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Theory of superconductivity in ferromagnetic superconductors with triplet pairing
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We point out that ferromagnetic superconductors with triplet pairing and strong spin-orbit coupling are even
in the simplest case at least two-band superconductors. The Gor’kov type formalism for such superconductors
is developed and the Ginzburg-Landau equations are derived. The dependence of the critical temperature on the
concentration of ordinary pointlike impurities is found. Its nonuniversality could serve as a qualitative measure
of the two-band character of ferromagnetic superconductors. The problem of upper critical field determination
is also discussed.
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[. INTRODUCTION suppression of critical temperature by pointlike nonmagnetic
impurities is found. Its characteristic nonuniversal behavior
The extension of the Bardeen-Cooper-Schrieffl@CS) can serve as a qualitative measure of the two-band character
theory of superconductivity to the case with two bands ofof ferromagnetic superconductors. The problem of upper
itinerant electrons was developed soon after the appearanéétical field determination is finally discussed.
of the BCS theory. This theory has been the subject of re-
newed interest following the recent discovery of MgBthe Il. FERROMAGNETIC SUPERCONDUCTORS
first superconducting material where the existence of two WITH TRIPLET PAIRING
energy gaps has been unambiguously demonstrated by ther-
modynamic and spectroscopic measurem@n@ertainly,
there are many other superconducting compounds where For a triplet superconductivity the order parameter is writ-
multiband effects are less pronounced and experimentally irten ad®
visible because the Cooper pairing occurs mostly in one band
of the itinerant electrons or holes. On the other hand, there iZ
a whole class of superconductors where two-berdmore
generally multiple band superconductivity is an inherent
property: the so called ferromagnetic superconductors where [~ Ix(R,k)+idy(R,k) d,(R,k)
the different bands with “spin-up” and “spin-down” elec- - d,(R,k) dy(R,K)+idy(R,k)
trons are always present. UGe* Zrzn,,®> URhGe (Ref. 6
are recent examples of such materials where the supercon- 1)
ducting states are expected to be spin triplet in order to avoigihereo= (o, ,a,,0,) are the Pauli matrices. Superconduct-
the large depairing influence of the exchange field due tong statesd” (R, k) with different critical temperatures in the
ferromagnetism. ferromagnetic crystals are classified in accordance with irre-
The symmetry classification of the superconducting stategucible co-representation of the magnetic groupM of
for itinerant ferromagnetic spin-triplet superconductors hagrystal’=® All the co-representations in ferromagnets with
been proposed recently by several autoPsAt the same  orthorombic and cubic symmetries are one dimensional.
time a general Gor’kov-type mathematical description ofHowever, they obey of multicomponent order parameters de-
multiband superconductivity in a ferromagnetic metal withtermined through the coordinate dependent pairing ampli-
triplet pairing has not been developed. The principal goal otudes: one per each band populated by electrons with spins
this paper is to present such a description for two-band feryp or down and one per each pair of the bands with the
romagnetic metal with anisotropic spectrum of quasiparticlespposite spingzero-spin projection stateOwing to the big
and general form of pairing interaction. Being useful for adifference in the Fermi momenta the pairing of electrons
concrete calculation with particular form of spectrum andfrom the different bands is negligibly small. Hence we shall
pairing interaction this approach allows to solve in generaheglect by pairing amplitude with zero spin projection, an-
terms several typical for superconductivity theory problemspther wordsA,=d,(R,k)=0 will be taken throughout the
such as critical temperature determination, derivation opaper. Also we limit ourself by the consideration of two-band
Ginzburg-Landau equations, suppression of superconductiferromagnetic superconductor with strong spin-orbital cou-
ity by impurities, upper critical field calculation. pling where two-component order parameter has a form
We begin with the general form of the order parameter
and the pairing interaction in a two-band itinerant ferromag- dF(R,k)=%[—(§<+iQ)AT(R,k)vL()A(—i)A/)Al(R,k)] 2)
net. Then the Gor’kov equations will be written that permits L
to calculate the spectrum of quasiparticles and the criticahs it was first pointed out in Ref. 11. Hexgy are the unit
temperature and to derive the system of coupled equationsectors of the spiror, more exactly, pseudospfh coordi-
for the order parameters from two bands. Then a law ofiate system pinned to the crystal axes.

