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Effect of Hund coupling in the one-dimensional SW4) Hubbard model
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The one-dimensional S¥) Hubbard model perturbed by Hund coupling is studied, away from half-filling,
by means of renormalization-group and bosonization methods. A spectral gap is always present in the spin-
orbital sector irrespective of the magnitude of the Coulomb repulsion. We further distinguish between two
qualitatively different regimes. At small Hund coupling, we find that the symmetry of the system is dynami-
cally enlarged to S at low energy with the result afoherentspin-orbital excitations. When the charge
sector is not gapped, a superconducting instability is shown to exist. At large Hund coupling, the symmetry is
no longer enlarged to S¥) and the excitations in the spin sector becomeoherent Furthermore, the
superconductivity can be suppressed in favor of the conventional charge density wave state.
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I. INTRODUCTION metry is dynamically enlarged at low energy. Furthermore,
the massless phase in the spin-orbital sector survives in an
The interplay of spin and orbital degrees of freedom playsxtended region of coupling constant space. These results
an important role in diverse correlated electron systeRe:  were confirmed numerically.
cently, the one-dimensiondlLD) spin-orbital models have In the present work we investigate a different symmetry
been studied intensively motivated by the discovery of thebreaking perturbation which is always present in real mate-
quasi-1D  spin-gapped materials, N&Sb,O and rials, the Hund coupling. We also consider the cases of gen-
Na,V,05.> These materials can be modeled by a quartereral filings away from the half-filled one. In comparison
filled two-band Hubbard model. Even in this approximation, with the spin-orbital model studied in Refs. 5, 6, the Hund
the situation is rather complex owing to the large number otoupling breaks the S4) symmetry further down to
independent coupling constants in the problem. SU(2)spin< U(1) orpital- As for our most important result, we
Afirst attempt to understand the effect of the high degenting that a spectral gap opens in the spin-orbital sector for an
eracy induced by the orbital degrees of freedom was to corgrbjtrarily small Hund perturbation. We further distinguish
sider the situation where both orbital and spin degrees Opetween two qualitatively different regimes. At small Hund
freedom play an identical role. In this case, ﬂvm—_band coupling, we find that the SI4) symmetry is dynamically
Hubbard model possesses a large symmetry and it becomggjarged at low energy like in the spin-orbital model. We
SU(4) symmetric in the spin-orbital sector and depends offyrther show that a superconductingC) instability is
only one coupling: the Coulomb repulsidh At quarterfill-  present in the charge sector. At large enough Hund perturba-
ing it was found that spin-orbital and charge degrees of freegon, the Su4) symmetry is no longer fully enlarged. In-
dom separate at low energy. The spin-_orbital sectqr remaingtead, we find a partially S@) symmetry enlargement in the
massless for all values df>0 and displays quasi-long- orpjtal sector. In this phase, the SC instability may disappear
range antiferromagnetic order witthree critical modes in favor of the conventional charge density wa(@DW)
whose dynamics is described by a @WUlevel 1 (k=1) instability.
Wess-Zumino-WittedWZW) model. This result is in agree-  Thjs paper is organized as follows. In Sec. II, we present
ment with the exact result by Sutherland for the (8U our model and discuss its symmetry properties. The
Heisenberg chaifWhat happens for the (@) charge exci-  renormalization-group analysis at weak coupling is per-
tations strongly depends od. It was found that a Mott-  formed in Sec. Ill, where we also discuss the physical prop-
Hubbard transition from a massless phase at swatb an  erties in both spin-orbital and charge sector. In Sec. IV, we
insulating phase at largel takes place at a nonvanishing develop a complementary strong coupling approach for the

critical valueU.=2.8." Of course, the SW) symmetry in  quarterfilled case. We conclude this paper in Sec. V.
the spin-orbital sector is not likely to be present in real ma-

terials, so that a systematic study of the effects of possible
symmetry breaking operators is necessary to account for the Il. MODEL HAMILTONIAN AND ITS SYMMETRY
experimental results eventually. PROPERTIES

One of the simplest symmetry breaking is to break the
SU(4) symmetry down to SU(2)nX SU(2)gpita- A detailed The Hamiltonian we consider is the(4) Hubbard model
renormalization-group study revealed that the S¥) sym-  with a Hund couplind,
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H=Ho+H, B
with
HO_ E ( Il+lcla(rcl+la’0'+H'C')
iaa' o
U
+§ . 2 [niuurnia’(r’(l_5&@’5(7'0")]! (2)
iaa’ oo’
and

HJ=—2JEi S1-So, (3)

where thec;,, are the electron operators at the sitén
orbital a (1,2) with spin o. In Eg. (3, S.
=Yoo’ ¢!

lao!

hopping is diagonal in orbital space, i.(qﬁff‘ilztém, , and
thatU andJ are positive.

