PHYSICAL REVIEW B 69, 144515 (2004

Resolution of two-dimensional currents in superconductors from a two-dimensional magnetic field
measurement by the method of regularization
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The problem of reconstructing a two-dimensio(@D) current distribution in a superconductor from a 2D
magnetic field measurement is recognized as a first-kind integral equation and resolved using the method of
regularization. Regularization directly addresses the inherent instability of this inversion problem for nonexact
(noisy) data. Performance of the technique is evaluated for different current distributions and for data with
varying amounts of added noise. Comparisons are made to other methods, and the present method is demon-
strated to achieve a better regularizifpise filtering effect while also employing the generalized-cross
validation (GCV) method to choose the optimal regularization parameter from the data, without detailed
knowledge of the trugand generally unknownsolution. It is also shown that clean, noiseless data is an
ineffective test of an inversion algorithm.
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[. INTRODUCTION of integral equations that have been well studied in the lit-
erature. Such shortcomings are overcome in the present
Considerable effort has been spent to probe the local critiwork.
cal current densityJ.) of high-temperature superconducting  Inversion of the Biot-Savart law, separate from the physi-
(HTS) materials. Of particular interest is YB@u,O, coated- ~ Cal represe_ntation of_reconstructior_l of current flow, r_eq_uires
conductors(CCs and BiSrCaCuO(BSCCO tapes, where the resolution of an integral equation. If all the restrictions
current percolates and transpdgt values are frequently a required for inversion of t_he Biot-Savart Iavy are ;ausﬂed,
macroscopic average of large local variationsJin (Ref. then the probk_am _of resolving a 2D current d|str|but|on from
1-9. Probing the locall, may be done directly with trans- & 2D magnetic field measurement reduces to an integral

port measurements, but such measurements are destructﬁguat'on of the form

and provide information only in localized regioh3Indirect

methods of probingl., frequently done through a spatially

resolved magnetic field measurement, can provide informa- f K(x=x",y—=y")g(x",y"Hdx'dy'=f(x,y), (D)
tion about the locall, over large areas®*!°Under certain A

restrictions, a 2D map of the locd} in a superconductor can

be resolved from a 2D magnetic field measurement througlyhere the integral kerné is known,g is to be determined,
inversion of the Biot-Savart law. The local magnetic field andf is known at only a discrete number of points and with
required for the inversion may be obtained through magnetoerrors. Equatior(1) is a member of a larger class of equa-
optical imaging (MOI) or scanning Hall probe tions known as Fredholm integral equations of the first kind
techniques!—1° and is characterized by an inherent instability for nonexact
This magnetic inverse problem has been addressed mamiata, since small variations fncan produce large variations
times by a variety of methods:®~23pbut these methods may in g, andg does not depend continuously b(Ref. 24. Such
suffer from several shortcomings. The inversion of the Biot-problems are termed ill posédThe degree of ill-posedness
Savart law exhibits an inherent instability for nonexactof Eq. (1) depends on the form of the kerni€| with very
(noisy) data, but the results of these methods are often onlgmooth kernels generally leading to highly ill-posed prob-
presented for cleafnoiselesy data, which is a poor test of lems andd&function-like kernels being highly desirable. A
any method. Experimental data always contains some levelonsequence of this ill-posed nature is that the functon
of noise, and the performance of any method should bé¢hat best satisfies Eql) for a given data seft may deviate
evaluated in the presence of such noise, where the instabiligreatly from the true solution. First kind integral equations
of the inversion problem is evident. Several of these methodkave been well studied in the literature and several methods
require a user-chosen parameter, such as the cutoff frequeneyist for their evaluatiod*?°=3°*One of the most popular of
in the low-pass Fourier filtering method of Ro#h all” or  these is the method of regularization, developed by PHifiips
the number of iterations in the conjugate-gradi¢tG)  in 1962 and expanded by Tikhortvn 1963, which uses
method of Wijngaardert al,'® but no systematic means priori information about the solution to replace Ef) with
of choosing these parameters is presented in those worka.similar, but well-posed problem. For regularization, ¢he
While these parameters can be chosen empirically, it is prefpriori information generally concerns the smoothn@sshe
erable to have a means of choosing such parameters direci@jiowed oscillationsof g. Integral equations such as E@)
from the data. These methods also fail to recognize the inare not unique to the magnetic inverse problem and occur in
version of the Biot-Savart law as a member of a larger classnany areas of scienc®-*An excellent primer on first kind
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when the concept of sheet currents is uSed, is the per-
mittivity of free spaceB, is thez component of the magnetic
field (perpendicular to the sample surfaceis the height of
the measurement plane above the sample surface, ard the
dependence oK(x,y) has been suppressed. In order to de-
termine the current in a sample, E§) must be resolved for
g(x,y). Onceg(x,y) has been adequately determined, Eq.
(2) can be applied to determine the current vectirsand

