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Dissipative continuum model for self-organized pattern formation during ion-beam erosion
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A continuum model, based on the damped Kuramoto-Sivashinsky equation, is shown to reproduce the
morphology evolution during ion sputtering quite successfully. In a very narrow range of the damping param-
etera, the alignment of the structures into hexagonal domains is obtained under normal incidence of ions with
striking resemblance to the experimentally observed dot patterns. The origin of this damping factor is dis-
cussed.
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The detailed knowledge of the surface morphology in-and brings forth the saturation of the surface roughness in
duced by ion sputtering is of central importance for the for-time. The time, where the surface roughness starts to saturate
mation of self-organized periodic patterns of nanostructuresis referred to as therossover timeg. In the following, times
and for the exploration of fundamental limits in top down smaller thant, are called early timglinear regim¢ and
processes based on lithography and ion etching. times larger tharn, late time regimgnonlinear regimg The

Recent attempts to explain the temporal evolution of doterm 7 accounts for the fluctuations introduced by the sto-
patterns during ion sputtering by thendampedKuramoto-  chastic nature of the sputtering procésand — ah intro-
Sivashinsky(KS) equation failed in two decisive points.  duces an additional dissipation suppressing spatiotemporal
Firstly, they could not reproduce the hexagonal ordering othaos under certain conditiofis.
dots under normal incident ion sputterifgr off normal As Paniconi and Elder demonstr&téhe numerical inte-
sputtering with simultaneous rotation of the sampéported  gration of Eq.(1) leads to three distinct solutions in the late
in the last years on I1I-V semiconductor and Si surfat®s®  time regime. On the variation af, the morphology change
Second, they did not predict the stabilization of the periodids reported as follows: for values af only slightly smaller
patterns for long sputtering timé$.Since the ordering arises than a critical valuer.,'” highly regular patterns with large
equally on different surface orientations and even on amordomains of perfect hexagonal ordering are obtained, sepa-
phous surfaces it can be concluded that the ordering intgated by point and line defects. At smaller, intermediate val-
hexagonal domains does not depend on the initial crystales fora the authors find hexagonal patterns, where the dot
structure of the surface. Therefore, the ordering mechanismtructures breathe and oscillate in time, resulting in a mor-
is inherent to the pattern formation procéss. phology with less ordering. Finally, for small values @f

In an extended numerical analysis of the long-time behavspatiotemporal chaotic solutions are obtained, similar to the
ior of the two-dimensional (2D) damped Kuramoto-  splutions of the undamped KS equatitin.

Sivashinsky(DKS) equation Paniconi and Elder presented a  Following the work in Ref. 8, the numerical integration of

stationary hexagonal ordered solution in the long-time limitthe DKS equation is performed on an equally spaced two-
that bears a striking resemblance with the dot patterns oldimensional mesh. Euler's method is applied for the time
tained by ion sputtering. derivative and an isotropic form of the Laplace operator is

The DKS equation applied for the surface morphologyapplied, which includes eight nearest neighbors. For the nu-
evolution during the erosion by ion beam sputtering undeimerical integration the following values for the coefficients
normal incidence is a partial differential equation for the sur-were used: a mesh size of 40@00 points, a spatial step
face height(x,y,t), with x andy lying in the surface plane: width dx=0.5, time stepgdt=0.01, v=—1, Dgz=1, 2\
=0.01, and for the fluctuations white noise with a maximum
amplitude of»=0.01. In order to demonstrate the different
dynamics of the morphology the coefficieat was varied
from 0.15 to 0.26, while keeping all other parameters con-
Here,v, is the constant erosion velocity of the plane surfacestant. The critical value ofx=«., where the dynamics
v is the “effective surface tension,” which is caused by the changes from smoothing to roughening, evaluates for the
erosion process and usually has a negative value leading toadove given coefficients to 0.85Che erosion velocity of the
primary (linean surface instability:° The diffusion coeffi- plane surfacer, was eliminated in the simulations by the
cientD¢g, Which is assumed isotropic, stands for the sum ofredefinition ofh=h—uvt.
all diffusion coefficients, i.e., the thermal diffusiband the In Fig. 1, the calculated pattern far=0.24 is compared
erosion induced diffusiorr™ Further on, the nonlinear term with an experimental pattern, obtained on a GASbH
\/2(Vh)? accounts for the tilt dependent sputtering yield surface sputtered with 500 eV Arions at an ion dose of