A. Two-band superconductivity

A A
! O) = (d"(RK) )ioy

aﬁ(R!k):(AO Al

0163-1829/2004/694)/1445216)/$22.50 69 144521-1 ©2004 The American Physical Society



V. P. MINEEV AND T. CHAMPEL PHYSICAL REVIEW B 69, 144521 (2004

A(RK)=—m(R)f_(k), AL(R,k):ﬂz(R)h(k)-S ei(k)=—1_(k), ¢ (k)=f.(k). (10

It contains four different interaction terms corresponding to
Functionsf.. (k) = f,(k)=if (k) and the projections;(k), (i) a pairing between electrons with the same spin polariza-
i=x,y are odd functions of momentum directions of pairing tion (intraband interactionand (ii) the interband scattering
particles on the Fermi surface. The general forms of thesgrms with V; =V, describing the transitions of the pair
functions for the different corepresentations in ferromagnetiG|ectron from one sheet of the Fermi surface to the other
superconductors with orthorhombic and cubic symmetriesheet by reversing the pair spin orientation with the help of
are listed in the papérFor instance in the case #f; repre-  the spin-orbit coupling.
sentation in orthorombic crystal they are When the interband scattering is negligibie =V, ;
A oA A oA =0, the pairing of the electrons occurs first only in one of
fu(k) =kt +ikyuyt,  fy(k)=kguzt+ik,u,*,  (4)  the sheets of the Fermi surface as in fhephase offHe. In

A ) 5 1o 1o ) general the superconductivity in each band is not indepen-
whereu ?, ... are real functions d&;, ki, k7. The simple  gen,

consequence of this is that the only symmetry dictated nodes
in quasiparticle spectrum of superconductiAgstates in

’ A B. Gor’kov equations
orthorombic ferromagnets are the nodes lying on the north- a

ern and southern poles of the Fermi surfage k,=0. On We want to determine the Green'’s functions of ferromag-
the contrary for theB states they are on the line of equator Netic superconductors in the absence of external perturba-
k,=0. tions and impurity scattering. Even under these simple con-

The coordinate dependent complex order parameter anflitions, the system is not spatially uniform due to the
plitudes»;(R) and5,(R) have been discussed in the pdper inherent presence of#M. If we neglect 47M, the system
as equal that is not in general truth. However, even in genera$ spatially uniform. Then, we can write the Gor’kov equa-
case they are not completely independent: tions in the form

M (R)=| 7y (R)¥R,  po(R)==| 7o(R)| R (5) (1 0n— Eka) G (K, 0n) + A (K F (K, 00) =1

Thus, being different by their modulos they have the same (log+ &) FL(k, o) +AT(K)G, (K,,)=0 (12)
phase with an accuracy 7. The latter property guarantees n SkalT el % “ arment
the consistency of transformation of both parts of the ordewhere ¢, ,=¢,,— e and w,=#T(2n+1) are Matsubara

parameter under _the _time reversal. ~ frequencies. The equations for each band are only coupled
The BCS Hamiltonian in two-band ferromagnet with trip- through the order parameter given by the self-consistency
let pairing is condition
H= 2 (Klh,|k")ala. AfK)==T2 2 2 Vuukk)Fgk',0p). (12)
Kk’ nok B=T1.1

1 The su d G 's f i
t t percon uctor Green’s functions are
+5 E Vaﬁ(k!k,)a—k+q/2,aak+ q/2,aak’+q/2,,6

k,k',q,a,B | +§
w ka
X8 ks g2 (6) G (K, wp)=— wZ:T (13)
K,
where the band indices and B are (I,]) or (1,2), "
S A,(K)
ha_sa_/*LBgaHethz—’_U(r)_sF ’ (7) Fa(kiwn): T o (14)
wpt+ Ek’a

are one particle band energy operators, the functign(sin- \/_272 )

cluding the exchange splittingand g,—factor depend of v.vhere_zEk,a— fka+|.A“(k)| ' Obwously,.the supe.rconduc-

gauge invariant operator-iV +(e/c)A(r) and crystallo- tivity In ferromagnetp superc.ond'uctors IS 'non-u'nltary.

graphic directions. In the simplest case of isotropic bands t'!'he Gor kotv Zunatlons talt<|ng 'Pt]? (i(cj)n&dgzratlon the m?g-

without a spin-orbital couplingy ;= = 2Hex/Hexi. U(r) is Bgi:wctlil?:aoirpni)nurities ,caarl1n bixeeargi?y v:/iitteli1 naccg?gi?g gtgetLCe

an impurity potentialHe, is an external magnetic field, general procedure described in Ref. 10. We shall not over-
VXA=B=Hg,+47M (8) load the article by this and just write the self-consistency

& ' equations near the superconducting transition.
andM is the magnetic moment of the ferromagnet.