The symmetry properties of E¢l) are most clearly seen

by introducing the 1) chargeQ and the SW4) spin-orbital
generators®, A=(1,...,15), as follows:

Q: 2 CiTaJCiaO' ’

i,ao

™= >

H r r
ia' o ao

[MA] Ci,aa’! (4)

| El/ 0'
whereM* are the generators of $4) Lie algebra’® A con-
venient explicit realization of thé1” is
1(c®\ , 1 [\« a?\ 7' [P\
) # 5lE] el (7))

©)

[0/2],,:Ciqo » denote the spin 1/2 operators of
electrons in both bands=(1,2). We further assume that the
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IIl. RENORMALIZATION-GROUP ANALYSIS AT WEAK
COUPLING

The effective low-energy theory associated with the
Hamiltonian(1) is obtained by taking the continuum limit in
a standard way. At small enouglu(t,J/t) and at low en-
ergy, the electron operatocs,, may be expanded near the
two Fermi points*Kkg:

Ciao= VAol €5 Yrao(X)+ €y 10 (X)],  (6)

wherea, is the lattice constant. In the continuum limit, the
effective Hamiltonian is expressed naturally in terms of the
chiral U(1) and SU4) current densitie8:

‘]L(R):% lﬂE(R),aalﬂL(R),aa,

T a'o!
Ha= 3 M Rpar @
After some algebra, discarding irrelevant operators, we find
that the charge degrees of freedom decouples from the spin-
orbital ones away from half-filling:

H=H.+Hso, (8)
where

TV 2 2

HCZJ dX 4 (JR+‘]L)+gC‘]R‘]L y (9)
and
2

Heo= dx{ W; 2> (I IRTD) 12 [J(20)(20)

A

+J§?a0)\]%a0)]_)\2§ [J(LaB)J(La3)+J%a3)J§?a3)]

wheres? and 7%, a=1,2,3, are the Pauli matrices acting on —0:2 [IPE0-g, > [IPPILD+ (22382
spin and orbital space, respectively. An appropriate labeling 2 2
of the SU4) generators in Eq(5) is as follows. To each
SU(4) index A=(1,...,15) weassociate a pair of indices,
such that 4,b) #(0,0), (@,b=0,1,2,3) with the convention
that o= °=1d,. For example, the first three generators of
Eq. (5) can be alternatively expressed id$?).
WhenJ=0, using Eqgs(4) and(5), the HamiltoniarH is
clearly seen to commute with bo@ and all of 7%'s, thus it In Egs. (9) and (10), v.=vg(1+3Uay/27ve) and v,
is U(4)=U(1)charge< SU(4)spin- orbital SYymmetric. =ve(1l—Uay/2mvg) are the charge and spin-orbital veloci-
The Hund couplingH; does not affect the charge sector ties, wherev = 2taysinkza, is the Fermi velocity. We ob-
but breaks the SU(4pin-omita Symmetry. Indeed, whed  serve that all interactions of Eq) and (10) are marginal
#0, in addition to the obvious S©) invariance in spin and of the current-current tyg8 Therefore, the low energy
space generated by1®® (a=1,2,3), H is also invariant physics will result from a delicate balance among the differ-
under the U(1)ia 9roup in orbital space generated by entinteraction terms in E¢10). The bare coupling constants
M(®3), Thus, the Hund coupling breaks the SUL): orbital in both charge and spin-orbital sectors are expressed in term
symmetry down to SU(2)inX U(1)omitar- IN comparison  of U andJ as follows:
with the spin-orbital model studied in Refs. 5, 6 and 7, the

Hund term breaks the symmetry SU(g), further down to 3
gC_ —U a0 ’ (ll)
U(l)orbital- 4
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and dg
i §0= 30 dh, (16)
)\12_)\2=Jao, gl=2Uao+2Jao,
where

