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Weak-localization theory for quasiparticle dynamical conductivities of disordered
d-wave superconductors
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By the diagrammatic technique, we calculate the quantum interference~QI! contributions to the quasiparticle
dynamical conductivities of two-dimensionald-wave superconductors with dilute nonmagnetic impurities ei-
ther near the Born or near the unitary limit. For generic situations, only the 0-mode cooperon has QI contri-
butions to the charge and spin conductivities. It is found that with decreasing frequency, the spin conductivity
increases logarithmically while the charge one decreases logarithmically. Such a qualitative difference origi-
nates from a novel QI process related to the intrinsic particle-hole symmetry. In the combined limit of unitarity
and nested Fermi surface, there exist additional diffusivep modes in addition to the usual diffusive 0 modes.
The QI corrections in this limit are shown to vanish due to the cancellation of the contributions from 0-mode
andp-mode cooperons, so that both the charge and spin conductivities approach their universal values.
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I. INTRODUCTION

Over the past decade, there have been considerable a
ties on the study of disorder effects on quasiparticle trans
properties ofd-wave superconductors. This is in part due
the convincing evidences that the superconducting stat
the hole-doped cuprate materials is characterized by s
singletd-wave paring,1 and partly due to the fact that signifi
cant disorder—perhaps originating with charge-don
impurities—is present in nearly all cuprate superconduct
The low-lying quasiparticle excitations in thed-wave super-
conducting state have a Dirac-type spectrum because o
existence of gap nodes. In stark contrast with the conv
tional superconductors, the low-energy states and trans
properties of thed-wave superconductor are strongly a
fected by the disorder.2 Experimental measurements of th
transport properties such as microwave,3–5 optical,6–9 and
thermal10–14 conductivities of the cuprates have provid
substantial useful information on the quasiparticle featu
in the disorderedd-wave superconductor. Theoreticall
the self-consistentT-matrix approximation~SCTMA! for
impurity scattering has been widely used, with some s
cess, to calculate the charge,15–22 spin,22 and thermal22,23

conductivities.
The simplest theories based on the SCTMA ignore

quantum interference~QI! effects. It has been shown that th
QI effects have important influences on the quasipart
states, as well as on transport properties in disorderedd-wave
superconductors.24–29More recently, it was argued30 that the
maximum of optical conductivity at a disorder-depende
frequency observed in disordered cuprates8,9 is related to the
QI effects of quasiparticles, and cannot be interpreted by
simple SCTMA analysis.

It is well known that the QI effects in disordered meta
result from the existence of the diffusive modes~cooperon
and diffuson! ~for reviews, see Refs. 31–33!. Due to the
intrinsic particle-hole symmetry, the diffusive modes of
0163-1829/2004/69~14!/144517~17!/$22.50 69 1445
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superconductor exist both in retarded-advanced~RA!
~or AR! and in retarded-retarded~RR! ~or AA! channels,34

quite different from those of a normal conductor. For t
d-wave superconductor, each of the usual diffusive 0 mo
has ap-mode counterpart near the combined limit of t
unitarity and nested Fermi surface@the unitary and nestin-
g~UN! limit #.26,27The QI effects on quasiparticle dc condu
tivities of disorderedd-wave superconductors have be
studied by several groups with the nonlinear-sigma-mo
approach.24,25,28By carrying out a weak-localization calcula
tion with the diagrammatic technique, Yashenkinet al.27

pointed out that the existence of diffusivep modes can be
used to account for the previous contradictory predictions
the density of states~DOS! of disorderedd-wave supercon-
ductors. Recently, in the spirit of the method of Ref. 27, Ya
et al.29 recalculated the QI corrections to the quasiparticle
conductivities. They found an additional conductivity di
gram, which was not considered previously. This new d
gram describes a novel QI process related to the intrin
particle-hole symmetry. While this QI process has a vani
ing contribution to the charge conductivity, it gives rise to
antilocalization correction to the spin conductivity.

Recent numerical solutions of the Bogoliubov–de Gen
equations suggested that the QI effects may also play
important role in the quasiparticledynamical transport of
cuprate superconductors.30 Up to now, to our knowledge, dy
namical transport properties of the cuprates have not b
yet investigated within the weak-localization theory. This
the principal motivation for the current work. On the oth
hand, the weak-localization theory for the random Dirac f
mions in d-wave superconductors is far from well esta
lished, and thus needs further development.

In this work, the method of Ref. 29 is extended to inve
tigate the QI contributions to the quasiparticle dynami
conductivities of a two-dimensional~2D! dx22y2-wave super-
conductor with dilute nonmagnetic impurities. We restr
ourselves near the Born or unitary limit, as these two limiti
©2004 The American Physical Society17-1
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cases are considered to be relevant to the disorder effec
the cuprates. Both the frequency-dependent charge and
conductivities are calculated for generic Fermi surfaces
well as for the nesting case. In the singletdx22y2-wave su-
perconductor, the spin is conserved while the charge is
As a result, the charge and spin conductivities are found
have qualitatively different frequency dependences due
the existence of the novel QI process. In generic situati
~far from the UN limit!, only the 0-mode cooperon contrib
utes to the QI effects. We show that the charge conducti
is subject to a logarithmic suppression with decreasing
quency, which is qualitatively in agreement with the result
low frequency of the numerical study,30 and is also supported
by the experimental observations of the cuprates.8,9 In con-
trast, the spin conductivity is found to increase logarithm
cally with decreasing frequency. Near the UN limit, both t
0-mode andp-mode cooperons contribute to the QI effec
Their contributions to the charge or spin dynamical cond
tivity are shown to cancel out exactly, and thus both cond
tivities approach their universal values in the UN limit. W
also show that both the 0-mode andp-mode diffusons have
vanishing contributions to the QI effects in all situations co
sidered.

This paper is structured as follows. In Sec. II, we outli
the SCTMA, which is a starting point of the present wea
localization theory. In Sec. III, we derive in detail the expre
sions of diffusive modes for ad-wave superconductor. Th
QI contributions to the dynamical charge and spin cond
tivities in generic situations are calculated in Sec. IV. Sect
V is devoted to study the QI effects near the UN limit.
summary of the results is given in Sec. VI. Some use
mathematical formulas are presented in Appendix A. In A
pendixes B and C, we show, respectively, that the 0-m
andp-mode diffusons have vanishing contributions to the
effects. For completeness, we present in Appendix D
demonstration that the lowest-order conductivity diagra
with nonsingular ladders do not contribute to the QI corr
tions.

II. SCTMA FOR THE Dx2Ày2-WAVE SUPERCONDUCTOR

We begin with the most extensively studied model fo
2D d-wave superconductor, in which the normal-state disp
sion of a square lattice is given byjk52t(coskxa
1coskya)2m, wherea is the lattice constant,t is the nearest-
neighbor hopping integral, andm is the chemical potential
The nested Fermi surface corresponds to a half-fi
band (m50). The order parameter of thedx22y2-wave
pairing state is expressed byDk5D0(coskxa2coskya).
The four gap nodes are given bykn56(k0 ,6k0)(n
51,2,3,4) with k05(1/a)arccos(2m/2t). The quasi-
particle spectrum near the gap nodes can be linearize

ek5Ajk
21Dk

2'A(v f• k̃)21(vg• k̃)2, where v f5vgt/D0

5A2taA12(m/2t)2, andk̃ is the momentum measured fro
the nodekn . The directions of the Fermi velocityv f and
‘‘gap velocity’’ vg are depicted in Fig. 1.

The disorder model considered in the present work is
actly the same as that of Ref. 27, i.e., the random distribu
14451
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of pointlike nonmagnetic impurities with potentialV and low
concentrationni . Then the time-reversal and spin-rotation
symmetries remain preserved, meaning that the system
longs to symmetry class CI in the classification of Ref. 34.
the SCTMA, the quasiparticle self-energy can be expres
in the Nambu spinor representation as27

SR(A)~e!5niT
R(A)~e!5~le7 ig!t01hgt3 , ~2.1!

for ueu!g. Hereg is the impurity-induced relaxation rate,l
and h are dimensionless parameters,hg represents the de
crease of chemical potential induced by the impurity scat
ing, t0 andt i ( i 51,2,3) stand for the 232 unity and Pauli
matrices, respectively. A use of Dyson’s equation imme
ately yields the impurity-averaged one-particle Green’s fu
tions as

Gk
R(A)~e!5

@~12l!e6 ig#t01Dkt11jkt3

@~12l!e6 ig#22ek
2

, ~2.2!

where the shift of chemical potential is absorbed inm. The
impurity-induced density of states at zero energy is cal
lated asr052(1/p)Im(kTrGk

R(0)54lg/p2v fvg , where l
5 ln(G/g).1 with G;Av fvg/a.