ah

A
—= Vo~ ah+vV2h—DeeV'h+ 2 (V)24 7. (1)
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FIG. 2. Patterns calculated by the DKS equation with the corre-
sponding 2D-PSD in the insetéa) Pattern for the early time re-
gime.(b) Stationary pattern with hexagonal ordering in the late time
regime fora=0.24. (c) Spatiotemporal chaotic pattern in the late
time regime fora=0.15. (d) AFM micrograph of a GaSb surface
after sputtering with 500 eV Ar ions at 6< 10 cm™2 ion dose,
corresponding to the late time regime. The width of the micrograph
is 125 um.

tropic on a long-distance scale. The similarity between the
experimental and simulated pattern witk- 0.24 emphasizes
the importance of the stabilizing term ah, leading to the
stationary solution in the form of hexagonally ordered dot
patterns.

FIG. 1. Surface morphology after ion erosiof@ Late time The origin of the hexagonal ordering is closely related to
morphology calculated with the DKS equation with=0.24. (b)  the damping term. In Fig. 2, three specific morphologies,
Scanning electron microscope image of a GaBD surface  \hich are solutions of the DKS equation and their 2D power
after ion erosio.n yvith 500 eV Ar ions with an ion dose of spectral densitie6PSD are shown. These morphologies are
210" cm2. Similar defect types are labeled. compared to a micrograph of a GaSb surface, which was

sputtered with & 10' cm™2, 500 eV Ar' ions, determined
2% 10* cn?. In both cases the pattern consists of domaingy atomic force microscopyAFM). In Fig. 2a) the mor-
of hexagonally ordered dots with a domain extension of apphology calculated for the early time regime<{t.) is
proximately eight lattice constants. The patterns are intershown for «=0.24. In this linear regime no ordering is
rupted by “lattice defects” of the same types. The main de-present, i.e., the pattern is fully isotropic and has only a
fect types are a missing dgvacancy surrounded by six characteristic periodicity. In this regime the pattern consists
nearest neighborglabeled D}, a missing dot with five of chainlike structures, without clearly separated dots. In the
neighbors(D2), a dot with five neighborgD3), and a dot crossover regimet&t.), however, where the nonlinear term
with seven neighbor4). There is an apparent difference in starts to be relevant, the dot structures develop and isolate,
that the defects are more pronounced in the calculated paferming hexagonally ordered domaifisig. 2(b)]. In this re-
tern and more defects of type D1 are present. Neverthelesgime the individual dots appear to be “mobile” and can be
from the temporal evolution of the calculated pattern it canrearranged, while keeping their shape. Therefore, the dots
be concluded, that this type of defect is not stable. For longewill be ordered such as mobile balls in a closed-packed ar-
integration times, the amount of defects D1 decreases. Furangement. The different hexagonal domains appear at
thermore, for lower values of the parameterthe total slightly different times, therefore being displaced to each
amount of defects increases continuously. Finally, éor other. The defects are created by rearrangements of the dots
smaller than 0.2, the hexagonal order disappears completelgt the interfaces into metastable configurations. This hexago-
Due to the lattice defects the hexagonal domains are orientathlly ordered pattern appears to be a stationary solution, in
arbitrarily to each other and produce a pattern, which is isowhich only some of the defects of type D1 disappear in the
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In order to interpret the additional damping terrwh in
the DKS equation, its microscopic origin must be addressed.
In the following, we propose the most plausible microscopic
mechanism and discuss its implications to the continuum
equation. As the damping term depends on the surface posi-
3 tion h itself and not on derivatives df, its origin cannot be
10770 . . traced to the deposition of the energy by the ion béam.
] o . Therefore, the damping term relies on a mechanism, that
10% e N goes beyond the sputtering theory of Sigmdndn effect,
0 N which was ignored until now, but is known to play a signifi-
1 Q) : . cant role in the morphology of sputtered surfaces is the re-
1R . deposition of the sputtered material. In the case of a heavily
corrugated surface with high aspect ratio, a considerable
amount of the sputtered particles hits the surface and is re-
101 deposited. This mechanism leads to a higher deposition rate
in the depressions compared to the hillocks, therefore being a
damping term in the case of ion erosion. There is also a net
102] current of material from higher lying to lower lying regions,
because of the forward peaking of the sputtered particle
cloud in direction of the ion velocity vector, justifying the
104 dependence on the height functibnitself. This effect has
{ b been observed recently in the evolution of the shape of
V-grooves after high dose implantati6hBecause a general-