0,=2Uap+Jay, g3=2Uag—2Ja,, ~

9i
~ - = 1
9a=2Uay,—3Ja,, gs=2Uay. (12) 9= amu.y (17

The effective Hamiltonian in the charge sectég. (9)] is  andt=InL is the RG time.
that of Luttinger liquid: We have performed a detailed numerical analysis of the
RG flow associated with Eq&16). In the following, we sum-
Ve 1 ) ) marize our results.
HCZEJ dx K_c(axd’c) +Ke(dx0c) WhenJ=0, the interaction is irrelevant fdd >0 and all
coupling constants flow toward the SU(4fixed point at
wheregc= ¢¢ + ¢cr and .= ¢ — Pcr are the charge bo- g* =0. There are no other fixed points associated with Eq.
son field and its dual field, respectively. The chiral boson(16). One of our most important results is that a nonzero
fields ¢¢ /s are defined in terms of currents as follows:  value of the Hund coupling)+#0, destabilizes the SU(4)
fixed point and drives the system toward strong coupling.
\/Z This indicates that a gap opens in both spin and orbital sector
Ir ()= P Ixber(r)(X). 14 it M gpin™~ M oritar~ €XP(—C/J), whereC is a positive con-
stant of ordet. The present situation is completely different
Therefore, the charge sector is massless and the low-energiym the one encountered in the spin-orbital model where the
properties are determined by the nonuniversal charge exp@ritical SU(4), phase wasot entirely destabilized by the
nentK. which is given, at leading order id, by: SU(2)x SU(2) symmetry breaking perturbatidhough a
gap opens in the spectrum, the low-energy effective theory
still depends on the relative magnitudesJ/2U, between
the Coulomb repulsion and the Hund coupling. Indeed, one
finds two qualitatively different behaviors of the RG flow
The charge velocity can be rewritten agva/Kg. The  depending ony.
situation at hand is similar to what happens in the(8U The regime AThe SU4) symmetric regimeThe first is a
Hubbard model at quarter filling. regime with the enlarged S4) symmetry. This regime oc-
The effective Hamiltonian in the spin-orbital sector is thatcurs for»<1 or Us>J. This regime will be referred to as the
of the SU(4) WZW model with the central charge=3, regimeA from now on.
perturbed bymarginal interactions. This is similar to what With these initial conditions, though all the coupling con-
happens in the spin-orbital model studied in Refs. 5, 6 and 7stantsg;(t)— +~ whent—t*, they asymptotically match
Due to the complexity of the interaction pattern, namely, thethe following particular RG-invariant ray:
five coupling constants instead of three in the spin-orbital
model, the situation in the spin-orbital sector in the presence 01=—0,=—03=0,=0s5— — . (18)
of a Hund term requires a careful analysis of the
renormalization-grougRG) flow. Out of the seven coupling On that ray, omitting chiral terms, one may write Etj0) in
constants entering in EGLO), thek; and\, terms are purely an explicit SU4) invariant form:
chiral and are not renormalized at leading order. Further-

more, they do not influence the scaling of té. One-loop
RG equations are easily found by current algebra  Hso= 2 fdx

13

-1/2

3uao
<1. (15

TUE

Ko=|1+

(JAJ +JRJR) —9*INIR[, (19

method!!12
q where we have performed the duality transformation for
9 a,b#0:
ot = 920595,
J3P——Jgb, P apP, (20
dgz . . - . . -
at —20192— 9295~ 9304, andvy is an effective spin-orbital velocity. In fact, there is a

velocity anisotropy in the model. We find, however, that to
leading order inJ/t such an anisotropy of velocities scales to
— 20103~ 29504, zero at low enough enerdy.Thus, we find that the symme-
try is dynamically enlarged to SY) to the one-loop accu-
racy. Of course the validity this result which relies on the
dgs _3 loop expansion may be questioref;'°but it is reasonable
at - °920s7 9a0s to conjecture that the enlargement of the symmetry is likely

d93
dt
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to hold beyond the perturbation theory. In any case such aatrizations of the fluctuating fields. We first notice that the

(enlargedl SU(4) symmetry is meant to be approximate in two sets of SU(4) currents,J§” and J§3, a=(1,2,3),

the sense that small corrections to pure(@Ubehavior span two spin and orbital SP) algebras. More precisely,

should be expected due to the neglected irrelevant operatonsiey are SU(2)_, currents. This stems from the fact that the
The regime BThe SU(2),,ita €nlarged regimeThe sec-  SU(4),_; WZW model is equivalent to the sum of two de-

ond is a regimeB where SU(2},i, Symmetry ispartially  coupled SU(2)-, WZW model!®!” As in Ref. 5 we shall

enlarged from U(1)]. This regime occurs for the large Hund take advantage of the representation of $1d(2),_, alge-

couplingJ>U or »>1. For »>1 we find that the SU)  bra in term of thredreal) Majorana fermiong?:*¢

symmetry is no longer fully enlarged, and instead we observe

a partial SU(2), it SYymmetry enlargement in the orbital i

sector. Wlth the |n|t|e_1l conditions satlsfylng <J, the RG ‘]g(f))/ J2=- Eeab%g’R(L)gg‘R(L),

flows drive the coupling constants to a regime where

—o0—gy(t)<gs(t)<gy(t)<gs(t)<gy(t)<0. (21)

i
(0,a) — _ _ .abcgb c

In this regime the RG equations E(L6) can be approxi- JR(L)/‘/E 2 € SLRLELRL)

mately decoupled. Indeed, at long RG time, the contributions

of g, andgs to the RG equation fog, andgs can be ne-

b _ b
glected and one obtains IGY=—18ruéry. (ab)#0, (29
dgs dgs ’ where&d oy and €2y, a=(1,2,3), are the Majorana fer-
9% ~ (22) s,R(L) t,R(L)
dt 9495, T4y 94 mions associated with the spin and orbital degrees of free-

