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Effect of Hund coupling in the one-dimensional SU„4… Hubbard model
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The one-dimensional SU~4! Hubbard model perturbed by Hund coupling is studied, away from half-filling,
by means of renormalization-group and bosonization methods. A spectral gap is always present in the spin-
orbital sector irrespective of the magnitude of the Coulomb repulsion. We further distinguish between two
qualitatively different regimes. At small Hund coupling, we find that the symmetry of the system is dynami-
cally enlarged to SU~4! at low energy with the result ofcoherentspin-orbital excitations. When the charge
sector is not gapped, a superconducting instability is shown to exist. At large Hund coupling, the symmetry is
no longer enlarged to SU~4! and the excitations in the spin sector becomeincoherent. Furthermore, the
superconductivity can be suppressed in favor of the conventional charge density wave state.
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I. INTRODUCTION

The interplay of spin and orbital degrees of freedom pla
an important role in diverse correlated electron systems.1 Re-
cently, the one-dimensional~1D! spin-orbital models have
been studied intensively motivated by the discovery of
quasi-1D spin-gapped materials, Na2Ti2Sb2O and
Na2V2O5.2 These materials can be modeled by a quar
filled two-band Hubbard model. Even in this approximatio
the situation is rather complex owing to the large number
independent coupling constants in the problem.

A first attempt to understand the effect of the high deg
eracy induced by the orbital degrees of freedom was to c
sider the situation where both orbital and spin degrees
freedom play an identical role. In this case, thetwo-band
Hubbard model possesses a large symmetry and it beco
SU~4! symmetric in the spin-orbital sector and depends
only one coupling: the Coulomb repulsionU. At quarterfill-
ing it was found that spin-orbital and charge degrees of fr
dom separate at low energy. The spin-orbital sector rem
massless for all values ofU.0 and displays quasi-long
range antiferromagnetic order withthree critical modes
whose dynamics is described by a SU~4! level 1 (k51)
Wess-Zumino-Witten~WZW! model. This result is in agree
ment with the exact result by Sutherland for the SU~4!
Heisenberg chain.3 What happens for the U~1! charge exci-
tations strongly depends onU. It was found that a Mott-
Hubbard transition from a massless phase at smallU to an
insulating phase at largeU takes place at a nonvanishin
critical valueUc52.8t.4 Of course, the SU~4! symmetry in
the spin-orbital sector is not likely to be present in real m
terials, so that a systematic study of the effects of poss
symmetry breaking operators is necessary to account for
experimental results eventually.

One of the simplest symmetry breaking is to break
SU~4! symmetry down to SU(2)spin3SU(2)orbital. A detailed
renormalization-group study5,6 revealed that the SU~4! sym-
0163-1829/2004/69~15!/155109~10!/$22.50 69 1551
s

e

r-
,
f

-
n-
of

es
n

-
ns

-
le
he

e

metry is dynamically enlarged at low energy. Furthermo
the massless phase in the spin-orbital sector survives in
extended region of coupling constant space. These res
were confirmed numerically.7

In the present work we investigate a different symme
breaking perturbation which is always present in real ma
rials, the Hund coupling. We also consider the cases of g
eral fillings away from the half-filled one. In compariso
with the spin-orbital model studied in Refs. 5, 6, the Hu
coupling breaks the SU~4! symmetry further down to
SU(2)spin3U(1)orbital. As for our most important result, we
find that a spectral gap opens in the spin-orbital sector fo
arbitrarily small Hund perturbation. We further distinguis
between two qualitatively different regimes. At small Hun
coupling, we find that the SU~4! symmetry is dynamically
enlarged at low energy like in the spin-orbital model. W
further show that a superconducting~SC! instability is
present in the charge sector. At large enough Hund pertu
tion, the SU~4! symmetry is no longer fully enlarged. In
stead, we find a partially SU~2! symmetry enlargement in th
orbital sector. In this phase, the SC instability may disapp
in favor of the conventional charge density wave~CDW!
instability.

This paper is organized as follows. In Sec. II, we pres
our model and discuss its symmetry properties. T
renormalization-group analysis at weak coupling is p
formed in Sec. III, where we also discuss the physical pr
erties in both spin-orbital and charge sector. In Sec. IV,
develop a complementary strong coupling approach for
quarter-filled case. We conclude this paper in Sec. V.

II. MODEL HAMILTONIAN AND ITS SYMMETRY
PROPERTIES

The Hamiltonian we consider is the U~4! Hubbard model
with a Hund coupling,8
©2004 The American Physical Society09-1
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H5H01HJ ~1!

with

H05 (
iaa8s

~2t i ,i 11
aa8 cias

† ci 11a8s1H.c.!