The parametersg, l, andh can be evaluated consistent
via theT-matrix equation

TR(A)~e!5Vt31Vt3gR(A)~e!TR(A)~e!, ~2.3!

with gR(A)(e)5(kGk
R(A)(e). Using Eq.~2.2!, we can show

that

gR(A)~e!5
pr0

2g
@~l21!~12 l 21!e7 ig#t0

1~V212U21!t3 , ~2.4!

for ueu!g, whereU is the effective impurity potential given
by U215V211(kjk /(ek

21g2). A substitution of Eqs.~2.1!
and ~2.4! into Eq. ~2.3! leads tog52ni /pr0(11h2), l
5(12h2)( l 21)/(h212l 21), andh52/pr0U.

The Born limit corresponds toh2@2l , yielding

FIG. 1. Directions of the Fermi velocityv f and ‘‘gap velocity’’
vg . fn andgn represent, respectively, the unity vectors parallel tov f

andvg at thenth gap node (n51,2,3,4).
7-2
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g5
p

2
nir0U2, l512 l ; ~2.5!

and the unitary limit corresponds toh→0, meaning that

g5
2ni

pr0
, l5

l 21

2l 21
. ~2.6!

The above results of SCTMA will be used in the evaluatio
of the quasiparticle diffusive modes and transport coe
cients.

III. THE DIFFUSIVE MODES

Since the QI effects are related to the diffusive modes,
first derive their expressions for a disorderedd-wave super-
conductor.

A. 0-mode cooperon and diffuson

The 0-mode cooperon and diffuson exist both in RA a
in RR channels due to the local particle-hole symme
t2Gk

R(e)t252Gk
A(2e). The ladder diagrams for the coop

eron are shown in Fig. 2~a!. According to the Feynman rule
in the diagrammatic technique, the equation for 0-mo
cooperon can be expressed as

C~q;e,e8!mn,m8n85W~e,e8!mn,m8n81W~e,e8!mn,m1n1

3H~q;e,e8 !m1n1,m2n2
C~q;e,e8!m2n2,m8n8 ,

~3.1!

where the repeated Nambu indices mean summations,
the two-particle irreducible vertex and the integral kernel
the RR~or RA! channel are defined, respectively, as

W~e,e8!mn,m8n8
RR(A)

5niT
R~e!mm8T

R(A)~e8!nn8 ~3.2!

and

FIG. 2. Ladder diagrams for the 0-mode cooperon~a! and
0-mode diffuson~b!. The dashed lines denote theT matrices instead
of the impurity potential. The corresponding diagrams for t
p-mode cooperon andp-mode diffuson can be generated by t
replacement ofq→Q1q in these 0-mode diagrams.
14451
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H~q;e,e8!m1n1 ,m2n2

RR(A) 5(
k

Gq2k
R ~e!m1m2

Gk
R(A)~e8!n1n2

.

~3.3!

We introduce tensor productZ5X^ Y ~whereX and Y de-
note 232 matrices! with the definition of Zmm8,nn8
5XmnYm8n8 . Then Eqs.~3.1!–~3.3! can be reexpressed as

C~q;e,e8!5W~e,e8!1W~e,e8!H~q;e,e8!C~q;e,e8!,
~3.4!

with

W~e,e8!RR(A)5niT
R~e! ^ TR(A)~e8! ~3.5!

and

H~q;e,e8!RR(A)5(
k

Gq2k
R ~e! ^ Gk

R(A)~e8!. ~3.6!

One can make a decomposition ofX5( i j Xi j t i ^ t j for
X5W,H, andC. A substitution of Eq.~2.1! into Eq. ~3.5!
immediately yields

W~e,e8!00
RR(A)57

2g

pr0~11h2!
F11 i

l

g
~e6e8!G ,

~3.7!

W~e,e8!33
RR(A)5

2gh2

pr0~11h2!
, ~3.8!

W~e,e8!03
RR(A)52 i

2gh

pr0~11h2!
S 11 i

l

g
e D , ~3.9!

and

W~e,e8!30
RR(A)57 i

2gh

pr0~11h2!
S 16 i

l

g
e8D , ~3.10!

where the terms bilinear ine or e8 are omitted, consisten
with an approximation made throughout this paper. T
above equations indicate that the dominant componen
W(e,e8) near the Born limit (h2@2l ) is W(e,e8)33, while
that near the unitary limit (h2!1) is W(e,e8)00.

Now let us calculateH(q;e,e8). For small values ofq, e,
ande8, we have

Gq2k
R ~e!'Gk

R1e
]

]e8
Gk

R~e8!ue8502q•“Gk
R1

1

2
qq:““Gk

R

~3.11!

and

Gk
R(A)~e8!'Gk

R(A)1e8
]

]e
Gk

R(A)~e!ue50 , ~3.12!

with Gk
R(A)5Gk

R(A)(0). Substituting Eqs.~3.11! and ~3.12!
into Eq. ~3.6!, and using Eqs.~A1!–~A8! in Appendix A, we
can show that all the nonvanishing components ofH(q;e,e8)
are given by
7-3
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H~q;e,e8!00
RR(A)57

1

pv fvg
S 12

v f
21vg

2

12g2
q2D , ~3.13!

H~q;e,e8!11
RR(A)5

1

2pv fvg
F ~2l 21!1 i

12l

g
~e6e8!

2
v f

213vg
2

12g2
q2G , ~3.14!

and

H~q;e,e8!33
RR(A)5

1

2pv fvg
F ~2l 21!1 i

12l

g
~e6e8!

2
vg

213v f
2

12g2
q2G . ~3.15!

In order to evaluate the expression of cooperon, we re
press Eq.~3.4! as

A~q;e,e8!C~q;e,e8!5W~e,e8!, ~3.16!

where

A~q;e,e8!5I2W~e,e8!H~q;e,e8!, ~3.17!

with I5t0^ t0. Substituting Eqs.~3.7!, ~3.8!, and ~3.13!–
~3.15! into Eq. ~3.17!, we obtain

A~q;e,e8!00
RR(A)52

1

4l ~11h2!
F22~2l 21!2h2~2l 11!

1 i
2l1h2~12l!

g
~e6e8!

2
2~v f

21vg
2!1h2~3v f

21vg
2!

12g2
q2G , ~3.18!

A~q;e,e8!11
RR(A)56

1

4l ~11h2!
F ~2l 21!1 i

112l~ l 21!

g

3~e6e8!2
v f

213vg
2

12g2
q2G , ~3.19!

A~q;e,e8!22
RR(A)5

h2

4l ~11h2!
F ~2l 21!1 i

12l

g
~e6e8!

2
v f

213vg
2

12g2
q2G , ~3.20!

and
14451
x-

A~q;e,e8!33
RR(A)56

1

4l ~11h2!
F ~2l 21!12h2

1 i
112l~ l 21!

g
~e6e8!

2
vg

213v f
212h2~v f

21vg
2!

12g2
q2G .

~3.21!

In the formulism of components, Eq.~3.16! reads

Amn,m1n1
Cm1n1 ,m8n85Wmn,m8n8 .

Using the decomposition ofXmm8,nn85( i j Xi j (t i)mn(t j )m8n8
for X5A,C,W, and completing the matrix products of Pau
matrices, one obtains

(
i jkl

Ai j Ckl~t itk!mm8~t jt l !nn85(
i l

Wil ~t i !mm8~t l !nn8 .

There is no simple elegant way to evaluate the fourfold s
on the left-hand side of the above equation. However, n
the Born or unitary limit, the nondiagonal components
W(e,e8) are negligible, and thus only the diagonal comp
nents ofA(q;e,e8) and C(e,e8) need to be taken into ac
count. Therefore Eq.~3.16! is equivalent to the following
group of equations:

A00C001A11C111A22C221A33C335W00, ~3.22!

A00C111A11C002A22C332A33C2250, ~3.23!

A00C222A11C331A22C002A33C1150, ~3.24!

A00C332A11C222A22C111A33C005W33, ~3.25!

where the arguments (q, e, and e8) of Aii , Cii , and Wii
have been omitted.

SinceC(q;e,e8) i i is singular for small values ofq, e, and
e8, the singular terms in the left-hand side of every one
Eqs.~3.22!–~3.25! cancel out, meaning that

Ā00C001Ā11C111Ā22C221Ā33C3350, ~3.26!

Ā00C111Ā11C002Ā22C332Ā33C2250, ~3.27!

Ā00C222Ā11C331Ā22C002Ā33C1150, ~3.28!

