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By the diagrammatic technique, we calculate the quantum interfet@iteontributions to the quasiparticle
dynamical conductivities of two-dimensiondlwave superconductors with dilute nonmagnetic impurities ei-
ther near the Born or near the unitary limit. For generic situations, only the 0-mode cooperon has QI contri-
butions to the charge and spin conductivities. It is found that with decreasing frequency, the spin conductivity
increases logarithmically while the charge one decreases logarithmically. Such a qualitative difference origi-
nates from a novel QI process related to the intrinsic particle-hole symmetry. In the combined limit of unitarity
and nested Fermi surface, there exist additional diffustv@odes in addition to the usual diffusive 0 modes.
The QI corrections in this limit are shown to vanish due to the cancellation of the contributions from 0-mode
and m-mode cooperons, so that both the charge and spin conductivities approach their universal values.
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[. INTRODUCTION superconductor exist both in retarded-advancérlA)
(or AR) and in retarded-retardedRR) (or AA) channels?*

Over the past decade, there have been considerable actigjuite different from those of a normal conductor. For the
ties on the study of disorder effects on quasiparticle transpod-wave superconductor, each of the usual diffusive 0 modes
properties ofd-wave superconductors. This is in part due tohas aw-mode counterpart near the combined limit of the
the convincing evidences that the superconducting state afnitarity and nested Fermi surfag¢the unitary and nestin-
the hole-doped cuprate materials is characterized by spirg(UN) limit].2%2” The QI effects on quasiparticle dc conduc-
singletd-wave paring’ and partly due to the fact that signifi- tivities of disorderedd-wave superconductors have been
cant disorder—perhaps originating with charge-donorstudied by several groups with the nonlinear-sigma-model
impurities—is present in nearly all cuprate superconductorsapproactf*2°>28By carrying out a weak-localization calcula-
The low-lying quasiparticle excitations in tllewave super- tion with the diagrammatic technique, Yashenlenal?’
conducting state have a Dirac-type spectrum because of thminted out that the existence of diffusive modes can be
existence of gap nodes. In stark contrast with the converdsed to account for the previous contradictory predictions for
tional superconductors, the low-energy states and transpoitte density of state€DOS) of disorderedd-wave supercon-
properties of thed-wave superconductor are strongly af- ductors. Recently, in the spirit of the method of Ref. 27, Yang
fected by the disordérExperimental measurements of the et al?® recalculated the QI corrections to the quasiparticle dc
transport properties such as microwdve optical®=® and  conductivities. They found an additional conductivity dia-
thermal®1* conductivities of the cuprates have provided gram, which was not considered previously. This new dia-
substantial useful information on the quasiparticle featuregram describes a novel QI process related to the intrinsic
in the disorderedd-wave superconductor. Theoretically, particle-hole symmetry. While this QI process has a vanish-
the self-consistenfT-matrix approximation(SCTMA) for  ing contribution to the charge conductivity, it gives rise to an
impurity scattering has been widely used, with some sucantilocalization correction to the spin conductivity.
cess, to calculate the charfe?? spin?? and therm&f?® Recent numerical solutions of the Bogoliubov—de Gennes
conductivities. equations suggested that the QI effects may also play an

The simplest theories based on the SCTMA ignore theémportant role in the quasiparticldynamical transport of
quantum interferencél) effects. It has been shown that the cuprate superconductotSUp to now, to our knowledge, dy-
QI effects have important influences on the quasiparticlenamical transport properties of the cuprates have not been
states, as well as on transport properties in disordénwwdve  yet investigated within the weak-localization theory. This is
superconductor¥ =2 More recently, it was arguélithat the  the principal motivation for the current work. On the other
maximum of optical conductivity at a disorder-dependenthand, the weak-localization theory for the random Dirac fer-
frequency observed in disordered cupréfds related to the mions in d-wave superconductors is far from well estab-
QI effects of quasiparticles, and cannot be interpreted by théshed, and thus needs further development.
simple SCTMA analysis. In this work, the method of Ref. 29 is extended to inves-

It is well known that the QI effects in disordered metalstigate the QI contributions to the quasiparticle dynamical
result from the existence of the diffusive mod@soperon conductivities of a two-dimension&D) d,2_2-wave super-
and diffuson (for reviews, see Refs. 31-B3Due to the conductor with dilute nonmagnetic impurities. We restrict
intrinsic particle-hole symmetry, the diffusive modes of aourselves near the Born or unitary limit, as these two limiting
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cases are considered to be relevant to the disorder effects of Aky
the cuprates. Both the frequency-dependent charge and spin
conductivities are calculated for generic Fermi surfaces, as
well as for the nesting case. In the singtgt ,2-wave su-
perconductor, the spin is conserved while the charge is not.
As a result, the charge and spin conductivities are found to
have qualitatively different frequency dependences due to ky
the existence of the novel QI process. In generic situations >
(far from the UN limid, only the 0-mode cooperon contrib-
utes to the QI effects. We show that the charge conductivity
is subject to a logarithmic suppression with decreasing fre- g
quency, which is qualitatively in agreement with the result at f 3 |84 f
low frequency of the numerical studyand is also supported 3 4
by the experimental observations of the cupréfém con-
trast, the spin conductivity is found to increase logarithmi-
cally with decreasing frequency. Near the UN limit, both the £, 1. Directions of the Fermi velocity; and “gap velocity”
0-mode andr-mode cooperons contribute to the QI effects., £ andg, represent, respectively, the unity vectors parallal to
Their contributions to the charge or spin dynamical conducandvg at thenth gap node 1i=1,2,3,4).
tivity are shown to cancel out exactly, and thus both conduc-
tivities approach their universal values in the UN limit. We of pointlike nonmagnetic impurities with potentiland low
also show that both the 0-mode andmode diffusons have concentratiom;. Then the time-reversal and spin-rotational
vanishing contributions to the QI effects in all situations con-symmetries remain preserved, meaning that the system be-
sidered. longs to symmetry class Cl in the classification of Ref. 34. In
This paper is structured as follows. In Sec. I, we outlinethe SCTMA, the quasiparticle self-energy can be expressed
the SCTMA, which is a starting point of the present weak-in the Nambu spinor representatiorfas
localization theory. In Sec. Ill, we derive in detail the expres-
sions of diffusive modes for d-wave superconductor. The SRA(e)=nTRM(e)=(NeFiy)ro+ ny7s, (2.1
QI contributions to the dynamical charge and spin conduc

tivities in generic situations are calculated in Sec. IV. Section, 4 7 are dimensionless parametergy represents the de-

Vis devoted to study th? Ql effec;ts near the UN limit. A 07 ge of chemical potential induced by the impurity scatter-
summary _of the results is given in Sec. VI. Spme usefuling’ 7o andr, (i=1,2,3) stand for the 22 unity and Paul
matgematmal fgrmulas arﬁ presented in ,lAppEndlth. In A%’matrices respectively. A use of Dyson’s equation immedi-
pendixes B and C, we show, respectively, that the 0-mo iy . . et , i
ands-mode diffusons have vanishing contributions to the ngtely yields the impurity-averaged one-particle Green's func

. ) tions as
effects. For completeness, we present in Appendix D the

f, f,
2 | g1

for |e|<y. Herey is the impurity-induced relaxation rate,

demonstration that the lowest-order conductivity diagrams 1—N)e+i T A+
with nonsingular ladders do not contribute to the QI correc- GRA(e)= L Jexylot Ay §k73, (2.2
tions. [(1-Nexiy]—e

where the shift of chemical potential is absorbeduinThe

impurity-induced density of states at zero energy is calcu-
[l. SCTMA FOR THE D,2_,>-WAVE SUPERCONDUCTOR lated aspy= —(1/7T)Im§)kTerR(O)=4| 'y/Trzva wherel