1
U

2 (
iaa8ss8

@niasnia8s8~12daa8dss8!#, ~2!

and

HJ522J(
i

Si1•Si2 , ~3!

where thecias are the electron operators at the sitei in
orbital a5(1,2) with spin s. In Eq. ~3!, Sia

5(ss8 cias
† @s/2#ss8cias8 , denote the spin 1/2 operators

electrons in both bandsa5(1,2). We further assume that th

hopping is diagonal in orbital space, i.e.,t i ,i 11
aa8 5tdaa8 , and

that U andJ are positive.
The symmetry properties of Eq.~1! are most clearly seen

by introducing the U~1! chargeQ and the SU~4! spin-orbital
generatorsT A, A5(1, . . .,15), as follows:

Q5 (
i ,as

cias
† cias ,

T A5 (
i ,a8s8as

ci ,a8s8
†

@MA#as
a8s8ci ,as , ~4!

whereMA are the generators of SU~4! Lie algebra.7,9 A con-
venient explicit realization of theMA is

1

A2
S sa

2 D
s

s8
da

a8 ,
1

A2
ds

s8S ta

2 D
a

a8
, A2S sa

2 D
s

s8S tb

2 D
a

a8
,

~5!

wheresa andta, a51,2,3, are the Pauli matrices acting o
spin and orbital space, respectively. An appropriate labe
of the SU~4! generators in Eq.~5! is as follows. To each
SU~4! index A5(1, . . . ,15) weassociate a pair of indices
such that (a,b)Þ(0,0), (a,b50,1,2,3) with the convention
that s05t05Id2. For example, the first three generators
Eq. ~5! can be alternatively expressed asM (a,0).

WhenJ50, using Eqs.~4! and~5!, the HamiltonianH is
clearly seen to commute with bothQ and all ofT A’s, thus it
is U(4)5U(1)charge3SU(4)spin2orbital symmetric.

The Hund couplingHJ does not affect the charge sect
but breaks the SU(4)spin2orbital symmetry. Indeed, whenJ
Þ0, in addition to the obvious SU~2! invariance in spin
space generated byM (a,0) (a51,2,3), H is also invariant
under the U(1)orbital group in orbital space generated b
M (0,3). Thus, the Hund coupling breaks the SU(4)spin2orbital
symmetry down to SU(2)spin3U(1)orbital. In comparison
with the spin-orbital model studied in Refs. 5, 6 and 7, t
Hund term breaks the symmetry SU(2)orbital further down to
U(1)orbital.
15510
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III. RENORMALIZATION-GROUP ANALYSIS AT WEAK
COUPLING

The effective low-energy theory associated with t
Hamiltonian~1! is obtained by taking the continuum limit in
a standard way. At small enough (U/t,J/t) and at low en-
ergy, the electron operatorscias may be expanded near th
two Fermi points6kF :

cias5Aa0@eikFxcRas~x!1e2 ikFxcLas~x!#, ~6!

wherea0 is the lattice constant. In the continuum limit, th
effective Hamiltonian is expressed naturally in terms of t
chiral U~1! and SU~4! current densities:4

JL(R)5(
as

cL(R),as
† cL(R),as ,

JL(R)
A 5 (

a8s8as

cL(R),a8s8
†

@MA#as
a8s8cL(R),as . ~7!

After some algebra, discarding irrelevant operators, we fi
that the charge degrees of freedom decouples from the s
orbital ones away from half-filling:

H5Hc1Hso , ~8!

where

Hc5E dxFpvc

4
~JR

21JL
2!1gcJRJLG , ~9!

and

Hso5E dxH 2pvso

5 (
A

~JL
AJL

A1JR
AJR

A!2l1(
a

@JL
(a0)JL

(a0)

1JR
(a0)JR

(a0)#2l2(
a

@JL
(a3)JL

(a3)1JR
(a3)JR

(a3)#

2g̃1(
a

@JL
(a0)JR

(a0)#2g̃2(
a

@JL
(a,1)JR

(a,1)1JL
(a,2)JR

(a,2)#

2g̃3(
a

@JL
(a3)JR

(a3)#2g̃4@JL
(0,1)JR

(0,1)1JL
(0,2)JR

(0,2)#

2g̃5JL
(0,3)JR

(0,3)J . ~10!

In Eqs. ~9! and ~10!, vc5vF(113Ua0/2pvF) and vso
5vF(12Ua0/2pvF) are the charge and spin-orbital veloc
ties, wherevF52ta0sinkFa0 is the Fermi velocity. We ob-
serve that all interactions of Eqs.~9! and ~10! are marginal
and of the current-current type.10 Therefore, the low energy
physics will result from a delicate balance among the diff
ent interaction terms in Eq.~10!. The bare coupling constant
in both charge and spin-orbital sectors are expressed in
of U andJ as follows:

gc5
3

4
Ua0 , ~11!
9-2
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and

l152l25Ja0 , g̃152Ua012Ja0 ,

g̃252Ua01Ja0 , g̃352Ua022Ja0 ,

g̃452Ua023Ja0 , g̃552Ua0 . ~12!

The effective Hamiltonian in the charge sector@Eq. ~9!# is
that of Luttinger liquid:

Hc5
vc

2 E dxF 1

Kc
~]xfc!

21Kc~]xuc!
2G , ~13!

wherefc5fcL1fcR anduc5fcL2fcR are the charge bo
son field and its dual field, respectively. The chiral bos
fields fc,L/R are defined in terms of currents as follows:

JL(R)~x!5A4

p
]xfcL(R)~x!. ~14!

Therefore, the charge sector is massless and the low-en
properties are determined by the nonuniversal charge e
nentKc which is given, at leading order inU, by:

Kc5F11
3Ua0

pvF
G21/2

,1. ~15!

The charge velocity can be rewritten asvc5vF /Kc
2 . The

situation at hand is similar to what happens in the SU~4!
Hubbard model at quarter filling.