Ā00C332Ā11C222Ā22C111Ā33C0050, ~3.29!

whereĀii 5A(0;0,0)i i . In the Born or unitary limit, it is easy
to show that the group of Eqs.~3.26!–~3.29! has a sole so-
lution as

C00
RR(A)57C11

RR(A)52C22
RR(A)57C33

RR(A) . ~3.30!

For the Born limit, W00 can be neglected. Substitutin
Eqs.~3.8!, ~3.18!–~3.21!, and~3.30! into Eq. ~3.25!, and us-
ing Eq. ~2.5!, we obtain
7-4
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C~q;e,e8!00
RR(A)57

4g2

pr0

1

Dq22 i ~e6e8!
, ~3.31!

whereD5(v f
21vg

2)/4lg is the quasiparticle diffusion coef
ficient. One can show that the above expression is also v
for small but finite h22. Combining Eq.~3.30! with Eq.
~3.31!, and noting that the 0-mode diffuson has the sa
expression as that of 0-mode cooperon due to the ti
reversal symmetry, we obtain

C~q;e,e8!RR(A)5D~q;e,e8!RR(A)5
4g2

pr0

1

Dq22 i ~e6e8!

3~7t0^ t01t1^ t16t2^ t21t3^ t3!,

~3.32!

which is in agreement with that of Ref. 26~apart from a
disputed prefactor 2!. Similarly, we can show that Eq.~3.32!
is also valid near the unitary limit. The above evaluatio
indicate that any small deviations from either limit do n
make the Goldstone 0 modes gapped.

B. p-mode cooperon and diffuson

In the UN limit, there exist the additionalp-mode coop-
eron and diffuson due to the global particle-hole symmetr27
-

14451
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t2Gk
R(A)~e!t25GQ1k

R(A)~e!, ~3.33!

with Q56(p/a,6p/a) the nesting vector. Any small de
viations from this combined limit can be shown to make t
Goldstone p modes gapped. The ladder diagrams
p-mode cooperon can be obtained from those of 0-m
cooperon by replacingq by Q1q. The equation forp-mode
cooperon is given by

Ap~q;e,e8!Cp~q;e,e8!5W~e,e8!, ~3.34!

where

Ap~q;e,e8!5I2W~e,e8!Hp~q;e,e8!, ~3.35!

with

Hp~q;e,e8!RR(A)5(
k

GQ1q2k
R ~e! ^ Gk

R(A)~e8!.

~3.36!

In order to calculateHp(q;e,e8) and Ap(q;e,e8), one
needs to exploit the relationsDQ1k52Dk and jQ1k52jk
22m. For a nearly nested Fermi surface (umu!g), we have
GQ1q2k
R ~e!'t2Gq2k

R ~e!t212m
2jk~ igt02Dkt1!1~g21Dk

22jk
2!t3

~g21ek
2!2

1~2m!2
~g21Dk

223jk
2!~ igt02Dkt1!2jk~3g213Dk

22jk
2!t3

~g21ek
2!3

. ~3.37!
Substituting Eqs.~3.12! and~3.37! into Eq.~3.36!, and using
Eqs.~A1!–~A8!, we can show that all the nonvanishing com
ponents ofHp(q;e,e8) are given by

Hp~q;e,e8!00
RR(A)5H~q;e,e8!00

RR(A)6
2m2

3pv fvgg2
,

~3.38!

Hp~q;e,e8!11
RR(A)52H~q;e,e8!11

RR(A)1
m2

3pv fvgg2
,

~3.39!

Hp~q;e,e8!33
RR(A)52H~q;e,e8!33

RR(A)1
m2

3pv fvgg2
,

~3.40!

and
Hp~q;e,e8!03
RR(A)56Hp~q;e,e8!30

RR(A)52 i
m

pv fvgg
.

~3.41!

A substitution of Eqs.~3.13!–~3.15! and ~3.38!–~3.41! into
Eq. ~3.35! yields the diagonal components ofAp(q;e,e8) as

Ap~q;e,e8!00
RR(A)52

1

4l ~11h2!
F22~2l 21!2h2~6l 21!

1 i
2l2h2~12l!

g
~e6e8!

2
2~v f

21vg
2!2h2~3v f

21vg
2!

12g2
q2

2
~426h2!m2

3g2
2

4hm

g G , ~3.42!
7-5
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Ap~q;e,e8!11
RR(A)57

1

4l ~11h2!
F ~2l 21!1 i

112l~ l 21!

g

3~e6e8!2
v f

213vg
2

12g2
q22

2m2

3g2G , ~3.43!

Ap~q;e,e8!22
RR(A)52

h2

4l ~11h2!
F ~2l 21!1 i

12l

g
~e6e8!

2
v f

213vg
2

12g2
q22

2m2

3g2G , ~3.44!

and

Ap~q;e,e8!33
RR(A)57

1

4l ~11h2!
F ~2l 21!22h2

1 i
112l~ l 21!

g
~e6e8!

2
vg

213v f
222h2~v f

21vg
2!

12g2
q2

2
~624h2!m2

3g2
2

4hm

g G . ~3.45!

Equations~3.22!–~3.29! are also suitable for thep-mode
cooperon. Therefore, using Eqs.~3.42!–~3.45!, one can simi-
larly show that~near the unitary limit!

Cp~q;e,e8!RR(A)5Dp~q;e,e8!RR(A)

52
4g2

pr0

1

Dq22 i ~e6e8!12d

3~6t0^ t01t1^ t17t2^ t21t3^ t3!,

~3.46!

with d52h2g12hm/g1m2/ lg!g. Near the Born limit,
one getsCp i i

RR(A)50 (i 50,1,2,3), indicating that the diffusive
p modes exist only near the UN limit. Contrary to the d
fusive 0 modes, the Goldstonep modes are gapped by an
small deviations from the UN limit measured byd. For the
situations far from the UN limit, the contributions of diffu
sive p modes to the QI effects are completely suppres
due to the large gap. Equations~3.32! and~3.46! will be used
to calculate the QI corrections to the charge and spin c
ductivities.

IV. DYNAMICAL CONDUCTIVITIES IN GENERIC
SITUATIONS

We use the Kubo formula to calculate the quasiparti
conductivities. At zero temperature the real part of cha
(x5e) or spin (x5s) dynamical conductivity can be evalu
ated via35
14451
d

n-

e
e

sx~v!5
1

vE0

v de

2p
RePx~e,e2v!, ~4.1!

with Px(e,e8)5Px(e,e8)RA2Px(e,e8)RR where
Px(e,e8)RA and Px(e,e8)RR stand for the correspondin
current-current correlation functions in RA and RR channe
respectively. Throughout this paper we only consider
low-frequency region ofv!g. In the static case, Eq.~4.1!
reduces to be

lim
v→0

sx~v!5
1

2p
RePx~0,0!. ~4.2!

The Boltzmann dc conductivity corresponds to the con
bution of ‘‘bare bubble’’ diagram, and the relevant correl
tion function in RA channel is given by

Px~0,0!0
RA5

1

2 (
k

Tr~Lk
xGk

R
•Lk

xGk
A!, ~4.3!

where Lk
e52ev f(k)t0 and Lk

s5(1/2)@vg(k)t11v f(k)t3#
denote, respectively, the charge and spin current vecto22

The corresponding expression in RR channel can be ea
obtained by a replacement ofA→R in Eq. ~4.3!. The same
replacement is also suitable for the correlation functions
sponsible for the QI effects. Hereafter we only provide t
expressions for correlation functions in RA channel, b
present the calculated results in RR channel where neces
Substituting Eq.~2.2! into Eq.~4.3! and its counterpart in RR
channel, and using Eqs.~A1!–~A4!, one can easily show tha
Pe(0,0)0

RA52Pe(0,0)0
RR5e2v f /pvg , and Ps(0,0)0

RA

52Ps(0,0)0
RR5(v f

21vg
2)/4pv fvg . Thus we obtain the uni-

versal conductivities as

s0
e5

e2v f

p2vg

, s0
s5

v f
21vg

2

4p2v fvg

. ~4.4!

Evidently, the spin conductivity satisfies the Einstein relati
s0

s5r0D/4, for the quasiparticle spin is a good quantu
number. Equation~4.4! is exactly in agreement with those o
Refs. 15 and 22, and was widely used by other authors. H
we wish to point out that the correlation functions in R
channel have nonvanishing contributions to the quasipart
conductivities,15,22 contrary to the situation of normal state
This is because the quasiparticle state is a mixture of
electron and a hole, while the carries of charge and spin
normal conductor are either electrons or holes.

