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Effect of temperature on the formation of electronic bound states in an expanded bcc hydrogenoid
crystal: A restricted path-integral molecular dynamics simulation
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We have used the restricted path-integral molecular dynamics method to study the correlated electronic
structure of a half-filled expanded three-dimensional hydrogenoid body-centered cubic lattice at finite tempera-
tures. Starting from a paramagnetic metallic state with electron gas character, we find that bound electrons form
upon expansion of the lattice. The bound electrons are spatially localized with their center for the motion of
gyration located on ionic positions. The region of coexistence of bound and unbound states in the temperature-
density plane is reminiscent of that associated with a first-order transition. At constant temperature, the number
of bound electrons increases monotonously with decreasing density. The width of the region of coexistence
narrows with increasing temperature.
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[. INTRODUCTION Correlated electrons in three-dimensional lattices have re-

ceived considerably less attention than their one-dimensional

The study of strongly correlated electrons is at the very(1D) and infinite dimension counterparts. There are indica-

core of condensed matter physics and materials theory. Féions that in the presence of long-range Coulomb interac-

instance, great strides have been made in the understandifigns, the zero temperature Mott transition appears to be dis-
of the correlated electron gas because of its importance ifontinuous in two and three dimensidiisRecently, we

density functional theory.® The investigation of the behav- demonstrated the_ usefulness of the restricted path-integral
ior of correlated electrons on crystalline lattices has also reMolecular dynamics(RPIMD) method to the study of

ceived a great deal of attention for its relevance to the metaﬁtronglyI corlr eladted electrons r?n dlgtti@és'lfhisblrecen; quan- |
to insulator transition(MIT) in several materials such as tum molecular dynamics method is applicable to the simula-

transition metal oxide$1° The correlation-induced MIT, UON of many-fermion systems at finit(;&_tizrgperature and in-
known as Mott transition, is of fundamental importance inCIUdeS exchange and correlation eff - The RPIMD

condensed matter theafyThe transition results from a com- uses a position representation of the electrons and provides a
. ' , ; ood description of electrons that may change from delocal-
petition between the electrons’ potential energy that tend

. L . ed to localized states. We have reported the formation of
toward localization and kinetic energy that favors delocallzabound electronic states in a half-filled expanded 3D hydro-
tion. This competition is captured in a canonical lattice

. genoid body-centered cubic(bco lattice at finite
model for correlated electrons, namely, the half-filled Hub-temperaturé® starting from a metallic state, with correlated
bard modet? On a lattice, the competition between the elec-gjectron plasma character, we observed that bound electrons
tron kinetic energy(quantified by a band widthV) and the  form upon expansion of the lattice. The bound electrons are
intra-atomic energy of two electrons with antiparallel spinsspatially localized with their center for the motion of gyra-
on a given sitg(interaction strengttJ) may open a gap in tion located on ionic positions. The number of bound elec-
the electronic energy spectrum leading to the formation otrons increases monotonously with decreasing density.

the so-called lower and upper Hubbard bands. At low values In this paper, we study the behavior of correlated elec-
of U/W, the Hubbard model leads to a metallic state. At hightrons on a lattice by considering Mott's original argument
values ofU/W, the stable state is insulating. In this picture based on the expansion of a hydrogenoid lattice. We investi-
magnetic interactions are not taken into account and the megate the correlated electronic structure of the expanded 3D
tallic and insulating phases are paramagnetic. Magnetic inRydrogenoid bcc crystal at several finite temperatures. Nota-
teractions may provide a driving force for moments in thebly, we observe that increasing temperature at constant den-
insulating state to long-range order, leading to a thermodysity diminishes the weight of the conduction electrons and
namics transformation and an antiferromagnetic insulatingavors bound states on the lattice sites.

state below the N& temperaturé® A solution to the Hub- In Sec. Il, we present in some details the RPIMD method
bard model across the entire range of interaction strengthnd the 3D bcc hydrogenoid lattice model. The results of
exists only in one dimensiolf. The Mott transition in one isothermal dilation of the crystal at several temperatures are
dimension with long-range hopping has the attributes of aeported and discussed in Sec. Ill. The paper is concluded
continuous transition with a continuous opening of the gapwith a summary in Sec. IV.

up to some finite value of & The Hubbard model in infinite
dimension has been studied intensively since in that limit the
results of mean-field approximations become eXant.spite

of this, a definite scenario for the Mott transition in dimen-  We use a recent quantum molecular dynamics method ap-
sions higher than one has not been established’y&t. plicable to the simulation of many-fermion systems at finite