The effective Hamiltonian in the spin-orbital sector is th
of the SU(4)1 WZW model with the central chargec53,
perturbed bymarginal interactions. This is similar to wha
happens in the spin-orbital model studied in Refs. 5, 6 an
Due to the complexity of the interaction pattern, namely,
five coupling constants instead of three in the spin-orb
model, the situation in the spin-orbital sector in the prese
of a Hund term requires a careful analysis of t
renormalization-group~RG! flow. Out of the seven coupling
constants entering in Eq.~10!, thel1 andl2 terms are purely
chiral and are not renormalized at leading order. Furth
more, they do not influence the scaling of theg̃i ’s. One-loop
RG equations are easily found by current alge
method:11,12

dg1

dt
52g1

222g2
22g3

2 ,

dg2

dt
522g1g22g2g52g3g4 ,

dg3

dt
522g1g322g2g4 ,

dg4

dt
523g2g32g4g5 ,
15510
n

rgy
o-

t

7.
e
l
e

r-

a

dg5

dt
523g2

22g4
2 , ~16!

where

gi5
g̃i

4pvso
, ~17!

and t5 lnL is the RG time.
We have performed a detailed numerical analysis of

RG flow associated with Eqs.~16!. In the following, we sum-
marize our results.

WhenJ50, the interaction is irrelevant forU.0 and all
coupling constants flow toward the SU(4)1 fixed point at
gi* 50. There are no other fixed points associated with
~16!. One of our most important results is that a nonze
value of the Hund coupling,JÞ0, destabilizes the SU(4)1
fixed point and drives the system toward strong coupli
This indicates that a gap opens in both spin and orbital se
with M spin;Morbital;exp(2C/J), whereC is a positive con-
stant of ordert. The present situation is completely differe
from the one encountered in the spin-orbital model where
critical SU(4)1 phase wasnot entirely destabilized by the
SU(2)3SU(2) symmetry breaking perturbation.5 Though a
gap opens in the spectrum, the low-energy effective the
still depends on the relative magnitude,h5J/2U, between
the Coulomb repulsion and the Hund coupling. Indeed, o
finds two qualitatively different behaviors of the RG flo
depending onh.

The regime A: The SU~4! symmetric regime. The first is a
regime with the enlarged SU~4! symmetry. This regime oc-
curs forh!1 or U@J. This regime will be referred to as th
regimeA from now on.

With these initial conditions, though all the coupling co
stantsgi(t)→6` when t→t* , they asymptotically match
the following particular RG-invariant ray:

g152g252g35g45g5→2`. ~18!

On that ray, omitting chiral terms, one may write Eq.~10! in
an explicit SU~4! invariant form:

Hso5(
A

E dxF2pvs*

5
~JL

AJL
A1JR

AJR
A!2g̃* JL

AJR
AG , ~19!

where we have performed the duality transformation
a,bÞ0:

JR
a,b→2JR

a,b , JL
a,b→JL

a,b , ~20!

andvs* is an effective spin-orbital velocity. In fact, there is
velocity anisotropy in the model. We find, however, that
leading order inJ/t such an anisotropy of velocities scales
zero at low enough energy.13 Thus, we find that the symme
try is dynamically enlarged to SU~4! to the one-loop accu-
racy. Of course the validity this result which relies on t
loop expansion may be questioned,5,14,15but it is reasonable
to conjecture that the enlargement of the symmetry is lik
9-3
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to hold beyond the perturbation theory. In any case such
~enlarged! SU~4! symmetry is meant to be approximate
the sense that small corrections to pure SU~4! behavior
should be expected due to the neglected irrelevant opera

The regime B: The SU(2)orbital enlarged regime. The sec-
ond is a regimeB where SU(2)orbital symmetry ispartially
enlarged@from U~1!#. This regime occurs for the large Hun
coupling J@U or h@1. For h@1 we find that the SU~4!
symmetry is no longer fully enlarged, and instead we obse
a partial SU(2)orbital symmetry enlargement in the orbita
sector. With the initial conditions satisfyingU!J, the RG
flows drive the coupling constants to a regime where

2`←g4~ t !,g5~ t !!g2~ t !,g3~ t !!g1~ t !,0. ~21!

In this regime the RG equations Eq.~16! can be approxi-
mately decoupled. Indeed, at long RG time, the contributi
of g2 and g3 to the RG equation forg4 and g5 can be ne-
glected and one obtains

dg4

dt
'2g4g5 ,

dg5

dt
'2g4

2 , ~22!

which are nothing but the RG equations of the U~1! Thirring
model in the orbital sector witheffectiveinitial conditions
ug4(t)u.ug5(t)u. In this regime, it is known that the SU~2!
symmetry is restored at larger RG time. Once the anisotr
betweeng4 and g5 becomes small, so does the anisotro
betweeng2 andg3 as can be seen from the equation

d~g22g3!

dt
'g4~g22g3!, ~23!

since (g22g3),0 andg4,0. Therefore, in the strong cou
pling regime, the effective Hamiltonian approximately d
pends onthree independent coupling constants:

@g45g5#!@g25g3#!g1,0. ~24!

