariant Gutzwiller energy functional to compute random-phase-approximation-
like ~RPA! fluctuations on top of the Gutzwiller approximation~GA!. The method can be viewed as an
extension of the previously developed GA1RPA approach for the charge sector@G. Seibold and J. Lorenzana,
Phys. Rev. Lett.86, 2605~2001!# with respect to the inclusion of the magnetic excitations. Unlike the charge
case, no assumptions about the time evolution of the double occupancy are needed in this case. Interestingly,
in a spin-rotational invariant system, we find the correct degeneracy between triplet excitations, showing the
consistency of both computations. Since no restrictions are imposed on the symmetry of the underlying
saddle-point solution, our approach is suitable for the evaluation of the magnetic susceptibility and dynamical
structure factor in strongly correlated inhomogeneous systems. We present a detailed study of the quality of our
approach by comparing with exact diagonalization results and show its much higher accuracy compared to the
conventional Hartree-Fock1RPA theory. In infinite dimensions, where the GA becomes exact for the
Gutzwiller variational energy, we evaluate ferromagnetic and antiferromagnetic instabilities from the transverse
magnetic susceptibility. The resulting phase diagram is in complete agreement with previous variational com-
putations.

DOI: 10.1103/PhysRevB.69.155113 PACS number~s!: 71.10.2w, 71.27.1a, 71.45.Gm
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I. INTRODUCTION

It is now about 40 years ago that Gutzwiller proposed
variational wave function for correlated electronic mod
with a purely local interaction, i.e., for the Hubbard-lik
models.1,2 The basic idea is to partially project out config
rations with doubly occupied sites from the Fermi sea
order to optimize the contributions from kinetic and potent
energy. As a consequence, in contrast to the conventi
Hartree-Fock~HF! theory, the Gutzwiller wave function cap
tures correlation effects such as the band narrowing alre
on the variational level. However, the exact evaluation of
ground-state energy within the Gutzwiller wave function
fairly difficult and up to now has only been achieved in o
and infinite dimensions.3 In the latter case the solution i
equivalent to the so-called Gutzwiller approximation~GA!
which has been applied to describe a variety of fini
dimensional systems ranging from the properties of nor
3He ~see Ref. 4! to the stripe phase of high-Tc cuprates.5,6

The GA in its original formulation was restricted to ho
mogeneous paramagnetic systems and only later on gen
ized to arbitrary Slater determinants by Gebhard7 and, more
recently, by Attaccalite and Fabrizio.8 The same energy func
tional was obtained from the Kotliar-Ruckenstein~KR!
slave-boson formulation of the Hubbard model when
bosons are replaced by their mean values.9 Moreover, the KR
slave-boson approach provides a controlled scheme for
cluding fluctuations beyond the mean-field solution. F
mally this has been achieved by several authors within
functional integral formalism.10–14 However, the expansion
of the KR hopping factorzSB turned out to be a highly non
trivial task, both with respect to the proper normal orderi
0163-1829/2004/69~15!/155113~12!/$22.50 69 1551
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of the bosons and with respect to the correct continuum li
of the functional integral.10 These difficulties have severel
hampered the computation of charge fluctuations within
slave boson approach. To our knowledge this technique
therefore only been applied totoy models10 and to compute
the optical conductivity in the paramagnetic regime.13,14The
latter, however, did not lead to controlled sum rules due
the above mentioned difficulties.15

In Refs. 16,17 we have developed an alternative sche
for the computation of random-phase-approximation-l
~RPA! fluctuations beyond the GA. Our approach, labe
GA1RPA, is based on well-developed techniques in nucl
physics18 and RPA fluctuations are obtained in the small o
cillation limit of a time-dependent GA. By comparing wit
exact diagonalization results, we have shown that the c
putation of static and dynamical correlation functions p
forms much better within the GA1RPA than within conven-
tional HF1RPA theory.19 Since no restrictions are impose
on the symmetry of the saddle-point solution, the G
1RPA method is also suitable for the investigation
strongly correlated electronically inhomogeneous syste
Based on this formalism, two of us have recently explain
the evolution of the optical conductivity with doping in high
Tc cuprate compounds.20

Our previous investigations were restricted to the eval
tion of RPA fluctuations in the charge sector where thez
component of the spin is conserved by the particle-h
excitations.16,17 However, in general, one has to distingui
between longitudinal~i.e., with DSz50) and transverse spin
excitations ~i.e., with DSz561), the latter involving
particle-hole pairs with opposite spins. Longitudinal exci
tions are optically allowed by dipole selection rules where
©2004 The American Physical Society13-1
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transverse excitations can be excited by spin-carrying
ticles such as neutrons. For spin-rotational invariant syste
the triplet transverse excitations withDSz561 are degener-
ate with the triplet longitudinal excitation withDSz50 and,
therefore, it is enough to solve the problem in the longitu
nal channel. As discussed below, the solution in the tra
verse channel is useful for a consistency check. If sp
rotational symmetry is broken,~e.g., for ferromagnetic or
spin-density-wave states! the triplet excitations will split and
one has to solve both channels to obtain the whole spect

The present paper is therefore devoted to the computa
of transverse magnetic excitations on top of the GA. Vario
approaches have been already adopted in order to ac
plish this task. In Ref. 21, Bu¨nemann has evaluated the spi
wave excitations in itinerant ferromagnets by determin
variationally the energy of the excited stateSq

1uCG&, where
uCG& denotes the Gutzwiller wave function andSq

1 is the
spin-flip operator with momentumq. Furthermore, spin ex
citations around paramagnetic saddle points have been in
tigated in Refs. 11,12,22 within the functional integral tec
nique based on the spin-rotational invariant slave-bo
scheme.23