Jy. Resolvingg(x,y) from Eq. (3) when the dataB, is
known only at a discrete number of points and with errors is

FIG. 1. The geometry of the magnetic inverse problem. The datdn€ main topic of this paper, and is done with the method of
B, is assumed to measured on a rectangular grilNafM data  re€gularization as described in the next section.
points a heigh above the surface of the sample with grid spacing
of A, andA, in thex andy directions, respectively. The surface of B. Regularization

the sample is parallel to the measurement plane. The sample is of Th thod of larizati | th bl fi
arbitrary shape with uniform thickness which may be zero when . e metho 0. regularization rep ac.e.s . ‘? probiem of in-
ting Eq.(3) with the problem of minimizing the func-

the concept of sheet currents is used or infinite in the case of sla\ﬂer
geometry. tional

regularization is used to resolve the magnetic inverse prob-
lem.

equations is given by Win§f In this paper, the method of Cg )\):‘ fm f“‘ K(x—x',y—y )g(x’,y")dx'dy’

2
+A 0[] 0
2

—Bi(xy)
Il. RESOLUTION OF THE MAGNETIC INVERSION

PROBLEM

with respect tag, where the 2-norm is defined &8(x,y)|5

=["_J7.If(x,y)|?dxdy. The operatof) is a user-defined
The geometry of the magnetic inverse problem is showrmeasure of the smoothnessgfandX is the regularization

in Fig. 1. To derive the current flow in a superconductor fromparameter that controls the trade off between smoothness and

a spatially resolved 2D magnetic field measureni/k,y),  the degree to which Eq@3) is satisfied. A commor(and

it is necessary for the current to be adequately approximategbnvenient choice of(Q) is the norm of amth derivative of

as 2D, i.e., that the component of the current is zero. It is the unknowng. It is desirable for the application of E¢R)

also required that the superconductor be in a magnetostatifiat the first derivatives aj be smooth, so her® is chosen
state such thaV -J=0. This condition can be incorporated tg pe

by writing the current in terms of the scalar fietdx,y)

A. Formulation of the problem

(Ref 39 (929 (929 2
. Q[gl=| -2+ 72 8
J=VX[g(xy)k]. 2 2
Substituting Eq(2) into thez component of the Biot-Savart The value of()[g] will be larger wheng is rapidly oscillat-
law gives ing (noisy) and smaller whemy is smooth. With this choice
for Q it can be shown that the minimizer of E(), g, , is
0 o] . 1
Bz(X,y)=f f K(x—x",y—y )g(x’,y")dx'dy’, given by
® ) f f R (u,0)[?
i I g)\ X!y = ~
where the kerneK(x,y) is given by =R (u,0)| 24 N (2m) Y0P+ 0?)?
Mo z ~
Kxy)= 4 (X2+y2+22)32 @ X(M) gl2m(uxtuy)qudp, (9)
for slab geometr{® K(u,v)

where a hat denotes a Fourier transform. The problem of

minimizing C(g,\) has been reduced to a simple Fourier

transform with a filter function. However, unlike other Fou-
®) rier inversion method¥1"-2!the filter can be directly related
for thin films of thicknessa, and back to the imposed smoothness conditiongotJsing

/.LO z atz
4\ (XP+y?+72)%2 [x°+y?+(a+2)?]%P

K(x,y)=
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. M-1N-1 _ _ crete version of Eq(7) is given by
hUU:mE:O nzo hnme|2wun/N+|2mm/M
M—-1 N—-1 °
and _ 1 2 2 BUU;Z —i2mun/N—i27vm/M
1 MoIN-1 Omra= o 2 2 Zuwn, € ,
he o — B e-i2mun/N-i2romm NAMAy v=0 u=0 Ku
nm NM =0 &6 uv (11)
(10)
as the definitions of the discrete Fourier transfd&T) and
inverse DFT(IDFT) respectively, the minimizer of the dis- where the filterZ,,, ., is
|
K2
Zuw; o (12