Il. MODEL AND METHOD
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temperature including correlation effects. The RPIMD are truncated at half the length of the edge of the simulation
method was introduced elsewhéfe? This method makes cell. The RPIMD is amenable to parallelization over fe
use of (a) the discretized path integral representation ofpeads.

guantum particles as closed necklace® aflassical particles We solve the equations of motion with a leap-frog scheme
(beads or time slices in the path representatioith quan-  and an integration time step of %80 '®s. For the
tum exchange treated through crosslinking of theglectron-ion pseudopotential, we employ a core raddJs

necklace§§ (b) the nonlocality of crosslinking along the —1 5 A R_is large enough not to require higher corrections
necklaces, (c) the restricted path integfdlto resolve the o Tyorter formula for path-integral simulatiof$As will be

prol?]Iem of ?eggti\{e ng%htt)sl to thg p|>artiti0n function due toseen in the result sectioR. is small enough to lead to a
exchange of indistinguishable particles. . : e S .
We consider g tice of hcragenoid ons neractng 591 SO LT e e e oreproviny
with an assembly of unpolarized electrons. This system i%h f i ¢ bound states. We wBe-400 b dyf h
modeled with the classical Hamiltonf&rf’ e Tormation of bound staies. e use= eaas for the
electron necklaces in order to ensure convergence of the path

Ne P P Neg Ne-1 _ i it u%ﬁéaw
1 . (—e)(—elP) integral at the temperatures and densities st We
H= E E —m*(fi(k))szz E GOl eliminate all phonons by holding the ions at fixed positions.
1512 iT1ic) =1 Ameg|riV—r}|

The temperature of the electrons is maintained at high

P Nei Nion s(R|_fi(k)) Ne P . MP enough values such that for the high densities paramagnetic
+> > > pTJr > TR metal state studied the electrons are in a nearly degenerate
=lk=11=1 k=1li=1 B regime?®?’ 1t is known that the simulation of stiff harmonic
P P chains suffers from nonergodicity. To alleviate this problem,
| 2 2 In de(Eij]saﬁs we thermostat the electron degrees of freedom by coupling

1j=1 every group of 54 bead®lectron$ with identical label 1"

P - (@) to a NoseHoover chain of thermostaté The chain length is
> > 0§S chosen to be five in order to lead to more randomness in the
=1j=1 thermostating process. The first thermostat directly coupled
Herem* is an arbitrary massnf* =1 a.u.) defining an arti- to the electrons has a mass of 100 a.u. and the four other
ficial kinetic energy for the dynamics of the electron neck-thermostats have a mass of 10.a.u. We have observed that
lace beads. The positions of the beads and of the ions atbis way of thermostating the electrons still yields noner-
indicated byr andR, respectively. The second term in Eqg. godic behavior for highly dilated crystals. To overcome this
(1) accounts for the electron-electron Coulomb interactionsdifficulty we have coupled each necklace to an Andersen’s
The third term is the electron-ion potential energy. The ionthermostaf’ Andersen’s thermostat assigns velocities dis-
electron pseudopotential is denotégl and we use an empty tributed according to a Maxwell-Boltzmann distribution to a
core local pseudopotentfd?’ with a core radiusR;. The  necklace selected randomly every 50 integration steps. We
fourth term is the effective harmonic potential for distin- calculate the kinetic energy with two different estimat&ré®
guishable quantum particlé$.The cyclic condition on the Note that in the present model, spin flip is not allowed,
summation over the beads is denoted by an asterisk. Finallye., the spin state is permanently attached to an electron.
the fifth term is an exchange potential for electron with iden-Frustration in magnetic ordering will arise from the small
tical spins=1 or |. The functioneﬁ ensures the path re- difference in the distance between first and second nearest
striction by taking on the values 1 and 0 for paths with posi-neighbors in the bcc lattice compared to the deBroglie wave-
tive and negative di;]. All the exchange effects are length of electrons. Under the conditions of our simulations,
included in the matri{ E;;] which elements are defined as a thermodynamic transition associated with magnetic order-
E:(jIZAikjllA:(jk with Aikj'=eX|c[— mePIZBﬁz(ri(k)—rJ('))Z], ing of the entire simulations cell is unlikely. Considering the
wherek and| label the electrons. The indicésand | label ~ spatial extend of bound electrons, the bcc lattice cannot ac-
beads along necklaces, stands for the electron mass and commodate a periodic antiferromagnetic structure with iden-
B=1/kgT. tical spin states on the first and second nearest neighbors of
The cubic simulation cell contains,=54 ions arranged each sitg. However, the formation of small antiferromagnetic
on a bcc latticg27 unit cells and 54 nonpolarized electrons clusters is not precluded.
(Ng=1=27 andNs_ | =27). Periodic boundary conditions are
applied. The long-range Coulomb potentials in EL. are
replaced by a shorter-range screened potential of the form
(1/r)erfc(yr) where »=0.382 A, “erfc” stands for the We report simulations or series of simulations of the elec-
complementary error function. The choice of erfc as atronic structure of the hydrogenoid bcc lattice at several tem-
screening function is inspired by the Ewald metidtHere  peratures with lattice parameter ranging from 5.3 to 13.3 A.
we limit the calculation of the potential to the position- Every simulation uses as starting configuration the final
dependent real-space part of the Ewald sum. With the chosegqjuilibrated configuration from a preceding simulation at ei-
value for », the reciprocal-space part of the Ewald sum isther a lower temperature and identical density or same tem-
negligible compared to the real-space patt§or a fixed perature but lower or higher density. As a measure of the
value of 5, the point self-energy in the Ewald sum is inde- electron density, we use the electron sphere radius expressed
pendent of density and is not presented here. All potential;n units of the Bohr radius and defined by