We now turn to the QI contributions to the dynamic
conductivities. In generic situations, only the diffusive
modes contribute to the QI effects. All the lowest-order co
ductivity diagrams with cooperon and those with diffuson a
depicted in Figs. 3 and 4, respectively. These diagrams
be generated from the self-energy diagrams, Figs. 1~c! and
1~d! in Ref. 27, as in the study of disordered interacti
electron systems.32,36As shown in Appendix B, none of the
diagrams in Fig. 4 contributes to the conductivities. Tho
conductivity diagrams containing the nonsingular ladders
shown to have also vanishing contributions~see Appendix
7-6
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D!. Therefore the QI corrections to the conductivities co
only from the cooperon contribution, as shown by diagra
in Fig. 3.

Figure 3~b! denotes a sum of the well-known maximal
crossed diagrams.31–33Figure 3~a! was first proposed by Al-
tland and Zirnbauer in the random-matrix theory of mes
copic normal/superconducting systems,34 its physical effects
have also been studied by the nonlinear-sigma-model
proach in disorderedd-wave superconductors,24 as well as in
the mixed superconducting state.25 Figure 3~c! represents a
novel QI process; its physical picture has been describe
Ref. 29 at the semiclassical level. As will be shown below
is the existence of Fig. 3~c! that leads to a qualitative differ
ence between the frequency dependences of the charge
spin conductivities.

A. Correlation functions due to 0-mode cooperon

The contributions of Figs. 3~a!, 3~b!, and 3~c! to the
current-current correlation function in RA channel are e
pressed, respectively, by

Px~e,e8!3a
RA5

1

2 (
kq

(
i

C~q;e,e! i i
RR

3Tr~Lk
xGk

Rt iG2k
R t iGk

R
•Lk

xGk
A!, ~4.5!

Px~e,e8!3b
RA5

1

2 (
kq

(
i

C~q;e,e8! i i
RA

3Tr~Lk
xGk

Rt iG2k
R
•L2k

x G2k
A t iGk

A!,

~4.6!

FIG. 3. Lowest-order conductivity diagrams with 0-mode coo
eron ~shaded blocks!. Figures 3~a8) and 3~c8) denote, respectively
the symmetrical conjugates of Figs. 3~a! and 3~c!, with the upper
and lower quasiparticle lines interchanged.

FIG. 4. Lowest-order conductivity diagrams with 0-mode diff
son ~shaded blocks! 4~a!–4~d8), and the diagrams for the verte
function 4~e!.
14451
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Px~e,e8!3c
RA5

1

2 (
kk8q

(
i j

C~q;e,e! i i
RRC~q;e,e8! j j

RA

3Tr~Lk
xGk

Rt iGq2k8
R t jGq2k

R t iGk8
R
•Lk8

x Gk8
A t jGk

A!.

~4.7!

Using Eqs. ~A9! and ~A10!, and noting thatPx(e,e8)3a

5Px(e,e8)3a
RA2Px(e,e8)3a

RR, we can rewrite Eqs.~4.5!–
~4.7! as

Px~e,e8!3a5(
q

(
i

@C~q;e,e!RR~M x!3a# i i , ~4.8!

Px~e,e8!3b
RA5(

q
(

i
@C~q;e,e8!RA~M x!3b

RA# i i , ~4.9!

and

Px~e,e8!3c
RA5(

q
(

i
@C~q;e,e!RRMx~q!3c

RA"C~q;e,e8!RA

3M̃x~q!3c
RA# i i , ~4.10!

where

~M x!3a5(
k

G2k
R

^ @Gk
RLk

x~Gk
A2Gk

R!•Lk
xGk

R#,

~4.11!

~M x!3b
RA5(

k
~G2k

R L2k
x G2k

A ! ^ •~Gk
ALk

xGk
R!, ~4.12!

Mx~q!3c
RA5(

k
Gq2k

R
^ ~Gk

RLk
xGk

A!, ~4.13!

and

M̃x~q!3c
RA5(

k
Gq2k

R
^ ~Gk

ALk
xGk

R!. ~4.14!

For the asymmetrical diagramsj and j8 with j
53a,3c,4a,4c,4d, one can readily show tha
RePx(e,e8)j85RePx(e8,e)j , so that

sx~v!j85sx~2v!j . ~4.15!

Equations~4.5!–~4.15! are general expressions, and will b
used to calculate both the charge and spin conductivities

B. QI correction to the charge conductivity

Let us first calculate the charge conductivity. Substituti
the electrical-current vectorLk

e52ev f(k)t0 into Eqs.
~4.11!–~4.14!, and noting that the vectork in these equations
is restricted in the vicinity of the four gap nodes, we obta

~M e!3a5e2v f
2(

k
Gk

R
^ @Gk

R~Gk
A2Gk

R!Gk
R#, ~4.16!

-

7-7
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~M e!3b
RA52e2v f

2(
k

~Gk
RGk

A! ^ ~Gk
AGk

R!, ~4.17!

Me~q!3c
RA5e(

k
v f~k!q•“Gk

R
^ ~Gk

RGk
A!, ~4.18!

and

M̃e~q!3c
RA5e(

k
v f~k!q•“Gk

R
^ ~Gk

AGk
R!. ~4.19!

Substituting Eq.~2.2! into Eqs.~4.16!–~4.19!, and using Eqs.
~A1!–~A8!, we find that

~M e!3b
RA52

e2v f

pg2vg

t0^ t0 , ~4.20!

~M e!3b
RR5~M e!3a52

e2v f

3pg2vg

~t0^ t02t1^ t12t3^ t3!,

~4.21!

Me~q!3c
RA5M̃e~q!3c

RA

52
e

4pg2vg

~ q̂vgt1^ t01qv ft3^ t0!,

~4.22!

and

Me~q!3c
RR5M̃e~q!3c

RR5
e

12pg2vg

@ q̂vg~t1^ t022t0^ t1!

1qv f~t3^ t022t0^ t3!#, ~4.23!

with q̂5(q•f1)g11(q•g1)f1. Substituting Eqs.~3.32! and
~4.20!–~4.23! into Eqs. ~4.8!–~4.10!, as well as into the
counterparts of Eqs.~4.9! and ~4.10! in RR channel, we ob-
tain the electrical current-current correlation functions as

Pe~e,e8!3a52
4e2v f

avg
(

q

D

Dq22 i2e
, ~4.24!

Pe~e,e8!3b52
4e2v f

avg
(

q
F D

Dq22 i ~e2e8!

2
D

Dq22 i ~e1e8!
G , ~4.25!

and

Pe~e,e8!3c50, ~4.26!

with a5(v f
21vg

2)/2v fvg . The first and second terms in th
right-hand side of Eq.~4.25! correspond to the contribution
in RA and RR channels, respectively. Equation~4.26! indi-
cates that Fig. 3~c! does not contribute to the charge condu
tivity.
14451
-

The upper cutoff ofuqu in the above equations is set to b
1/l e , with l e5AD/2g the elastic mean free path. Substitutin
Eqs. ~4.24!–~4.26! into Eq. ~4.1!, and completing the inte-
grals overq ande, we obtain the contributions of diagram
in Fig. 3 to the charge conductivity as

se~v!3a5se~v!3a852
e2v f

2p2avg

ln
g

uvu
~4.27!

and

se~v!3b5se~v!3c5se~v!3c850. ~4.28!

Here we have neglected the nonsingular terms of the o
s0

e . The above evaluations show that Fig. 3~b! has also a
vanishing contribution to the charge conductivity, due to t
cancellation of contributions from RA and RR channels. T
feature is considerably different from that of a disorder
normal metal, in which the QI effect results just from th
maximally crossed diagrams.31–33 The total QI correction is
thus the sum ofse(v)3a andse(v)3a8 , given by

Dse~v!

s0
e

52
1

a
ln

g

uvu
. ~4.29!

The weak-localization correction shown by Eq.~4.29! im-
plies that the charge conductivity is suppressed with decr
ing frequency. This result is qualitatively in agreement w
the numerical study,30 as well as supported by the exper
mental observations of the cuprates.8,9

C. QI correction to the spin conductivity

The QI contribution to the dynamical spin conductivi
can be similarly evaluated by the approach for the cha
conductivity. The explicit expressions of Eqs.~4.11!–~4.14!
for the spin conductivity are given by

~M s!3a5
1

4
vg

2(
k

Gk
R

^ @Gk
Rt1~Gk

A2Gk
R!t1Gk

R#

1
1

4
v f

2(
k

Gk
R

^ @Gk
Rt3~Gk

A2Gk
R!t3Gk

R#,

~4.30!

~M s!3b
RA52

1

4
vg

2(
k

~Gk
Rt1Gk

A! ^ ~Gk
At1Gk

R!

2
1

4
v f

2(
k

~Gk
Rt3Gk

A! ^ ~Gk
At3Gk

R!, ~4.31!

Ms~q!3c
RA52

1

2 (
k

vg~k!q•“Gk
R

^ ~Gk
Rt1Gk

A!

