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Broken symmetry in density-functional theory: Analysis and cure
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We present a detailed analysis of the broken-symmetry mean-field solutions using a four-electron rectangular
quantum dot as a model system. Comparisons of the density-functional theory predictions with the exact ones
show that the symmetry-breaking results from the single-configuration wave function used in the mean-field
approach. As a general cure we present a scheme that systematically incorporates several configurations into
the density-functional theory and restores the symmetry. This cure is easily applicable to any density-functional
approach.
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I. INTRODUCTION

The nanoscale semiconductor systems are technic
very promising for future components of microelectronic d
vices. From the theoretical point of view, quantum dot~QD!
systems are valuable source of novel quantum effects. M
of these result from the fact that the electron-electron in
action and external magnetic field have greatly enhanced
fects compared to atoms and molecules. This raises
challenges for the theoretical methods, and the validity
approximations in, e.g., mean-field approaches can be q
tioned. For this reason, QD systems serve as perfect
cases to develop the electronic structure methods, with
results still applicable to great variety of physical proble
where mean-field approaches have been used.

In earlier studies, Hartree-Fock and especially dens
functional theory~DFT! methods have shown to produce a
curate results for various QD systems, even with smallN.
However, in the context of solutions with a broken spin sy
metry, the validity of the mean-field approaches has b
actively discussed in the literature.2 The spin-density wave
~SDW! formation in QD’s has been compared to similar ph
nomena found in isotropic metals,4 organic linear-chain
compounds,5 atomic nuclei,6 and small fermion clusters.7 Ac-
cording to the Jahn-Teller theorem, any nonlinear molecu
system in a degenerate electronic state becomes more s
by removing the degeneracy and thus lowering the symm
and the total energy. A crucial difference between molecu
and QD systems is, however, that as the nuclei in molec
are free to move and relax, the QD potential isexternaland
fixed as it results from, e.g., metallic gates. Thus to lower
symmetry in QD, the spin densities must ‘‘relax’’ in an an
ferromagnetic fashion to a SDW solution. This is claimed
reveal the electron correlations inherent in the true gro
state.2

In this paper, we analyze symmetry breaking in a tw
dimensional rectangular QD1 using both DFT and exact di
agonalization ~ED!. We concentrate on the four-electro
case, as it is the first particle number showing the gen
features of electronic structure seen also for larger part
numbers, such as the transitions between the two spin s
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S50 and 1 and the SDW solution predicted by DFT. We fi
that SDW clearly reflects the limitations of basic DFT
describe systems that have more than one major config
tion in the ground-state wave function. There is a continuo
interest for developing DFT methods for these kinds of s
tems. The main difficulty for DFT is the fact that these sy
tems have ensemble–v-representable~E-VR! densities in
contrast to the more common pure-state–v-representable~P-
VR! densities.3 As an interesting feature we see a continuo
transition from an E-VR to a P-VR density as we deform o
QD. Finally, we present a simple modification of DFT that
able to describe the multiconfigurational nature of the grou
states.

II. THE MODEL AND THE METHODS

The generally used model Hamiltonian of anN-electron
QD system can be written as

H5(
i 51

N F2
\2

2m*
¹ i

21Vext~r i !G1(
i , j

N
e2

eur i2r j u
, ~1!

where we have used the effective-mass approximation to
scribe electrons moving in thexy plane, surrounded by back
ground material of GaAs with the effective electron ma
m* 50.067me and dielectric constante512.4. We use scaled
atomic units, and energies are thus given in H*
'11.86 meV and lengths inaB* '9.79 nm. The external con
finement in thexy plane is described by an infinite hard-wa
potential,

Vext~x,y!5H 0, 0<x<bL, 0<y<L

` elsewhere.
~2!