With the above relation Eq.~24!, the interacting part of Eq
~10! displays an SU(2)spin3SU(2)orbital symmetry. It is im-
portant to notice that no further symmetry restoration is
pected since the coupling constant in the orbital sectorg4 is
much larger than the one in the spin sectorg1. This behavior
is in contrast with what happens in theA phase forh;1.

The study of the physical properties near the bound
between theA and B regimes is a nontrivial problem
Whether they are separated by a quantum phase trans
point or they are smoothly connected by a crossover reg
can answered only by methods far beyond the perturba
theory. This problem will be addressed elsewhere. Within
one-loop accuracy, we find that the RG flow qualitative
changes from theA type to theB type ash decreases below
h0;0.5, which is a reasonable value, but we were not a
to conclude in favor of a quantum phase transition.

A. Physical properties and order parameters

1. Spin-orbital sector

In order to get some insights in the physical properties
the low-energy physics it is appropriate to change the par
15510
n

rs.

e

s

y
y

-

-

y

ion
n
n
e

le

f
-

etrizations of the fluctuating fields. We first notice that t
two sets of SU(4)1 currents,JR/L

(a,0) and JR(L)
(0,a) , a5(1,2,3),

span two spin and orbital SU~2! algebras. More precisely
they are SU(2)k52 currents. This stems from the fact that th
SU(4)k51 WZW model is equivalent to the sum of two de
coupled SU(2)k52 WZW model.16,17 As in Ref. 5 we shall
take advantage of the representation of theSU(2)k52 alge-
bra in term of three~real! Majorana fermions:17,18

JR(L)
(a,0)/A252

i

2
eabcjs,R(L)

b js,R(L)
c ,

JR(L)
(0,a)/A252

i

2
eabcj t,R(L)

b j t,R(L)
c ,

JR(L)
(a,b)52 i js,R(L)

a j t,R(L)
b , ~a,b!Þ0, ~25!

wherejs,R(L)
a andj t,R(L)

a , a5(1,2,3), are the Majorana fer
mions associated with the spin and orbital degrees of fr
dom. In term of these Majorana fermions the effective the
ries in bothA andB regimes take a nice form.

In the regimeA, the effective low-energy Hamiltonian ca
be obtained from Eq.~10! with the condition g152g2
52g35g45g55g,0 imposed:

H52 i
vs*

2 (
a

@jsR
a ]xjsR

a 2jsL
a ]xjsL

a #2 i
vs*

2 (
a

@j tR
a ]xj tR

a

2j tL
a ]xj tL

a #2gF(
a

~ks
a2k t

a!G2

, ~26!

where ks(t)
a 5js(t)R

a js(t)L
a . The Hamiltonian ~26! is easily

seen to be SO~6! invariant upon a duality transformation i
the orbital sector:

j t,R
a →2j t,R

a , j t,L
a →1j t,L

a ~27!

which is the equivalent of Eq.~20! when Eq.~20! is ex-
pressed in terms of the Majorana fermions. Under the dua
transformation Eq.~27! , the Hamiltonian~26! becomes that
of the integrable SO~6! Gross-Neveu~GN! model19,20 which
has been first obtained in Ref. 5 as the effective low-ene
theory for the massive phase of the spin-orbital model.
this respect we find that, though the Hund coupling Eq.~3!
breaks the original SU~4! symmetry further than spin-orbita
model, it is not responsible for the new low-energy phys
as far asJ is not too large in the spin-orbital sector. Ther
fore, many of the conclusions drawn in Refs. 5–7 still ho
for moderate values ofJ. In particular, the excitation spec
trum consists of a kink and an antikink with massm along
with a fundamental fermion of massA2m. The existence of
the fundamental fermion as astable quasiparticle implies
that the spin excitations arecoherent: a sharp resonance a
v5A2m is expected to appear in the dynamical structu
factor, in particular, the 2kF component of spin-spin correla
9-4
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tion function. This can be checked by explicit calculation v
order/disorder operator formalism of Ising model@Eqs.~43!
and ~44!#.

In the regimeB, whereJ@U, the effective Hamiltonian is
that of twocoupledSO~3! GN models, one in the spin secto
and the other in orbital sector:

Hso52 i
us

2 (
a

@jsR
a ]xjsR

a 2jsL
a ]xjsL

a #2g1S (
a

ks
aD 2

2 i
ut

2 (
a

@j tR
a ]xj tR

a 2j tL
a ]xj tL

a #2g4S (
a

k t
aD 2

2g2S (
a

ks
aD S (

a
k t

aD , ~28!

which is not integrable in general for arbitrary couplin
(g1 ,g2 ,g4). However, in the present case, whereh!1 or
J@U, the effective coupling constants exhibit an interest
hierarchy:

ug4u@ug2u@ug1u. ~29!