The pairing potential interaction is expanded over C. The order parameter equations near the superconducting

transition

Vap(KK")=—=Vappa(K) @i (K), €) . . .
b p P This system consists of two equations for the order pa-
where rameter components with spin polarizations up and down,
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~ 1 2vye

Ay(Rr)=—T dr'V, 4(r,r")Gg(r',of = —=In—=
«(R,T) nEB [V, (1, )Gu(r’, o) A(T) 2an§0 e 21)
xGﬁ(r’,—Z)ﬁ)exp(ir'D(R)) Iny=0,577 . .. is theEuler constante is an energy cutoff.

5 Thus, similar to Ref. 1 the critical temperature is given by
X{A (R, +3 408 R}, (15)

Teo=(2y€l -1/9), 22
and two equations for the impurity self-energy components co=(2yelmexp—1/) 22

whereg is defined by the maximum of zeros of determinant
Ea(aﬁlR):niuiJ era(r,:Ug)Ga(r,_Z)g) of the SyStem, Eq(ZO)’
~ =(g1+02)/24+ (91— ) /4+ : 23
X explirD (R){A (R + 3, (38 R, 9=(91+92)/2+ (91— 92)*/4+ 912921 (23

In particular atg»,9,1<<91,9, the critical temperature is
(16) ,
determined by
where w;=w,+Ssign w,/27,, and 7, is the quasiparticle

mean-free time in the different bands. These mean-free times g=maxg;,92)- (24)
are related in the Born approximation to the impurity con-
centrationn; through E. The critical temperature dependence on impurities
1 concentration
o7 = mniNo U2, (17 Triplet superconductivity is suppressed by nonmagnetic

23

impurities? Moreover, the law of suppression of supercon-
with u,—the amplitude of the impurity scattering and ductivity is described by the universal Abrikosov-Gor’kov
No.—the density of electronic states in each band. (AG) dependendé

The operator of covariant differentiation is

—Int=¥

! + X v ! 25

2 ) Y2 @9
valid for any unconventional superconducting state and ap-
plicable in particular to a concrete unconventional supercon-
ductor independently of the pressdfeHere ¥ is the di-
selp.r(i(‘)g_ép,a+Mng,aHexl]2)71' gamma function. The variable=T./Ty is the_ ratio _of the
(2) critical temperature of the superconductor with a given con-

(18 centration of impurities; to the critical temperature of the

The order parameter components in different bands are dé&léan superconductor, amd=n;/n;c=7./7 is the ratio of the

2e
D(R)=—i—+FA(R).

The normal metal electron Green functions are

G, (r,of)= J

termined in accordance with E¢B): impurity concentration in the superconductor to the critical
impurity concentration destroying superconductivity, or the
A(RN)==m(RYf_(r), A (Rn)=n(R)f(r). inverse ratio of the corresponding mean-free particle life-

(19) times. The critical mean-free time is given by= 7{/7TTco-
This dependence has been demonstratdough with some
D. The critical temperature T dispersion of the experimental poiptor the triplet super-
. i . conductor SfRuQ,.**

In the absence of impurities and an external field let us  paviations from the universality of the AG law can be
first find the critical temperaturé in the formally spatially 5,564 by the anisotropy of the scattering which takes place
uniform situation of negligible ferromagnetic momeNt  j, he presence of extended imperfections in the crystal.
=0. This case the anomalous impurity self-energy parig,ch a modification of the theory applied to YPias been
3 (wy,R)=0 and from Eq.(15) we obtain the system of considered previoush’ However, a complete experimental

equations investigation of the suppression of superconductivity by im-
purities in this unconventional superconductor, in particular
71=(9171F 91272) MTco), the study of the universality of the behavior, has not been
performed.
72= 92171+ 9272)MT o), (20 The nonuniversality of the suppression of superconductiv-

ity can also be caused by any inelastic scattering mechanism
by impurities with internal degrees of freedom of magnetic
é)é nonmagnetic origin. For the simplest discussion of this,

whereglzvm<|f_(k)|2N0T(I2)), the angular brackets mean

the averaging over the Fermi surfad}e}n(lz) is the angular
dependent density of electronic states at the Fermi surface