, i , . dom. In term of these Majorana fermions the effective theo-
which are nothing but the RG equations of thelUThirring  ias in bothA and B regimes take a nice form.
model in the orbital sector witleffectiveinitial conditions In the regimeA, the effective low-energy Hamiltonian can

94()[>gs(t)[. In this regime, it is known that the $B) g optained from Eq(10) with the conditiong,=—g,
symmetry is restored at larger RG time. Once the anisotropy —gs=04=0s=g<0 imposed:

betweeng, and gs; becomes small, so does the anisotropy
betweeng, andgs as can be seen from the equation

U Vs
d(g,—gs) H=—i— 2 [Eriéin 81080~ 5 2 [Erindi
gt 94927 93), (23 a a
2
since @,—g3)<0 andg,<0. Therefore, in the strong cou- _étaL&ngL]_g[é (k&= kD) | (26)

pling regime, the effective Hamiltonian approximately de-

pends orthreeindependent coupling constants: o ) )
where kg = égyrésnL - The Hamiltonian(26) is easily

[04=05]<[02=03]<g;<0. (24)  seen to be S®) invariant upon a duality transformation in

) . : . the orbital sector:
With the above relation Eq24), the interacting part of Eq.

(10) displays an SU(2g,inX SU(2)opital Symmetry. It is im-
portant to notice that no further symmetry restoration is ex- Er—— &R, GL—TEL (27
pected since the coupling constant in the orbital segios
much larger than the one in the spin seder This behavior  which is the equivalent of Eq20) when Eg.(20) is ex-
is in contrast with what happens in tiiephase forp~1. pressed in terms of the Majorana fermions. Under the duality
The study of the physical properties near the boundaryransformation Eq(27) , the Hamiltonian(26) becomes that
between theA and B regimes is a nontrivial problem. of the integrable S@) Gross-NeveyGN) modet®2°which
Whether they are separated by a quantum phase transitidras been first obtained in Ref. 5 as the effective low-energy
point or they are smoothly connected by a crossover regiotheory for the massive phase of the spin-orbital model. In
can answered only by methods far beyond the perturbatiothis respect we find that, though the Hund coupling &).
theory. This problem will be addressed elsewhere. Within théreaks the original Si4) symmetry further than spin-orbital
one-loop accuracy, we find that the RG flow qualitatively model, it is not responsible for the new low-energy physics
changes from thé type to theB type asn decreases below as far as] is not too large in the spin-orbital sector. There-
70~ 0.5, which is a reasonable value, but we were not abldore, many of the conclusions drawn in Refs. 5—7 still hold

to conclude in favor of a quantum phase transition. for moderate values ol. In particular, the excitation spec-
trum consists of a kink and an antikink with massalong
A. Physical properties and order parameters with a fundamental fermion of mas@m. The existence of

the fundamental fermion as stable quasiparticle implies

that the spin excitations amoherent a sharp resonance at
In order to get some insights in the physical properties ofw=+/2m is expected to appear in the dynamical structure

the low-energy physics it is appropriate to change the paranfactor, in particular, the = component of spin-spin correla-

1. Spin-orbital sector
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tion function. This can be checked by explicit calculation via 1 1 1
order/disorder operator formalism of Ising modlEhs. (43) S=f dxdr| + — o2+ — 2+ [ EREL ]
4N, an,° 2
and (44)].
In the regimeB, whereJ>U, the effective Hamiltonian is : : a
) 1 — +
that of twocoupledSO(3) GN models, one in the spin sector _(97 Ut I(Ual_ £32)|| & n }[§§R§§L]
and the other in orbital sector: —i(oaytiay) 9. +iudy J[&1] 2
B : a
U, 2 d,— iUgdy i(oby+by) || ér
Hso=—1 95 ; [ngax‘ng_ ggLaxggL]_gl< g Kg) X i(oby+by) d,+iugdy fgL ' (32)
u, 2 Now the Majorana fermions can be integrated out exactly,
—i5 > [Ed0.E%— ff‘l_axéf‘,_]—g4( > Kf‘) and the effective action af, { is obtained. The saddle point
a a approximatiof! of the effective action ofr,{ gives
—gz(Z P (E m""), (28) [(o)|~Age/l9d,
a a
o . . . . AU 3N, 2
which is not integrable in general for arbitrary couplings <§>~<0>M<—2(—‘—1) ——ZInM>. (33
(91,9,,9,4). However, in the present case, wheye1 or 2|ga] | M1l us ™ Us |0y

J>U, the effective coupling constants exhibit an interestingNote that|(a)|>|(¢)|. The saddle point values df,,A¢ are
hierarchy:

(o)
|94l>192>194. (29 (Ap~ 27, (34
As a consequence of the above hierarchy, one expects the 3
gap in the orbital sector+¢ e*“t’|g4|) to be much larger than (A~ 92| @ U s ﬂm 92| _ (35)
any other energy scale in the problem. Therefore, a mean- ¥ 2[gal 2N us T U 2| gy

field decoupling of the interaction term in the Hamiltonian
(28) is sensible. We can carry out the mean-field decoupling’?l]OtE(;h%ts?e Cf:rc]totr) e0[ :‘It/# esr+ (pg (;;Tiii(v):allg?)lgggi/tiz\l/g4|)s,]ince

by introducing two Hubbard-StratonovidiiHS) fields. For | . L

. . . n(|g,|/2 <0. In case the factor is positive we have
;hﬁu pu'rpose we rewrite the interactions terms of @) as A§|Agt2|>(|)?4\l3hile the opposite holds for thepnegative factor.
ollows: Both the saddle point value and the fluctuatiory dhote
the factor?/\,] are very small compared to those of

2 2
91(2 K2 +gal > k3] +g,| X K§)<E Kf‘) Thus, due to the hierarchy E€R9), the HS field/ can be
a a a a neglected in the action E¢32). The quantum fluctuations of
=N y(A@y+Aby) 2+ No(Aay+Aby)?, (30) o are Iqrge sinca 4 is large. However, for the spin sector the
fluctuations are suppressed by a factobof-|g,|/2|g.| ow-
where the notations are ing to the hierarchysee the last line of Eq32)]. Thus, we

can take the saddle point value@ffor the spin sector, while
the full quantum fluctuations should be taken into account
N a ga — a ¢a
A= 'za: Eméi,  As™ 'za: Esrésts for the orbital sector. Namely, a full integration overis
required for the orbital sector. This treatment of fluctuations

92 92 can be justified by examining the one-loop effective action of
N~ |Qal+ ) Np~2|gy|— =, the fluctuations ofr, which shows that ther fluctuation is
494l 2|g4] dominated by contribution from orbital sector. Then the ef-
fective Hamiltonians in both spin and orbital sectors reduce
|94l |92l/2 to:
(a1,by)= \/ AK , AL ;
S Ve ; -
(2 % Nlz] T Hepin=—17 2 [Edutin= Eoxtl] —img 2 w3,
(36)
/2
92| |g4|2 . (3)  wheremg=0b;~|g,|A;, and

(az,by)=| — > ,

NERERN . :
Horvita= — 1 > > [§?R¢9x§?R_§gL‘9x§gL]_g4< > K?) :

In Egs.(31) the hierarchy Eq(29) was employed to simplify a a

the expressions. Clearly,,>|\,|. Let us assume that, is (37)

positive. Next two HS fieldsy, {,are introduced to decouple In this limit, the spin excitations consist of a triplet fsée

Eq. (30). The resulting Hamiltonian in the action form can be massive Majorana fermions with massg, (or equivalently

written as off-critical Ising model$ that span the spin-one representa-
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tion of SO(3),i,- This result can be understood qualitatively Koo o

as follows. Sincel>U, the Hund coupling E¢3) dominate YRy, ao="—=C€""TIRL) a0, (40
in Eg. (1) and the two spin 1/2 operatorS,; and S, are 2map

effectively bound into a spin-one state. Thus, one eXpeCtﬁ/here¢R(L)w are boson fields satisfying

that in this limit the low-energy sector of Eql) may be

identified with that of a doped spin-one ch&fr*>This result

will be recovered in the following section treating the strong [¢rac: b0 1= Z5al¥5010’ : (42)
coupling limit. We also expect that in this limi>U, all
single-particle excitations will disappear of the spectrum X«
since the strong Hund coupling tend to pair electrons. This is (Koy 1Ko =28,58 10
indeed the case : the kinks of the @GN model, having a1 2o apZoa’:

the spin-orbital quantum numbers of the electron, vanish ané convenient choice of basis for the boson fields is
one is left in the lowest energy spectrum with massive Ma-

- are the Klein factors which enforce Fermi statistics:

_1
jorana fermions, that is to say a triplet branch of excitations. berL=z(PriLyt PRt PRz T PRIL2))
The explicit calculation of2 kr component of spin-spin be =1 ) ‘e — ¢ )
correlation functions using Ising model formaligigs. (43) SRILT2VPRLL PRILLT PRIL2T PRIL2|

and (44)] leads to two cases. A A;<0, there is a sharp
resonance in the spin structure factor aroke2ke, that
we interpret as the contribution from the triplet branch: the _1

e MO . =1 - - + . (42
low-energy excitations in the spin sector are coherent mag- ¢ff'R{L .2(¢R’L'1T PRl _¢R/L'2T Priz). (42
nons. On the other hand, X,A;>0 the sharp resonance in Refermionization formulas are given by
the spin structure factor disappears in favor of an incoherent

