Optical study of the metal-insulator transition in CuIr_2S_4 crystals

N. L. Wang, ^{1,*} G. H. Cao, ² P. Zheng, ¹ G. Li, ¹ Z. Fang, ¹ T. Xiang, ³ H. Kitazawa, ⁴ and T. Matsumoto⁴

1 *Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080,*

People's Republic of China

2 *Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China*

3 *Institute of Theoretical Physics and Interdisciplinary Center of Theoretical Studies, Chinese Academy of Sciences, Beijing 100080,*

People's Republic of China

4 *National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan*

(Received 20 January 2004; published 22 April 2004)

We present measurements of the optical spectra on single crystals of spinel-type compound CuIr_2S_4 . This material undergoes a sharp metal-insulator transition at 230 K. Upon entering the insulating state, the optical conductivity shows an abrupt spectral weight transfer and an optical excitation gap opens. In the metallic phase, Drude components in low frequencies and an interband transition peak at \sim 2 eV are observed. In the insulating phase, a peak emerges around 0.5 eV. This peak is attributed to the transition of electrons from the occupied Ir³⁺ t_{2g} state to upper Ir⁴⁺ t_{2g} subband resulting from the dimerization of Ir⁴⁺ ions in association with the simultaneous formations of $Ir³⁺$ and $Ir⁴⁺$ octamers as recently revealed by the x-ray-diffractionexperiment. Our experiments indicate that the band structure is reconstructed in the insulating phase due to the sudden structural transition.

DOI: 10.1103/PhysRevB.69.153104 PACS number(s): 72.80.Ga, 78.20.Ci, 71.30.+h, 78.30.-j

Spinel type compound CuIr_2S_4 has recently attracted much attention for its intriguing first-order metal-insulator transition (MIT) at $T_{MI} \sim 230$ K.^{1–15} The transition is characterized by a sudden increase of the electrical resistivity, a disappearance of Pauli paramagnetism, a hysteresis loop in resistivity ρ and magnetic susceptibility χ , and a lowering of structure symmetry. Above the MIT temperature, CuIr_2S_4 has a normal cubic spinel structure, in which the Cu ions (*A* sites) are tetrahedrally coordinated and the Ir ions $(B \text{ sites})$ are octahedrally coordinated by sulfur ions. Upon entering the low-temperature insulating phase, a structural deformation occurs, lowering the lattice symmetry to triclinic.¹¹

The structure and the MIT in CuIr₂S₄ is reminiscent of a classic spinel compound—the magnetite $Fe₃O₄$, which also exhibits an abrupt MIT at about 120 K, called the Verway transition.¹⁶ The Fe₃O₄ undergoes a ferrimagnetic transition at a much higher temperature (858 K) . Below this temperature, the magnetic moments of the Fe ions are ferrimagnetically ordered, but the *A* sites $[Fe^{3+} (t_{2g}^{3}e_{g}^{2}, s=5/2)]$ and *B* sites $[Fe^{2+} (t_{2g}^4 e_g^2, s=2)$ and $Fe^{3+} (s=5/2)$] have opposite spin directions. The Verway transition has been interpreted as a charge-ordering transition of Fe^{2+} and Fe^{3+} on the *B* sites in alternate (001) planes.¹⁷

Naturally, it is considered that the MIT in CuIr₂S₄ is similar to the Verway transition in $Fe₃O₄$. Since the bandstructure calculation and the photoemission experiments revealed that the valence state of Cu is $Cu^{1+}, ^{3,4}$ it is believed that the ionic configuration of $Cu^{1+}Ir^{3+}Ir^{4+}S_4^{2-}$ is realized in the low-*T* insulating phase, and the ordering of Ir^{3+} and Ir^{4+} ions is a plausible origin of the MIT.^{4,10} Indeed, recent high-resolution synchrotron x-ray powder diffraction experiment revealed a peculiar form of charge ordering which consists of alternating arrangement of isomorphic octamers or clusters of $Ir_8^{3+}S_{24}$ and $Ir_8^{4+}S_{24}$ (as isovalent bi-capped hexagonal rings) together with spin dimerizations between Ir^{4+}

ions.¹¹ The charge-ordering pattern is much more complicated than $Fe₃O₄$ as well as any other previously known charge-ordered structures which are typically based on stripes, slabs, or chequerboard patterns. The simultaneous charge-ordering and spin-dimerization transition is a rare phenomenon in three-dimensional compounds.¹¹ Therefore, it is very interesting to further explore how the electronic structures change in the MIT. This work presents a detailed infrared spectroscopy study on single-crystal samples. It provides important information about low-lying excitations across the transition.

