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Extended states in disordered systems: Role of off-diagonal correlations
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We study one-dimensional systems with random diagonal disorder but off-diagonal short-range correlations
imposed by structural constrains. We find that these correlations generate effective conduction channels for
finite systems. At a certain golden correlation condition for the hopping amplitudes, we find an extended state
for an infinite system. Our model has important implications to charge transport in DNA molecules, and a
possible set of experiments in semiconductor superlattices is proposed to verify our most interesting theoretical
predictions.
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Electronic states in disordered system have been an a
research topic for many years. Ever since the pionee
work of Anderson,1 it has been generally believed that di
order in low-dimensional systems leads to unequivocal lo
ization of electrons. However, the situation changes if ad
tional structure or correlations are imposed on the statist
properties of the randomness. It was found, for example,
a few special extended states in a one-dimensional~1D!
‘‘random dimer’’ model exist due to symmetries of the res
nant scattering in the structure.2 Furthermore, the existenc
of a mobility edge separating extended and localized st
was confirmed for 1D random systems with weak long-ran
correlateddisorder.3

Most studies have concentrated on diagonal disor
where the local energies in a tight-binding description
assigned randomly, although some studies have explored
role of off-diagonal disorder, where the intersite hoppi
constants are chosen from a random distribution. The rol
correlated diagonal and off-diagonal disorder has recei
attention only recently, both theoretically4,5 and experi-
mentally.6 Moreover, in many systems, local correlations a
pear naturally due to the built-in chemical structure. In t
Brief Report, we investigate the effects of structural co
straints on the correlated diagonal and off-diagonal disor
and their impact on charge transport. We find that the lo
correlations generate extended states, which therefore
hance electronic transport even in the macroscopic limit.

Our studies have been motivated in part by questions
the nature of charge transport in DNA, a subject which h
arisen much interest recently, due to its fundamental role
biological processes and in possible novel device designs7 A
DNA molecular system can be viewed as a 1D chain co
posed of base pairs AT and CG in a typically random ord
The on-site energies for pairs of bases AT and CG are dif
ent, corresponding to the different ionization potentials.8 The
role of on-site energy correlations in different DNA s
quences was discussed recently in the literature,9 where a
constant hopping amplitude was considered. However,
hopping amplitude~via p-orbital overlap! in DNA molecules
depends on whether the electron~or hole! hops between AT/
AT, AT/CG, or CG/CG base pairs.10 The short-range correla
tion of the hopping amplitudes due to the built-in chemic
structure is shown to affect the transport properties and
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fectively open conduction channels for electrons in DN
molecules—even in those with fully random sequences, s
as l-phage DNA. The transport properties are shown to
actually determined by a subtle competition between the
order in base pair arrangement~on-site disorder! and hop-
ping ~‘‘off-diagonal’’ ! correlations.

The minimal model to study random systems with diag
nal and off-diagonal disorder is an effective 1D tight-bindi
model described by the Hamiltonian

H5(
j

@« j cj
†cj1t j , j 11~cj

†cj 111cj 11
† cj !#, ~1!

where the on-site energies are chosen from the bivalued
tribution « j5«A and«B . Correspondingly, the hopping con
stants are given byt j , j 115tAA ~or tBB), if « j5« j 115«A ~or
«BB); while t j , j 115tAB , otherwise. This model is perhap
the simplest generalization of the Anderson model, which
the limit for tAA5tBB5tAB . Notice that in DNA, theA andB
labels refer to the two kinds of base pairs, AT and CG, wh
the model could be easily adapted to describe electro
states in other complex molecules~polymers! and/or semi-
conductor superlattices, as we will discuss below.11

When the concentration of one type of site is small, sayB,
the probability for two nearby sites to have the same on-
energy«B is smaller. In this case, the system tends to
‘‘repulsive binary alloy’’ model, in which one extended sta
exists.2 A simple calculation yields the transmission coef
cient for a system with one impurity with on-site energy«B ,

T1~E!5
~2tAB

2 sink!2

~2tAB
2 sink!21N1

2
, ~2!