1
bt rL=2(PriL 11 T PriLL — PriL2I — PRIL2))

contribution; this implies that th@riplet) spin excitations are E+igt __ s riEmegrg

incoherent a situation already encountered in the two-leg 2 _\/Faoe ’

ladder?* R(L)
The orbital sector itself is described by an SQ¢3), GN 5.4

model which is integrable. Contrary to what happens in the £rig __ =i VATt Ry

spin sector, there areo stable(Majorana fermions in the 2 2may

excitation spectrurf® The kink and antikink states with mass R(L)

m,~ e~ U/l9%/>m_ exhaust the excitation spectrum of @D 54188

GN model. = Tt et iR stR), (43)
We see that boti\ and B regimes differ in their spectral V2 R(L) V2may

properties, which is deeply related to the differences in the . : : .
underlying symmetries. Starting in thephase and increas- where 77, are new Klein factors. The spin and orbital Majo

H H i (el g2 &3 a
ing the value of the Hund couplingwe predict that, above r:;ma4 fesrméon trlplets_ are given b§§—_(§ £5.6%) fand G
a critical valueJ.., the gap in the orbital secton, becomes =(£%,¢°,€°), respectively. In the Majorana fermion basis,

much larger than the spin gap.: the low-energy excitations P°th operators Eq38) and Eq.(39) are nonlocal, while they

are exhausted by the spin excitations. Abayefermionic  t@ke local form in terms of the orderg) and the disorder
excitations in the orbital sector disappear and one is left witH #a) Operators of the six underlyingff-critical) Iglngamoad—
solely kinks and antikinks. This feature is reminiscent of a®lS fssomaGted with the six Majorana fermiongs ;)
decoherence phenomenon in orbital-like excitations. This= (¢ - -.£"). Using the correspondence

prediction can be tested numerically. i : {70 _
€S~y ooy, €S opuy oy,

2. Charge sector V7 ; iV7o i
eNTPr~ ‘o405, €Vi~g +lugoy,
The fact that a gap opens in the spin-orbital sector imme- fafts 475 sHtaT T4

diately suggests the possibility of charge-density wave g ivmes +i ol VTlsi +i
(CDW) and superconducting instabilities. The corresponding Hafte 1036, Tok3 M603’(44)

order parameters are given by
where = ¢, + ¢ and 6= ¢ — ¢pg We find

A N i
Ocaw ;T VRariasth.C. (38 Ocow M1kaftattattsiteCOS\ T e
N + 010203040506 SIN T . (45)
Oscx =¥r11¥i 2, = Yro1 1, + (Re=L), (39 ¢
where +/— stands for singlet/triplet SC. (A)SC’+~e_i““?0°[,u1M2+i 010 Mapaps5Tg+ 030 405u6].
For the discussion of the correlation functions of the (46)

above order parameters it is most convenient to use the Ma- o
jorana fermion approachTo this end let us start with the Osc—~€ "0 uypo+i 0105 O3ptafhspis— 130 4050%6].
Abelian bosonization formulas: 4
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We are now in a position to discuss the long distance propthe charge sector. For large Hund couplidg; U, there is a

erties of the correlation functions of the above order parampartial SU(2 ), restoration, and depending on the relative

eters. magnitudes of parameters the superconducting instability
Consider first the regimé. The spin-orbital dependent may disappear in favor of a CDW quasi-long-range order.

parts of Eqs(45), (46), and(47), which has scaling dimen- The way these two regimes are connected is a nontrivial

sion 2, are expressed in terms of products of six order angroblem and requires a nonperturbative approach.

disorder operatore, and .. These § operators constitute

a basis for the primary operators transforming in the spinor IV. STRONG COUPLING

representations of SO(6)WZW conformal field theory. o . .

Among the spinorial primary operators, there are twg@0O  The situation at large coupling depends on the filling as

singlet  primary  operators: 0,030,050  and v_ve_II as the possible umklapp terfhgor mcommen_surate

W1opafatis e At this point it is worth stressing that the fillings aII_umkIapp operators are strongly oscillating and

enlarged S@6) symmetry present at low energy in the re- May bg discarded at low energy. Consequently, the charge

gime A is differentfrom the original S@6) symmetry of the ~ €Xcitations are expe_ct_ed to remain massless fodahdJ.

noninteracting theory. Two symmetries are related by the dufor commensurate filling, i.e., whem=p/q, wherep andq

ality transformation Eq(27) in the orbital sector. Such a @ré coprime numbers, the possible umklapp operators al-

transformation interchanges the order and the disorder opertgwed by parity and translational invariance are of the form

tors:
Humidapg= Cog 40\ . (54)