Our investigations below are related to these previous
vestigations but differ in two important aspects. First we w
eliminate the bosonic degrees of freedom~except for the
double occupancyD) from the energy functional, which thu
only depends on the density matrix and the parametersD.
Formally, this procedure defines an effective Gutzwil
Hamiltonian, which can be expanded with respect to b
charge and spin fluctuations. As usual, both types of exc
tions are decoupled in case of saddle points with collin
spin structure. Second, the density matrix can be constru
from arbitrary Slater determinants, and, therefore,
method is suitable for the investigation of magnetic exc
tions in inhomogeneous systems. In this respect, the
limitations in numerical solutions are exactly the same th
for the inhomogeneous HF1RPA approach.19

The paper is organized as follows. In Sec. II we derive
GA energy functional from the spin-rotational invaria
slave-boson Hamiltonian and show how RPA fluctuations
the charge and spin channel can be obtained within the ti
dependent Gutzwiller approach. In particular, we focus
the magnetic excitation spectrum obtained in this way fr
the Hubbard model. Results for specific systems are
sented in Sec. III. As a first example, we consider in S
III A the two-site Hubbard model, where the analytical so
tion is available for comparison. Since at smallU the mean-
field ground state is spin-rotationally invariant, the expec
degeneracy between longitudinal and transverse spin ex
tion allows us to check the consistency among charge
magnetic channel computations. Then, in Sec. III B,
method is applied to a homogeneous and paramagnetic
solution, where it turns out that the evaluation of transve
magnetic susceptibilities is greatly simplified as compared
previous approaches. In particular, we evaluate the ferrom
netic and antiferromagnetic instability lines for an infinit
dimensional hypercubic system, and demonstrate the e
agreement with variational results. Section III C is devo
to a comparison of the GA1RPA magnetic excitation spectr
15511
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with exact diagonalization and HF1RPA results, respec
tively. Concluding remarks appear in Sec. IV.

II. FORMALISM

A. Spin-rotational invariant GA

The starting point is the one-band Hubbard model:

H5 (
i , j ,s

t i j ci ,s
† cj ,s1U(

i
ni ,↑ni ,↓ , ~1!

whereci ,s (ci ,s
† ) destroys~creates! an electron with spins at

site i, andni ,s5ci ,s
† ci ,s . U is the on-site Hubbard repulsio

and t i j denotes the hopping parameter between sitesi and j.
Our investigations are based on the spin-rotational invar
form of the slave-boson approach introduced by KR23

Within this formalism one introduces auxiliary bosonsei

(ei
†) anddi (di

†) which represent the annihilation~creation!
of empty and doubly occupied sites, respectively. In additi
the singly occupied states are represented by two particle
spin-1/2 fermion and a bosonp which can have either spin
S50 or S51 in such a way that the combination has sp
1/2. The fourp states~a singlet and a triplet! are combina-
tions of the elementspi ,ss8 of a 232 matrix pi . In the
saddle-point approximation all boson operators are treate
numbers and the matrixpi can be parametrized as

pi5S pi ,↑
1

A2
piexp~2 if i !

1

A2
piexp~1 if i ! pi ,↓

D , ~2!

with pi , pis , andf i real.
Besides the completeness condition

ei
21tr~pi* pi !1Di51, ~3!

the boson fields are constrained by the following relation

tr~tmpi* pi !12dm,0Di5 (
s,s8

~tm!s,s8r i i
s,s8 , ~4!

where, in general,r i j
s,s8[^ci ,s

† cj ,s8& denotes the density ma
trix, tm are the Pauli matrices~including t0[1), and Di

[di
2 .

After rewriting the Hamiltonian~1! in terms of fermion
and boson operators,23 we can construct aspin-rotational
invariant Gutzwiller functionalby eliminating the boson
fields except forDi via the constraints, Eqs.~3! and~4!. As a
result, one obtains

EGA5 (
i , j ,s,s1 ,s2

t i j zi ,s1 ,szj ,s,s2
r i j

s1 ,s21U(
i

Di , ~5!
3-2
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where the matrixzi reads as

zi5S zi
1cos2

F

2
1zi

2sin2
F

2

Si
2

Si
z

@zi
12zi

2#cosF

Si
1

Si
z

@zi
12zi

2#cosF zi
1sin2

F

2
1zi

2cos2
F

2

D ,

~6!

with

tan2F5
Si

1Si
2

~Si
z!2

, ~7!

zi
65

A12r i i 1Dil i
61l i

7ADi

A~12Di2~l i
6!2!~r i i 2Di2~l i

7!2!
, ~8!

~l i
6!25r i i /22Di6Si

zA11tan2F, ~9!

and for clarity spin expectation values are denoted bySi
1

5r i i
↑,↓ , Si

25r i i
↓,↑ , Si

z5(r i i
↑,↑2r i i

↓,↓)/2, andr i i 5r i i
↑,↑1r i i

↓,↓ .
Note that in the limitSi

650, where the matrixzi is diagonal,
one recovers the standard Gutzwiller energy functional
derived by Gebhard7 or KR.9 Furthermore, it has been show
that the spin-rotational invariant slave-boson scheme ca
derived from the KR~or alternatively Gebhard’s! energy
functional when the spin rotation is applied to the underly
Slater determinant.24 Therefore, Eq.~5! can be viewed as the
more general GA-like energy functional for a Hubba
Hamiltonian.

In order to obtain the stationary solution of Eq.~5! one
has to minimizeEGA with respect to the double occupanc
parametersD and the density matrixr. The latter variation
has to be constrained to the subspace of Slater determin
by imposing the condition

r25r, ~10!

which is equivalent to the diagonalization of the electro
problem supplemented by the variation with respect toD
only. A detailed description of the corresponding formalis
can be found in Ref. 25.

Regarding the stationary solutions, we will restrict
Slater determinants which are diagonal in spin space,

r i j
s,s8(0)5r i j

s,s(0)ds,s8 . Thus we do not consider spin cante
solutions26 which would mix charge and spin excitation
The diagonalized density matrices have eigenvalue 1 be
the Fermi level ([ hole states:h) and zero above ([ par-
ticle states:p) and consequently are also diagonal in sp
space:

rhs,hs
(0) 51, ~11!

rps,ps
(0) 50. ~12!