2
1

2 (
k

v f~k!q•“Gk
R

^ ~Gk
Rt3Gk

A!,

~4.32!

and
7-8
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M̃s~q!3c
RA52

1

2 (
k

vg~k!q•“Gk
R

^ ~Gk
At1Gk

R!

2
1

2 (
k

v f~k!q•“Gk
R

^ ~Gk
At3Gk

R!.

~4.33!

By completing the summations overk in the above equa
tions, one obtains

~M s!3a52
a

6pg2
~t0^ t02t1^ t12t3^ t3!,

~4.34!

~M s!3b
RA52

1

12pg2
@~2a2b!t1^ t122at2^ t2

1~2a1b!t3^ t3#, ~4.35!

~M s!3b
RR52

1

12pg2
@~2a2b!t1^ t122at0^ t0

1~2a1b!t3^ t3#, ~4.36!

Ms~q!3c
RA5M̃s~q!3c

RA52
1

12pg2
@qb~t1^ t12t3^ t3!

2q̂~t1^ t31t3^ t1!#, ~4.37!

and

Ms~q!3c
RR5M̃s~q!3c

RR5
1

12pg2
$q@2at0^ t02~2a2b!t1

^ t12~2a1b!t3^ t3#2q̂~t1^ t31t3^ t1!%,

~4.38!

with b5(v f
22vg

2)/2v fvg . A substitution of Eqs.~3.32! and
~4.34!–~4.38! into Eqs. ~4.8!–~4.10! leads to the spin
current-current correlation functions as

Ps~e,e8!3a52(
q

2D

Dq22 i2e
, ~4.39!

Ps~e,e8!3b52(
q

F 2D

Dq22 i ~e2e8!
1

2D

Dq22 i ~e1e8!
G ,

~4.40!

and

Ps~e,e8!3c5(
q

8D2q2

~Dq22 i2e!@Dq22 i ~e1e8!#
.

~4.41!

Substituting Eqs.~4.39!–~4.41! into Eq. ~4.1!, and complet-
ing the integrals overq ande, we obtain the contributions o
diagrams in Fig. 3 to the spin conductivity as
14451
4ss~v!3a54ss~v!3a852ss~v!3b

52ss~v!3c52ss~v!3c852
1

p2
ln

g

uvu
.

~4.42!

Quite different from the case of charge conductivity, bo
Figs. 3~b! and 3~c! have nontrivial contributions to the spi
conductivity. While Figs. 3~a! and 3~b! give rise to negative
corrections to the spin conductivity, Fig. 3~c! yields aposi-
tive one. By summing up the contributions of all the di
grams in Fig. 3, we obtain the total QI correction to the sp
conductivity as

Dss~v!

s0
s

5
2

a
ln

g

uvu
. ~4.43!

Contrary to the charge conductivity, the spin conductivity
subject to aweak-antilocalizationcorrection, due to the fac
that the positive contribution from Fig. 3~c! exceeds the sum
of the negative ones from Figs. 3~a! and 3~b!. Clearly, the
qualitative difference in the frequency dependence betw
these two conductivities stems from the existence of the
process described by Fig. 3~c!.

V. DYNAMICAL CONDUCTIVITIES NEAR
THE UN LIMIT

Since thed-wave superconductor is fundamentally sen
tive to the details of disorder, as well as to certain symm
tries of the normal-state Hamiltonian,2 it is worthy to inves-
tigate the QI effects near the UN limit. In addition to th
0-mode cooperon, the diffusivep modes may also contribut
to the QI effects. All the lowest-order conductivity diagram
with the diffusivep modes can be readily obtained by r
placing all q by Q1q in Figs. 3 and 4. In Appendix C we
show that the contributions of those diagrams withp-mode
diffuson are summed to vanish. As a result, the total QI c
rection to the charge or spin conductivity near the UN lim
is a sum of the contributions from 0-mode andp-mode
cooperons, i.e.,

DsUN
x ~v!5Dsx~v!1Dsp

x ~v!. ~5.1!

HereDsp
x (v) denotes the contribution ofp-mode cooperon

to the conductivity, which can be similarly evaluated by t
approach used in the case of 0-mode cooperon.

A. Correlation functions due to p-mode cooperon

Equations~4.8!–~4.10! are also suitable for the case o
p-mode cooperon, provided that one makes the replacem
of C(q;e,e8)RR(A)→Cp(q;e,e8)RR(A), (M)3a

x →(Mp)3a
x ,

etc., with
7-9
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~M p
x !3a5(

k
GQ2k

R
^ @Gk

RLk
x~Gk

A2Gk
R!•Lk

xGk
R#,

~5.2!

~M p
x !3b

RA5(
k

~GQ2k
R LQ2k

x GQ2k
A ! ^ •~Gk

ALk
xGk

R!,

~5.3!

Mp
x ~q!3c

RA5(
k

Gq1Q2k
R

^ ~Gk
RLk

xGk
A!, ~5.4!

and

M̃p
x ~q!3c

RA5(
k

Gq1Q2k
R

^ ~Gk
ALk

xGk
R!. ~5.5!

By comparing Eqs.~4.11!–~4.14! with Eqs. ~5.2!–~5.5!, we
see that the results of the summations overk in the above
equations can be obtained by a transformation from the
sults in the case of 0-mode cooperon, due to the the glo
particle-hole symmetry.

B. QI correction to the charge conductivity

For the charge conductivity, we haveLQ1k
e 52Lk

e

52t2Lk
et2 in the nesting case. Substituting this relation a

Eq. ~3.33! into Eqs.~5.2!–~5.5!, and taking into account Eqs
~4.20!–~4.23!, one can easily show that

~M p
e !3b

RA5
e2v f

pg2vg

t0^ t0 , ~5.6!

~M p
e !3b

RR52~M p
e !3a

5
e2v f

3pg2vg

~t0^ t01t1^ t11t3^ t3!, ~5.7!

Mp
e ~q!3c

RA5M̃p
e ~q!3c

RA5
e

4pg2vg

~ q̂vgt1^ t01qv ft3^ t0!,

~5.8!

and

Mp
e ~q!3c

RR5M̃p
e ~q!3c

RR

52
e

12pg2vg

@ q̂vg~t1^ t012t0^ t1!

1qv f~t3^ t012t0^ t3!#. ~5.9!

A substitution of Eqs.~3.46! and~5.6!–~5.9! into Eqs.~4.8!–
~4.10! yields the electrical current-current correlation fun
tions due top-mode cooperon as

Pp
e ~e,e8!3a5

4e2v f

avg
(

q

D

Dq22 i2e12d
, ~5.10!
14451
e-
al

d

Pp
e ~e,e8!3b52

4e2v f

avg
(

q
F D

Dq22 i ~e2e8!12d

2
D

Dq22 i ~e1e8!12d
G , ~5.11!

and

Pp
e ~e,e8!3c50. ~5.12!

Substituting Eqs.~5.10!–~5.12! into Eq. ~4.1!, we get the
contributions of the diagrams withp-mode cooperon to the
charge conductivity as

sp
e ~v!3a5sp

e ~v!3a85
e2v f

2p2avg

ln
g

Av21d2
~5.13!

and

sp
e ~v!3b5sp

e ~v!3c5sp
e ~v!3c850. ~5.14!

Same as in the case of 0-mode cooperon, Figs. 3~b! and 3~c!
for the p-mode cooperon have also vanishing contributio
to the charge conductivity. Thus, the contribution ofp-mode
cooperon is the sum ofsp

e (v)3a andsp
e (v)3a8 , yielding

Dsp
e ~v!

s0
e

5
1

a
ln

g

Av21d2
. ~5.15!

Contrary to the 0-mode cooperon, thep-mode cooperon
yields apositivecorrection to the charge conductivity. This
because the phase differences of coherent paths corresp
ing to 0-mode cooperon differ byp from those top-mode
cooperon. In addition, whileDse(v) has a logarithmic sin-
gularity at zero frequency@Eq. ~4.29!#, the same singularity
for Dsp

e (v) is cut off by the gapd, as indicated by Eq.
~5.15!. If the deviation from the UN limit is large enough s
thatd;g, the diffusion poles of thep modes are sufficiently
killed out, and the contribution ofp-mode cooperon is sig
nificantly suppressed. By summing up Eqs.~4.29! and~5.15!,
we obtain the total QI correction to the charge conductiv
near the UN limit as

DsUN
e ~v!

s0
e

52
1

2a
lnS 11

d2

v2D . ~5.16!

Equation~5.16! indicates that the weak-localization corre
tion contributed by 0-mode cooperon to the charge cond
tivity is suppressed due to the existence ofp-mode coop-
eron. At the UN limit (d50), the contributions of 0-mode
and p-mode cooperons just cancel out,DsUN

e (v)50, and
thus the charge conductivity remains its universal values0

e .