These operators represent the processes that conserve total
momentum up to an integer times the Fermi momenkgm
dpsthe continuum limit, and they have the scaling dimensions

Oa s, a=(4,5,6). (48

Consequently onlﬁsc,, contains low-energy S@®) singlets
that can take a nonzero average value. Therefore, there exi
guasi-long-range triplet superconducting order. Aq=4ch2_ (55)

Equation(55) implies that the umklapp operators are irrel-
(49 evant as far ak>1/2g%. From Eq.(15), we find this is the

case as far afl andJ are small enough. However, as the
In contrast to the triplet superconducting order, both CDWecoupling constants increase, we expKgtto decrease and
and singlet superconductivity have short ranged correlationgossibly to reach the critical value 142). Below the criti-
A similar analysis can be done whel<0 (antiferromag- cal value ofK., the umklapp operator Eq54) becomes
netig). In this case the model exhibits a singlet superconductrelevant and a gap opens in the charge sector. Thus, the mere
ing instability rather than a triplet one. existence of a Mott-Hubbar@U) transition is related to the

In the regimeB the situation is different. From Eq&34)  nonuniversal dependence &f. on the coupling constants

and(35) we find thatA A, can be either positive or negative. U, J, and the fillingn. The dependence is not well known
In case ofA;A>0, depending on the sign df; we have at general. At presenK.. is only known atquarter filling and

(05 (6,7 0se - (00)~ 7 5

the mean-field level either for J=0.% In this case,K. reaches its critical valu&,
=1/2 at the valudJ =2.8, where a MU transition toward an
(Ha=1239=(Ma-15670. (50 insulating phase has been shown to occur. What happens

whenJ#0 and for other commensurate fillings remains an

open question.
(0az129=(0a-45670. (51 In this section we shall focus on tlguarterfilled case

and make a reasonable hypothesis that a Mott transition still

From Egs.(45), (46), and (47), we conclude that @ CDW (516 place in the presence of a Hund term. Consequently we
instability is expected in this case. In case/ofA<0 we  gypect the model described by Hd) to be an insulator for
have either large U and J when n=1. For this particular filling the
strong-coupling regime is best achieved by going to the

or

(ra=129=(0a-450 0. (52 Heisenberg limit. As shown by Arovas and AuerbZdil of
or the relevant low-energy states at strong-coupling regimes are
given by
<Ua= 1,2,3> = </~La=4,5,6> #0. (53

Then a triplet superconductivity is expected in this case. Uo: i(CITCEl_CLCETHO)’

To summarize, we find that at weak coupling the Hund V2

perturbation always opens a gap in the spin-orbital sector.

However, depending on the relative magnitudé&aindJ we — - - -
may distinguish between two qualitatively different regimes. ~ U1:C1;C3;|0), E(Cnczr"cucmﬂo% €1,C;,/0),
At small Hund couplingJ<U, the spin-orbital sector dis-

plays an effective low energy with enlarged @Jsymmetry

: : S A IRPSITS; t ot
and there also exists a triplet superconducting instability in Up:C1;C1 [0}, C3C12[0). (56)
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The above states represent interorbital spin singlet, interometric A regime extends from weak to strong couplings for
bital spin triplet, and intraorbital spin-singlet states. The ensmall enough Hund interaction.
ergy of each state is given by

B. t<U<J/2

Up=U+3J, u=U-3J, u=U. (57) In this caseu, becomes negative and the strong coupling
approach developed by Arovas and Auerbach does not apply.
The effective strong coupling Hamiltonian depends cruciallyHowever, another strong coupling expansion is sensible

on the value ofu;=U—J/2. whenU<J/2. Indeed, in this limit the ground state consists
of the local spin triplets which contaimvo electrons per site
A U>J/2>t and spontaneously break translational invariance. Assuming

that the spin triplets are located on even sitesch that odd
sites are empiywe can find an effective interaction between
the local spin triplets. The effective interaction can be deter-
mined from the strong coupling expansion to the ordetr*of

in a straightforward way. Let us denote the spin triplet at the
2jth site byl,;, which is aS=1 spin operator. By solvmg
Hexr= E [A1SS 1 F AT T 1 FASTITE, the associated two-site problem up to the ordett“fthe
following effective Hamiltonian can be obtained:

In this case all the energies in E§7) are positive and we
can employ the results derived by Arovas and Auerlfach.
They found that the effective Hamiltonian is given by a gen-
eralization of the spin-orbital model:

+ASS TiTi 1 TAST T, 1SS 1], (58)

where é‘f?:Z [Ka(lgj-loj+2) 2+ Kalgj-lojea] (62
with
S 2 CIao’ Ciao”!
aoo’ oo’ 8t4  7—31e/2+2€2+ €32
150371 3,1 R
T—E C“w Ciuro (59) 5J° (1—€)°(1—€/5)(1—€/4)
e o 24t 1
and Ky=——5———, (63)
5J% (1—€/5)(1—¢€)?
2t (1-379)

wheree=2U/J<1. The Hamiltonian Eq(62) is that of the
antiferromagneticHeisenberg spin 1 model with exchange
K, and a biquadratic couplinig,<0. In this regime of cou-