Within this notation we can formally write the stationary G
energy as
15511
s
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EGA5(
ks

ekrks,ks
(0) 1U(

i
Di

~0! , ~13!

where the superscript ‘‘~0!’’ indicates quantities evaluated in
the stationary state,k5p,h labels particle and hole state
andek are the corresponding one-particle energies.

B. Calculation of RPA fluctuations around general GA saddle
points and magnetic excitations

The energy functional Eq.~5! is a convenient starting
point for the calculation of charge and spin excitations on
of general GA wave functions. In Refs. 16,17, we have
ready given a detailed derivation of the GA1RPA formalism
in the charge sector, which, in the following, we extend
include the spin fluctuations.

We thus study the response of the system to an exte
time-dependent perturbation

F~ t !5 (
i , j ,s,s8

@ f i j ,ss8~ t !ci ,s
† cj ,s81H.c.#, ~14!

f i j ,ss8~ t !5 f i j ,ss8~0!e2 ivt, ~15!

which induces small amplitude oscillations ofD and r
around the GA saddle point

D5Di
(0)1dD~ t !, ~16!

r5r (0)1dr~ t !. ~17!

Correspondingly, we have to expand the energy functio
Eq. ~5! around the stationary solution up to second order
the density and double-occupancy deviations. Due to the
that we restrict to collinear saddle-point solutions, the cha
and spin sectors in the expansion are decoupled and
obtains

E@r,D#5E01tr~h0dr!1dEcharge1dEspin, ~18!

where we have introduced the Gutzwiller Hamiltonian:27,28

hi j
s,s8@r,D#5

]EGA

]r j i
s8,s

ds,s8 . ~19!

dEcharge contains the expansion with respect to the doub
occupancy parameters and the part of the density ma
which is diagonal in the spin indices. This part of the RP
problem has already been studied in detail in Refs. 16
where it was shown that thedD fluctuations can be elimi-
nated by assuming that they adjust instantaneously to
evolution of the density matrix~antiadiabaticity condition!.

The spin part of the expansion reads
3-3
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dEspin5 (
i , j ,s

t i j r i j
(0)s,s@zi ,s,s

0 d2zj ,s,s1zj ,s,s
0 d2zi ,s,s#

1 (
i , j ,s

t i j zi ,s,s
0 @d1zj ,s,2sdr i j

s,2s

1d1zj ,2s,sdr j i
2s,s#

1 (
i , j ,s

t i j r i j
(0)s,sd1zi ,s,2sd1zj ,2s,s , ~20!

with the following abbreviations for the quadratic parts
the z-factor expansion

d1zi ,s,2s5
]zi ,s,2s

]r i i
2s,s

dr i i
2s,s , ~21!

d2zi ,s,s5
]2zi ,s,s

]r i i
s,2s]r i i

2s,s
dr i i

s,2sdr i i
2s,s . ~22!

The explicit results for the derivatives are given in Append
A. It is interesting to observe that, in contrast to the cha
excitations, the evaluation of the magnetic excitations can
performed without any adjustment ofdD to dr, i.e., without
any assumption on the time evolution ofD. Only in the case
of noncollinear saddle points one would have a coupl
between spin and charge fluctuations and, therefore, the
cessity to invoke the antiadiabaticity condition to elimina
the dD deviations.

The density fluctuationsdr in the expansion Eq.~18! are
restricted to the subspace of Slater determinants, i.e.,
have to obey the constraint Eq.~10!. One can therefore di
vide dr into the particle~p! and hole~h! sectors using the
property of the density matrices Eqs.~11! and ~12!:

$drss8
hp %[rss

(0)dr~12rs8s8
(0)

!, ~23!

$drss8
ph %[~12rss

(0)!drrs8s8
(0) , ~24!

$drss8
hh8 %[rss

(0)dr~12rs8s8
(0)

!, ~25!

$drss8
pp8 %[~12rss

(0)!drrs8s8
(0) . ~26!

where by$drss8
hp % we mean a matrix whose nonzero gene

elements are of the formdrss8
hp . Moreover, one can show

@see Eqs.~34!–~36! in Ref. 17# that thepp and hh density
projections yield a quadratic contribution in theph and hp
matrix elements in the small amplitude approximation

drss8
hh '2(

ps9
drss9

hp drs9s8
ph , ~27!

drss8
pp '(

hs9
drss9

ph drs9s8
hp . ~28!

Hence, although the Gutzwiller Hamiltonian Eq.~19! is di-
agonal in spin space, it turns out that the term tr(h0dr)
15511
e
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5(memrmm in Eq. ~18! ~which is first order in thepp andhh
density projections! yields a quadratic contribution in theph
andhp matrix elements:

tr~h0dr!5(
ps

epdrss
pp1(

hs
ehdrss

hh ,

5 (
phss8

~ep2eh!drss8
ph drs8s

hp . ~29!

The fluctuations which are diagonal in the spin indic
(drss

ph and drss
hp ) contribute to the expansion in the charg

channel,17 whereas the nondiagonal elements describe
zero-order ~noninteracting! spin-flip excitations of the
saddle-point Slater determinant.

Thus, up to second order in the particle-hole~spin! den-
sity fluctuations, one obtains for the energy expansion

dEspin5
1

2
~drhp,drph!S A B

B* A* D S drp8h8

drh8p8D , ~30!

where the explicit expressions for the RPA matricesA andB
are given in Appendix B. Note that the shorthand notation
Eq. ~30! and below implies thatp andh states have opposit
spin, i.e.,drph represent the joint set of elements of typ
dr↑↓

ph anddr↓↑
ph . Following Ref. 17, we can now evaluate th

response function corresponding to the perturbation Eq.~14!.
In case of nondiagonal perturbations~as the coupling to a
current!, one has to define an associated Gutzwiller opera
which contains the GA hopping matriceszi . However, in the
spin channel the most relevant perturbations couple an ex
nal field locally to some spin operator. The fieldf i j ,ss8
5 f i i ,ss8d i j is therefore diagonal in the site representati
and remains unchanged within the GA. Upon transform
the perturbation to the particle-hole representation one
derive the following linear response equation:

H S A B

B* A* D 2\vS 1 0

0 21D J S drph

drhpD 52S f ph

f hp
D .