We begin with the most extensively studied model for a=In(I/y)>1 with I'~ v v 4/a.
2D d-wave superconductor, in which the normal-state disper- The parametery, A, and» can be evaluated consistently
sion of a square lattice is given by,=—t(coska ViatheT-matrix equation
+cosk,a)— u, wherea is the lattice constant,is the nearest- ROAY, R(A) R(A)
neighbor hopping integral, and is the chemical potential. TH(e)=Vr3+ Vg™ (e) T (e), (2.3
The nested Fermi surface corresponds to a half-filledyith gR®(e)=3,GR®(¢). Using Eq.(2.2), we can show
band w=0). The order parameter of thd,>_,2-wave that
pairing state is expressed by, =Aq(coska—coska).

g

The four gap nodes are given bl,==(kgy,xkg)(n RIA TP PN

~1234) with ko=(1/a)arccosc w/2t). The quasi- g¥M (&)= 5T D(L- 1D eFiv]m
particle spectrum near the gap nodes can be linearized as IR

6= VET A2~ \(0:- K2+ (g K2, where vy=vgt/Aq +H(VI-UT) s, 2.4

=\2ta\J1— (u/2t)?, andk is the momentum measured from for |e|<y, whereU is the effective impurity potential given

the nodek,. The directions of the Fermi velocity; and by U~ 1=V"1+3,&/(ei+ y?). A substitution of Eqs(2.1)

“gap velocity” v, are depicted in Fig. 1. and (2.4) into Eq. (2.3 leads toy=2n;/mpo(1+ 7%), \
The disorder model considered in the present work is ex=(1— 7?)(I—1)/(»*+2l—1), andp=2/mpyU.

actly the same as that of Ref. 27, i.e., the random distribution The Born limit corresponds tg?>2l, yielding
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ak gk’ qk q-k; gk’
> > > >— > > e ¢ \RRA) = R R(A) (o1
u; u’ ' ulu, le§ n’ H(g e, )Ml”lu“z”z Ek Gqfk(s)f“l/‘zek (e )Vl”z'
o= T o g 33
Ay, s oovive o v We introduce tensor produd@=X®Y (whereX andY de-
k k’ (2) k k; k’ note 2x<2 matricey with the definition of Z,,. .,/
=X,,Y 1, . Then Egs(3.1)—(3.3) can be reexpressed as
gk gtk gtk a+k qtk’
: : »- T r > . ! — ! ! . ! . !/
u;u' "_'_’: . Uz?u' C(q;e,€')=W(e,€')+W(e, €' )YH(q;€,€ )C(Q; €, € )(,34)
1 = x + * 4 _ '
VPl v : v: v v.v’ with
< - '« «— ' < 2 <
k k ) k ki k' W(e, e )RRA=nTR(e)@ TRA(€") (3.5
and
FIG. 2. Ladder diagrams for the 0-mode cooper@h and
0-mode diffusonb). The dashed lines denote thenatrices instead ] \RR(A R R(A), s
of the impurity potential. The corresponding diagrams for the H(g;e, )N ):zk Gg(e)®@G™(e"). (3.6
-mode cooperon andr-mode diffuson can be generated by the
replacement of— Q+q in these 0-mode diagrams. One can make a decomposition &f3;;X;;7,®7; for

X=W,H, and(C. A substitution of Eq.(2.1) into Eq. (3.5

T immediately yields
7=§nipoU2, A=1-1; (2.9 Yy
and the unitary limit corresponds tp— 0, meaning that W(e,e')go ™= 12—7[1“ E(fi €')

’ mpo(1+ 7°) Y

2n; \ -1 26 3.7
y_w_po’ To-1- (2.6) 2y

_ . . W(e e )5 =—""r, (39

The above results of SCTMA will be used in the evaluations mpo(1+ 7?)

of the quasiparticle diffusive modes and transport coeffi-
cients. 5
W(e,e’)§3R(A)=—i 77

A )
1+i—e|, (3.9
Y

mpo(1+ 7?
Ill. THE DIFFUSIVE MODES Pol )
and
Since the QI effects are related to the diffusive modes, we

first derive their expressions for a disordekdave super- 2v7 A

conductor. W(e, e )3RA = Ii—2< 1+i —e’), (3.10
mpo(1+7%) Y

A. 0-mode cooperon and diffuson where the terms bilinear ie or € are omitted, consistent

The 0-mode cooperon and diffuson exist both in RA andith @n approximation made throughout this paper. The
in RR channels due to the local particle-hole symmetry""bo"e,eqld'a'“OnS indicate _thag the d_0mlnant’ component of
7,GR(€) 7,= — GA(— €). The ladder diagrams for the coop- /Y(€:€') near the Born '.'”“2 @">21) is W(e, €)s3, while
eron are shown in Fig.(d). According to the Feynman rules that near the unitary “m't’_@ <,1) is W(e. €)oo
in the diagrammatic technique, the equation for O-mode WO letus calculaté{(q;e,e"). For small values of, e,
cooperon can be expressed as ande’, we have

C(qg;e,€’) =W(e,€')

puv,p' v’

' ] 1

oo TWEE) 1y 0 Gh () ~GR+ e;GE(E’)Lr:o— q-VGR+ zqq:VVGE
€

XH(d €,€") C(d €€y v (3.11

31 and

V1:M2V2

where the repeated Nambu indices mean summations, and RA), 1 RA) L s d R(A)
the two-particle irreducible vertex and the integral kernel in G V(e)=G Wt e -GV (e)le=0, (312
the RR(or RA) channel are defined, respectively, as
with GR®=GR™(0). Substituting Eqs(3.11) and (3.12)
W(E,E’)Ef(yv,: nTR(€),,  TRA(e"),,, (3.2  into Eq.(3.6), and using Eqs(A1)—(A8) in Appendix A, we
’ can show that all the nonvanishing component®(¢d; €,€’)
and are given by
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2 2
vituv
1-— zng), (313

H(q;e,e’)goR(A)=I7Tvag( 12,

H(q;e,e')i*f(’*):szvg (21—1)+i (ex€)
2 2
vi+3ug 5
-—0?, 3.1
1277 q (3.14
and
mefqgmubﬂmw (21-1)+i——(e+e)
2 2
vg+3v
_Z9 “°f 21_ (3.15

12y
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S NTTrE)

+i1+2>\(|—1)(6i6,)

(21—-1)+29?

B v§+ 3v?+27]2(v?+v5) qzl

12y?
(3.2)
In the formulism of components, E¢3.16 reads
AI-LVuuj_VlC/-L]_Vj_uu,V/:WMVJ’«’V, .

Using the decomposition o, ./ ,,» = Zi;jXij(7i) , (7)) o7 v’
for X=A,C,W, and completing the matrix products of Pauli
matrices, one obtains

% AijCkl(TiTk)M,u’(TjTl)w’:; Wi (7i) e (1) o -

In order to evaluate the expression of cooperon, We reexthere js no simple elegant way to evaluate the fourfold sum

press Eq(3.4) as

A(Q;e,€')C(q;€,€")=W(€,€'), (3.16

where

A(Q;e,€')=T—W(e,e' YH(Q; €,€’), (3.17

with 7= 7,® 7y. Substituting Eqs(3.7), (3.8), and (3.13-
(3.19 into Eqg.(3.17), we obtain

A(ge, e ) RN = — —2(21-1)— %21 +1)

41(1+ 7?)
2N+ 9% (1—\
Pl A Gl DN
y
2wi+vd)+ 773 +vd)
- 5 q|, (3.18
12y
1+2n(1—1
Amquﬁwzi—————(m—n+r——l——l
4|(1+772)
2 2
vf+3vg )
X(exe')— , (3.19
( ) 1277 q
7 -
A(ge e )N =— T | (21-1)+i exe
(q )22 4|(1+772) ( ) ( )
2 2
vf+30g )
- ——0?|, 3.2
12,7 q (3.20
and

on the left-hand side of the above equation. However, near
the Born or unitary limit, the nondiagonal components of
WI(e,€') are negligible, and thus only the diagonal compo-
nents of A(q;e,e’) andC(e,e') need to be taken into ac-
count. Therefore EQq(3.16 is equivalent to the following
group of equations:

AooCoot A11C11+ A2Coot AgsCas=Woo,  (3.22
AooC11+A11Co0~A2C33~ AgsC2=0,  (3.23
AooCa2~ A11Ca3t ArCoo—AssC11=0,  (3.29

AooC33~ A11C20— ApCr1+ AgsCoo=Waz,  (3.29

where the argumentsg( €, and €’') of A;;, C;;, and W,
have been omitted.