where N15WtAA12(tAB
2 2tAA

2 )cosk, E52tAAcosk, and W
5«B2«A . One can see that for the state with energyE
5WtAA

2 /(tAA
2 2tAB

2 ), the transmission coefficient is unity
The statesnear this energy have large transmission coef
cient and long localization length, even in systems with m
B impurities. In fact, these states have an important con
bution to transport. Figure 1 shows the transmission coe
cient for various concentration ofB impurities with energy
«B . The transmission is obtained by a transfer-matrix cal
lation for 1000 sites, and averaged over 300 different c
©2004 The American Physical Society03-1
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figurations. For the purpose of comparison, we also show
transmission coefficient for the Anderson model~wheretAA
5tBB5tAB5t) with the same degree of on-site disorder. W
see that inall cases, the local correlation built-in through th
t values leads tomuch largertransmission coefficient, com
pared with those in the Anderson model. When the conc
tration is small, there is in fact a regime of high transmiss
(;1), with energy centered around that given by Eq.~2!.

With increasingB concentration, the electron has a high
chance to scatter from dimer and trimer impurities. Fo

FIG. 1. ~a! Transmission coefficients vs energy;W5«B2«A

51. Curve I~empty symbols! is typical for system with local cor-
relation; hopping constants heretAA51, tBB51.73, tAB5(tAA

1tBB)/251.36. Curve II ~solid line near zero! is for Anderson
limit, with all hopping constants equal (51). Curve III ~solid sym-
bols! is for system with ‘‘golden correlation,’’tAB5tG[AtAAtBB

51.316, with unit transmission atE.21.9. Concentration of«B

site is 0.1 in all three curves.~b! Same as in~a!, but with concen-
tration of «B at 0.5. Inset in~a!: Localization lengthl (E) vs (E
2Ec) for system with golden correlation. Slope of fitted line is
Concentration of«B site is 0.5. Inset in~b!: Localization length at
critical energyl c5 l (Ec) vs D5(utAB2tGu), wheretG5AtAAtBB is
the golden condition. Concentration of« is 0.5.
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single dimer impurity, a straightforward but cumbersome c
culation yields the transmission

T2~E!5
~2tAAtBBtAB

2 sink!2

~2tAAtBBtAB
2 sink!21N2

2
, ~3!

where N25(tAA
2 2tAB

2 )(W22tAAcosk)21tAB
4 2tAA

2 tBB
2 1tAB

2 W2

22WtAAtAB
2 cosk. In general, there are more energy valu

satisfyingT2(E)51, but they are different from those sati
fying T1(E)51, in general. Consequently, although sho
range off-diagonal correlation leads to extended states
finite systems~localization lengthl c larger than the system
sizeL), these states are not extended states in the therm
namic limit, L→`.

Figure 1 also illustrates that for special local correlatio
there is an extended state even for infinite systems. One
easily verify that whentAB5tG[AtAAtBB ~we call this the
‘‘golden correlation’’ in off-diagonal parameters!, the condi-
tion T1(E)5T2(E)51 can be satisfied. This implies that fo
the peculiar golden correlationtG , single and dimer impuri-
ties are essentially transparent at this energy. The ques
remains how general is this result, that is, how about trim
or more general impurities? Instead of calculatingTm(E) for
m impurities, we prove the existence of an extended state
explicit construction. It is not difficult to check that under th
condition tAB5tG , the stateaneikn, with an51 for «n

5«A andan5AtAA /tBB for «n5«B , is indeed an extended
state with energy E5Ec5«A12tAAcosk5«B12tBBcosk.
The physical picture for this state is then that the elect
propagates on islandA or B in the plane wave form, while
the golden condition ensures perfect transition from islanA
to island B, and vice versa. One can say that this perf
transmission arises from the cancellation of backscatte
waves produced by the subtle tuning of off-diagonal corre
tions. We find a state with unit transmission coefficient
that shown by curve III in Fig. 1~a!, even for high concen-
tration of impurities, although this ‘‘resonance’’ become
sharper for high impurity concentrations@see Fig. 1~b!#. This
is an example of an extended state in the thermodyna
limit in a random 1D system with short-range off-diagon
correlations~but no correlation in on-site energies!. Notice
also thatT(Ec)51 even for a system with 50% disorder, a
shown in Fig. 1~b!.