~31!

The inversion of Eq.~31! yields a linear relation between th
external field and the change in the density

dr5R~v! f , ~32!

and defines the linear response functionR(v) which in the
Lehmann representation reads as

R~v!ph,p8h85 (
n.0

F Xph
n Xp8h8

n*

v2Vn1 i e
2

Yp8h8
n Yph

n*

v1Vn1 i e
G , ~33!

where we have introduced the eigenvectors of the RPA
trix

^0uah
†apun&[Xph

n , ~34!

^0uap
†ahun&[Yhp

n . ~35!

and un& denote the unprojected~i.e., without Gutzwiller cor-
relations! excited states of the RPA problem.
3-4
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III. RESULTS

The RPA formalism derived in the preceding section co
stitutes a convenient starting point for the calculation of s
excitations on top of the GA. One of the advantages of
present approach is that it is suitable for general Slater
terminants, i.e., without any restriction on translational a
~longitudinal! spin symmetries. The system sizes29 which can
be treated are the same than for the traditional HF1RPA
approximation.19 However, also for homogeneous and pa
magnetic saddle points the GA based RPA approach prov
a convenient method for the evaluation of spin fluctuatio
Our method is solely based on the expansion of the den
matrix in terms of particle-hole fluctuations and does n
involve other degrees of freedom as in the related functio
integral slave-boson scheme.11,12,22

First, this advantage is demonstrated for a two-site H
bard model which is also a convenienttoy modelfor the RPA
formalism derived in the preceding section. However,
GA1RPA approach can also be applied within the mo
conventional Green’s function technique which is used
Sec. III B to evaluate spin susceptibilities for a homogene
and paramagnetic hypercubic lattice in infinite dimensio
In this case the GA becomes exact for the energy functio
within the Gutzwiller wave function, and we recover th
magnetic instability lines determined previously by Faze
and collaborators.30 The remainder of this section is the
devoted to a detailed analysis of the quality of our appro
by comparing with HF1RPA and exact results for sma
clusters, where the exact solution is known by exact dia
nalization techniques.

A. Two-site Hubbard model

As a first example, we consider the two-site Hubba
model at half filling which can be solved exactly and can
studied analytically with both the GA1RPA and HF1RPA
approximations. On general grounds a mean-field~or time-
dependent mean-field! approach is expected to improve
the dimensionality of the space increases, and, therefore,
zero-dimensional problem is the worst case and may give
estimation of the maximum error which can be expected
these mean-field approaches.

The exact ground-state energy is given by

E05 1
2 @U2AU2116t2#, ~36!

and only the antisymmetric combination of the spin-flip o
erators

Sp
65

1

A2
@S1

62S2
6# ~37!

induces a transition to a state with energyE50, so that the
excitation energy is given byvspin

ex 52E0.
Note that the exact solution does not display a phase t

sition but remains paramagnetic~and analytic! in U/t. On
the other hand, in the HF theory, one finds a paramagn
solution belowUcrit

HF /t52 and a Ne´el-type ordered solution
for U.Ucrit

HF . The latter is clearly nonphysical and related
15511
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the mentioned limitation of mean-field in a low-dimension
system. In the GA approximation, the electronic correlatio
are approximated in a better way and the range of the p
magnetic solution is extended, giving rise to

Ucrit
GA /t58~A221!'3.31

Since the analytic expressions for the symmetry-brok
regime become quite lengthy, we restrict the derivation
low to the paramagnetic case, where the expansion of
energy functional is given by

dEspin5
4Us

N (
q50,p

dSq
1dS2q

2 ,

Us52u
~21u!~12u!

11u
t, u5U/~8t !.

Note that within the HF1RPA approximation, we haveUs

52U/4.
The RPA matrices read as

A5S DE12Us 0

0 DE12UsD , B5S 0 2Us

2Us 0 D ,

with the one-particle excitation energiesDE52t(12u2).
The diagonalization of the eigenvalue problem yields t

degenerate excitation energies

vl51,2
2 [V25DE@DE14Us#. ~38!

Since the ground state is a singlet, these energies in the
channel coincide with the longitudinal magnetic excitatio
computed in the charge channel~see Ref. 17!. Correspond-
ingly, one has three triplet excitations in total, withDSz5
21,0,1. This indicates that the spin-rotation invariance
correctly implemented in our approach, a fact that is far fro
being trivial. It is worth noting that in the charge channel
extra assumption was needed, namely, the antiadiabatic
justment of the double occupancy to the time evolution
the density matrix, which was not necessary for the pres
calculation. Therefore, the fact that the spin-rotation symm
try is preserved among both independent computations
be used as a justificationa posterioriof the previous assump
tion.

B. Paramagnetic regime in infinite dimensions

As a further application and to get more insight into o
approximation, we apply the GA1RPA method to an
infinite-dimensional hypercubic lattice, where the perfo
mance is expected to be the best. We consider a part
filled system with densityn512d.

The on-site elements of the density matrix for a param

netic saddle-point solution are given byr i i
s,s85n/2 dss8 , so

that the matrixzi of Eq. ~6! reads as

zi5S z0 0

0 z0
D , ~39!
3-5
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where, by using the notation introduced by Vollhardt in R
4, we have

z05A2x22x42d2

12d2
, ~40!

x5A12n1D1AD. ~41!

For the Gutzwiller approximated energy one obtains

EGA5Nz0
2e01NUD, ~42!

z0
2e05

1

N (
ks

«krkk
s,s , ~43!

wheree0 denotes the energy per site of the noninteract
system,«k is the electronic dispersion corresponding to t
Gutzwiller Hamiltonian~19! and N is the number of sites
The minimization of Eq.~42! yields

x4~12x2!

x42d2
5~12d2!