1 i
X (rf—r#®)2—=3
BS:T

IlI. RESULTS AND DISCUSSION
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FIG. 1. (a) Average electron kineti¢circles and electron-ion
potential energy(squarey versus the electron sphere radiusat oo oo
two temperatures. The open and closed circles are calculated with ™ (1 ) & 4 C ¢ 7 8010 o123 466748510
the energy estimators of Refs. 38 and 32. The solid lines are simple radius of gyration (A) radius of gyration (A)

polynomial fits to serve as guides to the eye. The thin dashed line is

the kinetic energy of the unpolarized electron plasiRef. 2. (b) FIG. 2. Distributions of electron radius of gyrati¢see text for
Electron-electrong-e) Coulomb potential energy as a function of definitior) for several densities at two temperatures.

rs.

B —13 . . lattice deviate from the electron gas behavior. The rise in
=[(4/3)m (Ngi/V)]~ ™", whereV is the volume of the Simu-  yinetic energy at low density is associated with the formation
lation cell. For numerical reasons associated with arithmetic, compact electrons, i.e., highly localized electron neck-

limitations on the magnitude of d&] in Eq. (1) we could 5065 Figure @) clearly shows that beyond=10, electron

not simulate expanded systems beyoget 12.41. The total  |,¢4jization results from a competition between the rising
number of MD integration time steps for the simulationsyinetic energy and the decreasing electron-ion potential en-
ranges from 25000 for the highest densities where equilibg gy The compact electrons with high kinetic energy are
rium is reached fairly rapidly and up to an excess of 200 00Qc5jizing inside the core of the ions to minimize their po-
steps at lower densny. Because of limits in computationajgniig energy. The electron-electron Coulomb endjiigig.
resources, each simulation is a sequence of shorter runs ﬁ?{b)] decays monotonously over the range of densities stud-
approximately 10000 to 20000 steps. Consequently, we €%ad. Beyondr =10, the electron-electron potential energy

timate the_ st_ar_1dard deviation of t_he average energies frofacreases only slightlyor even appears to have reached a
the set of individual average energies obtained from the shogh; imum for T= 1100 K) indicating that the localized elec-

runs constituting each S|mqlat|on. . trons have effectively excluded other electrons from the ion
To verify that our simulations had indeed reached thermog,, g

dynaimcs equilibrium, we simulated a low-density systems, ¢ formation of compact electronic states is also clearly
atrs=11.17, starting from a randomly generated paramaggeen in Fig. 2, where we report the distribution of electrons’

netic insulator with only singly occupied lattice sites. The o qiis of gyrationRG) at several densities and two tempera-

temperature was =1000 K. After the system reached equi- ,res. The radius of gyration of an electrd) (s calculated
librium, structural and thermodynamics properties ap-yiih the following expression:

proached those of the expanded systems at the same density

providing evidence that the simulations reported in this paper =
correspond to stable thermodynamic equilibrium. RG(k):l N (r(0 )2 )
The electron kinetic energies, electron-ion potential en- P Vi< ! '
ergy [third term in Eq.(1)] and electron-electron coulomb
energy [second term in Eq(1)] for two temperaturesT wheret®™® is the position of the center of mass of the elec-
=950 and 1100 K, are presented as functions of the electroffon. Parrinello and Rahmah. have shown thatRG?)
sphere radius in Fig. 1. The kinetic energies calculated = #2/2m./kgT C. For a free particleC is equal to 1 and
with the two estimators agree well with each other indicating{RG?) is interpreted as the square of the average de Broglie
that ergodicity is satisfied. The kinetic energy is U shaped. Awavelength for electrons with average momentum square
high density, the calculated kinetic energy follows the trendmkgT. At high density, the RG distribution takes a nearly
of the unpolarized uniform electron gashs density de- Gaussian form with a mean R&4 A. For T=1100 K and
creases, i.el increases, the electrons in the hydrogenoidrs=6.82, the value oC is estimated to be-0.45 which is

155101-3



KI-DONG OH AND P. A. DEYMIER PHYSICAL REVIEW B69, 155101 (2004

nearly half that of a free particle. The electrons have some
free particle character but this value forreflects some com-
pactness due to electron correlation as well as the interactiol
with the lattice. Upon a decrease in density, compact elec
trons form a shoulder in the RG distribution transforming
into a narrow peak centered around RGA. At fixed den-
sity, the weight of bound states increases as temperature rise
from 950 to 1100 K. AtT=1100 K, the value ofC for the
bound electrons is now one order of magnitude less than thrg
free electron value. This value is comparable to that of a%
single F center studied by Parrinello and Rahman with
PIMD.3? The compact electrons are representative of bouncg
states since their center for the motion of gyration is located 2
on ionic positions as illustrated by the electron-ion radial 2
distribution functiong RDF) of Fig. 3. @
In Fig. 3(@ we show that at the highest density studied
r«~4.96 decreasing the pseudopotential core radius fromr
R.=2.2to 1.5 A converts our system from a simple metal to
an atomic lattice with overlapping atomic wave functions. In
a simple metal such as potassium #wéon RDF exhibits
oscillations that have an inverse phase to the ion-ion BDF. (b)

[<]

funct

ution

Note that the smaller amplitude of oedion RDF is probably 30
due to the erfc screening of the Coulomb interactions. At

R.=2.2 A, thee-ion RDF shows a minimum at/r~1.9 20 1
corresponding to the closely related first- and second-2 3 10

nearest-neighbor distances of the bcc lattice;=1.76 and
2.03, respectively. FdR,=1.5 A, thee-ion RDF fills the ion
core and shows a maximum in phase with the ion-ion dis-
tances. The minimum neavr,=1, indicates that the elec-
trons occupying atomic sites start to exclude other electrons
We have also included in Fig.(& the electron-proton RDF
for a hot dense partially ionized atomic hydrogen fluid that
also shows exclusion outside the atomic radfifs. Figure
3(b) demonstrates strong electron localization within the ion
cores as density decreases. The growing depression at a r
dius of 1 is evidence for a reduction in the number of itiner-
ant electrons. A pictorial representation of the spatial ar-
rangement of the localized electrons and of the free carriers 0 1 2 3
within the bcc lattice is given in Fig. 4. This figure provides
information somewhat similar to that of Fig. 3 but supple-
ments it by showing that at low density, the lattice is com- FIG. 3. (a) Electron-ion RDF ar ;=4.96 for several values of
posed of separate regions rich in bound electrons and regiorise pseudopotential core radii &t=1100 K. The dotted line is the
rich in free carriers. RDF for potassiumi(;=5.024) extracted from Ref. 3@ner-core

The evolution of the electronic structure of the expandedbtructure is omitted The dashed line is a proton-electron RDF for
system at fixed temperature is also clearly seen in the hethe partially ionized hydrogen atomic fluid of Ref. 4Q,€2). (b)
erosping; | and homospirg;; anq| | €lectron-electron RDF Electron-ion RDF aff=1100K for several electron densities. A
reported in Fig. 5. The pair correlations are between beads §harpening of the peaks and growing depression&rgt-1 and 2.5
necklaces with the same label, that is, the same time S"Cé'gdicates electron localization on the ion sites with decreasing den-
along the discretized path representation. At high density, thelty. The inset shows the complete distributions for radii less than
electron-electron RDF calculated with the RPIMD methodM® €lectron sphere radius.
are characteristic of the uniform electron %%’ with a
correlation hole in the heterospin RDF and a widerradial distances. At very short distance, the RPIMD het-
exchange-correlation hole in the homospin RDF. The inset oérospin RDF does not take on the expected nonzero value at
Fig. 5, compares our results af=4.96 with the RDF of the the origin but rapidly changes slope and dives toward 0. The
unpolarized uniform electron gas of Ref. 6 at a similar den-discretized path integral representation of a quantum particle
sity calculated with variational Monte Carlty MC) and dif- becomes exact aB—oe. In that limit the electron-electron
fusion Monte CarldDMC) methods. The agreement is quite Coulomb interaction term in Edq1), allows heterospin elec-
good except near the origin. The RPIMD heterospin RDRrons to overlap to some extent. At finii, this quantum
falls essentially between the VMC and DMC curves for mosteffect is lost and the RPIMD method overestimates the Cou-