Single crystals of CuIr_2S_4 were grown from the bismuth solution.¹⁸ First, single phase CuIr₂S₄ powders were synthesized by solid-state reaction in sealed quartz tube using high purity (better than 4N) powders of elements Cu, Ir, and S as starting materials. Then, CuIr₂S₄ and metal bismuth $(6N)$ in the molar ratio of 1:100 were sealed in an evacuated quartz ampoule. The ampoule was heated to 1273 K, and was for 2 days. Crystals of CuIr₂S₄ were grown by cooling at 4 K/h down to 773 K. Typically, the crystals have triangular shape of surface with edge length about 0.4 mm. The near-normal incidence reflectance spectra were measured by using a Bruker 66v/S spectrometer in the frequency range from 100 cm^{-1} to 28 000 cm⁻¹. The sample was mounted on an optically black cone in a cold-finger flow cryostat. An *in situ* overcoating technique was employed for reflectance measurement,¹⁹ which enables us to get reliable data on small-size samples. The spectra above 500 cm^{-1} was collected on one single crystal, while the data in the far-infrared regime was obtained on mosaic crystal samples. The optical conductivity spectra were obtained from a Kramers-Kronig transformation of $R(\omega)$. We use Hagen-Rubens' relation for the low-frequency extrapolation, and a constant extrapolation to 80 000 cm⁻¹ followed by a well-known function of ω^{-4} in the higher-energy side.

FIG. 1. (Color online) The optical conductivity spectrum of CuIr_2S_4 at 300 K. Dashed curve is a fit to the data using two Drudes and one Lorentz components. The inset shows *T* dependence of dc resistivity as the sample was cooled down and warmed up.

Figure 1 shows the room-*T* optical conductivity below $11\,000\,$ cm⁻¹. The dc resistivity as a function of temperature is shown in the inset. There is a sharp metal-insulator transition at 230 K. The optical spectrum shows an usual metallic response with a conductivity minimum around 9000 cm^{-1} . The spectrum could be well fitted with two Drude components and a Lorentz oscillator below the frequency of minimum conductivity. The two Drude components, which result from bands crossing the Fermi energy, have plasma frequencies and scattering rates of ω_{p1} \approx 7000 cm⁻¹, $\Gamma_1 \approx$ 250 cm⁻¹, and $\omega_{p2} \approx$ 20000 cm⁻¹, Γ_2 \approx 2400 cm⁻¹, respectively. The Lorentz part has a central frequency of 4000 cm^{-1} (0.5 eV).

Figure 2 shows the reflectance and optical conductivity spectra at different temperatures over broad frequencies. The spectra show little change as temperature decreases from 300 K to 232 K, except in the very low-frequency region. However, upon entering the insulating phase, dramatic change occurs in optical spectra. The low- ω spectral weight below 0.5 eV (4000 cm^{-1}) is severely suppressed, resulting in the opening of an optical gap. The missing spectral weight is transferred to higher energies, forming a pronounced peak (α) at 0.5 eV. In addition, another peak (labeled as β) exists around 2 eV (16000 cm^{-1}). This peak is also present in the metallic state in high temperatures at slightly higher frequency. The strong suppression of the low-energy spectral weight and the two-peaks (α and β) structure are the most pronounced features below T_{MI} .