AT .
Ko 2+ 16NA L 2A L AL 2 siP(mu/N) + A 2 sin(mo/M) 12

The second order accurate central difference approximatiobe minimized directly. In this case, a means of choosing
was used for the discrete version of BE®), assuming a from the dateB, is desired, such that this choice Jofesults
periodic extension of thég,\} (Ref. 42. Let the discrete in a solution close to the exatinknown solution as mea-

residual norm be defined as sured by our goodness of fit criteri@(\). There are mul-
, tiple methods for choosiny from the data**3and one of
p(N)=(K*8\) nm= Bnmzl2, (13 the most successful is the generalized cross-validation

(GCV) method of Wahba® The GCV method is based on
statistical considerations, namely, that if an arbitrary element
of B, is left out, then the regularized solution should predict
this missing data point well. GCV also seeks to minimize the
predictive mean square erffrFor a more detailed discus-
sion of these points see Ref. 45. Using GCV, the optimal
aregularization parameteXgcy is the minimizer of

where the discrete 2-norm if;j[|3=A,A,3; ;|| and
the definition of discrete convolution is r{s),n,
=A0A 20 0l (m=m')(n—n")Sn'm - The discrete norm(\) is
a measure of the degree to which the regularized solgtion
satisfies Eq(3).

Before Eq.(11) can be applied, it is necessary to choose
value for\. A large value ofn will result in g, being quite

smooth, with an unnecessary loss of detail. A small value of M—1 N—1

N will result in the residual nornp(\) being small, but the 2 2 (1-7 )2||§ 2
regularized solutiorg, may deviate considerably from the =0 &6 uvirt 1=Uoz

true solution. It needs to be emphasized that a small value for Vaev(N) = TN (15
the residual norm does not necessarily mean ghawill be 1

close to the true solution since the d&ais inexact. The 1- MN UZO UZO VAT

value of A may be chosen empirically by varyinguntil the
smoothness of either the scalar figiar the current vectors Veey()) is a simple one-dimensional function bfdepend-
Jx andJ, appears most reasonable. This can be rather sub- | K andB.. Th lculati & and B
jective, however, and a more systematic means of choosinﬁ?egg yrgnuiregnfor éc( 1 1)ea$1?jcrlrj1ierl1ilr(rjlri]zaotionac?1\/ z (z;\r)e
the optimal\ is desired. Before discussing means of choos—iS relazvelq Uick = Gev
ing \, it is helpful to define what a “good choice” of is. Once tr?eqfunc.tio has been determined, E€@) st
The best choice ol is one that minimizes the difference d b i drgxd ) 4. Si ' he datB
between the approximate and the exact solution as measur@§€ds to be applied to determiieand.J, . Since the dats,

in some user-defined way. Here, let the measure be the no?pnte}in F‘O.ise S0 too willg, , and diﬁerentiatiqg a noi;y
malized true mean square en(\) unction is itself an ill-posed probledf.Small oscillations in

g, can cause large oscillations in its derivatives and therefore
Hgnm_x_gnm,exacug in J, andJ,, and the method chosen to take the derivatives
' ——, (14 will obviously affect the values of, andJ,. The method
I9nmexact2 chosen to perform the required differentiation in this paper
wheregeqetis the exacttrue) solution. If we choosd(\) had a slight smoothing effect and proceeds as follows. First,
as the goodness of fit criterion for an approximate solutiorihe point of interestf(;,) plus a number of data points to the
gy, then the minimizer oD(\), \p, is the best possible left (n.) and to the right ) were fit to a quadratic poly-
choice of\ for a given data seB,. More simply, smaller nomial (fo—n ,....Fa-1,fn . fni1,... . fnin ). The estimate of
values forD(\) represent better solutions than larger valuesthe derivative at the point of intere§} is then the value of
In practice,gexactiS generally unknown, and E@¢L4) cannot  the analytical derivative of the polynomial at that point.