The deformation parameterb defines the ratio between th
side lengths of the rectangle. The area of the dot is fixed
be p2. The single-particle eigenstates are sine functions
both directions, labeled with two quantum numbers (nx ,ny),
and energiesEnx ,ny

5(nx
2/b1bny

2)/2. Figure 1 shows the

three lowest eigenstates and the most importantSz50 con-
figurations of the four-electron QD.
©2004 The American Physical Society01-1
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We solve the electronic structure of QD using ED a
DFT. In ED, the many-particle wave function is construct
as an expansion of the noninteracting eigenstates. The re
approach the exact ones as more terms are added to th
pansion. We use a basis of up to around 15,000 config
tions. The interaction matrix elements are calculated num
cally using Gaussian integration. In ED, all many-bo
quantum effects are taken into account in an exact fashion
DFT, these are incorporated in a mean-field fashion as
effective potential. In the DFT method used, we allow d
ferent spin densities for up and down electrons. This is n
essary forSÞ0, and needed also forS50 in order to find
broken-symmetry solutions. More details of the DFT meth
and the numerical implementation can be found from Ref
and references therein.

III. RESULTS

A. Energies and densities for four-electron dot

In Fig. 2 we present the DFT and ED energies of t
rectangular quantum dot as a function of the deformat
parameterb. For b close to unity, theS51 state is lower in
energy than theS50 state, in accordance with Hund’s rul
In the case of theS51 state, the DFT energies compare qu
well with those obtained by ED: the deviation between

FIG. 1. Left panel: The three lowest single-particle states
their quantum numbers (nx ,ny). Right: Electron occupations fo
the four importantSz50 configurationsCi .

FIG. 2. Energy of the four-electron dot as a function of the a
ratio b. The solid lines present ED energies, we use crosses fS
51 and diamonds forS50, correspondingly. The dashed lines a
DFT energies, pluses forS51, boxes for theS50 SDW solution,
and circles for the symmetricS50 energy.
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two remains nearly constant for all values ofb. Such a be-
havior is not seen in theS50 results, for which we show two
DFT energies: one with retained symmetry and another w
a broken one. The broken-symmetry solution has a nonz
total spin density, corresponding to a SDW solution, see F
3. The DFT calculation with the spin symmetry does n
converge for smallerb than those shown. This is due to th
degeneracy in the system. Convergence can be achieve
use of fractional occupations. Comparing the DFTS50 en-
ergies to the exact ones, one can see that, unlike for thS
51 case, the error in DFT is not constant. The energy of
symmetry-restricted state grows linearly towardsb→1
where the ED energy saturates. On the other hand, the S
state has an energy that overcompensates the error in
symmetry-restricted energy. The energy of the SDW stat
closer to the exact value than the energy of the prop
symmetry state. One should note that the errors in DFT
ergies nearly cancel at the ground-state transition point,
the DFT prediction for it is very accurate.

It is claimed that the SDW spin densities reflect the int
nal structure of the system.2 To analyze this claim, we have
plotted the SDW spin density of the DFT and ED condition
densities in Fig. 3. The conditional density is defined to
the electron density of the remaining three electrons as
coordinates of one of the electrons are fixed. In addition,
plot the ED spin density for the sum of theS50 andS51
states. One can see from the densities that there is a
antiferromagnetic order in the system. Densities for para
spins are localized in the opposite corners. Apart from t
fact, the similarity of the conditional densities to the SD
density of Fig. 3 is marginal. However, the similarity of th
SDW density to the unphysical mixture of the two-spin sta

d

s

FIG. 3. ~a! DFT spin density for the SDW solution. The densi
for the other spin type can be found through rotation by 90°~b! ED
spin density for the artificial sum ofS50 and S51 states.~c!
Conditional density from ED for the same spin type as the elect
fixed at ‘‘1. ’’ ~d! ED conditional density for opposite spins. Th
number of contour lines~drawn at uniform spacing! is fixed to 10 in
each figure to ease comparisons. The SDW density is more sim
to the unphysical ED density of~b! than the conditional densities.
1-2
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is very clear. The only difference is that the DFT density
slightly more localized. One should note that this similar
of the SDW solution to a mixture of two different spin stat
is pointed out by Hirose and Wingreen using ED in restric
basis.8