SinceC(q; €, €');; is singular for small values df, €, and
€', the singular terms in the left-hand side of every one of
Egs.(3.22—(3.25 cancel out, meaning that

AoiCoot AniCrit AyCort AzsCa3=0, (3.2
AolC11+A11Coo— AzCas—AsC2=0,  (3.27)
AolCoz~A1iCast ApCoo— AsCr=0,  (3.28
AoeCaz—A1iCor— AyCrit+AgiCo=0,  (3.29

whereA;; =A(0;0,0); . In the Born or unitary limit, it is easy
to show that the group of Eq$3.26—(3.29 has a sole so-
lution as
CRRA =z CRRM = — cRRA = CcRRAY | (3.30
For the Born limit, Wyy can be neglected. Substituting
Egs.(3.9), (3.18—(3.21), and(3.30 into Eg.(3.25, and us-
ing Eq. (2.5, we obtain
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1 7,6V (e) 7= GFLA(e), (3.33

4 2
RRA) 2 (3.31

C(q;&’,e”)oo mp D2_'—+/)’
0Dg"~i(exe with Q= *(7r/a, = mr/a) the nesting vector. Any small de-

whereD=(v$+u§)/4| v is the quasiparticle diffusion coef- Vviations from this combined limit can be shown to make the
ficient. One can show that the above expression is also valigboldstone = modes gapped. The ladder diagrams for
for small but finite 2. Combining Eq.(3.30 with Eq.  7-mode cooperon can be obtained from those of 0-mode
(3.31), and noting that the 0-mode diffuson has the samesooperon by replacing by Q+q. The equation forr-mode
expression as that of 0-mode cooperon due to the timecooperon is given by
reversal symmetry, we obtain
A(Ge,e)CaGe ) =Wee), (334
4v? 1
Clge,e' )N =D(qre,e") RN =— ——

TPo Dg°—i(e*€’) where

X(F19®@ 19+ QT = ToQ To+ 73R 73),

(3.32

which is in agreement with that of Ref. 2@part from a
disputed prefactor)2 Similarly, we can show that E¢3.32
is also valid near the unitary limit. The above evaluations . _/\RRA)_ R RA), s
indicate that any small deviations from either limit do not Ha(g € €’) _Ek: GQuq-k(€)®G ('),
make the Goldstone 0 modes gapped. (3.36

A (g e,€)=T—W(e, e )H,(Q;€,€'), (3.3

with

B. @r-mode cooperon and diffuson In order to calculateH_(q;e,e') and A_(q;€,€'), one

In the UN limit, there exist the additionat-mode coop- needs to exploit the relationsq, = —A, and &g, = — &
eron and diffuson due to the global particle-hole symnfétry —2u. For a nearly nested Fermi surfadg:(<7y), we have

28 (1ymo— Agr) + (Y2 +AE— &) 3
(Y + €p)?

GQsq k(€)= 726G ((€) T+ 2u

(Y2 +AE—3&0) (iyro— Aymy) — E(3Y?+3A5—€0) 75

+(2p)? 3.3
) (F+ e’ 837
|
Substituting Egs(3.12 and(3.37) into Eq.(3.36), and using RRA R A u
Egs.(A1)—(A8), we can show that all the nonvanishing com- H.(qee)RN=+H (ge e )3 =] p—
ponents ofH .(q;€,€’) are given by fUg (3.41
2u° A substitution of Eqs(3.13—(3.15 and (3.38—(3.41) into
. \RR(A) _ . 1\RR(A) . .
H(Gie€oo™ " = H(di €€ oo lL37wfv 2 Eq. (3.39 yields the diagonal components 4f,(q; e,e’) as
9
(3.38
2 A(Gre € )gg = - —2(21-1)— (6l 1)
’ ’ M + 2
Ho (g€ )T =—H(gee )?1R(A)+ﬁ, 41(1+ 7?)
ToeY 20— A1\
(3-39 +i L)(Ei 6')
Y
§ 2(vi+vg) = 7°(3vi+ug)
M f g f g/ 5
H. (g€ €)W =—H(gee) 5+ ———, - q
q 33 q 33 377va972 1292
(3.40 e 4
_ R , (3.42
and 32 4
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1+2N(1-1
A(gee ) fPN=z—— (2I—1)+i#
41(1+ 7%
2 2 2
vi+3v 2
X(eie’)—f—zqu_i, (3.43
12y 3y
7’ -
A,T(q;e,e’);‘ZR(A)=—£“(l—_H]2) (21—1)+i (exe)
2 2 2
vi+3v 2un
-9, (3.4
12y 3y
and
Aw(q;é,é,)ggR(A)ZIm (2|—1)—27]2
J1+20(1-1)
+i———(ex€)

B vé+ vi-27%(vi+ vé) o

12y?

(6=49P)u®  Anu

3,2 (3.495

Equations(3.22—(3.29 are also suitable for the-mode
cooperon. Therefore, using Eq8.42—(3.45, one can simi-
larly show that(near the unitary limit

C.(ge,e)RRN=D (g€, )RRA
4~ 1
TPo Dg°—i(e+€')+26

X ( * ’To® ’To+ Tl® T]_I 7'2® 7'2+ T3® 7'3),
(3.46
with 6=27%y+2nuly+ u?lly<y. Near the Born limit,
one getCRRA =0 (1=0,1,2,3), indicating that the diffusive

il
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w)= 1deEReHX 4.1
o (w)—a o 2m (€,6—w), 4.7
with I1X(e,e")=T1X(e,e')RA—-T1X(¢,e")RR where
ITX(e,e’)RA and I1¥(e,e")RR stand for the corresponding
current-current correlation functions in RA and RR channels,
respectively. Throughout this paper we only consider the
low-frequency region ofv<<vy. In the static case, Ed4.1)
reduces to be

lim aX(w):%ReHX(o,O). 4.2)

w—0

The Boltzmann dc conductivity corresponds to the contri-
bution of “bare bubble” diagram, and the relevant correla-
tion function in RA channel is given by

=

5 4.3

11X(0,05"=5 > Tr(A{GE- A{GY),
where Ag=—ev(k) 7o and AZ=(1/2)[v4(k) 71+ v(K) 3]
denote, respectively, the charge and spin current vetiors.
The corresponding expression in RR channel can be easily
obtained by a replacement 8f—R in Eq. (4.3). The same
replacement is also suitable for the correlation functions re-
sponsible for the QI effects. Hereafter we only provide the
expressions for correlation functions in RA channel, but
present the calculated results in RR channel where necessary.
Substituting Eq(2.2) into Eq.(4.3) and its counterpart in RR
channel, and using Eq6A1)—(A4), one can easily show that
I1%(0,0)§ = —I11%(0,0); "=e?v(/mv4, and I1%0,0)5"
= —II5(0,005 "= (v +v2)/Amvvy. Thus we obtain the uni-
versal conductivities as