As a consequence of the above hierarchy, one expects
gap in the orbital sector (;e2ut /ug4u) to be much larger than
any other energy scale in the problem. Therefore, a me
field decoupling of the interaction term in the Hamiltonia
~28! is sensible. We can carry out the mean-field decoup
by introducing two Hubbard-Stratonovich~HS! fields. For
that purpose we rewrite the interactions terms of Eq.~28! as
follows:

g1S (
a

ks
aD 2

1g4S (
a

k t
aD 2

1g2S (
a

ks
aD S (

a
k t

aD
5l1~D ta11Dsb1!21l2~D ta21Dsb2!2, ~30!

where the notations are

D t52 i(
a

j tR
a j tL

a , Ds52 i(
a

jsR
a jsL

a ,

l1;ug4u1
g2

2

4ug4u
, l2;2ug1u2

g2
2

2ug4u
,

~a1 ,b1!5S ug4u

AS g2

2 D 2

1g4
2

,
ug2u/2

AS g2

2 D 2

1g4
2D ,

~a2 ,b2!5S 2
ug2u/2

AS g2

2 D 2

1g4
2

,
ug4u

AS g2

2 D 2

1g4
2D . ~31!

In Eqs.~31! the hierarchy Eq.~29! was employed to simplify
the expressions. Clearly,l1@ul2u. Let us assume thatl2 is
positive. Next two HS fields,s,z,are introduced to decoupl
Eq. ~30!. The resulting Hamiltonian in the action form can b
written as
15510
g

the

n-

g

S5E dxdtF1
1

4l1
s21

1

4l2
z21

1

2
@j tR

a j tL
a #

3F ]t2 iut]x i ~sa11za2!

2 i ~sa11za2! ]t1 iut]x
GF j tR

a

j tL
a G1

1

2
@jsR

a jsL
a #

3F ]t2 ius]x i ~sb11zb2!

2 i ~sb11zb2! ]t1 ius]x
GF jsR

a

jsL
a G G . ~32!

Now the Majorana fermions can be integrated out exac
and the effective action ofs,z is obtained. The saddle poin
approximation21 of the effective action ofs,z gives

u^s&u;LEe2ut /ug4u,

^z&;^s&
ug2u

2ug4u S l2

l1
S ut

us
21D1

3

p

l2

us
ln

2ug4u
ug2u D . ~33!

Note thatu^s&u@u^z&u. The saddle point values ofD t ,Ds are

^D t&;
^s&
2l1

, ~34!

^Ds&;
ug2u

2ug4u
^s&
2l1

F ut

us
1

3

p

l1

us
ln

ug2u
2ug4uG . ~35!

Note that the factor of@ut /us1(3/p)(l1 /us)ln(ug2u/2ug4u)#
in Eq. ~35! can be either positive or negative sinc
ln(ug2u/2ug4u),0. In case the factor is positive we hav
DsD t.0, while the opposite holds for the negative factor

Both the saddle point value and the fluctuation ofz @note
the factorz2/l2] are very small compared to those ofs.
Thus, due to the hierarchy Eq.~29!, the HS fieldz can be
neglected in the action Eq.~32!. The quantum fluctuations o
s are large sincel1 is large. However, for the spin sector th
fluctuations are suppressed by a factor ofb1;ug2u/2ug4u ow-
ing to the hierarchy@see the last line of Eq.~32!#. Thus, we
can take the saddle point value ofs for the spin sector, while
the full quantum fluctuations should be taken into acco
for the orbital sector. Namely, a full integration overs is
required for the orbital sector. This treatment of fluctuatio
can be justified by examining the one-loop effective action
the fluctuations ofs, which shows that thes fluctuation is
dominated by contribution from orbital sector. Then the
fective Hamiltonians in both spin and orbital sectors redu
to:

Hspin52 i
us

2 (
a

@jsR
a ]xjsR

a 2jsL
a ]xjsL

a #2 imsS (
a

ks
aD ,

~36!

wherems5sb1;ug2uD t , and

Horbital52 i
ut

2 (
a

@j tR
a ]xj tR

a 2jsL
a ]xjsL

a #2g4S (
a

k t
aD 2

.

~37!

In this limit, the spin excitations consist of a triplet offree
massive Majorana fermions with massms ~or equivalently
off-critical Ising models! that span the spin-one represen
9-5
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tion of SO(3)spin. This result can be understood qualitative
as follows. SinceJ@U, the Hund coupling Eq.~3! dominate
in Eq. ~1! and the two spin 1/2 operators,Si1 and Si2 are
effectively bound into a spin-one state. Thus, one expe
that in this limit the low-energy sector of Eq.~1! may be
identified with that of a doped spin-one chain.22,23This result
will be recovered in the following section treating the stro
coupling limit. We also expect that in this limitJ@U, all
single-particle excitations will disappear of the spectru
since the strong Hund coupling tend to pair electrons. Thi
indeed the case : the kinks of the SO~6! GN model, having
the spin-orbital quantum numbers of the electron, vanish
one is left in the lowest energy spectrum with massive M
jorana fermions, that is to say a triplet branch of excitatio

The explicit calculation of~2 kF component of! spin-spin
correlation functions using Ising model formalism@Eqs.~43!
and ~44!# leads to two cases. IfDsD t,0, there is a sharp
resonance in the spin structure factor aroundk52kF , that
we interpret as the contribution from the triplet branch: t
low-energy excitations in the spin sector are coherent m
nons. On the other hand, ifDsD t.0 the sharp resonance i
the spin structure factor disappears in favor of an incohe
contribution; this implies that the~triplet! spin excitations are
incoherent, a situation already encountered in the two-l
ladder.24

The orbital sector itself is described by an SO(3)orbital GN
model which is integrable. Contrary to what happens in
spin sector, there areno stable~Majorana! fermions in the
excitation spectrum.20 The kink and antikink states with mas
mt;e2ut /ug4u@ms exhaust the excitation spectrum of SO~3!
GN model.