C. QI correction to the spin conductivity

Similarly, substituting Eq.~3.33! and the relationLQ1k
s

52Lk
s5t2Lk

st2 into Eqs. ~5.2!–~5.5!, and using Eqs.
~4.34!–~4.38!, we immediately obtain
7-10
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~M p
s !3a52

a

6pg2
~t0^ t01t1^ t11t3^ t3!,

~5.17!

~M p
s !3b

RA5
1

12pg2
@~2a2b!t1^ t112at2^ t2

1~2a1b!t3^ t3#, ~5.18!

~M p
s !3b

RR5
1

12pg2
@~2a2b!t1^ t112at0^ t0

1~2a1b!t3^ t3#, ~5.19!

Mp
s ~q!3c

RA5M̃p
s ~q!3c

RA5
1

12pg2
@qb~t1^ t12t3^ t3!

2q̂~t1^ t31t3^ t1!#, ~5.20!

and

Mp
s ~q!3c

RR5M̃p
s ~q!3c

RR5
1

12pg2
$q@2at0^ t01~2a2b!t1

^ t11~2a1b!t3^ t3#1q̂~t1^ t31t3^ t1!%.

~5.21!

A substitution of Eqs.~3.46! and ~5.17!–~5.21! into Eqs.
~4.8!–~4.10! leads to the spin current-current correlati
functions forp-mode cooperon as

Pp
s ~e,e8!3a5(

q

2D

Dq22 i2e12d
, ~5.22!

Pp
s ~e,e8!3b5(

q
F 2D

Dq22 i ~e2e8!12d

1
2D

Dq22 i ~e1e8!12d
G , ~5.23!

and

Pp
s ~e,e8!3c

52(
q

8D2q2

~Dq22 i2e12d!@Dq22 i ~e1e8!12d#
.

~5.24!

Substituting Eqs.~5.22!–~5.24! into Eq. ~4.1!, and com-
pleting the integrals overq and e, we obtain the contribu-
tions of the diagrams withp-mode cooperon to the spi
conductivity as
14451
4sp
s ~v!3a54sp

s ~v!3a852sp
s ~v!3b52sp

s ~v!3c

52sp
s ~v!3c85

1

p2
ln

g

Av21d2
. ~5.25!

Comparing Eq.~4.42! with Eq. ~5.25!, one finds that the
contributions of the 0-mode andp-mode cooperons hav
opposite signs for each diagram in Fig. 3. The contribution
p-mode cooperon to the spin conductivity is the sum of
contributions of diagrams in Fig. 3, given by

Dsp
s ~v!

s0
s

52
2

a
ln

g

Av21d2
. ~5.26!

By summing up Eqs.~4.43! and ~5.26!, we obtain the total
QI correction to the spin conductivity near the UN limit a

DsUN
s ~v!

s0
s

5
1

a
lnS 11

d2

v2D . ~5.27!

In the UN limit (d→0), we getDsUN
s 50, meaning that the

spin conductivity also approaches its universal values0
s .

This result is in agreement with the numerical result in t
weak-disorder limit.37

VI. SUMMARY

Within the weak-localization theory, we have calculat
the QI contributions to the quasiparticle dynamical cond
tivities in a weakly disorderedd-wave superconductor nea
the Born or unitary limit. By neglecting the quasipartic
interactions, we regard the random Dirac fermions in cupr
superconductors as a disordered nodal gas. The intri
particle-hole symmetry is generally preserved in the sup
conducting state, while the additional global particle-ho
symmetry appears only for the nested Fermi surface. In
singletd-wave superconductor under consideration, the s
is conserved but the charge is not. All these characteri
features make the QI effects of such a nodal gas quite dif
ent from those of a disordered normal conductor.

In generic situations, the QI effects result only from t
contributions of 0-mode cooperon. The charge conductiv
is shown to be subject to a logarithmic suppression at
frequency, which is qualitatively in agreement with the n
merical study,30 and supported by the experimental observ
tions of the disordered cuprate superconductors.8,9 Here the
weak-localization effect on charge arises only from the
process described by Fig. 3~a!, and thus remains persistent
the presence of a weak magnetic field.24,25 Contrarily, the
usual weak-localization effect in a normal conductor is su
stantially suppressed by a magnetic field through the orb
coupling, as it stems from the contribution of the maxima
crossed diagrams, Fig. 3~b!.31–33

Opposite to the charge conductivity, the spin conductiv
is found to increase with decreasing frequency. As sho
above, all diagrams in Fig. 3 have nontrivial contributions
the QI correction of the spin conductivity. Figures 3~a! and
3~b! correspond, respectively, to a suppression of forw
scattering and to an enhancement of backscattering of
7-11
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quasiparticles, hence both of them lead to negative cor
tions to the spin conductivity. The coherent result of Fig. 3~c!
includes an enhancement of forward scattering and a
pression of backscattering, yielding a positive correction29

This positive contribution is shown to prevail over the su
of the negative ones. Therefore, it is the existence of
additional QI process, Fig. 3~c!, that leads to thequalitative
difference in the frequency dependence between the ch
and spin conductivities. Since the quasiparticle spin is a g
quantum number, such an antilocalization correction to
spin conductivity immediately signals the existence of e
tended low-lying quasiparticle states. It is worthy to po
out that, like the usual weak-localization theory, the pres
evaluations are valid only for the weak-disorder case, as
based on the SCTMA. Therefore we do not rule out
possibility of localized quasiparticle states at higher impur
concentration.

In the UN ~unitary and nesting! limit, neither 0-mode nor
p-mode diffuson has contributions to the conductivities.
the same time, the QI corrections from the 0-mode coope
are just canceled out by the additional contributions
p-mode cooperon, both for the charge and for the spin c
ductivities. As a result, these two conductivities approa
their universal values in this limit.38 The same cancellation
law has been found in the QI effect on the quasiparti
DOS.27,30 It seems that the UN-limit cancellation of the co
tributions from the 0-mode andp-mode cooperons is a gen
eral feature for the disorderedd-wave superconductor. How
ever, such a rule is not valid for the diffusons in all sens
even though in the present case either the 0-mode orp-mode
diffuson does not contribute to the conductivities. For e
ample, the 0-mode diffuson has no contribution to the
correction of the DOS, but thep mode was shown to pro
duce an enhanced zero-energy quasiparticle DOS.27 In addi-
tion, the diffusons have been shown to play important ro
in quasiparticle interaction effects in disorderedd-wave
superconductors.26

The problem whether or not the low-energy quasiparti
states are localized in a disorderedd-wave superconducto
still remains controversial. Balatskyet al. have shown that a
single strong impurity produces a virtual-bound state at z
energy, and the long-range overlaps between these imp
states can yield an extended quasiparticle band.39 The possi-
bilities of critical states40 and localization-delocalization
transitions41 in random Dirac fermions have been also d
cussed in the literature. We note that the measurement
the thermal conductivities in optimally-doped YBa2Cu3O6.9
~Ref. 10! and Bi2Sr2CaCu2O8 ~Ref. 12! do not show any
localization-induced suppression down to 0.1 K. On
other hand, the nonlinear-sigma-model approaches24,28 pre-
dicted a localization correction to the spin conductivi
However, the disorder models used in Refs. 24 and 28
different from the present binary alloy model. While the u
correlated zero-mean local Gaussian fields were used in
24, the authors of Ref. 28 treated the hopping matrix e
ments between nearest-neighbor sites as independent ra
variables. It turns out that different disorder models may le
to various theoretical predictions for the quasiparticle tra
port coefficients due to the anisotropy of the order param
14451
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in d-wave superconductors. A similar situation appears in
studies of the quasiparticle DOS.2 The numerical study in
Ref. 42 has shown that the binary alloy and random s
energy disorder models yield qualitatively different pred
tions for the low-energy DOS in thed-wave superconductor

Finally, we wish to point out that the QI process, d
scribed by Fig. 3~c!, also exists in superconductors that b
long to symmetry classesC and D in the classification of
Ref. 34, for the cooperon in RR channel is not influenced
the time-reversal breaking.24,25,34The QI effects contributed
by this process on the quasiparticle transport in the mi
superconducting state deserve further investigation. How
spin-orbit coupling or magnetic impurities affects this Q
process is also an interesting and open problem.
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APPENDIX A: SOME USEFUL MATHEMATICAL
FORMULAS

In this appendix we present some useful mathemat
formulas.

~i! Making use of the Dirac-type quasiparticle spectru
we can show that

(
k

jk
2Dk

2

~g21ek
2!4

5
1

24pv fvgg2
, ~A1!