R ezvf vf2+v§

Op= > y
w Ug

(4.9

7o 471'zvag
Evidently, the spin conductivity satisfies the Einstein relation
a5=poD/4, for the quasiparticle spin is a good quantum
number. Equatior4.4) is exactly in agreement with those of
Refs. 15 and 22, and was widely used by other authors. Here
we wish to point out that the correlation functions in RR

7 modes exist only near the UN limit. Contrary to the dif- channel have nonvanishing contributions to the quasiparticle
fusive 0 modes, the Goldstone modes are gapped by any conductivities:>? contrary to the situation of normal state.

small deviations from the UN limit measured By For the

situations far from the UN limit, the contributions of diffu-

This is because the quasiparticle state is a mixture of an
electron and a hole, while the carries of charge and spin in a

sive m modes to the QI effects are completely suppressediormal conductor are either electrons or holes.

due to the large gap. Equatio(®&32 and(3.46) will be used

We now turn to the QI contributions to the dynamical

to calculate the QI corrections to the charge and spin coneonductivities. In generic situations, only the diffusive 0

ductivities.

IV. DYNAMICAL CONDUCTIVITIES IN GENERIC
SITUATIONS

modes contribute to the QI effects. All the lowest-order con-
ductivity diagrams with cooperon and those with diffuson are
depicted in Figs. 3 and 4, respectively. These diagrams can
be generated from the self-energy diagrams, Fig¢s). dnd

1(d) in Ref. 27, as in the study of disordered interacting

We use the Kubo formula to calculate the quasiparticleelectron system&3® As shown in Appendix B, none of the
conductivities. At zero temperature the real part of chargeliagrams in Fig. 4 contributes to the conductivities. Those

(x=e) or spin (y=s) dynamical conductivity can be evalu-

ated via®

conductivity diagrams containing the nonsingular ladders are
shown to have also vanishing contributiofsee Appendix
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FIG. 3. Lowest-order conductivity diagrams with 0-mode coop-
eron (shaded blocKs Figures 8a') and 3c’y denote, respectively,
the symmetrical conjugates of FigslaBand 3c), with the upper
and lower quasiparticle lines interchanged.
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D). Therefore the QI corrections to the conductivities come
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and
Hx(e,e’)gc 2 ; C(q;e, e)”RC(q €,€ )
kk’q
XTH(AYGRTGq 1 TG kTiGyy A G i GR).

4.7

Using Egs.(A9) and (AlO) and noting thatllX(e,e")3,
=T1¥(e,e') 32— TIX(e,e')5R, we can rewrite Eqs(4.5—
(4.7) as

X(e,e'>3a=§ Zi [C(€6,€)RRMN)galii, (4.9

only from the cooperon contribution, as shown by diagrams

in Fig. 3.
Figure 3b) denotes a sum of the well-known maximally
crossed diagram&>3Figure 3a) was first proposed by Al-

tland and Zirnbauer in the random-matrix theory of mesos-

copic normal/superconducting systeffists physical effects

have also been studied by the nonlinear-sigma-model ap-HX(e,e’)gfz

proach in disordered-wave superconductofé,as well as in
the mixed superconducting stafeFigure 3c) represents a

novel QI process; its physical picture has been described in

HX(e,e'>§g\—2 2 [C(g €€ )RAMOTT, (4.9

and

> D [C(g e, €)RRMX(q)RAC(g; e, €')RA
q i

X MX(q) B8 (4.10

Ref. 29 at the semiclassical level. As will be shown below, itwhere

is the existence of Fig.(8) that leads to a qualitative differ-

ence between the frequency dependences of the charge and

spin conductivities.

A. Correlation functions due to 0-mode cooperon
The contributions of Figs. (8), 3(b), and 3c) to the

current-current correlation function in RA channel are ex-

pressed, respectively, by

%2 2 Clgeoff
kg i

l_[X(e,e’)g?:

X Tr(AXGR7GR  iGR-AYGR), (4.5
TTx( 66)3b_ EECQ,66)
XTr(A{GR7GR - AY , G* 7,Gp),
(4.6)

Uag'y

(b) or%

(c) (c') (d) (d)

o T

(e)

,x\

//////////

FIG. 4. Lowest-order conductivity diagrams with 0-mode diffu-
son (shaded blocKs4(a)-4(d’), and the diagrams for the vertex
function 4e).

(MX)3, EGRK®[GRAX<GA GR)- AYGH],

(4.1)

(MX);;*:ZK (GRAX, G ) ® - (GRAYGY), (4.12

MR 2 GR (@ (GRAYGY), (4.13

and
2 G @ (GRALGY). (4.14

For the asymmetrical diagramg and &' with &

=3a,3c,4a,4c,4d, one can readily show that
RellX(e,e’) . =RellX(€’,€),, so that
oX(w)g=0X(—w)¢. (4.19

Equations(4.5—(4.15 are general expressions, and will be
used to calculate both the charge and spin conductivities.

B. QI correction to the charge conductivity

Let us first calculate the charge conductivity. Substituting
the electrical-current vectorAj=—ev;(k)7, into Egs.
(4.1)—(4.14), and noting that the vectdrin these equations
is restricted in the vicinity of the four gap nodes, we obtain

(M)za=e?vf>, GIB[GL(GL-G{IG(], (4.18

144517-7
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(MO)RA= —eva (GRGH®(GRGY),  (4.17

ME5=e2 vi(k)a VG{@(GIGY), (419
and

M6<q>§é‘=e§ vi(k)g- VGR® (GRGR).  (4.19

Substituting Eq(2.2) into Egs.(4.16—(4.19), and using Egs.
(A1)—(A8), we find that

2

€7v¢
(MO)=——— 1@ 70, (4.20
TY Vg
ezl)f
(MO)F=(M®)z= _F(TO®TO_71®71_73®7'3)1
Ty
9
(4.21)

ME(Q5P= M58

e
=— (C]U TIQ Tot QU T3® Tg),
4ry? Vg

(4.22

and
ME(Q)5F= ME()5E s [Qg(T1® 70— 270@ 71)

12777 Vg

+Q(73® To— 279® 73) ], (4.23

with q=(q-f;)g,+(qg-g,)f;. Substituting Egs.(3.32 and

(4.20—-(4.23 into Egs. (4.8—(4.10, as well as into the
counterparts of Eqg4.9) and(4.10 in RR channel, we ob-
tain the electrical current-current correlation functions as

196, )gum — 2201 (4.24
€,€ =— , .
s avg 9 Dg’—i2e

4e%y; D

I1%(€,€")3,=—
(€ ean avg% DQ?—i(e—€)
P (4.29

Dg?—i(ete’)| .
and

I1%(€,€')5.=0, (4.26

with a=(vf+v3)/20v4. The first and second terms in the
right-hand side of Eq(4.25 correspond to the contributions
in RA and RR channels, respectively. Equati@ni26 indi-
cates that Fig. @) does not contribute to the charge conduc-

tivity.

PHYSICAL REVIEW B 69, 144517 (2004

The upper cutoff ofqg| in the above equations is set to be
1, with | .= yD/2y the elastic mean free path. Substituting
Egs. (4.24—(4.26 into Eq. (4.1), and completing the inte-
grals overq and e, we obtain the contributions of diagrams
in Fig. 3 to the charge conductivity as

2

[SaX: Y
0% w)3a= 0% W)30=— ——Ini— (4.27
2772avg |o
and
7%(w)3p=0%@)3= 0% w)3c: =0. (4.28

Here we have neglected the nonsingular terms of the order
ag. The above evaluations show that FigbBhas also a
vanishing contribution to the charge conductivity, due to the
cancellation of contributions from RA and RR channels. This
feature is considerably different from that of a disordered
normal metal, in which the QI effect results just from the
maximally crossed diagrani$-*3 The total QI correction is
thus the sum ot®(w)3, and oc®( )34/, given by

Ao%(w)

e
Jo

(4.29

The weak-localization correction shown by Ed.29 im-
plies that the charge conductivity is suppressed with decreas-
ing frequency. This result is qualitatively in agreement with
the numerical stud$? as well as supported by the experi-
mental observations of the cuprafes.