We see that bothA andB regimes differ in their spectra
properties, which is deeply related to the differences in
underlying symmetries. Starting in theA phase and increas
ing the value of the Hund couplingJ we predict that, above
a critical valueJc , the gap in the orbital sectormt becomes
much larger than the spin gapms : the low-energy excitations
are exhausted by the spin excitations. AboveJc fermionic
excitations in the orbital sector disappear and one is left w
solely kinks and antikinks. This feature is reminiscent o
decoherence phenomenon in orbital-like excitations. T
prediction can be tested numerically.

2. Charge sector

The fact that a gap opens in the spin-orbital sector imm
diately suggests the possibility of charge-density wa
~CDW! and superconducting instabilities. The correspond
order parameters are given by

Ôcdw5(
a,s

cRas
† cLas1h.c. ~38!

Ôsc,65cR1↑cL2↓6cR2↑cL1↓1~R↔L !, ~39!

where1/2 stands for singlet/triplet SC.
For the discussion of the correlation functions of t

above order parameters it is most convenient to use the
jorana fermion approach.5 To this end let us start with the
Abelian bosonization formulas:
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cR(L),as5
kas

A2pa0

e6 iA4pfR(L),as, ~40!

wherefR(L)as are boson fields satisfying

@fR,as ,fL,bs8#5
i

4
dabds,s8 . ~41!

kas are the Klein factors which enforce Fermi statistics:

$kas ,kbs8%52dabdss8 .

A convenient choice of basis for the boson fields is

fc,R/L5 1
2 ~fR/L,1↑1fR/L,1↓1fR/L,2↑1fR/L,2↓!

fs,R/L5 1
2 ~fR/L,1↑2fR/L,1↓1fR/L,2↑2fR/L,2↓!

f f ,R/L5 1
2 ~fR/L,1↑1fR/L,1↓2fR/L,2↑2fR/L,2↓!

fs f,R/L5 1
2 ~fR/L,1↑2fR/L,1↓2fR/L,2↑1fR/L,2↓!. ~42!

Refermionization formulas are given by

S j21 i j1

A2
D

R(L)

5
hs

A2pa0

e6 iA4pfs,R(L)

S j51 i j4

A2
D

R(L)

5
h f

A2pa0

e6 iA4pf f ,R(L)

S j61 i j3

A2
D

R(L)

5
hs f

A2pa0

e6 iA4pfs f,R(L), ~43!

whereha are new Klein factors. The spin and orbital Majo
rana fermion triplets are given byjs

a5(j1,j2,j3) and j t
a

5(j4,j5,j6), respectively. In the Majorana fermion basi
both operators Eq.~38! and Eq.~39! are nonlocal, while they
take local form in terms of the order (sa) and the disorder
(ma) operators of the six underlying~off-critical! Ising mod-
els associated with the six Majorana fermions (js

a ,j t
a)

5(j1, . . . ,j6). Using the correspondence

eiApfs;m1m21 is1s2 , eiApus;s2m11 im2s1 ,

eiApf f;m4m51 is4s5 , eiApu f;s5m41 im5s4 ,

eiApfs f;m3m61 is3s6 , eiApus f;s6m31 im6s3 ,
~44!

wheref5fL1fR andu5fL2fR we find

Ôcdw;m1m2m3m4m5m6cosApfc

1s1s2s3s4s5s6 sinApfc . ~45!

Ôsc,1;e2 iApuc@m1m21 i s1s2#@m3m4m5s61s3s4s5m6#.
~46!

Ôsc,2;e2 iApuc@m1m21 i s1s2#@s3m4m5m62m3s4s5s6#.
~47!
9-6
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We are now in a position to discuss the long distance pr
erties of the correlation functions of the above order para
eters.

Consider first the regimeA. The spin-orbital dependen
parts of Eqs.~45!, ~46!, and~47!, which has scaling dimen
sion 3

4 , are expressed in terms of products of six order a
disorder operatorssa andma . These 26 operators constitute
a basis for the primary operators transforming in the spi
representations of SO(6)1 WZW conformal field theory.
Among the spinorial primary operators, there are two SO~6!
singlet primary operators: s1s2s3s4s5s6 and
m1m2m3m4m5m6. At this point it is worth stressing that th
enlarged SO~6! symmetry present at low energy in the r
gime A is different from the original SO~6! symmetry of the
noninteracting theory. Two symmetries are related by the
ality transformation Eq.~27! in the orbital sector. Such a
transformation interchanges the order and the disorder op
tors:

sa↔ma , a5~4,5,6!. ~48!

Consequently onlyÔsc,2 contains low-energy SO~6! singlets
that can take a nonzero average value. Therefore, there e
quasi-long-range triplet superconducting order.

^Ôsc,2
† ~x,t!Ôsc,2~0,0!&;

1

~x21uc
2t2!1/4Kc

. ~49!

In contrast to the triplet superconducting order, both CD
and singlet superconductivity have short ranged correlatio
A similar analysis can be done whenJ,0 ~antiferromag-
netic!. In this case the model exhibits a singlet supercondu
ing instability rather than a triplet one.