B. Analysis of the broken symmetry

To understand the electronic structure of the system an
analyze the problem associated with the SDW solution, i
enough to consider only the most important configuration
the ED solution, presented in Fig. 1. TheS51 state, the
ground state for smallb, has three differentSz states which
are degenerate in energy. The one withSz50 consists of
configurationsC3 andC4 with equal weights for all values o
b. The S50 state is the ground state for largeb, and it
consists of the configurationsC1 and C2. For b51, these
have equal weights, but for largerb, C2 moves higher in
energy and has a smaller weight in the exact wave funct
For b'1.2, C1 is clearly the dominating configuration. On
should note that at this value ofb, proper symmetry is re-
stored in the DFT solution. The most natural reason for
occurrence of the SDW solution is that the basic DFT
unable to take into account more than one important confi
ration for the construction of the Kohn-Sham orbitals and
resulting densities. In terms of the configurations, the D
spin densities atb51.2 correspond toC1. For smallerb,
however, the SDW spin densities can only be obtained b
linear combination of all four configurations. Forb51, this
linear combination is equal to the unphysical mixture of tw
different spin states used for Fig. 3~b! above.

It is possible to analyze the broken-symmetry solut
more generally by considering a mean-field-type sing
configuration wave function for two up- and two down-sp
electrons, occupying the orbitalsc0 and sin(us)c1
1cos(us)c2, whereus contains the variational freedom for
spin types. Expanding this wave function results in fou
configurations similar to$Ci% i 51

4 above. Assuming a furthe
similarity to the QD case forb51, one can write a Hamil-
tonian matrix of the four configurations as

H5S E1 d 0 0

d E1 0 0

0 0 E0 d

0 0 d E0

D , ~3!

where the configurations couple via the off-diagonal ma
elementd ~taken to be real!. The four exact energies ar
E06d and E16d. One can set without loss of generali
E050 andE151. The single-configuration energies have
interesting dependence ond, shown in Fig. 4. We present th
energy as a function of the two variational anglesu for cases
d50.2 and 0.8. For smalld, the second orbital for the
minimum-energy solution isc1 for one-spin type andc2 for
the other. For the cased50.8, the minima are found with
orbitalsc11c2 andc12c2. The resulting total wave func
tion of this case can easily be found to be a sum of the
exact wave functions~with energies2d and 12d), and the
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energy of the mean-field state is equal to the average of
two exact energies. Furthermore, if one assumes thatc1 has
a node on thex axis andc2 on the y one, one can find
densities similar to the SDW solution above. Now for t
QD, the value ofd is close to 0.8, and one can understa
the occurrence of the SDW solution from this more gene
argument.

The SDW solutions of Ref. 1 for larger particle numbe
can equally well be understood based on the four-elec
case and the general argument presented above. In the
where two Kohn-Sham orbitals are degenerate, we hav
S51 ground state. When the aspect ratiob is changed, the
energies split and one always finds a broken-symmetry S
solution. The similarity to the four-electron case follow
from the fact that in all these cases, there are two spa
orbitals of both spin type occupied by two electrons. T
spin density in the SDW structure can then be directly fou
from the two nearly degenerate states as (c11c2)22(c1
2c2)2. For example, the densities in Fig. 6 of Ref. 1 a
accurately reproduced by this formula using for the degen
ate states the noninteracting ones with quantum num
(1,3) and (3,2) for the left panel, or (3,2) and (4,1) for t
right panel.