C. QI correction to the spin conductivity

The QI contribution to the dynamical spin conductivity
can be similarly evaluated by the approach for the charge
conductivity. The explicit expressions of Eqg.11)—(4.14)
for the spin conductivity are given by

(M®)za=7v52 GRE[GRm(GL—G)mG]
+- UfE GRe[GRm3(Gr— G 7GR,
(4.30
(M?9) ———v E (GR7GY)® (G GR)
——ufE (GR73GR) @ (GRr7GR), (4.31)
S, RA 1 R R A
MAD5= =5 2 04K VB (G{TGY)

(=Y

; v1(K)g: VGR®(GR3GY),

N

(4.32

and

144517-8
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~ 1
Mo(a)5e=~5

5 2 vg(ka- VG (GLmGY)

1
=5 2 (k@ VG{®(GLmGY).

(4.33

By completing the summations ovérin the above equa-
tions, one obtains

(M®)gq=—

o
—6 y2(70® To— Tl® T1— T3® Tg),
w

(4.39

(M®)5=—

20— B)Ti® T~ 2aToQ T
127772[( B)T1®T1y 2® T

+(2a+ﬂ)7'3®7'3], (435)

(MS);;?:_ [(2Qa—B)T®@T1—2aT1y® T

127y?

+(2a+ﬂ)7'3®7'3], (436)

MS(Q)??:MS(Q)?F}?: [AB(T1® T1— T3® T3)

- 127y?
(4.37

—a(71® T3t 173®71) ],

and

- 1
ME(Q)5R= M(q)58= .

S{d2ary®@ 10— (2a—B)
2wy

® 7 —(2a+ B) 738 T3] — Q(T1® T+ T3® 71)},
(4.38

with 8= (v—v2)/2vv4. A substitution of Eqs(3.32 and
(4.39—(4.389 into EQgs. (4.89—-(4.10 leads to the spin
current-current correlation functions as

2D

_— 4.3
Dg’—i2e (439

%€, € )30= —%

Eeen S > D
€,€ = 1
T IDgP—i(e—¢') D@—i(et+e)
(4.40

and
8D2q2

(Dg?—i2¢)[Dg’—i(e+e")]
(4.41)

HS(e,e'>3c=Zq

Substituting Eqs(4.39—(4.41) into Eq. (4.1), and complet-
ing the integrals oveq ande, we obtain the contributions of
diagrams in Fig. 3 to the spin conductivity as

PHYSICAL REVIEW B 69, 144517 (2004
40%(0)3a=40%(@)32 =20 @)3p

1 | 0%
—INy—.
2 |w|

(4.42

= _US(W)SCZ _Us(w)SC’: -

Quite different from the case of charge conductivity, both
Figs. 3b) and 3c) have nontrivial contributions to the spin
conductivity. While Figs. &) and 3b) give rise to negative
corrections to the spin conductivity, Fig(c3 yields aposi-
tive one. By summing up the contributions of all the dia-
grams in Fig. 3, we obtain the total QI correction to the spin
conductivity as

Ac¥(w) 2 vy
——=—In—.
a o

(4.43

6

Contrary to the charge conductivity, the spin conductivity is
subject to aveak-antilocalizatiorcorrection, due to the fact
that the positive contribution from Fig(& exceeds the sum

of the negative ones from Figs(é836 and 3b). Clearly, the
qualitative difference in the frequency dependence between
these two conductivities stems from the existence of the QI
process described by Fig(c3.

V. DYNAMICAL CONDUCTIVITIES NEAR
THE UN LIMIT

Since thed-wave superconductor is fundamentally sensi-
tive to the details of disorder, as well as to certain symme-
tries of the normal-state Hamiltonidrit is worthy to inves-
tigate the QI effects near the UN limit. In addition to the
0-mode cooperon, the diffusivie modes may also contribute
to the QI effects. All the lowest-order conductivity diagrams
with the diffusive = modes can be readily obtained by re-
placing allg by Q+q in Figs. 3 and 4. In Appendix C we
show that the contributions of those diagrams witimode
diffuson are summed to vanish. As a result, the total QI cor-
rection to the charge or spin conductivity near the UN limit
is a sum of the contributions from 0-mode amdmode
cooperons, i.e.,

Aoliy(w)=AcX(w)+Adk(w). (5.1

HereAoX(w) denotes the contribution af-mode cooperon
to the conductivity, which can be similarly evaluated by the
approach used in the case of 0-mode cooperon.

A. Correlation functions due to w-mode cooperon

Equations(4.8)—(4.10 are also suitable for the case of
sr-mode cooperon, provided that one makes the replacements
of C(qye,e)RRMNC (e, e )RRA, (M)§,— (M)A,
etc., with

144517-9
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4¢? D
(M})za= 2 GG @[GEA(GL~ G- ALGL, M6, )gp= — 2 -
(5.2 Vg “q |Dg°—i(e—€')+26
0 (5.1
(M§)§$=Ek (GR_ LAY (G )® - (GRAYGR), Da?—i(e+e)+25) '
(6.3 and
IT¢(€,€)3.=0. (5.12
MUD5T=2 Bl k@(GRALGY), (B4
Substituting Egs(5.10—(5.12) into Eq. (4.1), we get the
and contributions of the diagrams witlr-mode cooperon to the
charge conductivity as
M)T(T(Q)gcAzzk G§+Q—k®(G¢Af<(GE)' (5.9 () () vy In— (513
O'ﬂwga:(fﬂ.wga/: 1 .
2mlav, Vw+ 8
By comparing Eqs(4.11)—(4.14) with Egs.(5.2—(5.5), we ’
see that the results of the summations oken the above and
equations can be obtained by a transformation from the re- o . .
sults in the case of 0-mode cooperon, due to the the global 0 (@)3p= 0 (@)3= 0 ()3 =0. (5.19

particle-hole symmetry. Same as in the case of 0-mode cooperon, Fi@®.a&d 3c)

for the 7-mode cooperon have also vanishing contributions
to the charge conductivity. Thus, the contributionmeimode
cooperon is the sum afé(w)3, and o ()3, , yielding

B. QI correction to the charge conductivity

For the charge conductivity, we havad, ,=—Ag

= —7,A;7, in the nesting case. Substituting this relation and
Eq. (3.33 into Egs.(5.2—(5.5), and taking into account Egs.
(4.20—(4.23, one can easily show that

e \RA vy
(MW)Sb:—ZTO® 70 (56)
TYVg
(M5 =—(M?3)z
ezl)f
:—2(7'0®7'0+7'1®7'1+7'3®7'3), (57)
3myvg

e ~
—— (T ® 7o+ QU T3® 70),

ME(Q5= ME(9)5h=
4dmyvg

(5.9
and
ME(DSF= ME(SE
e -
=— m[qvg(rléa Tot279® 71)
+qQui(T3®@ T+ 279Q 73) ]. (5.9

A substitution of Eqs(3.46) and(5.6)—(5.9) into Eqs.(4.8—
(4.10 yields the electrical current-current correlation func-
tions due tor-mode cooperon as