0 r/rs 1

e-ion radial distribution function

rirg
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e-e radial distribution function

FIG. 5. Heterospin(solid line) and homospin(dotted ling
electron-electron RDF for several densities. The temperatufe is
=1100 K. The inset compares the RPIMD RDF for the hydro-
genoid lattice atr=4.96 (solid line) with the variational(dotted
line) and diffusion Monte Carlgdashed lingresults of Ref. 6 for
e o : R 2 an unpolarized uniform electron gasrat=5. The inset shows that

0.000 el . . guantum effects are overlooked by the discrete path integral ap-
0.000 Xirg 3.224 proximation (°=400) only at very short radii. Because of the finite
P, the heterospin RDF changes slope below approximataly

FIG. 4. Snapshot projections of the position of the nodes of all~0.1 and decreases to zero in contrast to the expected nonzero

the electron necklaces on th&00) plane of the bcc lattice for two  value at the origin.

densities. The temperature Ts=1100 K. The electron sphere ra- ) ) _ _ o
dius is(a) r<=7.44 and(b) rs=11.17. fixed density (s=8.69) is unambiguously confirmed in Fig.

6. It is worthy noting that there exists a similarity between
lomb force between electrons at very short distance.RFor the distribution aff =1300 K, rs=8.69 and the distribution
=400 andr .~ 5, the RPIMD method does not represent theOf Fig. 2 atT=950 K andr=9.93. This similarity shows
electron-electron RDF properly for radial distances shortefhat the relevant energy scale for the formation of bound
than ~0.1 A. This problem will not affect significantly the Stal€S upon expansion is the Fermi temperalyre Indeed,

results presented in this paper since most of the simulation€SPite their different temperatures and densities, these two

: L systems have very similar values DfT¢ . The inset of Fig.
;etp?[ﬁreteodrigi?]re are at low density for whigh, is very small 6 summarizes the spectral reweighing between unbound and

As density decreases tq=8.69, the heterospin RDF ex- bound states. We calculated the number of bound electrons
hibits a shoulder at radial distancels .~ 0.4. This shoulder by integrating a Gaussian fit to the first peak in the distribu-

. . . . tion of RG. The number of free carriers is the difference
corresponds to doubly occupied lattice sitgés., single}. between the total number of electroiie., 54 and the num-

This shoulder converts into a peak for lower densities indiher of hound electrons. At a constant density, the % of un-
cating further spatial localization of the electrons participat-poungd electron decreasesmcreases. This implies that for
ing in doubly occupied sites. It is worthy noting that the r =g 69, the single particle density of state at the Fermi
number of electrons in double occupancy calculated by inteenergy is nonzero and that it decreases as temperature in-
gratingg, (r) over the interval 6<r/r<<1 does not amount creases.
to more than a fraction of an electron. The homospin RDF  Our observations are compatible with the predictions of
shows also a shoulder atrs~0.7 that results from a non- the Hubbard model concerning the single particle excitation
zero but very small number of doubly occupied triplet sites.spectrum(SPES.?2*? Upon increase ofJ/W (our simula-
Upon dilation of the lattice the increasing number of singlytions correspond to a fixed and aW decreasing with in-
occupied lattice sites yields a sharper peaks in the RDF erereasingr,) from the paramagnetic metal, the SPES devel-
compassing both the nearest-neighbor distance of the baips a central peak flanked by Mott’s sidebands. The central
lattice and the second-nearest-neighbor distance. peak is located at the Fermi liquid value. At equilibrium,
The transfer of spectral weight from the free carrier state®lectrons occupying the central peak are free carriers, while
to the bound electron states as temperature is increased electrons occupying states in the lower sideband exhibit