Under the golden correlation conditiontAB5tG , the ex-
tended state satisfies 2cosk5(«B2«A)/(tAA2tBB), which can
be met only whenu«B2«Au,2utAA2tBBu, resulting in an
interesting effect. Usually in the presence of only diagona
off-diagonal disorder, the larger the disorder is, the poore
the transport. The situation is quite different for correlat
diagonal and off-diagonal disorder. To obtain an extend
state in the presence of the diagonal differenceW5«B
2«A , the difference betweentAA and tBB has to be large
enough, i.e., one needs the correlated off-diagonal disorde
be large. This is contrary to expectations.

Notice also that for fixedtAA , andtBB , there is a critical
on-site differenceW52utAA2tBBu52D. From the time evo-
lution of a particle initially placed at a randomly chosen s
~not show here!, we find that whenW,2D, the mean-square
displacement in timet is ^x2&;t3/2, and then it is in a su-
3-2
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perdiffusive phase. In contrast, whenW52D, the system is
in a diffusive phase,̂ x2&;t; and for W.2D, the mean-
square displacement is bounded. This transition is simila
that in the random dimer model~RDM!, although with dif-
ferent characteristics.2 In RDM, the transition occurs atW
52tAA ~all t the same!. In our case, the condition is related
the difference between hopping constants, and not the h
ping constants themselves. It is interesting that fortAA5tBB
,W/2, there are extended states in RDM, but no exten
state in our model.

We study the localization lengthl (E) for states near the
critical energyEc in Fig. 1~a! inset. We find thatl (E)}(E
2Ec)

22 for states nearEc . The number of extended state
for a system of lengthL @i.e., l (E).L] is related todk}E
2Ec}L21/2, where nearEc , E5Ec1Adk. The number of
extended states is thendk/(1/L)5L1/2, a sizable number
just as in the RDM.12

The long-time behavior of the system is determined b
critical exponent. One can show the relation between
exponents u and g, defined by ^x2&;tu and l (E)
;uE2Ecu2g. For short times, the electron has ballistic b
havior, since it has not sampled yet the disorder potentia
that ^x2&;(vt)2. For long time, however,̂x2&; l 2(E), for
an electron with energyE. We can then write the mean
square displacement aŝx2&5*dEr(E)(vt)2f „vt/ l (E)…,
wherer(E) is the density of states, and we surmise the sc
ing function f (x)→1, asx→0, and f (x)→1/x2, asx→`.
From this, one obtainŝx2&;t221/g, for long times, so that
u5221/g. Wheng52, as in Fig. 1~a! ~inset!, u5 3

2 ~super-
diffusive regime!; while wheng51,u51 ~diffusive!. There
is perfect agreement with our numerical calculations.

It is natural to expect that in many systems there e
correlations between diagonal and off-diagonal disorde

FIG. 2. Transmission for SL with 100 randomly distribute
quantum wells of two types, width 2.6~type a well! and 2.9 nm
~type b). Barriers between samea ~or b) wells have 3.6 nm~2.4
nm! width. Other barrier width is 3.0 nm~curveA, ; golden con-
dition!, 2.0 nm~curveB), and 3.8 nm curve (C). All barriers have
height 0.3 eV.T(E) averaged over 600 different disorder config
rations. Concentration ofb wells is 0.5.
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parameters. However the golden correlation condition is
necessarily satisfied, and it is important to see how the tra
port properties change when a system deviates from this.
inset in Fig. 1~b! shows thatl (Ec)}(tAB2tG)22, so that to
obtain extended states, we needutAB2tGu,L21/2. As long as
this condition is met, effective conduction channels a
opened by the off-diagonal correlations in the disordered s
tem.