(
k

jk
4

~g21ek
2!4

5(
k

Dk
4

~g21ek
2!4

5
1

8pv fvgg2
, ~A2!

(
k

1

~g21ek
2!n

5
1

~n21!pv fvgg2(n21)
for n>2,

~A3!

and

(
k

jk
2

~g21ek
2!n

5(
k

Dk
2

~g21ek
2!n

5
1

~n21!~n22!2pv fvgg2(n22)
for n>3.

~A4!

As an example, we shall prove Eq.~A1!. Noting that there
exist four gap nodes, we have

(
k

jk
2Dk

2

~g21ek
2!4

54E E dk̃fdk̃g

~2p!2

v f
2vg

2k̃f
2k̃g

2

~g21v f
2k̃f

21vg
2k̃g

2!4
.
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By means of the transformations ofpf5Av f /vgk̃f and pg

5Avg /v f k̃g , the above equation can be changed as

(
k

jk
2Dk

2

~g21ek
2!4

54E E dpfdpg

~2p!2

v f
2vg

2pf
2pg

2

@g21v fvg~pf
21pg

2!#4

5
1

2p2v fvgg2E0

x0
dx

x2

~11x!4

3E
0

2p

ducos2usin2u,

wherex05v fvgp0
2/g2 with p0;1/a. For the weak-disorde

case (g is small enough! considered, we can setx05`.
Thus, a completion of the integrals overx andu in the above
equation immediately yields Eq.~A1!.

~ii ! If w(jk ,Dk) stands for an arbitrary function ofjk and
Dk , we have

(
k

q•v f~k!v f~k!w~jk ,Dk!5
1

2
v f

2q(
k

w~jk ,Dk!,

~A5!

(
k

q•vg~k!vg~k!w~jk ,Dk!5
1

2
vg

2q(
k

w~jk ,Dk!,

~A6!

(
k

q•v f~k!vg~k!w~jk ,Dk!5
1

2
v fvgq̂(

k
w~jk ,Dk!,

~A7!

and

(
k

q•vg~k!v f~k!w~jk ,Dk!5
1

2
v fvgq̂(

k
w~jk ,Dk!,

~A8!

with q̂5(q•f1)g11(q•g1)f1. Here fn and gn represent, re-
spectively, the unity vectors parallel tov f andvg at thenth
node (n51,2,3,4), as shown in Fig. 1.

Here we only prove Eq.~A5!. Due to the existence of fou
gap nodes, one can write

(
k

q•v f~k!v f~k!w~jk ,Dk!

5v f
2(

n51

4

~q•fn!fn (
k

~n!
w~jk ,Dk!,

where (k
(n) represents the summation overk only in the

vicinity of the nth node. The above equation is easily sho
to be equivalent to Eq.~A5! by noting that

(
k

~n!
w~jk ,Dk!5

1

4 (
k

w~jk ,Dk!

and
14451
(
n51

4

~q•fn!fn52q.

~iii ! If A, A8, B, andB8 are arbitrary linear superimpos
tions of t i ( i 50, 1, 2, 3!, we have

1

2 (
i

Cii Tr~t iAt iB!5(
i

~CM ! i i ~A9!

and

1

2 (
i j

Cii Cj j8 Tr~t iAt jA8t iBt jB8!5(
i

~CMC8M 8! i i ,

~A10!

where C5( iCii t i ^ t i , C85( iCii8 t i ^ t i , M5A^ B, and
M85A8^ B8.

As an example, we shall prove Eq.~A10!. Assuming that
t iAt jA85(kxi jktk andt iBt jB85( l yi j l t l , we have

1

2 (
i j

Cii Cj j8 Tr~t iAt jA8t iBt jB8!

5
1

2 (
i jkl

Cii Cj j8 xi jkyi j l Tr~tkt l !

5(
i jkl

Cii Cj j8 xi jkyi j l dkl5(
i jk

Cii Cj j8 xi jkyi jk ~A11!

and

CMC8M85(
i j

Cii Cj j8 ~t iAt jA8! ^ ~t iBt jB8!

5(
i jkl

Cii Cj j8 xi jkyi j l tk^ t l . ~A12!

Equation~A12! yields

(
k

~CMC8M8!kk5(
i jk

Cii Cj j8 xi jkyi jk . ~A13!

A combination of Eq.~A11! with Eq. ~A13! immediately
leads to Eq.~A10!.

APPENDIX B: VANISHING CONTRIBUTION OF 0-MODE
DIFFUSON TO THE QI EFFECTS

In this appendix, we shall show that 0-mode diffuson do
not contribute to the QI effects. As shown by Fig. 4~e!, the
impurity scattering fromk state toq1k state (Dq2!g) is
subject to a vertex correction by the diffuson. The verte
corrected retardedT matrix can be expressed by

T̄R~q,e!mm85(
nn8

J~q,e!mm8,nn8
RR TR~e!nn8 , ~B1!

where the vertex functionJ(q,e)RR is given by

J~q,e!RR5I1D~q;e,e!RRH~q;e,e!RR. ~B2!

In order to calculate the vertex function, we exploit th
equation for 0-mode diffuson in the RR channel,
7-13
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D~q;e,e!RR5W~e,e!RR

1W~e,e!RRH~q;e,e!RRD~q;e,e!RR,

~B3!

yielding

H~q;e,e!RR5W 21~e,e!RR2D 21~q;e,e!RR. ~B4!

A substitution of Eq.~B4! into Eq. ~B2! leads to

J~q,e!RR5D~q;e,e!RRW 21~e,e!RR. ~B5!

Making use of Eqs.~3.7! and ~3.8!, we get

W 21~e,e!RR'
pr0

2g
3H t3^ t3 for the Born limit

2t0^ t0 for the unitary limit.
~B6!

Substituting Eqs.~3.32! and ~B6! into Eq. ~B5!, we obtain
the expression of the vertex function as~for Dq2!g and
ueu!g)

J~q,e!RR5
2g

Dq22 i2e
~t0^ t02t1^ t12t2^ t22t3^ t3!,

~B7!

which is suitable both near the Born and near the unit
limits. Substituting Eqs.~2.1! and~B7! into Eq.~B1!, we can
easily show that

T̄R~q,e!5(
i

J~q,e! i i
RRt iT

R~e!t i* 50. ~B8!

Since every conductivity diagram in Fig. 4 contains the v
tex correction by the diffuson, Eq.~B8! indicates that none o
them contributes to the conductivities.

APPENDIX C: VANISHING CONTRIBUTION OF p-MODE
DIFFUSON TO THE QI EFFECTS

In this appendix, we shall show that the contributions
all the lowest-order conductivity diagrams withp-mode dif-
fuson to the QI effects are summed to vanish. These
grams are generated by replacing allq by Q1q in Fig. 4. In
the case ofp-mode diffuson, the vertex-dressedT matrices
are shown to be

T̄p
R(A)~q,e!5fR(A)~q,e!t0 , ~C1!

for Dq2!g and ueu!g, where

fR(A)~q,e!57 i
16g

pr0

1

Dq27 i2e12d
. ~C2!

The contributions of the diagrams withp-mode diffuson
to the current-current correlation function in RA channel a
expressed as
14451
y

-

f

a-

e

Pp
x ~e,e8!4a

RA5
ni

2 (
kq

Tr@Lk
xGk

RT̄p
R~q,e!

3GQ1k
R T̄p

R~q,e!Gk
R
•Lk

xGk
A#, ~C3!

Pp
x ~e,e8!4b

RA5
ni

2 (
kq

Tr@Lk
xGk

RT̄p
R~q,e!

3GQ1k
R

•LQ1k
x GQ1k

A T̄p
A~q,e8!Gk

A#,

~C4!

Pp
x ~e,e8!4c

RA5
ni

2 (
q

(
kk8

(
i

Dp~q;e,e8! i i
RA

3Tr@Lk
xGk

RT̄p
R~q,e!GQ1q1k

R t iGQ1q1k8
R

3T̄p
R~q,e!Gk8

R
•Lk8

x Gk8
A t i* Gk

A#, ~C5!

and

Pp
x ~e,e8!4d

RA5
ni

2 (
q

(
kk8

(
i

Dp~q;e,e8! i i
RA

3Tr@Lk
xGk

Rt iGk82q2Q
R T̄p

R~q,e!

3Gk8
R
•Lk8

x Gk8
A t i* GQ1q1k

A T̄p
A~q,e8!Gk

A#.

~C6!

By means of Eqs.~A9! and ~C1!, one can reexpress Eq
~C3!–~C6! as

Pp
x ~e,e8!4a

RA5
ni

2 (
kq

fR~q,e!2Tr~Lk
xGk

RGQ1k
R Gk

R
•Lk

xGk
A!,

~C7!