Understanding the above spectral change, which is the main task of this work, is crucial for the understanding of the change of electronic structures above and below T_{MI} . Because Cu at *A* site is in the Cu¹⁺ valence state $(3d^{10})$,⁴ the Cu 3*d* band is fully filled. The band-structure calculations indicate that the Cu 3*d* band locates at about 3 eV below E_F .³ Thus the MIT and the accompanied change is mainly due to the variation of the electronic states of 5*d* transitional metal Ir. Due to the crystal field and the hybridization between Ir 5*d* and S 3*p* orbitals, the splitting of the e_g and t_{2g}

FIG. 2. (Color online) Temperature dependence of the reflectivity spectra (up panel) and optical conductivity spectra (bottom panel) for a CuIr₂S₄ single crystal with T_{MI} =230 K. Abrupt spectral change occurs at T_{MI} .

bands of Ir 5*d* electrons is fairly large.²⁰ As a result, a lowspin state of Ir 5*d* electrons is favored. The Ir *eg* band is empty and the states near Fermi level are mainly contributed by the Ir t_{2g} bands, but hybridized with S 3*p* orbitals.

Let us begin our discussion with the metallic phase in which CuIr_2S_4 has normal cubic spinel structure. There is only one equivalent position for Ir in the structure with a valence state of $Ir^{+3.5}$ and the Ir 5*d* band is partially filled. Band-structure calculation indicates that two bands arising from the hybridization of Ir $5d\epsilon$ (i.e., t_{2g}) and S 3*p* cross the Fermi energy.³ These two bands lead to the Drude responses in low frequencies. In this case, the electronic state could be understood from the schematic picture of Fig. $3(a)$.

Upon entering the insulating state, a first-order structural phase transition occurs and the lattice symmetry becomes triclinic.¹¹ Most remarkably, CuIr₂S₄ undergoes a complex charge-ordering transition. A group of eight Ir^{3+} or Ir^{4+} octahedra forms a cluster called octamer, which can be viewed as planar hexagonal rings with two additional octahedra attached to the opposite sides. The Ir ions in the $Ir⁴⁺$ octamers exhibit drastic alternations of long and short Ir-Ir distances, whereas the Ir-Ir distance in Ir^{3+} octamers are uniform.¹¹ These structural features reveal important clues for the understanding of the low-*T* optical spectra. Because of the lowspin state of Ir ions, Ir^{3+} has fully filled t_{2g} bands and completely empty e_g band. Therefore, the $\int_0^{s} f^{3+}$ (spin $s=0$) octamers are insulating. The Ir⁴⁺ has $t_{2g}^5 e_g^0$ configuration (spin $S=1/2$) and one of the t_{2g} orbitals is half filled. In principle, a material with a half filled band should be metallic. However, the dimerization of Ir^{4+} ions splits this band into two subbands. The lower subband is fully occupied while the upper subband is empty [Fig. 3(b)]. Since the α

FIG. 3. (Color online) Schematic diagrams of the electronic states above and below the MIT temperature. The enclosed areas above and below the horizontal lines represent the spin-up and spindown states. (a) Above T_{MI} , Ir^{+3.5} has partially filled t_{2g} bands. (b) Below T_{MI} , the structure contains only Ir^{+3} and Ir^{+4} octamers. Ir³⁺ has fully filled t_{2g} band and completely empty e_g band. The Ir⁴⁺ should have a partially filled band in one of t_{2g} orbitals. However, the dimerization of Ir^{4+} makes the band split into two subbands.

peak appears only in the insulating phase, it is reasonable to attribute the α peak to the transition of electrons from the occupied Ir³⁺ t_{2g} or lower Ir⁴⁺ t_{2g} to upper Ir⁴⁺ t_{2g} subband. Since the transition of electrons from Ir^{4+} site to Ir^{4+} site actually requires to overcome additional on-site Coulomb repulsion energy, it is plausible that the lowest excitation is from Ir³⁺ t_{2g} state to upper Ir⁴⁺ t_{2g} subband. This is equivalent to say that the α peak is originated from the interoctamer hoppings. The β peak comes from the transition of electrons from the occupied Ir t_{2g} to the empty Ir e_g bands. Since the unoccupied Ir *eg* bands exist at temperature higher than the MIT, the β component is observable even in the metallic phase. This is the reason why the temperature dependence of the β peak is different from that of the α one. The interband transition from Cu 3*d* to other unoccupied state should appear at higher energies.