" e Ref. 16.
the band 7. Correspondinglyg:,=V; (|f.(k)|*No,(k)), Finally, universality is certainly not expected in multiband
921= V| ({|F_(K)[?No; (K)), 9=V | {|f+(K)[?Ng,(K)). The  superconductors. Theories for this case have been developed
function \(T) is with regard to the unconventional superconductivity in
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SrL,RUO, (p wave, two-band two-dimensional modgland  superconductivity is developed in one-band with only elec-
conventional superconductivity in MgRanisotropic scatter- ~trons with up spins paired and the down spin electrons leave
ing two-band modé?). normal(or vice versa

A simple modification of the universal AG law for the  Another specific feature of the ferromagnetic supercon-
suppression of the superconductivity by impurities in a two-ductors is that even in the absence of an external magnetic
band ferromagnetic superconductor is derived here. Our corfield the exchange fielti o~ Ee,/1g acting on the electron
sideration is limited to the simplest case of scattering byspins in a ferromagnet produces in addition an electromag-
ordinary pointlike impurities. Then, due to spin conservation,netic field 4mM ~4mugk? acting via the electronic charges
one can neglect interband quasiparticle scattering and taken the orbital motion of electrons, and suppressing the
into account only the intraband quasiparticle scattering orsuperconductivity? Hence, the actual critical temperature in
impurities. At finite impurity concentration the similar to Eq. ferromagnetic superconductors is always smaller by the

(20) system of equations is value ~47M/H,(T=0) relative to the(imaginary ferro-
magnetic superconductor withoutM. The upper critical
71=091A1(T) 71+ 912A2(T) 72, field H, is also purity dependent. That is why the impurity
concentration dependence of the acfliain a ferromagnetic
72=021A1(T) 71+ 92A(T) 77, (26)  superconductor might be determined not only directly by the

suppression of superconducting correlations by the impurity
scattering as in any nonconventional superconductor but also
1 1 1 T indirectly through the suppression Ef;,. In fact the second
A AT)= \p(_) _xp(_ + —) +1n==2 + AMTe). indirect mechanism has a smaller influence because the ratio
’ 2 2 AmTypl T 47M/H,(T=0) is less than 1/10 for superconductors with
(27 an upper critical field of the order of several Tesla.
Thus the problem of determination of the critical tempera-
ure in superconducting ferromagnet is at bottom the prob-
lem of determination of the upper critical field in single do-

[91A2(T) ~ 1][g2A5(T) ~ 1]~ 919201 (T)Ap(T) =0, Main ferromagnet.
(28)
In particular atg,,,9,1<<0;,0, the critical temperature is _ o N _
determined by the maX{,,T,) of the solutions of equations The equations for determination of upper critical field at
least nealT, is easily derived from the systen($5), (16).
Teo 1 1 1 Keeping only the lowest order gradient terms we have
INn—=¥|-+-——r—|-VY| >
2 47TT1TC1 2

where

Hence the critical temperature is determined from thet
equation

F. The upper critical field

+ ! NMTg)
01 co’

29 ARD=-TZ [ arv, G0 o)
n.g
| TcO_\I, 1 1 v 1 - B
L, =V 2 i, TV 2 T, M T X Gyt~ @) (1~ (' D(R)IZ2)A4(R,1")
(30 i ~
+(ir'D(R))X g(wf ,R)), (33
Let us accept for determiness tligt>g, hence the maximal
critical temperature in absence of impurities is defined byand
1/9:=N\(T.g). Then at small impurity concentrations the so-
lutions of Egs.(29) and(30) are the linear functions of im- _ ) _ _
purities concentration: Ea(wﬁ'R):niuaJ dr G,(r,0)G,(r,— op)
T X{(D(R)ALR,N+3 (0% R)}. (34
To=Teo g (31) {ArD(RNA(RN+3 (0 R)}. (39
Finding3 (0% ,R) from the last equation and substituting to
1 1 T Eqg. (33) we obtain after all the necessary integrations the
Teo=Teom =+ ——5— (32

g, g, 87y pair of the Ginzburg-Landau equations for two components
of the order parameter

These lines can in principle intersect each other, as result an

upturn on the critical temperature dependence of impurity

concentratiorT(n;) is appeared. Such the type of deviations

of the T.(n;) dependence from the AG law present the direct . .

manifestation of the two-band character of the superconduc- 7=V a1tV azns, (35

tivity. On the other hand, an absence of strong deviations .