In the regimeB the situation is different. From Eqs.~34!
and~35! we find thatDsD t can be either positive or negative
In case ofDsD t.0, depending on the sign ofD t we have at
the mean-field level either

^ma51,2,3&5^ma54,5,6&Þ0. ~50!

or

^sa51,2,3&5^sa54,5,6&Þ0. ~51!

From Eqs.~45!, ~46!, and ~47!, we conclude that a CDW
instability is expected in this case. In case ofDsD t,0 we
have either

^ma51,2,3&5^sa54,5,6&Þ0. ~52!

or

^sa51,2,3&5^ma54,5,6&Þ0. ~53!

Then a triplet superconductivity is expected in this case.
To summarize, we find that at weak coupling the Hu

perturbation always opens a gap in the spin-orbital sec
However, depending on the relative magnitude ofU andJ we
may distinguish between two qualitatively different regime
At small Hund coupling,J,U, the spin-orbital sector dis
plays an effective low energy with enlarged SU~4! symmetry
and there also exists a triplet superconducting instability
15510
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the charge sector. For large Hund coupling,J@U, there is a
partial SU(2)orbital restoration, and depending on the relati
magnitudes of parameters the superconducting instab
may disappear in favor of a CDW quasi-long-range ord
The way these two regimes are connected is a nontri
problem and requires a nonperturbative approach.

IV. STRONG COUPLING

The situation at large coupling depends on the filling
well as the possible umklapp terms.4 For incommensurate
fillings all umklapp operators are strongly oscillating a
may be discarded at low energy. Consequently, the cha
excitations are expected to remain massless for allU andJ.
For commensurate filling, i.e., whenn5p/q, wherep andq
are coprime numbers, the possible umklapp operators
lowed by parity and translational invariance are of the fo

Humklapp5cos@4qApfc#. ~54!

These operators represent the processes that conserve
momentum up to an integer times the Fermi momentumkF
in the continuum limit, and they have the scaling dimensio

Dq54Kcq
2. ~55!

Equation~55! implies that the umklapp operators are irre
evant as far asKc.1/2q2. From Eq.~15!, we find this is the
case as far asU and J are small enough. However, as th
coupling constants increase, we expectKc to decrease and
possibly to reach the critical value 1/(2q2). Below the criti-
cal value ofKc , the umklapp operator Eq.~54! becomes
relevant and a gap opens in the charge sector. Thus, the
existence of a Mott-Hubbard~MU! transition is related to the
nonuniversal dependence ofKc on the coupling constant
U, J, and the fillingn. The dependence is not well know
general. At present,Kc is only known atquarter filling and
for J50.4 In this case,Kc reaches its critical valueKc
51/2 at the valueU52.8t, where a MU transition toward an
insulating phase has been shown to occur. What happ
when JÞ0 and for other commensurate fillings remains
open question.

In this section we shall focus on thequarter-filled case
and make a reasonable hypothesis that a Mott transition
takes place in the presence of a Hund term. Consequentl
expect the model described by Eq.~1! to be an insulator for
large U and J when n51. For this particular filling the
strong-coupling regime is best achieved by going to
Heisenberg limit. As shown by Arovas and Auerbach25 all of
the relevant low-energy states at strong-coupling regimes
given by

ū0 :
1

A2
~c1↑

† c2↓
† 2c1↓

† c2↑
† !u0&,

ū1 :c1↑
† c2↑

† u0&,
1

A2
~c1↑

† c2↓
† 1c1↓

† c2↑
† !u0&, c1↓

† c2↓
† u0&,

ū2 :c1↑
† c1↓

† u0&, c2↑
† c12↓

† u0&. ~56!
9-7
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The above states represent interorbital spin singlet, inte
bital spin triplet, and intraorbital spin-singlet states. The
ergy of each state is given by

ū05U1
3

2
J, ū15U2

1

2
J, ū25U. ~57!

The effective strong coupling Hamiltonian depends crucia
on the value ofū15U2J/2.

A. UšJÕ2št

In this case all the energies in Eq.~57! are positive and we
can employ the results derived by Arovas and Auerbac25

They found that the effective Hamiltonian is given by a ge
eralization of the spin-orbital model:

Heff5(
i

@A1SiSi 111A2T iT i 111A3Ti
zTi 11

z

1A4SiSi 11T iT i 111A5Ti
zTi 11

z SiSi 11#, ~58!

where

Si5 (
ass8

cias
† Fs

2 G
ss8

cias8 ,

T i5 (
saa8

cias
† Fs

2 G
aa8

cia8s , ~59!

and

A15
2t2

U

~123h2!

~12h!~113h!
,

A25
2t2

U

~115h!

~12h!~113h!
,

A352
2t2

U

3h

~113h!
,

A45
2t2

U

4~11h!

~12h!~113h!
,

A5524A3 , ~60!

with h[J/2U!1. Whenh50, the Hamiltonian Eq.~58! is
the SU~4! invariant antiferromagnetic Heisenberg mod
studied by Sutherland.3 Expanding the Hamiltonian Eq.~58!
with respect to the SU~4! symmetric point we obtain

Heff;HSU(4)1
2t2h

U (
i

@22SiSi 1113~Ti
xTi 11

x 1Ti
yTi 11

y !