U

8ue0u
[u, ~44!

which, by using Eq.~41!, determines the double-occupan
parameterD.

The energy expansion Eq.~20! in the momentum space i
given by

dEspin5
1

N ( NqdSq
1dS2q

2 1
1

N

z8

z0

3(
q

~dTq
1dS2q

2 1dSq
1dT2q

2 !, ~45!

with the following definitions:

Nq52e0z0z91S z8

z0
D 2 1

N (
ks

«k1qrkk
s,s , ~46!

dSq
s5(

k
drk1q,k

s,2s , ~47!

dTq
s5(

k
~«k6q1«k!drk1q,k

s,2s , ~48!

and the derivativesz8 andz9 are given in Appendix A.
Within the RPA approach presented in Sec. II, one alw

computes all excitation energies, which constitutes a suita
procedure for the solutions on finite clusters. In infinite s
tem it is usually more convenient to treat the RPA problem
terms of a conventional Dyson approach. Therefore, we
the well-known equivalence between both formulations19 to
set up a Dyson equation. The interaction kernel which en
the S matrix in the Green’s function description can be fo
mally obtained from Eq.~45! by substituting the density
matrix fluctuations by the corresponding operator expr
sions, for instance
15511
.

g

s
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-
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-

dSq
1→Sq

15(
k

ck1q,↑
† ck,↓ ,

dTq
1→Tq

15(
k

~«k1q1«k!ck1q,↑
† ck,↓ .

Since the energy expansion Eq.~45! is a quadratic form in
dSq

6 anddTq
6 it is useful to define the following matrix for

the bare time-ordered correlation functions

xq
0~ t !5

i

N S ^TSq
1~ t !S2q

2 ~0!&0 ^TSq
1~ t !T2q

2 ~0!&0

^TTq
1~ t !S2q

2 ~0!&0 ^TTq
1~ t !T2q

2 ~0!&0
D ,

~49!

where, the notation̂ •••&0 indicates that the correlation
functions are calculated from the excitation spectrum of
Gutzwiller Hamiltonian Eq.~19! and ~29! and as a function
of frequency one obtains

xq
0~v!52

1

N (
k

S 1 «k1«k1q

«k1«k1q ~«k1«k1q!2D
3F nk1q,↑~12nk,↓!

v1«k1q2«k1 id
2

nk,↓~12nk1q,↑!

v1«k1q2«k2 idG .
~50!

The RPA series for the spin excitations then correspond
the following Dyson equation:

xq~v!5xq
0~v!2xq

0~v!Mqxq~v!, ~51!

with the interaction kernel

Mq5S Nq
z8

z0

z8

z0
0
D . ~52!

As a check of the consistency of our approach, we de
mine the paramagnetic-ferromagnetic and paramagne
antiferromagnetic phase boundaries. This can be comp
with previous results within the GA obtained by evaluati
the vanishing of the corresponding order parameter. In c
of the ferromagnetic instability we have to analyze the lim
lim

q→0
xq(v50) so that the susceptibility matrix simplifie

to

x0
0~v50!5N~«F!S 1 2«F

2«F 4«F
2 D , ~53!

whereN(«F) denotes the density of states at the Fermi le
«F . The inversion of Eq.~51! yields as a condition for the
existence of a pole atv50 andq50

Det@11x0
0~v50!M0#[11F0

a50, ~54!

with the Landau parameterF0
a :
3-6



f
l-

la
n
r-

ti

t o
c
a

g

an
e

lity
-
f

he

c-
n-
e

the

.

ted
-
ne
the

ten-
he
ere
ave
tate

the
to

or

et

ws

TIME-DEPENDENT GUTZWILLER THEORY OF . . . PHYSICAL REVIEW B 69, 155113 ~2004!
F0
a5N~«F!Fe0~2z0z91z82!14«F

z8

z0
G . ~55!

In the half-filled case (d50) and a symmetric density o
states («F50) this expression naturally coincides with Vol
hardt’s result@see Eq.~61! in Ref. 4#. Figure 1 displaysF0

a

for a Gaussian density of states

N~v!5
1

A2pB
expS 2

v2

2B2D , ~56!

which corresponds to an infinite-dimensional hypercubic
tice. In this case the GA becomes exact for the energy fu
tional of the Gutzwiller wave function. Due to the occu
rence of the Brinkman-Rice transition at half fillingF0

a

saturates at a valueF0
a.21 for U.1. Thus, in this particu-

lar case, there is no second-order paramagne
ferromagnetic phase transition. The conditionF0

a521 can
be fulfilled in a restricted doping range, i.e., 0,d,0.418,
and the corresponding instability line is shown in the inse
Fig. 1. We find complete agreement of our RPA approa
with the phase diagram determined by a variational appro
in Ref. 30.

In order to investigate the instability toward antiferroma
netism, we study thev50 susceptibility at wave vectorQ
5(p,p,p, . . . ). Theinspection of Eq.~50! reveals that in
the case of a nearest-neighbor hopping tight-binding b
with «k1q52«k only the (1,1) matrix element of the bar
susceptibility is different from zero

@xQ
0 ~v50!#115

1

A8pB
E1S 1

2

«F
2

B2D , ~57!

where E1(x) denotes the exponential integral.31 The RPA
series of Eq.~51! then leads to

@xQ~v50!#115
@xQ

0 ~v50!#11

11NQ@xQ
0 ~v50!#11

,

NQ5e0$2z0z92~z8!2%. ~58!