from the universal one-band curve if it would found experi- where operator; consists of previously determined homo-

mentally in a ferromagnetic superconductor means that thgeneous part and second order gradient terms

m=Vyarm+Vi axm;,
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ha(7)= g1 02

oy =(|f_(K)|[*No; (k))A1(T)—K;;D;D;. (36) - (T - 1)- (41)
VK,

The gradient terms coefficients are

Kiij =<|f_(k)|2N0T(|2)v;:ﬁ(|2)v|:“‘(l2)>W_T > ~1 This two lines can in principle intersect each other, then an
2 3=o0 |w,1|3 upturn on the temperature dependence of the upper critical
. N field given by maxf,h,) is appeared.
+(f_(K)Ng; (K)vgqi(k)) In the more anisotropic situation such as in orthorombic
2Thu.2 1 c_rystals UGe and _URhGe even for the externgl fi_eld dir_ec-
X(f* (k)N (R)vF -(R)} T 2 ) tion parallel or antiparallel to the easy magnetization axis all
! 1] 2 =0 @22 the coefficientsKxy, Kiyy, K xx: Kjyy are different. Then

our system of equations can be solved following a variational
(37) approach developed in Ref. 20. Again an upturnhifr)

Operatora, is obtained from here by the natural substitu- dependence can be possible.
tions 1-2, 1—|, +——. The comparison with experiment shall be always not easy

Now the problem of the upper critical field finding is just masked by the presence of many ferromagnetic domains.
the problem of solution of the two coupled equatidBs). The monodomain measurements are possible in high enough
There are a lot of different situations depending of Crysta[ﬁelds. To work in this region one can eaSily obtain the fourth
symmetry, direction of spontaneous magnetization and therder gradient terms to the Ginzburg-Landau equations.
external field orientation. The simplest case is when the extiowever the problem of theoretical determination of the up-
ternal magnetic field is parallel or antiparallel to the easyPer critical field at arbitrary temperature has the same prin-
magnetization axis. If the latter coincides with fourth ordercipal difficulties as in any conventional anisotropic
symmetry axis in the cubic crystal such as it is in ZsZinen superconductof:
the gradient terms in the perpendicular plane are isotropic
and described by two constars;; =K, g;;, K;;=K,§;; .
This case formally corresponds to the problem of determina- [ll. CONCLUSION
tion of upper critical field parallel to the direction in two-
band hexagonal superconductor MgBolved in Ref. 20.
Then the linearized Ginzburg-Landau equations describe
system of two coupled oscillators and have the solution in[
the form ni=c.fo(x) and n,=c,fy(x), where fy(x)
=exp(—hx/2) andh is related to the upper critical field by
means

Ferromagnetic superconductors are in general multiband
etals. The two-band description of ferromagnetic supercon-
uctors with triplet pairing developed in this paper presents

he simplest model applicable to this type of material. One-
band superconductivity in these superconductors arises only
at a negligibly small spin-orbit coupling, as is the case for
the A, phase of*He. We have studied the dependence of the
h(7)®, critical temperatureT, on the concentration of ordinary

P (38)  pointlike impurities in the framework of a two-band weak

coupling BCS theory. It was demonstrated that the nonuni-

where®d is the flux quantum. versalT.(x) dependence can serve as a qualitative measure
Let us for the simplicity limit ourself by the impurity less of the two-band character of the superconductivity in ferro-

case. Themr=1-T/T. and the equation for the determina- magnetic superconductors. Also the general equations for the

|Heo=4mM|=

tion of upper critical field is determination of the upper critical field at arbitrary tempera-
ture and impurity concentration were derived. The solution
{92 7+ N (Teo) ]+ Vi1 Kih—=1H{go[ 7+ N (Teo) ] of these equations near the critical temperature was found in

the simplest case of cubic crystalline symmetry for the field
+ —1}— + + -
ViKh=1={0ud 7+ MTeo) 1+ Vi Kih =1 orientation parallel or antiparallel to the fourth order symme-

X{gol THN(Te)1+V; K h—1}=0. (39 try axis.

This is a simple square equation and as before if we consider
< > i -
miﬁgﬁg}gﬁs 01,9, andg;>g, then we obtain the fol ACKNOWLEDGMENTS
The authors are indebted to Dr. M. Zhitomirskii for the
hy(7)= T (40)  valuable discussions of physics of multiband superconduc-
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