D(\)=
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108 p————r means of choosing the optimal(Ref. 48. Solutions to the
Q[g J 108 _\ T~i=0 left of the corner K <\p) represent “under-smoothed” so-
4 lutions, while solutions to the right of the cornex> \p)
10¢ A \\"C’easfngi i represent “over-smoothed” solutions. The L-curve demon-
, \ ol | N\ strates that minimizing the residual nowt\) is not an ef-
1% 5 . fective means of determining an approximate solutign
100 4 1 As \ is reduced belowp, p(\) continues to decrease, but
; g, becomes dominated by noise as evidenced by the rapid
107 1 smoothing increase in}[g, ]. For a discussion of why the L-curve has
104 its shape, and why the optimallies in the corner of the L-
curve, see Ref. 47. It should be observed dhaaries fifteen
10° ' , 4 orders of magnitude in Fig. 2, from 16 to 10°.
10° 10¢ 105 108

p(%)

FIG. 2. L(-jcgrvidemor;st_ratir_]g t?e trade ‘?ﬁ bet\/\;]@[rgx] anld o Since Eq.(3) exhibits an inherent instability for nonexact
PO |m|i>o?eh ytt € regtu arization duncgona. For t 'ts e?;amfg © € noisy) data, it is necessary to test any inversion algorithm in
concept of sheet currents was used, and 282 point grid ofB, 4,5 yregence of noise. Figure 3 shows the eflagtt curves
data withA,=A,=1um was generated from a uniform square : .

Y ; -~ and reconstructe¢black curve current profiles for a uni-
sample of size 200200um at a height ofz=5 um above the f thi h the d h b ted with
sample surface. The daB, where corrupted with Gaussian white orm thin square, where the a3 ave been corrupted wi

varying amounts of gaussian white noise of variance

noise of variancer?=0.01 max|B,}. The parametex varies from
10" % in the upper left portion of the plot to 20n the lower right. — ¢ maX{|le}' and the GCV method has been used to deter-

The inset shows the same data on a linear scale. The optimal valdBine the regularization parameter. For Figa)3there is no
of \, Np, is marked with an open circlap often lies in the corner  @dded noise¢=0), and the exact and reconstructed current
of the L curve. Solutions with\<\p represent under-smoothed are in excellent agreement. Note thgf> 0, due to the finite
solutions, and solutions with>\ represent over-smoothed solu- precision of the data. For Fig.(l9 «=0.001, which is a
tions. noise level approximately equal to that typically obtained
from the MOI techniqué? This is a relatively low noise
Throughout this work, unless stated otherwisg=n =2  level and results in very good agreement between the exact
for a total ofng+n_+1=5 data points fit to each polyno- and reconstructed current as well, but note that, has
mial, centered on the point of interest. This was carried ouincreased by more than fourteen orders of magnitude relative
in an efficient manner with the use of Savitsky-Golay to the uncorrupted data. Further increases in the added noise
coefficients!’ This method of calculating the derivatives re- lead to larger values ofgcy, Fig. 3c). Figure 3d) is a 3D
sults in a slight reduction of spatial resolution. The quadratiglot of noise corrupted datB, with a=0.2. The signal is
polynomials are fit to five grid points, though they would be barely distinguishable from the noise, but a good representa-
fully defined by only three. For the examples of this worktion of the exact current distribution can still be obtained
where noisy data has been used, this reduction in spati@Figs. 3e) and 3f)]. While it is unlikely that this extreme

B. Regularization with noisy data

resolution is less than that due to the added noise. level of noise would ever be encountered measuring the
magnetic field above a superconductor, it may be common in
. NUMERICAL RESULTS magnetic inversion problems in other areas, such as medical

imaging. It should be emphasized that no knowledge of the
exact current distribution was used to obtain the recon-
The regularization function@Eg. (7)] imposes a trade off structed current in any of these examples, beyond the as-
between the smoothness @f and the degree to which Eq. sumption of smoothness imposed@yg, ]. The regularized
(3) is satisfied. This trade off is shown graphically in Fig. 2, solutions shown in Figs.(8)—3(c), 3(e), and 3f) were cal-
where the smoothing norni)[g,] is plotted versusp(\) culated using\gcy, the minimizer of \gc\(\), which de-
for increasing values ok. The exact form of the current pends only on the data and the integral kernel. The mini-
distribution is given in Fig. 3, and the daB, have been mizer of the true mean square erigy is also shown in Figs.
corrupted with Gaussian white noise with varianoé 3(a)—3(c), 3(f), and with the exception of the uncorrupted
=0.01 max|B,}. The smallest value of occurs in the upper data[Fig. 3@] Agcy is within ~10% of A, in each case. As
left portion of the plot and the largest in the lower right. It the noise level is varied in Fig. 3, the optimal regularization
can be seen that small will result in the normp(\) being  parametei\ varies by nearly 24 orders of magnitude. The
small and largex will cause()[g, ] to be small. The optimal regularized solutiong, is somewhat insensitive to small
value of\ as defined by the goodness of fit critering is ~ changes in\, and varying\ by ~20% or more generally
marked with an open circle in Fig. 2 is often in the leads to negligible changes iy, . In this respect, Fig. 3
“corner” of the “L-curve,” which gets its name from its “L”  demonstrates thatgc, can be an excellent approximation to
shape. The inset shows the L-curve on a linear scale, whepg, . For the uncorrupted data of Fig(eB, the success of the
the data appears to lie entirely on the plot axes. The corneGCV method may appear to be somewhat dubious, since
or point of maximum curvature of the L-curve, is another\gcy is nearly five orders of magnitude away froRy .