24SiSi 11T iT i 11112Ti
zTi 11

z SiSi 11#. ~61!

Following Ref. 5 we find that in the continuum limit th
effective Hamiltonian Eq.~61! is identified with that of Eq.
~10!. Whenh,1, a RG analysis reveals the same enlar
ment of SO~6! symmetry as in theA regime of the weak
coupling case. Thus, one may conclude that the SO~6! sym-
15510
r-
-

y

-

l

-

metric A regime extends from weak to strong couplings f
small enough Hund interaction.

B. t™U™JÕ2

In this caseū1 becomes negative and the strong coupli
approach developed by Arovas and Auerbach does not ap
However, another strong coupling expansion is sens
whenU!J/2. Indeed, in this limit the ground state consis
of the local spin triplets which containtwo electrons per site
and spontaneously break translational invariance. Assum
that the spin triplets are located on even sites~such that odd
sites are empty! we can find an effective interaction betwee
the local spin triplets. The effective interaction can be de
mined from the strong coupling expansion to the order oft4

in a straightforward way. Let us denote the spin triplet at
2 j th site byI2 j , which is aS51 spin operator. By solving
the associated two-site problem up to the order oft4, the
following effective Hamiltonian can be obtained:

Heff
(4)5(

j
@K2~ I2 j•I2 j 12!21K1I2 j•I2 j 12# ~62!

with

K15
8t4

5J3

7231e/212e21e3/2

~12e!3~12e/5!~12e2/4!
,

K252
24t4

5J3

1

~12e/5!~12e!2
, ~63!

wheree52U/J!1. The Hamiltonian Eq.~62! is that of the
antiferromagneticHeisenberg spin 1 model with exchang
K1 and a biquadratic couplingK2,0. In this regime of cou-
pling constants, the excitations are massive and consist
triplet of Majorana fermion.26 It is however hazardous to
conclude that the Haldane magnons constitute the low en
excitations in this strong Hund coupling regime. Indeed,
groundstate for thet50,U!J limit of the model is doubly
degenerate for the local spin triplets can be located on e
or odd sites. In addition to the Haldane magnons of Eq.~62!
we thus have to take into account the kinks that conn
these two groundstates. Note that these kinks carryinteger
spin, since excitations built out of single electrons have v
high energy in thisU!J regime.

A rough estimate of the energy of kink excitations can
obtained in a static approximation. Consider a pined kin
antikink pair on top of the ground state of Eq.~62!, located at
sitesp andq (p,q being odd integers!, that is to say that the
local spin triplets are located on even sites 2i for 2i ,p and
2i .q and on odd sites 2i 11 for p<2i 11,q. When the
tÞ0 perturbation is included, this will result in the effectiv
Hamiltonian~62! with modified exchangeK1,2 on the bounds
p and q. The static approximation is thus equivalent to tw
bound defects, one weak and one strong~with transparent
notations,K1,2(p)@K1,2@K1,2(q) for the particular configu-
ration we have chosen!. The effect of bound defects has bee
studied in the spin 1 pure Heisenberg chain~without biqua-
dratic exchange!, which has the same low-energy physics
9-8
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Eq. ~62!. The defects there lead to the apparition of a trip
excitation inside the Haldane gap.27 It is more than likely
that beyond this static approximation, the kinks will form
band of spin 1 excitations once kinetic energy is included
occurs for holes in the AKLT model.28

While this problem would clearly require a more care
analysis, which goes well beyond the scope of this paper,
simple static picture indicates that the lowest energy exc
tions will be massive spin-one kinks. In any case, the lo
energy spectrum is exhausted by massive triplet excitati
The effective continuum theory in regimeB at weak cou-
pling t@J@U describes also massive spin-one particles; i
thus tempting to postulate a continuity from weak coupli
to strong coupling for the nature of the low-energy exci
tions. Moreover, the fact that spin-one kinks are presen
the low energy spectrum may be related to the incohere
of the spin excitations found in the weak couplingB regime.

C. UÈJÕ2št

In this case the local spin triplettwo particlestates have
very low energy and they will mix with other states withone
particle per sitein the first order of hoppingt. These states
should be diagonalized first before taking into account
higher-order perturbation int. The detailed study of this re
gime is beyond the scope of this paper.

V. SUMMARY

We have studied the one-dimensional SU~4! Hubbard
model away from half-filling perturbed by a Hund couplingJ
in both the weak and strong coupling limits. The Hund co
pling turns out to be relevant irrespective of the short ran
Coulomb repulsionU and is responsible for the opening of
spectral gap in the spin-orbital sector. We found two qual
tively different regimes depending on the relative stren
betweenJ andU.

For small enough Hund couplingJ, we found that the
symmetry is dynamically enlarged to SU~4! at low energy. In
this limit, the spin-orbital degrees of freedom are describ
the integrable SO~6! Gross-Neveu model and the excitatio
e

an

n
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are found to becoherent. In this regime, we found a super
conducting instability when the charge excitations are
gapped. For large Hund coupling the SU~4! symmetry is no
longer enlarged. Instead, we find that the orbital degree
freedom decouples at high-energy and the low-energy e
tations lie in the spin sector and consist of the three f
massive Majorana fermions. As a result, the spin excitati
becomeincoherent. Our results are summarized in Fig. 1.
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