IV. RECOVERING SYMMETRY

Based on the results presented above, it is clear that s
dard DFT is not able to describe accurately E-VR syste
The method of Ullrich and Kohn3 is one possible solution
but this method might have an underlying problem. Name
even in the case of an open shell and degeneracy, there
systems that still are P-VR, simply because the configu
tions do not necessarily mix even if they are degenerate.
such example is the parabolic QD, where the angular m
mentum is a good quantum number and single-particle st
can be chosen in such a fashion that only one major confi
ration is found. It is not straightforward to see how th
method of Ref. 3 assort the open-shell cases that are E
from those that are still P-VR.

As a possible solution we propose a scheme where fir
standard DFT calculation is performed for the system~with-

FIG. 4. Single-configuration energy as a function of the tw
angles in the wave function. The left panel corresponds tod50.2
and the right oned50.8. Black areas are the lowest in energy. T
proper symmetry of the wave function is found on the dashed
agonal line. The broken-symmetry energy minima ofd50.2 corre-
spond to a single configuration, and ford50.8 to SDW solutions.
1-3
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out symmetry breaking but with fractional occupations
the degenerate levels!. For our case withb51, the occupa-
tions of the two highest orbitalsc1 and c2 are 1/2 and the
DFT energy is 13.26. One can construct twoS5Sz50 DFT
configurations that have density equal to the DFT one
defining new orbitalsf65c16 ic2. Now the configurations
involve the core DFT orbitalc0, and eitherf1 or f2 . The
occupied orbitals in configurations are the same for both s
electrons, similarly toC1 andC2 in Fig. 1. The coupling of
these two DFT configurations can be approximated by
basic formula by Slater9 as

d5E f1* ~r1!f1* ~r2!
1

r 12
f2~r1!f2~r2!dr1dr2 . ~4!

Now the DFT energy gives the diagonal Hamiltonian mat
elements and thus incorporates partly correlations, and
above formula ford gives the off-diagonal Hamiltonian ma
trix elements that result from the multiconfigurational natu
of the ground state. The two-ensemble DFT energy can
found by diagonalizing the Hamiltonian matrix. For our e
ample, the absolute value ofd is found to be'0.14. Thus
the mixing of the two configurations lowers the DFT ener
to 13.12. This value is consistent with the ED one, if o
takes into account the difference in DFT and ED energies
the nondegenerate cases. One should note that for a para
QD, the absolute value ofd is zero~resulting from the rota-
tional symmetry!, meaning that the configurations~with dif-
ferent angular momentum! do not mix. This also shows tha
our scheme correctly predicts the system to be P-VR. A si
lar behavior can be found for the multiplets in open-sh
atoms.

The underlying idea of the scheme presented above is
DFT is able to efficiently describe correlation effects in
certain subspace of the full Hilbert space. This subspac
related to a one DFT configuration. In P-VR cases this
sufficient for the accurate description of the system, but
an E-VR case, there are two or more subspaces relevan
a,
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the ground state, and DFT is unable to couple these. T
coupling can be introduced, and one natural way is viad of
Eq. ~4! above.

The generalization of the scheme for cases without
exact degeneracy of the DFT orbitals is straightforward.
addition, the approximation made ford can be directly used
for cases with larger particle numbers, too. This is beca
the states that are occupied in both configurations do
appear in the formula ford. We believe that the presente
approach shows to be useful for many applications of D
especially for molecules, where the calculations of chem
reactions have observed similar problems of basic DF10

More details and comparisons with other ensemble DFT
proaches are left for forthcoming studies.

V. CONCLUSIONS

Concluding, we have shown that the use of a sing
configuration wave function in a mean-field theory can le
to an unphysical solution with a broken symmetry. In o
case of a four-electron rectangular QD, the energy of
SDW solution is reasonable, but the spin densities have o
a minor similarity with the exact total or conditional one
We also present an analysis with a more general Hamilton
matrix and we feel that our findings are relevant for a gr
variety of systems studied by the mean-field approach
DFT in particular. As a cure, we propose a scheme for inc
porating systematically several configurations into a me
field approach. The method presented avoids the necessi
symmetry breaking, and has a built-in criteria to determine
several configurations are actually needed or not.
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