A. L-curve analysis

144515-4
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FIG. 3. (Color online Reconstructed current distributions for a uniform square thin film with varying amounts of added noise. For this
example the concept of sheet currents was used, and’>a %2 point grid ofB, data withA,=A,=1 um was generated from a uniform
square sample of size 2800 um at a height oz=5 um above the sample surface. The dBjavere corrupted with Gaussian white noise
of variances?= & max{|B,|}. (a) Linear profile through the center of the sample for both the reconstructed c(btack curve and the exact
current(light curve. (b) Same aga) with «=0.001,(c) same aga) with «=0.01,(d) A 3D plot of the dataB, after being corrupted with
noise witha=0.2. The signal is barely distinguishable from the noise. The linear profile in the inset shows the uncorruptel The.
streamlines of the reconstructed current for the noisy datd)ofThe exact streamlines are uniformly spaced concentric squéré&ame

as(a) with «=0.2.
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108 equally acceptable results. The minimum @{\) for this
10¢ VGCV(?\’) o7 data set iD(Ap)=8.1x 108, but in this case any value of
) \ that givesD(\)< 10 ® produces visually nearly identical
10° 7 results to those presented in FigaB Using the criterion
1044 () ,’/— D(A\)<10 6, any value 102®<\<~7x10"2 produces
DL) " equally acceptable results. This is a range of over 22 orders
108 44 R of magnitude demonstrating that the present method is very
10-12] R o’ insensitive to the value of for cleandata.
o For the Fourier-filtering method of Rotét al,'” a regu-
1074 R T larizing effect is achieved by low-pass filtering with a Han-
107 P2 sz | ning window. For this method the approximate solutgn
al : is given by Eq.(11) with the filter Z,,,., replaced byZ,,, .y ,
10 where
102 T T T T r r T T
1025100101510 105 10° 105 10™ 10 Z i, = (JUP+v2<k)[ 1+ cogd myu*+v?/ko) 112
A (16

. and the Boolean notatiorxy) has value 1 if true and O if

FIG. 4. _The function® (1), Vaev(A), andp(h) for the present false. Here the cutoff frequendy plays the role of the regu-
method using the uncorrupted data generated from the homogenoyig, - ion narameter. The normalized mean square error and
current distribution of Fig. 3. residual norms for this method may be obtained by replacing

. . g, with g, in Egs.(13) and(14) resulting inp(\)— p(ke)
However, the figure clearly shows that the choicexgty andD()\)—c>D(k ), respectively. Figure() plotsD(k,) and
provides excellent results. For noiseless dat@,) generally h i dc ,k ? i Y- Fg K —Op ~0 ¢ i}
exhibits a very shallow minimum, which results in a Iarget e normalizedp(k;) function. Fork.=0, 9 =Y every
range of values ok (several orders of magnitutiénat pro- ~ Where, andp(ke)/|[Bnm|5=D(ks)=1. The residual norm
vide perfectly acceptable results. Davies provides a maxip(Kc) is a constantly decreasing function kf, and ask
mum likelihood method for choosing the optimal valuehof —%, Zy,.x,—1, and p(k))—0. The mean square error
that may provide better estimates)af in the limit of clean  D(k.) reaches a minimum value &t=1604 (marked with
data®! but otherwise led to under-smoothed solutions in nu-an open circlg which is the optimal regularization param-
merical tests. eter in this instance. Using the value lof= 1604, the exact
(light curve and approximatéblack curve current distribu-
C. Comparison to other methods tions for this method are shown in Fig(ah, and are in ex-