MU T= a3y’

2t> (1+57) ] o . ;
y— ———— pling constants, the excitations are massive and consist of a
U (1-7)(1+37) triplet of Majorana fermiorf® It is however hazardous to
) conclude that the Haldane magnons constitute the low energy
Ag=— 2i 37 excitations in this strong Hund coupling regime. Indeed, the
U (1+3%)’ groundstate for thé=0,U<J limit of the model is doubly
degenerate for the local spin triplets can be located on even
_2t? A(l+q) or odd sites. In addition to the Haldane magnons of (68)
U 1-pa+3y)’ we thus have to take into account the kinks that connect
these two groundstates. Note that these kinks ciatgger
As=—4A,, (60) spin, since excitations built out of single electrons have very

high energy in thidJ <J regime.

A rough estimate of the energy of kink excitations can be
obtained in a static approximation. Consider a pined kink-
antikink pair on top of the ground state of E§2), located at
sitesp andq (p,q being odd integejsthat is to say that the

2t2y Io_caI spin triplets are Ioc_ated on even sitesf@ 2i<p and

Heir~Hsuayt o E [—2S5S 1+ 3(TITE  +TVT, ) 2i>q and on odd sitesi2-1 for p<2i+1<q. When the
: t+# 0 perturbation is included, this will result in the effective

_ 71z Hamiltonian(62) with modified exchang&, , on the bounds
45841 TiTia T 1215355 4] 61 p andg. The static approximation is thus equivalent to two

Following Ref. 5 we find that in the continuum limit the bound defects, one weak and one strdmngth transparent

effective Hamiltonian Eq(61) is identified with that of Eq.  notations,K; J(p)>K; 2K 5(q) for the particular configu-
(10). When <1, a RG analysis reveals the same enlargeration we have chosenThe effect of bound defects has been

ment of SA@6) symmetry as in theA regime of the weak studied in the spin 1 pure Heisenberg chéiithout biqua-
coupling case. Thus, one may conclude that th¢6s6ym-  dratic exchange which has the same low-energy physics as

with »=J/2U<1. Whenz=0, the Hamiltonian Eq(58) is
the SU4) invariant antiferromagnetic Heisenberg model
studied by SutherlantiExpanding the Hamiltonian E458)
with respect to the S(4) symmetric point we obtain
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Eq. (62). The defects there lead to the apparition of a triplet i
excitation inside the Haldane gap’ It is more than likely
that beyond this static approximation, the kinks will form a S=1 AF spin chain
band of spin 1 excitations once kinetic energy is included, as
occurs for holes in the AKLT modéP

While this problem would clearly require a more careful
analysis, which goes well beyond the scope of this paper, this Gapped -~

Gapped

simple static picture indicates that the lowest energy excita- 11 SOG) free Majorani; Gaoped

tions will be massive spin-one kinks. In any case, the low- ® SO(3) . GN i

energy spectrum is exhausted by massive triplet excitations. bl S0(6) GN

The effective continuum theory in regint® at weak cou-

pling t>J>U describes also massive spin-one particles; it is

thus tempting to postulate a continuity from weak coupling Gapless SO(6) WZW

to strong coupling for the nature of the low-energy excita- /

tions. Moreover, the fact that spin-one kinks are present in ~ “======--=--%---- PommSmmmmmmmm -

the low energy spectrum may be related to the incoherence 1 Uht

of the spin excitations found in the weak coupliggegime. FIG. 1. The phase diagram for the spin-orbital degrees of free-

dom. The symmetry as well as the effective model at the strong

C. U~J/2>t coupling (low-energy regime are indicated. Boundaries represent

In this case the local spin tripléwvo particle states have smooth crossover rather than critical quantum phase transitions.

very low energy and they will mix with other states wthe  are found to besoherent In this regime, we found a super-
particle per sitein the first order of hopping. These states conducting instability when the charge excitations are not
should be diagonalized first before taking into account th‘i‘gapped. For large Hund coupling the @Jsymmetry is no
higher-order perturbation ib The detailed study of this re- |onger enlarged. Instead, we find that the orbital degrees of

gime is beyond the scope of this paper. freedom decouples at high-energy and the low-energy exci-
tations lie in the spin sector and consist of the three free
V. SUMMARY massive Majorana fermions. As a result, the spin excitations

We have studied the one-dimensional (8UHubbard becomeincoherent Our results are summarized in Fig. 1.

model away from half-filling perturbed by a Hund couplifig
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