Pp
x ~e,e8!4b

RA5
ni

2 (
kq

fR~q,e!fA~q,e8!

3Tr~Lk
xGk

RGQ1k
R

•LQ1k
x GQ1k

A Gk
A!,

~C8!

Pp
x ~e,e8!4c

RA5ni(
q

(
i

fR~q,e!2$Dp8 ~q;e,e8!RA

3@Mp
x ~q!4c

RA
^ •M̃p

x ~q!4c
RA#% i i , ~C9!

and

Pp
x ~e,e8!4d

RA5ni(
q

(
i

fR~q,e!fA~q,e8!

3$Dp8 ~q;e,e8!RA@Mp
x ~q!4d

RA
^ •M̃p

x ~q!4d
RA#% i i ,

~C10!

where

Mp
x ~q!4c

RA5(
k

Gq1Q1k
R Gk

RLk
xGk

A , ~C11!
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M̃p
x ~q!4c

RA5(
k

Gk
ALk

xGk
RGq1Q1k

R , ~C12!

Mp
x ~q!4d

RA5(
k

Gq1Q2k
R Gk

RLk
xGk

A , ~C13!

M̃p
x ~q!4d

RA5(
k

Gq1Q1k
A Gk

ALk
xGk

R , ~C14!

and

Dp8 ~q;e,e8!RR(A)5(
i

Dp~q;e,e8! i i
RR(A)t i ^ t i* .

~C15!

The impurity concentrationni is related tog through Eq.
~2.6!. The above correlation functions can be calculated
the same method as used in the previous sections.

~i! For the charge conductivity, a completion of the su
mations overk in Eqs.~C7!, ~C8!, and their counterparts in
RR channel yields

Pp
e ~e,e8!4a5

64e2v f

avg
(

q

Dg

~Dq22 i2e12d!2
~C16!

and

Pp
e ~e,e8!4b52

64e2v f

avg
(

q

D

Dq22 i2e12d

3S g

Dq21 i2e812d
1

g

Dq22 i2e812d
D .

~C17!

Substituting Eqs.~C16! and ~C17! into Eq. ~4.1!, we obtain

sp
e ~v!4a

s0
e

5
sp

e ~v!4a8

s0
e

5
4g

ad
F1S v

d D ~C18!

and

sp
e ~v!4b

s0
e

52
8g

ad
F2S v

d D , ~C19!

where

F1~x!5
1

x
arctanx5H 1 if x!1

p/2x if x@1,
~C20!

and

F2~x!5
1

xE0

1

dyF11y

2y
arctan

x~11y!

2

2
12y

2y
arctan

x~12y!

2 G5H 1 if x!1

p/2x if x@1.

~C21!

From Eqs.~C18!–~C21!, it follows that
14451
y

-

sp
e ~v!4a1sp

e ~v!4a81sp
e ~v!4b50, ~C22!

for v!d or v@d. Therefore, the sum of the contribution
from Figs. 4~a! and 4~b! has no singular correction to th
dynamical charge conductivity.

A completion of the summations overk in Eqs. ~C11!–
~C14! yields

Mp
e ~q!4c

RA5M̃p
e ~q!4c

RA52Mp
e ~q!4c

RR52M̃p
e ~q!4c

RR

52Mp
e ~q!4d

RA52M̃p
e ~q!4d

RA5Mp
e ~q!4d

RR

5M̃p
e ~q!4d

RR52
e

4pvgg2
~ q̂vgt11qv ft3!.

~C23!

Substituting Eqs.~C15! and~C23! into Eqs.~C9! and~C10!,
and completing the summations overi, we get

Pp
e ~e,e8!4c

RA5Pp
e ~e,e8!4c

RR5Pp
e ~e,e8!4d

RA5Pp
e ~e,e8!4d

RR50,

leading to

sp
e ~v!4c5sp

e ~v!4d50. ~C24!

Equations~C22! and ~C24! indicate that thep-mode diffu-
son has a vanishing contribution to the QI correction of
charge conductivity.

~ii ! For the spin conductivity, a completion of the summ
tions overk in Eqs.~C7! and ~C8! yields

Pp
s ~e,e8!4a5(

q

32Dg

~Dq22 i2e12d!2
~C25!

and

Pp
s ~e,e8!4b52(

q

32D

Dq22 i2e12d
S g

Dq21 i2e812d

1
g

Dq22 i2e812d
D . ~C26!

Substituting Eqs.~C25! and ~C26! into Eq. ~4.1!, we obtain

sp
s ~v!4a

s0
s

5
sp

s ~v!4a8

s0
s

5
4g

ad
F1S v

d D ~C27!

and

sp
s ~v!4b

s0
s

52
8g

ad
F2S v

d D . ~C28!

A combination of Eqs.~C20!, ~C21!, ~C27!, and~C28! leads
to

sp
s ~v!4a1sp

s ~v!4a81sp
s ~v!4b50, ~C29!
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for v!d or v@d, implying that the sum of the contribu
tions from Figs. 4~a! and 4~b! to the dynamical spin conduc
tivity is nonsingular.

A completion of the summations overk in Eqs. ~C11!–
~C14! for the spin case yields

Mp
s ~q!4c

RA5M̃p
s ~q!4c

RA5Mp
s ~q!4d

RA5M̃p
s ~q!4d

RA50
~C30!
14451
and

Mp
s ~q!4c

RR5M̃p
s ~q!4c

RR52Mp
s ~q!4d

RR

52M̃p
s ~q!4d

RR52
aq

2pg2
t0 . ~C31!

Substituting Eqs.~C15!, ~C30!, and~C31! into Eqs.~C9! and
~C10!, and completing the summations overi, we get
Pp
s ~e,e8!4c52(

q

128D2q2g

~Dq22 i2e12d!2@Dq22 i ~e1e8!12d#
, ~C32!

and

Pp
s ~e,e8!4d5(

q

128D2q2g

~Dq22 i2e12d!~Dq22 i2e812d!@Dq22 i ~e1e8!12d#
. ~C33!
he

uc-
do

en

qs.

lar
A substitution of Eqs.~C32! and~C33! into Eq.~4.1! leads to

sp
s ~v!4c

s0
s

5
sp

s ~v!4c8

s0
s

52
8g

ad
F3S v

d D ~C34!

and

sp
s ~v!4d

s0
s

5
sp

s ~v!4d8

s0
s

5
8g

ad
F4S v

d D , ~C35!

where

F3~x!5
2

x2
ln~11x2!2

4

x2
lnS 11

x2

4 D1
2

x3
arctanx

12S 1

x
2

4

x3D arctan
x

2

5H 1 if x!1

p/x if x@1,
~C36!

and

F4~x!52
4

x2
ln~11x2!1

4

x2
lnS 11

x2

4 D14S 1

x
2

1

x3D
3arctanx22S 1

x
2

4

x3D arctan
x

2

5H 1 if x!1

p/x if x@1.
~C37!

Therefore, we obtain
sp
s ~v!4c1sp

s ~v!4c81sp
s ~v!4d1sp

s ~v!4d850,
~C38!

for v!d or v@d. Equations~C29! and ~C38! indicate that
thep-mode diffuson has also a vanishing contribution to t
QI correction of the spin conductivity.

APPENDIX D: VANISHING CONTRIBUTIONS OF
NONSINGULAR LADDERS TO THE QI EFFECTS

In this appendix, we show that the lowest-order cond
tivity diagrams with nonsingular ladders, shown in Fig. 5,
not contribute to the QI effects. The contribution of Fig. 5~a!
to the electrical current-current correlation function is giv
by

Pe~e,e8!5a5
1

2
e2v f

2(
q

(
kk8

(
i jk

L~e,e! i j
RRC~q;e,e!kk

RR

3Tr@t iGk8
R tkGq2k8

R tkGk8
R t j* Gk

R~Gk
A

2Gk
R!Gk

R#, ~D1!

with L(e,e8)RR(A)5( i j L(e,e8) i j
RR(A)t i ^ t j , standing for the

expression of the nonsingular ladders. By means of E
~2.2! and ~A1!–~A4!, one can readily show that

FIG. 5. Lowest-order conductivity diagrams with nonsingu
ladders~gray blocks!.
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(
k

Gk
R~Gk

A2Gk
R!Gk

R50. ~D2!

A substitution of Eq.~D2! into Eq. ~D1! immediately yields
Pe(e,e8)5a50, indicating that Fig. 5~a! has a vanishing
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contribution to the charge conductivity. Obviously, the sa
conclusion is valid for the spin conductivity, as well as f
the case ofp-mode cooperon. Similarly, it is easy to sho
that Fig. 5~b! has also a vanishing contribution to the Q
effects due to Eq.~D2!.
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