D
Dg2—i2e+268

4eZUf

T1E(€,€)s,=
o )3a av,

(5.10

q

Aoi(w) 1 Y
e = In——. (5.15
o, a o+

Contrary to the 0-mode cooperon, themode cooperon
yields apositivecorrection to the charge conductivity. This is
because the phase differences of coherent paths correspond-
ing to 0-mode cooperon differ by from those tom-mode
cooperon. In addition, whilé o*(w) has a logarithmic sin-
gularity at zero frequenclEqg. (4.29], the same singularity
for Aot (w) is cut off by the gaps, as indicated by Eq.
(5.15. If the deviation from the UN limit is large enough so
that 5~ vy, the diffusion poles of ther modes are sulfficiently
killed out, and the contribution ofr-mode cooperon is sig-
nificantly suppressed. By summing up EG&29 and(5.15,

we obtain the total QI correction to the charge conductivity
near the UN limit as

(5.1

Equation(5.16 indicates that the weak-localization correc-
tion contributed by 0-mode cooperon to the charge conduc-
tivity is suppressed due to the existenceminode coop-
eron. At the UN limit (§=0), the contributions of 0-mode
and -mode cooperons just cancel owtg(w)=0, and
thus the charge conductivity remains its universal vat§e

C. QI correction to the spin conductivity
Similarly, substituting Eq(3.33 and the relationAg,

— A =T7Ap7, into Egs. (5.2—(5.5, and using Egs.
(4.34—(4.38, we immediately obtain

144517-10
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o
(M3)za=— F(7'0® Tot TI® T+ T3® T3),
my

(5.17

(M3)50= 27772[(20(_'8)71@ T+t2am® 1

+(2at B) 130 73], (5.18

1
(Mi)gt'?:lZ [(2a—B) @ T+ 2a75® 79

77’}/2

+(2a+B)T3® T3], (519

Mi(Q):’?cA:Mi(Q)gcA: [AB(T1® T1— T3® T3)

1272
(5.20

—Q(71® T3+ T3® 1),

and

~ 1
M(Q50= M) 5c=———{d2aro®@ 7o+ (2a—B)m
127y

QT+ (2a+ B)m3® T3]+(A:|( T® T3+ 730 7))}
(5.21)

A substitution of Egs.(3.46 and (5.17—(5.21) into Egs.
(4.8—(4.10 leads to the spin current-current correlation
functions forz-mode cooperon as

2D
II3(€,€ )3q= >, ———, 5.2
e 2 Dq?—i2e+25 (522
2D
I15(€,€' )ap=
Hehn=2 Dq?—i(e—€')+25
+ 2D (5.23
Dg?—i(e+e)+25| '
and
H:_(G,E’)?)C
B 8D2q2
T (D2—i2e+28)[Dg?—i(e+e')+258]
(5.24)

Substituting Eqs(5.22—(5.24) into Eq. (4.1), and com-
pleting the integrals oveq and e, we obtain the contribu-
tions of the diagrams withr-mode cooperon to the spin
conductivity as

PHYSICAL REVIEW B 69, 144517 (2004

405 ()3a=40(0)30 =205 () 3=~ 00 ®) 3¢
o (@) — et (5.25
W 3 72 o+ 52 .

Comparing Eq.(4.42 with Eqg. (5.25, one finds that the
contributions of the 0-mode and-mode cooperons have
opposite signs for each diagram in Fig. 3. The contribution of
ar-mode cooperon to the spin conductivity is the sum of all
contributions of diagrams in Fig. 3, given by

Ao (w) 2 Y
S =— —In? (52@
o a Jo ™t

By summing up Eqgs(4.43 and(5.26), we obtain the total
QI correction to the spin conductivity near the UN limit as

52

1+ —
(1)2

1
=—In
o

Aa’f,N(w)

S
Jo

. (5.27

In the UN limit (6—0), we getAoy,,=0, meaning that the
spin conductivity also approaches its universal vadtfe
This result is in agreement with the numerical result in the
weak-disorder limit’

VI. SUMMARY

Within the weak-localization theory, we have calculated
the QI contributions to the quasiparticle dynamical conduc-
tivities in a weakly disordered-wave superconductor near
the Born or unitary limit. By neglecting the quasiparticle
interactions, we regard the random Dirac fermions in cuprate
superconductors as a disordered nodal gas. The intrinsic
particle-hole symmetry is generally preserved in the super-
conducting state, while the additional global particle-hole
symmetry appears only for the nested Fermi surface. In the
singletd-wave superconductor under consideration, the spin
is conserved but the charge is not. All these characteristic
features make the QI effects of such a nodal gas quite differ-
ent from those of a disordered normal conductor.

In generic situations, the QI effects result only from the
contributions of 0-mode cooperon. The charge conductivity
is shown to be subject to a logarithmic suppression at low
frequency, which is qualitatively in agreement with the nu-
merical study'® and supported by the experimental observa-
tions of the disordered cuprate superconductSrslere the
weak-localization effect on charge arises only from the QI
process described by Fig(e, and thus remains persistent in
the presence of a weak magnetic figld®> Contrarily, the
usual weak-localization effect in a normal conductor is sub-
stantially suppressed by a magnetic field through the orbital
coupling, as it stems from the contribution of the maximally
crossed diagrams, Fig(.31~3

Opposite to the charge conductivity, the spin conductivity
is found to increase with decreasing frequency. As shown
above, all diagrams in Fig. 3 have nontrivial contributions to
the QI correction of the spin conductivity. Figure&@Band
3(b) correspond, respectively, to a suppression of forward
scattering and to an enhancement of backscattering of the
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guasiparticles, hence both of them lead to negative corredn d-wave superconductors. A similar situation appears in the
tions to the spin conductivity. The coherent result of Fig)3 studies of the quasiparticle DGSThe numerical study in
includes an enhancement of forward scattering and a sugRef. 42 has shown that the binary alloy and random site
pression of backscattering, yielding a positive correctibn. energy disorder models yield qualitatively different predic-
This positive contribution is shown to prevail over the sumtions for the low-energy DOS in thé-wave superconductor.
of the negative ones. Therefore, it is the existence of the Finally, we wish to point out that the QI process, de-
additional QI process, Fig.(8), that leads to theualitative ~ Scribed by Fig. &), also exists in superconductors that be-
difference in the frequency dependence between the chard@ngd to symmetry classe€ and D in the classification of
and spin conductivities. Since the quasiparticle spin is a goofRef. 34, for the cooperon in RR channel is not influenced by
quantum number, such an antilocalization correction to théhe time-reversal breakirfd:*>**The QI effects contributed
spin conductivity immediately signals the existence of ex-Py this process on the quasiparticle transport in the mixed
tended low-lying quasiparticle states. It is worthy to pointSuperconducting state deserve further investigation. How the
out that, like the usual weak-localization theory, the presen$Pin-orbit coupling or magnetic impurities affects this QI
evaluations are valid only for the weak-disorder case, as it irocess is also an interesting and open problem.

based on the SCTMA. Therefore we do not rule out the

possibility of localized quasiparticle states at higher impurity ACKNOWLEDGMENTS
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law has been found in the QI effect on the quasiparticle

DOS?"*0|t seems that the UN-limit cancellation of the con- APPENDIX A: SOME USEFUL MATHEMATICAL

tributions from the 0-mode ang-mode cooperons is a gen- FORMULAS

eral feature for the disordereiwave superconductor. How- In this appendix we present some useful mathematical
ever, such a rule is not valid for the diffusons in all sensesformulas.