Our predictions could be verified experimentally in sy
tems with access to varying degree of disorder and struct
correlation, such as model semiconductor superlatti
~SL’s!.13 Consider a SL with quantum wells of two differen
widthsdA anddB , distributed randomly in the structure. Th
barriers between wells have the same heightU ~given by the
material composition! and widthbA ~or bB) if the barrier is
between two alike wells of widthdA ~or dB), and otherwise
have widthsbC . An estimate of the hopping constant b
tween two quantum wells with widthdL anddR , separated
by a barrier of width b and height U, is t
5(p2\2/ms)AdLdRexp(2sb), wheres5A2mU/\. By tun-
ing parameters, the golden condition can be attained. Fig
2 shows the transmission for different systems calcula
from a Kronig-Penney model of the SL. CurveA is for a
system satisfying the golden condition, as estimated from
expression above, while curvesB and C are results away
from the condition. The discussion above for the tigh
binding model suggests that transport would indeed be be
for system in curveA, even as the barrier between differe
quantum wells~curveB) is thinner. We emphasize that Fig
2 is obtained from a Kronig-Penney model of the structu
so that hopping amplitudes go far beyond nearest neighb
and the golden condition is likely much more involved th
in the tight-binding model. The golden condition for curveA
was not optimized, but just estimated from the relatio
above, and the difference between these curves
remarkable.14

As discussed before, our studies have direct applicatio
models of transport in DNA in the literature.15,16 For a typi-

FIG. 3. I -V curves for a random base pair sequence~i.e., ran-
dom on-site energies!. CurveA is for model ofl-DNA with realis-
tic local correlation in the hopping amplitudes. CurveB is for ran-
dom diagonal Anderson model with hopping amplitudes set eq
Size of systems is 562; temperature in Fermi broadening is 300
3-3
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cal DNA molecule the base pair sequence may be essen
random, such as inl-DNA. However, the chemical structur
determines the local correlation between on-site energies
hopping constant via thep-orbital overlap. In order to ex-
plore how the local correlation changes transport, we co
pare theI -V curves of different systems, obtained using t
Landauer-Bu¨ttiker formalism,17 I 5(2e/h)*dET(E)@ f L(E)
2 f R(E)#, where f L/R(E)5$exp@E2mL/R/kBT#11%21 is the
Fermi function. We choosemL5EF1(12k)eV and mR

5EF2keV, whereEF is the equilibrium Fermi energy,V is
the applied voltage, andk is a parameter describing the po
sible asymmetry of contact to leads, chosen here ak
51/3.18,19We assume that the DNA is attached to ideal lea
described by a metal with bandwidth 1.2 eV. The hopp
constant between leads and DNA chain is chosen to
;tAB/10.0.01 eV, reflecting a relatively poor contact. W
use two different sets of parameters:tAA520.0695 eV,
tBB520.1409 eV, andtAB5(tAA1tBB)/2, curveA in Fig. 3,
describe a realistic molecule, as the values are obtained
microscopic calculations;10 tAA5tBB5tAB520.1403 eV,
curveB, simulates an uncorrelated system, i.e., the Ander
limit.
a

nle

g,
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We can see from Fig. 3 that the current in the system w
local correlation~curveA) is overall much larger than in the
system without correlation, even though the hopping c
stant is larger inB. There is in fact no conductance over th
entire bias range for curveB, with no correlation in the hop-
ping constants. The message of these results is that eve
DNA with random sequences, such asl-DNA, ‘‘good’’
transport is possible due to the effective conduction chan
opened by structural correlations. Notice thattAB in curveA
does not satisfy the golden condition (;20.099 eV) by
about 4%, and yet, there is significant current amplitude
finite biases. In contrast to the conducting states in polym
which arise from the correlation in local energies, the co
ducting states here have to do with correlation in hopp
amplitudes. It is clear that the backbone may change
local correlations. We may conclude that changes in lo
correlation will lead to changes in theI -V features, which
may in fact be an ingredient in recent experiments, especi
if chemical changes affect the molecule structure.20

We acknowledge support from DOE Grant No. DE-FG0
91ER45334, NSF NIRT Grant No. 0103034, and the CM
Program, and discussions with the NIRT group at Oh
University.
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