The optical data and the analysis provide a clear picture about the change of electronic structures above and below the MIT temperature. The high-*T* metallic state is due to the band conduction of hybridized Ir t_{2g} and S $3p$ electrons. In the insulating state, the formation of the Ir^{3+} and Ir^{4+} octamers results in two different types of insulating clusters. Ir³⁺ octamers have fully occupied Ir t_{2g} bands, whereas Ir⁴⁺ octamers produce two splitting subbands because of the Ir⁴⁺-Ir⁴⁺ dimerization. Furthermore, the dimerized Ir⁴⁺ ions form a spin singlet. It suppresses the Pauli paramagnetism of CuIr_2S_4 and leads to the diamagnetic nature of the insulating state.¹⁰

The above discussion on the evolution of the electronic states is consistent with a recent S, K, and Ir L_3 x-rayabsorption study on CuIr₂S₄ by Croft *et al.*¹⁵ where similar redistribution of Ir 5*d* electronic states across the MIT has been proposed. Apparently, the MIT of CuIr_2S_4 is different to the Verway transition in $Fe₃O₄$. $Fe₃O₄$ contains relatively

FIG. 4. (Color online) The temperature dependence of the optical conductivity in an expanded scale at low frequencies. A thin straight line is extrapolation of the onset of the peak for the estimate of the magnitude of the optical gap.

narrow 3*d* band and the charge ordering is most likely caused by the competition between the bandwidth and strong intersite Coulomb repulsion.^{17,21} However, CuIr₂S₄ is expected to have a wide 5*d* band and weaker Coulomb repulsion. The MIT in CuIr₂S₄ is due to the reconstruction of Ir 5*d* bands associated with the structural change.

Our result shows unambiguously that the MIT in CuIr₂S₄ is directly correlated with the structural instability. It seems that this structural instability is unique in the CuIr₂S₄ family. Any substitution to A sites (e.g., Zn for Cu) (Refs. 10 and 14) or *B* sites (e.g., Rh for Ir) (Ref. 6) or *S* sites (e.g., Se for *S*) $(Ref. 5)$ will suppress the structural deformation and drive the compound into metallic or superconducting in low temperatures. The strong electron-phonon coupling is the most probable mechanism responsible for the structural instability. Further theoretical and experimental efforts to the understanding of this mechanism are desired.

Figure 4 shows the low- ω conductivity spectra in an expanded scale. Below the MIT temperature, the optical conductivity increases quickly above 1000 cm^{-1} . A rough estimation of the optical gap could be obtained by extrapolating the linear increasing part to the base line of $\sigma(\omega)=0$. This gives the value of the optical gap $2\Delta \sim 1200$ cm(0.15 eV). The gap magnitude (Δ) is close to the activated gap values estimated from several dc resistivity measurements.^{1,2} Matsuno *et al.* performed photoemission measurements on CuIr_2S_4 , but assigned a much smaller gap amplitude of \sim 20 meV in the insulating phase.⁴ However, by looking at their spectral curves at 250 K and 30 K, we found that the spectral edge actually shifts about 70–80 meV away from the Fermi level, and seemed to be consistent with our experiment. Additionally, we found that the energy gap changes very little as the temperature increases from 10 K to 228 K. The sudden opening of the energy gap below MIT is associated with the structural transition, and is a characteristic feature of the first-order structural phase transition.

To conclude, optical conductivity spectra have been investigated for single crystals of $CuIr₂S₄$. The metallic re-

sponse at high temperature is due to the band conduction of Ir t_{2g} electrons, which are hybridized with S $3p$ electrons. The MIT in CuIr₂S₄ is caused by the reconstruction of Ir 5*d* bands associated with the structural change. The formations of the Ir³⁺ and Ir⁴⁺ octamers below T_{MI} result in two different types of insulating clusters. We attribute the α peak to the transition of electrons from the occupied Ir³⁺ t_{2g} state to