even though in the present case either the 0-mode-wiode (i) Making use of the Dirac-type quasiparticle spectrum,

diffuson does not contribute to the conductivities. For ex-we can show that
ample, the 0-mode diffuson has no contribution to the QI
correction of the DOS, but the mode was shown to pro- E2A2 1

duce an enhanced zero-energy quasiparticle BOS addi- > 24 > (A1)

tion, the diffusons have been shown to play important roles ke (" Fe)" 24mogugy

in quasiparticle interaction effects in disordereewave 4 4

superconductor > & -3 Ay 1 A2
The problem whether or not the low-energy quasiparticle X (y2+ 6@4 T4 (y2+ 6@4 _87rvagy2' (A2)

states are localized in a disorderddvave superconductor

still remains controversial. Balatslat al. have shown that a 1 1

single strong impurity produces a virtual-bound state at zero for n=2,

energy, and the long-range overlaps between these impurity — k (y*+ Eﬁ)" (n—l)ﬂvagyz("_l)

states can yield an extended quasiparticle Harthe possi- (A3)
bilities of critical state® and localization-delocalization and

transitiond! in random Dirac fermions have been also dis-

cussed in the literature. We note that the measurements on §E A2
the thermal conductivities in optimally-doped Yf&a,0q o > -
(Ref. 10 and BpSKLCaCyOg (Ref. 12 do not show any K (¥"t €0

localization-induced suppression down to 0.1 K. On the

other hand, the nonlinear-sigma-model approatfépre- _
dicted a localization correction to the spin conductivity. (N=1)(n=2)2mv04y*" "2
However, the disorder models used in Refs. 24 and 28 are

different from the present binary alloy model. While the un- (A4)

correlated zero-mean local Gaussian fields were used in Ref. aq gn example, we shall prove E@1). Noting that there
24, the authors of Ref. 28 treated the hopping matrix elegyist four gap nodes, we have

ments between nearest-neighbor sites as independent random

variables. It turns out that different disorder models may lead £2A2 dk;dk, w2 K2
to various theoretical predictions for the quasiparticle trans- Z ﬁ:‘lf f 99
port coefficients due to the anisotropy of the order parameter K (¥"+€)

for n=3.

(2m)? (P +ofki+uikd)*
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By means of the transformations pf=\v/vgks and pg

=\v4/vikg, the above equation can be changed as
dprdp, vivsPi;

; (v +62)4 ff (2m)? [V*+uwg(PF+pgl’

Xo
= Zf dx
277 Vibgy J0

2
d#cog 6sirt e,
0

X2

(1+x)*

X

wherexo=wvv4pj/ ¥ with po~1/a. For the weak-disorder
case (y is small enough considered, we can sei;= .
Thus, a completion of the integrals oweand 6 in the above
equation immediately yields EgAL).

(i) If @(&c,A,) stands for an arbitrary function &, and
Ay, we have

1
2 g oK e(Eio b0 = 50702 e(é0A0
(A5)

1
2 g og(Kvg(Ke(b,00= 50502 @(&0Aw,
(A6)

1 -
2 9 0i(kvg(K g0 A =504 ¢(&0A0,
(A7)

and

1 -
2 4 og(vi() e(6, A0 =5010002 @A),
(A8)

with az(q-fl)gl+(q-gl)f1. Here f,, and g, represent, re-
spectively, the unity vectors parallel tg andv at thenth
node (=1,2,3,4), as shown in Fig. 1.

Here we only prove EqA5). Due to the existence of four
gap nodes, one can write

Ek q-vi(K (K e(&,AY

4
=0t % @t 2" e(éabw),

where =, (" represents the summation ovieronly in the
vicinity of the nth node. The above equation is easily shown
to be equivalent to EqA5) by noting that

PHYSICAL REVIEW B 69, 144517 (2004

4
> (q-f)fh=2q
n=1

(i) If A, A’, B, andB’ are arbitrary linear superimposi-
tions of 7; (i=0, 1, 2, 3, we have

1
5 2. CiiTr(TiATiB)ZEi (CM); (A9)
and
1 ! ’ ! ! !
5; CiiC/,Tr(1ATjA" 7,B7,B )=2 (CMC'M ")y,
(A10)
where szicii’ri@ﬂ, C,:EiCiIiTi(@Ti, M=A®B, and

M'=A"®B’.
As an example, we shall prove E@\10). Assuming that
TiATJ'A, :Ekxijka and TiBTjB, :Elyijl Ty we haVe

1
> > CiCTr(rAmA' 7,B7;B’)
2 ij

1
:E% Cii CiiXijkYiji Tr( 7em)

:% CiiCj’injkyijlﬁkI:iJZk CiCijXijYix (ALl
and
CMC,M,:Z CiiCj,j(TiATjA,)®(TiBTjB/)
]
:i% Ci CiiXijYiji T«® 7 - (A12)
Equation(A12) yields
Ek (CMC’M')kk:”Ek CiCiiXijYijk-  (AL3)

A combination of Eq.(A1l) with Eq. (A13) immediately
leads to Eq(A10).

APPENDIX B: VANISHING CONTRIBUTION OF 0-MODE
DIFFUSON TO THE QI EFFECTS

In this appendix, we shall show that 0-mode diffuson does
not contribute to the QI effects. As shown by Fide} the
impurity scattering fromk state tog+k state Dg?<y) is
subject to a vertex correction by the diffuson. The vertex-
corrected retarded matrix can be expressed by

T €)= 2 TG0, TR(E)r . (BI)
where the vertex functiog(q,e)*R is given by
J(,€)R*=T+D(q;e,6)""H(ge, %R (B2)

. 1
S et d0=7 2 el&0Ad)
k k

and

In order to calculate the vertex function, we exploit the
equation for 0-mode diffuson in the RR channel,
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D(q; €,€)RR= W(e,s)RR

n.
(e, eR0=2 > TIAYGETR(q,€)
+W(e, e)RRH(q;€,€)RRD(q; €,€)RR, 21

(B3) X G Ta(d, )G AYGRT,  (C3)
yielding
X (e, €’ i 2 TTAYGETR(g,€)
H(g e, e)RR=W"1(e,e)RR—D (g €,e)RR  (BY)
A substitution of Eq(B4) into Eq. (B2) leads to X G AL+ kGO Tald, €' )G,
C4
J(0,€)"R=D(q;€,6)"FW " (,6)R (BS) (4
Making use of Eqgs(3.7) and(3.8), we get I1X(e,e")RA= E > 2 D, (qe e )N
q kk'
. rRr_ TPO T3Q T3 for the Born limit XTr[AXGRTR(q )GR ~GR ,
W (e.e) 2y 7| —1y® 7, for the unitary limit. Kok Qratkii=orark
(B6) XTR(q,e)Gpy- AL, Gh 75 GL, (CH)

Substituting Eqs(3.32 and (B6) into Eq. (B5), we obtain  and
the expression of the vertex function ésr Dg?><y and
le[<v)

X (e, €’ Z > Do(gee)f?
9 kk' !
rRr_ 27 _ _ _ Y~R_ AR R
J(q,€) —qu_i2€(7'0®7'0 TI® T~ To® Ty~ T3 73), XTIALGK TGy _q_oT (0, €)

(B7) XGR - ALGp 7t Gl ok TA(G,€ )G
which is suitable both near the Born and near the unitary (C6)
limits. Substituting Egs(2.1) and(B7) into Eq.(B1), we can
easily show that By means of Eqs(A9) and (C1), one can reexpress Egs.