155101-5



KI-DONG OH AND P. A. DEYMIER PHYSICAL REVIEW B69, 155101 (2004
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01 4 L v FIG. 7. Number of bound electron@illed symbolg and un-
bound electrongopen symbolgsat three temperature§ €950 K,
circles; T=1100 K, triangles; and =1900 K, squarésr} corre-

00 4 e s sponds to the density at which all the electrons ought to have trans-

001 238 4567 890123458789 formed to bound states and is used to construct the temperature-
radius of gyration (A) radius of gyration (A) density phase diagram in the inset. PM and Pl stand for

paramagnetic metal and paramagnetic insulator, respectively.
FIG. 6. Distributions of electron radius of gyration for a crystal

with r,=28.69 at several temperatures. The inset reports the % of . . v if h .
electrons in bound statéslosed circlgé and of free carriergopen pro_pertles may not vary contlnuo_us y It one has strong _|nter-
circle) as a function of temperature. action between the electrons as is the case here. The inset of

Fig. 7 summarizes our findings in the form of a temperature-

more boundlike behavior. Rare doubly occupied sites corre‘—jenSity phase diagram. This diagram shows two phase

spond to the electrons in the upper sideband. As temperatupé)unda”es' A boundary, nearly independent of temperature,

increases the spectral weight of the free-carrier central pea§<eparates the paramagnetic metd‘.""”') state_from the re-
diminishes rapidiy®2242This results in a transfer of spectral gion where bound and free carriers coexist. The second

weight to the side bands boundary separates the coexistence region and the paramag-
Finally, we report in .Fig 7 the calculated number of N€tic insulting(PI) state. The width of the coexistence region

bound and unbound electrons at the three temperatses narrows as temperature i_ncreases sqggesting that t_he transi-
1100, and 1900 Kat which density was varied systemati- tion may be of first oYrEJIZé;F in accord with several studle_s_ of
cally over a wide range of values. The number of bounaIhe Hu_bbard model’ _Indeed, a cross over ftransition
electrons is estimated from the first peak in the distributioné’vOUId |mp_ly that the width of the coexistence region in-
of RG as mentioned before. At all three temperatures, th reases with tempgrat_u’r%.‘l’he temperature (_jependence of
number of bound electrons increases with decreasing densitg/,e .phase boundaries in gliversusrs phase dlagram shows
i.e., increasing . Independently of temperature, at least to milar trends obser\_/eq m yerspsU/V\( phgi'se d|agrams.for
the level of resolution of our calculations, bound electronicthe_3 Hubbard model in infinite dimensiofi&}namely, a sig-
states appear at~6 corresponding to an electron density ”'f'C?”“y weak_er temperature dependence of the PM-
n=6.75x 10-% A—3. This density is in good agreement with coexistence region bounde_lry compan_ed to the boundary be-
Mott's criterion for the formation of bound stafésn/3 tween the Pl and the coexistence regions.

>0.4.

The RPIMD method did not allow us to expand the bcc
lattice beyond ;~12. However, we can estimate the density
at which all the electrons ought to be localized on ionic sites, We have reported a study of the correlated electronic
that is, the density for completion of the transition from astructure of an expanded 3D hydrogenoid bcc lattice. The
paramagnetic metal to a paramagnetic insulator. For this, welectronic structure is modeled within the frame of the
fit the calculated number of bound electrons at the three temrRPIMD method that enables the simulation of quantum par-
peratures to monotonously increasing functions that reacticles with exchange and correlation effects at finite tempera-
the value 0 atrs=6.2. The choice of a continuous function ture. The electronic structure of the bcc lattice is character-
for this fit is motivated by the observation of Kohn and Ma- ized via electron-ion, electron-electron RDF, as well as
jumdar that the transition from unbound to bound states in @istributions of the electron’s radius of gyration. The results
noninteracting Fermi gas occurs with continuous change opresented in this paper suggest that the transition from a
the propertieé? These authors conclude, however, that theparamagnetic metal, with no bound states, to a paramagnetic

"'H

IV. CONCLUSIONS
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insulator, with no free carriers, may possess a first-ordelowered and temperature is raised. This observation is an
character. In qualitative accord with density-functional cal-encouraging success for the RPIMD simulation of strongly
culations of hydrogen plasnid,path-integral Monte Carlo correlated electron systems. We anticipate that improvements
simulations!’ and variational density matrix methtidfor ~ in the method and its extension to include for instance
hot, dense hydrogen, we find that bound electronic stateghonons will provide a tool for shedding new light on sys-

begin to appear as the density of the hydrogenoid lattice i'ems with many interacting electrons.
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