*Electronic address: nlwang@aphy.iphy.ac.cn

- ¹ S. Nagata, T. Hagino, Y. Seki, and T. Bitoh, Physica B 194-196, 1077 (1994).
- 2 T. Furubayashi, T. Matsumoto, T. Hagino, and S. Nagata, J. Phys. Soc. Jpn. 63, 3333 (1994).
- 3 T. Oda, M. Shirai, N. Suzuki, and K. Motizuki, J. Phys.: Condens. Matter 7, 4433 (1995).
- ⁴ J. Matsuno, T. Mizokawa, A. Fujimori, D.A. Zatsepin, V.R. Galakhov, E.Z. Kurmaev, Y. Kato, and S. Nagata, Phys. Rev. B 55, R15979 (1997).
- ⁵S. Nagata, N. Matsumoto, Y. Kato, T. Furubayashi, T. Matsumoto, J.P. Sanchez, and P. Vulliet, Phys. Rev. B 58, 6844 (1998).
- 6N. Matsumoto, R. Endoh, S. Nagata, T. Furubayashi, and T. Matsumoto, Phys. Rev. B 60, 5258 (1999).
- $^7\mathrm{H}.$ Suzuki, T. Furubayashi, G. Cao, H. Kitazawa, A. Kamimura, K. Hirata, and T. Matsumoto, J. Phys. Soc. Jpn. 68, 2495 (1999).
- 8A.T. Burkov, T. Nakama, M. Hedo, K. Shintani, K. Yagasaki, N. Matsumoto, and S. Nagata, Phys. Rev. B 61, 10 049 (2000).
- 9^9 M. Hayashi, M. Nakayama, T. Nanba, T. Matsumoto, J. Tang, and S. Nagata, Physica B 281-282, 631 (2000).
- 10G. Cao, T. Furubayashi, H. Suzuki, H. Kitazawa, T. Matsumoto, and Y. Uwatoko, Phys. Rev. B 64, 214514 (2001).
- ¹¹ P.G. Radaelli, Y. Horibe, M.J. Gutmann, H. Ishibashi, C.H. Chen, R.M. Ibberson, Y. Koyama, Y.-S. Hor, V. Kiryukhin, and S.-W.

upper Ir⁴⁺ t_{2g} subband created by the spin dimerization in the Ir⁴⁺ octamers, and the β component to the transition from the occupied Ir t_{2g} to the empty Ir e_g bands.

This work was supported by National Science Foundation of China (Grants Nos. 10025418, 10104012, 10374109) and the Knowledge Innovation Project of Chinese Academy of Sciences.

Cheong, Nature (London) 416, 155 (2001).

- 12H. Ishibashi, T.Y. Koo, Y.S. Hor, A. Borissov, P.G. Radaelli, Y. Horibe, S.-W. Cheong, and V. Kiryukhin, Phys. Rev. B **66**, 144424 (2002).
- ¹³T. Furubayashi, H. Suzuki, T. Matsumoto, and S. Nagata, Solid State Commun. 126, 617 (2003).
- 14G. Cao, T. Naka, H. Kitazawa, M. Isobe, and T. Matsumoto, Phys. Lett. A 307, 166 (2003).
- 15M. Croft, W. Caliebe, H. Woo, T.A. Tyson, D. Sills, Y.S. Hor, S.-W. Cheong, V. Kiryukhin, and S.J. Oh, Phys. Rev. B **67**, $201102(R)$ (2003).
- ¹⁶E.J.W. Verwey, Nature (London) **144**, 327 (1939); E.J.W. Verwey and P.W. Haayman, Physica (Amsterdam) 8, 979 (1941).
- 17 Dispute about the exact ordering in Fe₃O₄ still exists. See, for example, a review article: M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. **70**, 1039 (1988), and a recent work: H. Seo, M. Ogata, and H. Fukuyama, Phys. Rev. B 65, 085107 (2002).
- 18 N. Matsumoto and S. Nagata, J. Cryst. Growth 210 , 772 (2000) .
- 19C.C. Homes, M. Reedyk, D.A. Crandles, and T. Timusk, Appl. Opt. 32, 2976 (1993).
- ²⁰ Actually the splitting increases as the transitional metals change from 3*d* to 5*d*. This was indicated in the band-structure calculations, see Ref. 3.
- 21 J.R. Cullen and E.R. Callen, Phys. Rev. B 7, 397 (1973).