FIG. 1. Landau parameterF0
a as function ofU/B for an infinite-

dimensional hypercubic lattice. The inset shows the paramagn
ferromagnetic instability line.
15511
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We show the behavior of@xQ
0 (v50)#11 for various d in

Fig. 2.
Due to the complete nesting, the bare susceptibi

@xQ
0 (v50)#11 diverges ford50. Hence in this case the sin

gularities of @xQ(v50)#11 are determined by the zeros o
the interaction kernelNQ , which naturally vanishes for
U/B50 but also at the Brinkman-Rice transition wherez0
→0. The latter, however, is irrelevant since it occurs in t
antiferromagnetic phase. The pole atU/B50 indicates that
the instability toward antiferromagnetism at half filling o
curs at arbitrarily small interaction also in infinite dime
sions. For finited the bare magnetic susceptibility is finit
and consequently the pole ofxQ(v50) is due to the vanish-
ing of the RPA denominator in Eq.~58!. It turns out that the
static magnetic susceptibility has exactly one pole in
range 0<d,0.117, two poles in the range 0.117<d
,0.2048 and no pole ford>0.2048. For completeness, Fig
2 also displaysxQ(v50) for d50.25, where there is a
small enhancement for those values ofU/B where the insta-
bility occurred for smallerd. The inset of Fig. 2 shows the
antiferromagnetic-paramagnetic instability line construc
from the poles ofxQ(v50). Again we find complete agree
ment with the variational approach of Ref. 30. Note that o
should also determine the first-order boundaries between
ferromagnetic and antiferromagnetic phases. Since our in
tion is limited to a demonstration of the consistency of t
GA1RPA approach, we refer the reader to Ref. 30, wh
the antiferromagnetic-ferromagnetic phase boundaries h
been determined by comparing the respective ground-s
energies.

C. Comparison with HF¿RPA and exact diagonalization

In the preceding section we have mainly focused on
static limit of our RPA approach. This final part is devoted
an analysis of the magnetic properties of the GA1RPA
method, which is compared to the HF1RPA and the exact
results on a 434 Hubbard cluster with nearest-neighb

ic-
FIG. 2. RPA static susceptibility@xQ(v50)#11 as function of

U/B for an infinite-dimensional hypercubic lattice. The inset sho
the paramagnetic-antiferromagnetic instability line.
3-7
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hopping. For the half-filled system we additionally compa
our results with quantum Monte Carlo simulations for t
spin-wave velocity.

1. Half-filled system

We start with the half-filled system with eight spin-up a
eight spin-down particles. The ground-state Slater deter
nant for the GA and the HF approximation corresponds t
spin-density wave~SDW!, which breaks the spin-rotationa
symmetry of the Hamiltonian. As a consequence the tra
verse magnetic excitations contain zero-energy Goldst
modes at wave vectorQ5(p,p). To avoid numerical insta-
bilities, we have added a small perturbation to the Ham
tonian

V5a(
i

~Si
z!2, ~59!

with a;1024t, which shifts the Goldstone modes to sm
but finite energies (;a). In the exact solution an analo
pole appears at small but nonzero frequency (v/t'0.145)
due to the finiteness of the cluster. In the thermodyna
limit long-range order is recovered32 and a Goldstone mod
will appear as in the mean-field solution with a weight r
lated to the order parameter. Here, we are interested in
finite-frequency behavior and, therefore, we exclude the
act and approximate ‘‘Goldstone-like’’ poles from the com
parison and restrict ourselves to the finite-frequency~triplet!
excitations, which, for the chosen value ofa, do not sensi-
tively depend on the anisotropy field Eq.~59!.

Figure 3 shows the magnetic excitation energies as a fu
tion of U/t evaluated within the GA1RPA, the HF1RPA
and the exact diagonalization. Note that the 434 system has
a further accidental symmetry, which causes degeneracy

FIG. 3. Magnetic excitations atq5(p/2,0) andq5(p,0) as a
function ofU/t for a half-filled 434 cluster: GA1RPA ~solid line!,
HF1RPA ~dashed line!, and exact diagonalization~full circles and
full squares!. The exact diagonalization results for the excitation
q5(p/2,p) are also reported~empty squares!. In the inset: the
q-point mesh of the 434 cluster and the dashed square indica
the doubled Brillouin zone. Grey points indicate the important wa
vectors of the magnetic excitations.
15511
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tween theq5(p/2,p/2) andq5(p,0) excitations. Further-
more, the SDW ground state of the GA and HF solution lea
to the doubling of the Brillouin zone~see inset of Fig. 3! so
that, besides the antiferromagnetic wave vectorQ, only q
5(p/2,0) andq5(p,0) correspond to independent excit
tions. On the other hand, on the 434 lattice, we have that
the exact energies atq5(p/2,0) andq5(p/2,p) are slightly
different.

The small-U behavior of the lowest excitation energy
Fig. 3 can be well understood from the SDW picture. With
this approximation, the band structure in the reduced B
louin zone is given by Eq56A«q

21D2, with «q5
22t@cos(qx)1cos(qy)# and D denotes the SDW gap. Sinc
we study a half-filled system, all states withEq,0 are oc-
cupied. Consider first theq5(p,0) excitation which can be
attributed to a spin-flip transition fromq15(2p/2,6p/2) to
q25(p/2,6p/2) so that the excitation energy is given b
v5Eq1

2Eq2
52D. The SDW gap in the HF approximatio

is related to the on-site magnetizationDHF52UuSzu,
whereas within the KR formulation of the GA it is dete
mined by the difference in the local spin-dependent Lagra
multipliers DGA5l↑2l↓ . Since in the limitU→0 the GA
reduces to the HF approximation, both excitation energ
coincide in this regime and also agree with the exact res
On the other hand, forU/t*1, where RPA corrections be
come important, it can be seen from Fig. 3 that the G
1RPA is in much better agreement with exact diagonali
tion than the corresponding HF1RPA result. As a conse
quence, the GA1RPA gives a quite accurate description
the crossover~at U/t'6) from the SDW regime, where a
gap proportional toU opens along the Fermi surface, to th
Heisenberg regime, where there are low-energy magnetic
citations with energy scalet2/U.