- - ized model including the particle redeposition would amount
0.01 0.1 4 1 to a complex integro-differential equation, the damping term
Wavenumber k [nm’] — ah has to be considered as a simple first approximation to
include the redeposition by modulation of the erosion veloc-
calculations: curve a, early time regirt@otted; curve b, stationary ity vo. While the original mo.del leading to.the K.S_eq.uatlon.
pattern forae=0.24 in the late time regimésolid line); and curve c was bgsed'on the assumptlon of translat!onal invariance in
spatiotemporal chaotic solution far=0.15 in the late time regime 1€ Z direction, the damping term- @h obviously violates

(dashedl (b) PSD of the experimental pattern of a GaSb surfacelhiS Symmetry requirement. But remembering the above in-
from Fig. 2d). terpretation of the damping as a simplified modelling of the

redeposition process, one is led to a replacement of the
long-time limit. Fora smaller than 0.2 a spatiotemporal cha- S|mE[)Ietr;[errr]n_— ﬁth by a te(;m— “(tn_;?)é, V\('jhert?]h/* repre-
otic morphology appears, as shown in Figoi2The damp- (o by RIg 0 Lol area we have made sure that all
ing term — ah suppresses effectively secondary inSt"J‘bi"ﬁesresults presented so fa? are not affected by this replacement.
onl%_/r:‘grrgdril;rr;);v[)r,gn(%eﬂ? é \égllléﬁlsa%is(o'szﬁgﬁg )i'n Figa)3 By this redefinition the DKS equation is transformed into a
visualize the ordering phenomena and the distribution of thgonlocal continuum equation, indicating th_at the nonlocality
wave number in more detail. The curve for the early time'S @ necessary prereqwsn_e_for the o_rderlng. The proposed
regime (dotted ling already shows the predominant wave Irgsl(jlr;?ndlf/rr?a;?glg;jIvtljgntveeg;erldo imilr‘la?ggéany and by mo-
r;u(;n 2b f r,th\?gth e:kvsi;);)iﬁ;ne?s"tﬁgake:((u\j/\t/ihdtr:r: ntcr;(:z azaezesi?fhtl In conclusion, the two-dimensional damped Kuramoto-
and additiongll hiaher orders (E)fthe wave numbek (321dg ySivashinsky equation reproduces quite successfully the for-
3K) emerge inyiheglate time regineolid line). This indi- mation of hexagonally ordered dot patterns on semiconduc-
9 g ' tor surfaces during ion erosion at normal incidence,

cates that the shape of the structures is nonsinusoidal, L|rt:\cluding the formation of the same types of lattice defects.

?;%rggZﬁggcﬂ;érirr?;?eﬁev;ziiﬂéfe?hén dg]rﬁ ?ri(peg?::;?e?f]nese patterns occur particularly pronounced on GaSh and
ping p InP surfaces, and appear as a solution of the DKS equation in

« there is no predominant wave number visible any more in .
the late time regimédashed ling The calculated PSD spec- a narrow range of the damping parameter close 4a0.25.

tra are again in excellent agreement with the experimental The authors acknowledge valuable discussions with R.
data obtained by AFM measurements of GaSb surfaces ioBuerno, K.-H. Heinig, T. Mlier, and O. Winkler. This work
eroded by AF ions of 500 eV energy for 1200 [see Fig. was performed with financial support from the Deutsche For-
3(b)]. schungsgemeinschaft under Contract No. Ku 540/41.
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FIG. 3. Radial PSD’s for the considered patterns of Fig(a2:
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