(C3)—(C6b) as
TR = RR_TR( &) 1* = n;
T(q,€) EI J(q1€)|l il (6)T| 0. (B8) Hi(T(E’fl)Eé’-\:E' qu ¢R(q,€)2Tr(A)k(GEGS+kGEA)k(Glli\)'
Since every conductivity diagram in Fig. 4 contains the ver- (€7
tex correction by the diffuson, E¢B8) indicates that none of n
them contributes to the conductivities. 1Y (e, )N =5 kE #R(q,€) p™(q,€')
APPENDIX C: VANISHING CONTRIBUTION OF z-MODE XTHA{GRGY., i A% Gh:1GR),

DIFFUSON TO THE QI EFFECTS )
In this appendix, we shall show that the contributions of
all the lowest-order conductivity diagrams withmode dif- \RA L
fuson to the QI effects are summed to vanish. These dia-  5(€.€")ac :”izq: Z ACHEACTE ke
grams are generated by replacingqby Q+qin Fig. 4. In
the case ofr-mode diffuson, the vertex-dress@dmatrices x[Mi‘T(q) MX(q) AL (C9

are shown to be
and

TR®(q,6)= ¢pRA(q, ) 79, (CD)

M(e.eNif=n2 2 #fa.e)¢ae)
for Dg?<y and|e|<y, where q

X{DL(q €, € )RAME(Q e - MX(a) T}
(C2 (C10

where

16y 1
RA(qe)l=Fj —r — —
¢ e)= TPo DG°Fi2e+26

The contributions of the diagrams with-mode diffuson
to the current-current correlation function in RA channel are M);T(q)RA:E G§+Q+kGRA)k(GA’ (C11)
expressed as
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MX()fe= E GRALGRGR, o ¢ (€12
M@= 2 G- BEALGK, (C13
MX () E Gg: o KGKALGK, (C14
and
Di(ge, )" W=2 D (qee ) P nor.
(C1H9

The impurity concentratiom; is related toy through Eq.

PHYSICAL REVIEW B 69, 144517 (2004

U?T(w)4a+O'?T(w)Aa'""UST(whb:Oa (C22

for <6 or w> 4. Therefore, the sum of the contributions

from Figs. 4a) and 4b) has no singular correction to the
dynamical charge conductivity.

A completion of the summations ovérin Egs. (C1)—
(C14) yields

ME(Q)fA=ME(Q)FI= —ME(a)far=—MS(a) o

=—M(QFf=-M(PEF=ME(§F

e ~
=M= — W(qngl"'quTs)-

(C23

(2.6). The above correlation functions can be calculated by

the same method as used in the previous sections.

Substituting Eqs(C15 and(C23) into Egs.(C9) and(C10),

(i) For the charge conductivity, a completion of the sum-and completing the summations ovemwe get

mations ovelk in Egs.(C7), (C8), and their counterparts in

RR channel yields

64ev Dy
1S (€€ )sa= (C10
(&)=, Eq: (Dg2—i2e+26)2 ‘
and
e , 646va D
HW(Ele )4b:_ 2 .
Vg q DQ“—12e+26
Y Y
+ .
Dg?+i2e' +28 Dq@?—i2e' +268
(C1

Substituting Eqs(C16) and(C17) into Eq. (4.1), we obtain

(e)4a: ( e4a _4r (g) €18
ol ol ad o
and
o(0a 8y (o
T w {3 (€19
where
1 1 if x<1
Fl(x)—;arctarx— 22X if x> 1, (C20
and
171 |1+y X(1+y)
Fz(x)—;fody[ 2y arctan 5
1-y . X(1- y) 1 if x<1
2y AT m2x if x>1.

(C21
From Egs.(C18—(C21), it follows that

18(e,e)A=TI% (e, ) FR=TI%(¢,e" ) }P=TI%(e,e' ) 3=,

leading to

(C24

‘T?T(whc: Ui(w)m: 0.

Equations(C22 and (C24) indicate that ther-mode diffu-

son has a vanishing contribution to the QI correction of the

charge conductivity.

(i) For the spin conductivity, a completion of the summa-

tions overk in Egs.(C7) and(C8) yields

3Dy
15 (€,€)4a= (C25
(€ aa % (D?—i2e+25)?
and
32D y
IS (€,€)gp=—
(€€ )i % Do2—i2¢+28\ Dg?+i2¢ +25
PR S— (C26)
Dg?—i2¢e +26

Substituting Egqs(C25 and(C26) into Eq. (4.1), we obtain

o (w) o (®)4ar 4
(S 4a: ( S4a :_')’ (g) (C27)
o) ol ad o
and
O-fr(w)4b 8y w
0'8 %5 2(3) (C28

A combination of Eqs(C20), (C21), (C27), and(C28) leads
to

o (®)4a+ T (@) 40 T 05 () 4p=0, (C29

144517-15



Y. H. YANG, D. Y. XING, M. LIU, AND MIN-FONG YANG

for <6 or w> 4, implying that the sum of the contribu-
tions from Figs. 4a) and 4b) to the dynamical spin conduc-
tivity is nonsingular.

A completion of the summations ovérin Egs. (C11)—
(C14) for the spin case yields

ME(Q) 5= M) Fe= M3 (o) g =M3(95F=
(C30

PHYSICAL REVIEW B 69, 144517 (2004

and
MS(Q)ar=MS () 5= — M3 () FF
~ aq
=-My(ai=—-—57.  (C3)
2y

Substituting Egs(C15), (C30), and(C32) into Egs.(C9) and
(C10), and completing the summations overme get

Hi(e, € )ac=— Zq

and

Hfr(f,f')m:zq:

A substitution of Eqs(C32) and(C33) into Eq.(4.1) leads to

o (w) (@) 4 8
- 4(:: S4c __%Fs( 5) (C34)
Jp Jo
and
O'fT(w) a’f,(w) 8 w
- 4d _ S4d :_’g (5)' (C35
0o 0o @
where
F —2|1+2 4| 1+2+2 t
3(X)= 2 n(1+x°) 2 n 7 Xgarc anx
1 4 X
+2 v arctané
1 if x<1 36
| wixif x>1, (C39
and
F —4|1+2+4| 1+2+411
a(X)= ?n( X°) 2n 7 X3
« 5 1 4 X
arctarx X F arctané
1 if x<1
wix o if x>1. (€39

Therefore, we obtain

128D2%g%y
: , : (C32
(Dg%—i2e+28)’[Dg’—i(e+e')+26]

128D%q%y

2_; 2_; ’ 2_; ’ ' (C33)

(Dg2—i2e+268)(Dg?—i2€ +25)[Dg?—i(e+€')+26]
[
05(0) et 05 (0) 4er + 05 (©) 4g+ 05 (@) 49 =0,
(C39

for <6 or w>§. Equations(C29 and(C398) indicate that
the m-mode diffuson has also a vanishing contribution to the
QI correction of the spin conductivity.

APPENDIX D: VANISHING CONTRIBUTIONS OF
NONSINGULAR LADDERS TO THE QI EFFECTS

In this appendix, we show that the lowest-order conduc-
tivity diagrams with nonsingular ladders, shown in Fig. 5, do
not contribute to the QI effects. The contribution of Figa)s
to the electrical current-current correlation function is given

by

1%(e,€')5= eva > % (e, C(ge, )R
kk’
XTI 7Gyy mGq_ o TGy 7 GR(Gk
—-GRGRI, (D1)

with L(e, €' )RRV =3;L(e,e')" 7@ 7, standing for the
expression of the nonsmgular ladders. By means of Egs.
(2.2 and(A1)—(A4), one can readily show that

atk’

(a) (&) (b) (b)

FIG. 5. Lowest-order conductivity diagrams with nonsingular
ladders(gray blocks.
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R A ~R~R contribution to the charge conductivity. Obviously, the same
; Gi(Gi—Gy)G=0. (D2)  conclusion is valid for the spin conductivity, as well as for
the case ofir-mode cooperon. Similarly, it is easy to show
A substitution of Eq(D2) into Eq.(D1) immediately yields that Fig. §b) has also a vanishing contribution to the QI
I1¢(e,€')5,=0, indicating that Fig. &) has a vanishing effects due to Eq(D2).
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