For the higher-energy triplet excitation atq5(p/2,0), the
GA1RPA yields energies which are slightly lower than t
exact result. However, whereas the discrepancy for the
1RPA atU/t56 is around 10%, the HF1RPA deviates by
almost 20% from the exact diagonalization result.

In the Heisenberg regime we thus observe that the m
netic excitations within GA1RPA are shifted to slightly
higher energies as compared to HF1RPA. The associated
renormalization constantZc of the spin wave velocity can be
obtained by fitting thek-dependent spin excitations to th

dispersion relationvk5A2cA12 1
4 @coskx1cosky#

2.33 The
spin-wave velocity extracted for a 838 lattice andU/t58 is
obtained ascGA50.64 which is in excellent agreement wit
the estimate from Monte Carlo simulations in Ref. 34.

In order to have information on the accuracy of the G
1RPA for finite frequencies, we report in Fig. 4 the loc
magnetic susceptibility

x~v!5(
q

(
m.0

u^CmuSq
1uC0&u2d@v2~Em2E0!#,

~60!

for the GA1RPA and the HF1RPA approximations and the
exact diagonalization forU/t54. The d functions in Eq.
~60! have been replaced by Lorentzians with width 0.1t.

t

s
e
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The two lowest-energy excitations are quite accur
within the GA1RPA approach except for a moderate ov
estimation of the intensity which becomes much worse
HF1RPA. Interestingly, also the high-energy spin fluctu
tions are in the correct frequency range.

It should be noted that the spectral weight is constrai
by the following sum rule:

E
0

`

dvvx~v!52
1

2
^T&GA , ~61!

where^T&GA is the average value of the kinetic energy in t
GA. The sum rule Eq.~61! relates the RPA correlation func
tion x(v) to the kinetic energy computed within the GA.
similar sum rule is valid in HF1RPA with the kinetic energy
computed in HF. In Ref. 16, we have already demonstra
that the GA kinetic energy is in remarkable agreement w
the exact result over a large doping range which in
present context gives additional support to the GA1RPA
approach also in the magnetic sector. On the other hand
HF approximation is of inferior quality in describing excita
tion energies and the total kinetic energy. Therefore it is
surprising that also spectral weights perform much wo
than in the GA1RPA approach.

Finally, Fig. 5 displays the frequency evolution of the fir
moment ofx(v)

M1~v!5E
0

v

dṽṽx~ṽ !, ~62!

for the same parameters as in Fig. 4. Note thatM1(v) con-
tains the contribution from the lowestQ5(p,p) excitations
~i.e., the Goldstone modes in the mean-field plus RP!,
which appear as the offsets at small energies. From the i
of Fig. 5, it can be seen that, especially at low frequenc
the GA1RPA approach provides a much better approxim
tion for the exactM1(v) than HF1RPA, both with respect

FIG. 4. Local magnetic susceptibilityx(v) for the half-filled
434 cluster calculated within exact diagonalization, GA1RPA and
HF1RPA for U/t54. The HF1RPA curve has been shifted fo
convenience. The two arrows indicate the energy of the lowesQ
5(p,p) excitation atv/t'0.145 ~exact diagonalization! and v/t
50 ~RPA Goldstone mode!.
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to the poles and intensities. Both the HF1RPA and the GA
1RPA approximate the incoherent part of the exact spect
~i.e., for v/t.2) by a rather small set of excitations. How
ever, the corresponding steplike evolution of the first m
ment ofx(v) is quite close to the exact result.

2. Doped system

We finally investigate a 434 cluster with five spin-up and
five spin-down particles, corresponding to a closed-sh
configuration. The HF solution undergoes a magnetic ins
bility with wave vector q5(p/2,p) at Ucrit /t'4.365,
marked by the softening of the corresponding excitation
this critical value. ForU.Ucrit the HF1RPA spectrum has
a Goldstone mode and in general the performance is v
poor consistently with the fact that a broken symmetry st
is not expected even in the thermodynamic limit, therefo
we restrict to the more physical paramagnetic solution. In
GA case the paramagnetic solution can be stabilized
much larger values ofU/t providing a reasonable startin
point in a broader parameter range just as in the two-
case. The GA1RPA approach captures the behavior of t
exact solution~namely, the softening of triplet excitations! at
least in a qualitative way, although quantitative deviatio
increase with increasingU/t ~see Fig. 6!.

In Fig. 7, we compare the local susceptibility of the H
1RPA, the GA1RPA, and the exact diagonalization fo
U/t54, i.e., for values ofU/t smaller than the magneti
instability. The GA1RPA not only gives a rather good est
mate to the lowest excitation energy but in addition provid
a good approximation for the corresponding intensity. N
that, since for the given value ofU/t the HF solution is
already close to theq5(p/2,p) instability, we observe a
strong softening of the lowest-energy excitation resulting i
significantly enhanced oscillator strength.

Finally, we have also evaluated the cumulative integra
the first moment ofx(v) for the GA1RPA and exact diago-
nalization, which is shown in the inset of Fig. 7. Due to t
sum rule Eq.~61! and the excellent kinetic-energy approx
mation of the GA, the integrated weight of the GA1RPA

FIG. 5. Cumulative sum of the first moment ofx(v) for the
exact result, GA1RPA, and HF1RPA. Data are for a half-filled
434 cluster andU/t54. Inset: a detail of the low-energy part.
3-9
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and the exact diagonalization are in excellent agreem
Moreover, we again observe that the GA1RPA provides a
rather good steplike approximation to the exact evolution
the spectral weight as a function of the frequency.

IV. CONCLUSION

In this paper, we have presented a detailed investiga
of the quality of the GA1RPA approach for the computatio
of the magnetic excitations. The present computation
complementary to the previous computation in the cha
sector.16,17 An unexpected outcome of the present work is
further justification of the antiadiabatic assumption for t
time evolution of the double occupancy, which was need
in the charge but not in the magnetic channel. The fact

FIG. 6. Magnetic excitations for wave vectorsq5(p,p) and
q5(p/2,p) ~left panel! and forq5(p,0), q5(p/2,0) ~right panel!
as a function ofU/t for the exact diagonalization~solid line!, GA
1RPA ~dashed line!, and HF1RPA ~dotted line!. The HF1RPA
are shown forU,Ucrit .

FIG. 7. Local magnetic susceptibilityx(v) for the 434 cluster
with ten particles calculated within exact diagonalization, G
1RPA and HF1RPA for U/t54. The HF1RPA curve has been
shifted for convenience. The inset shows the cumulative sum of
first moment ofx(v) for the exact result and the GA1RPA.
15511
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the two calculations for the spin and the charge sector g
the correct degeneracy of the excitation spectrum for a s
rotational invariant system~the two-site Hubbard model!
clearly indicates that such an assumption was indeed cor
i.e., other possibilities like to keep the double occupan
fixed at the stationary value~rather than to follow the time
evolution of the density matrix! would had lead to an un
physical breaking of spin-rotational symmetry.

The present formalism is based on a Gutzwiller-type
ergy functional, which can be either obtained from the sp
rotational invariant KR slave-boson scheme23 or alternatively
from the standard GA with spin-rotated Slat
determinants.24 In our approach, due to the fact that a
bosonic fields have been already eliminated from the sad
point energy functional, it turns out that the evaluation
RPA fluctuations around the GA solution is significantly sim
plified. In the present paper, we have restricted the calc
tions of the magnetic excitations to small Hubbard clusters
order to compare with exact diagonalization results. The b
ter performance of GA1RPA with respect to HF1RPA has
been demonstrated for both excitation energies and the
responding intensities. However, compared to numer
methods35 our approach can be pushed to much larger s
tems. In particular, it is suitable for the evaluation of ma
netic excitations around inhomogeneous solutions
Hubbard-type models, where it is constrained to the sa
size limitations than the unrestricted HF1RPA approach.
This is interesting in connection with the magnetic susce
bility in nickelates and high-Tc cuprates, which are both
characterized by the presence of strong electronic corr
tions and inhomogeneous charge distributions in some
of the phase diagram. Work in this direction is in progres
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APPENDIX A: DERIVATIVES OF THE HOPPING FACTOR

The derivatives appearing in Eqs.~21! and~22! are given
by

]zi ,s,2s

]r i i
2s,s

5
1

2

zi↑↑
0 2zi↓↓

0

Si
z

, ~A1!

]2zi ,ss

]r i i
s,2s]r i i

2s,s
5

s

2Si
z H 2

zi↑↑
0 2zi↓↓

0

Si
z

1Ar i
ss~12r i

ss!

3FA12r i i 1Di

Ar i
ss2Di

2
ADi

Ar i
2s2sG

2
122r i

ss

r i
ss~12r i

ss!
zi ,ss

0 J . ~A2!e
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In case of a homogeneous, paramagnetic saddle point t
expressions simplify to

]zi ,s,2s

]r i i
2s,s

[z85
2d

12d2 S 1

z0
2z0D , ~A3!

]2zi ,ss

]r i i
s,2s]r i i

2s,s
[z95

2z0

~12d2!2 H 122d2S 1

z0
2

21D J
2

1

2

z0

~12d22D !2
, ~A4!

wherez0 denote the elements of thez matrix defined in Eq.
~40!.

APPENDIX B: DERIVATION OF THE RPA MATRICES

In order to give explicit expressions for the RPA matric
A andB as defined in Eq.~30! one has to first diagonalize th
Gutzwiller Hamiltonian Eq.~19! via

ci ,s5(
n

F i~n,s!an,s , ~B1!

wheren refers to either particle~p! or hole~h! states. Insert-
ing this transformation in the expansion Eq.~20! leads to the
following expressions forA andB:

Aph,p8h8
ss8 5~«ps2«h,2s!dpp8dhh8dss8

1dss8(
i j

Ni j F i~ps!F i~h,2s!F j~p8s!

3F j~h8,2s!1Rph,p8h8
ss8 1Rp8h8,ph

2ss8 ,
ev

15511
se
Bph,p8h8

ss8 5ds,2s8(
i j

Ni j F i~ps!F i~h,2s!

3F j~p8,2s!F j~h8s!1Tph,p8h8
ss8 1Tp8h8,ph

ss8 ,

~B2!

where

Ni j 52d i j (
n,s

tn jzn,ss
0 rn j ,ss

0 ]2zj ,ss

]~r j j ,↑↓!]~r j j ,↓↑!

1t i j

]zi ,↑↓
]r i ,↓↑

]zj ,↓↑
]r j ,↑↓

~r i j ,↑↑
0 1r i j ,↓↓

0 !~12d i j !,

Tph,p8h8
ss8 5dss8ds↑(

i j
t i j

]zj ,↓↑
]r j j ,↑↓

F j~p↑ !F j~h↓ !

3@zi ,↑↑
0 F i~p8↑ !F j~h8↓ !1zi ,↓↓

0 F j~p8↑ !F i~h8↓ !#

1ds,s8ds↓(
i j

t i j

]zj ,↑↓
]r j j ,↓↑

F j~p↓ !F j~h↑ !

3@zi ,↑↑
0 F j~p8↓ !F i~h8↑ !

1zi ,↓↓
0 F i~p8↓ !F j~h8↑ !#,

Rph,p8h8
ss8 5ds,2s8ds↑(

i j
t i j

]zj ,↓↑
]r j j ,↑↓

F j~p↑ !F j~h↓ !

3@zi ,↑↑
0 F i~h8↑ !F j~p8↓ !1zi ,↓↓

0 F j~h8↑ !F i~p8↓ !#

1ds,2s8ds↓(
i j

t i j

]zj ,↑↓
]r j j ,↓↑

F j~p↓ !F j~h↑ !

3@zi ,↑↑
0 F i~p8↑ !F j~h8↓ !

1zi ,↓↓
0 F j~p8↑ !F i~h8↓ !#. ~B3!
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