o . cellent agreement. Note that the minimumixfk.) is again
It is instructive to compare the performance of the presenéxtremely shallow. Using the same criteriex(k,)< 10~
. c ,

method to other methods under different test conditions. Thgny value 135 k<25 000+ would have provided equally
test conditions include uncorruptddoiseless data gener- acceptable resulis

ated from a homogeneous current distribution and the more 4 iterative CG method also has a well-known regular-

practical circumstance of noisy data and an inhomogeneoys; ' noise-filtering effect, and in this method the number

current distribution. The methods for comparison are thq)f iterationsk acts as the regularizing paramet®i® Note

present method, the Fourier-filtering method employed b3fhat in this case the regularization parameter takes on only

Rothet all’ and the iterative CG method employed by Wijn- ; - -
te(int lues. Th tf fth I h

gaarderet al® (In Ref. 18 the CG method is referred to as Slssec(;eheie(lrr; eC%enD ;2 ?gjnd i?] eé(:f(; %macr)]d 5e0C\(/3ki?b£sJotrfl1tem

CG-FFT) The latter two methods are among the more suc- ' .

ful in the literat q h exhibit larizi fnumber of iterations, legy— gy, and as before, we define
?:;Sal; \:\?ell € literature and each exnibits a reguianzing €ly,q resjgual and true mean square error norm for the CG

method asp(\)—p(k) andD(N)—D(K), respectively. For
the CG method, besides choosing the optimal number of it-
erationsk, an initial starting point forg, (k=0) must be
The first comparison is made using the homogeneous cuchosen. Usingy,-,=0, Fig. §d) shows the function® (k)
rent distribution of Fig. 3 with uncorrupte@lear data. Fig- and the normalized residual norm for successive iterations.
ure 3a) shows the results for the present method, and theyn this caseP (k=0)= p(k=0)/||Bnml|5=1, and both func-
are in excellent agreement. Figure 4 shows the functiongions exhibit a rapid initial decreas®.(k) reaches a mini-
D(X), Veew(N), andp() for the data of Fig. @), wherehp  mum atk=40 725 iterations, and again the minimum is very
and\ gcy have been marked with open circlgg\) has been  shallow. The CG algorithm converged-ai.00 000 iterations
normalized by||B,,||3, and is a strictly increasing function in this example, and further iterations did not change the
of \. The values ohp and\ gy reveal that GCV may not be value ofD (k). Using the optimal valuk=40 725 iterations,
able to provide good estimates ®f, in the limit of clean  the exacflight curve and approximatéblack curve current
data, but because the minimumd{\) is extremely shallow distributions for the CG method are shown in Figc)5and
in this instance, a very large range of values Xoproduce are in excellent agreement. The functibr{k) in Fig. 5(d)

1. Uncorrupted data with a homogeneous current distribution
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FIG. 5. (Color onling Application of the Hanning window and CG methods for the uncorrupted data of Hig).[3near profiles through
the center of the sample for the reconstructed current obtained using the Hanning window th&tblodurve and for the exact current
(light curve. (b) The functionsD (k.) and the normalizeg(k.) for the uncorrupted data of Fig. &) Linear profiles through the center of
the sample for the reconstructed current obtained using the CG mitiack curve and for the exact curreitlight curve. (d) The functions
D(k) and the normalizeg (k) for the uncorrupted data of Fig. 3.

reaches values several orders of magnitude smaller thamethod clearly produces superior results as measured by the
D(k.) or D(\), though visually there is little difference be- functionsD(\), D(k), andD(k.). When eight-digit arith-
tween the solutions of Figs.(®, 5(a), and 5c). D(k) falls metic is used for the same problem, the present method of
below 10 °® after only 19 iterations, and stopping the itera- regularization is superior, witB (\) able to achieve smaller
tive CG procedure any time after 19 iterations would havethan values than eithed (k) or D(k.). The minima of all
produced visually equivalent results. In Ref. 18, the startinghree functions are less shallow using eight-digit arithmetic,
value forgy—o was Eq.(11) with Z,,;y =1. Using this start-  though there is still a significant insensitivity to the param-

ing value forgy-o the results were nearly the same. eter values. For noisy data, accuracy may be limited to 2—3
In short, Figs. &), 5(@), and %c) demonstrate that all digits or less.

three methods can produce excellent results with uncorrupted
(noiselesps data. They also show that all three methods are
very insensitive to the choice of their respective parameters
when the data is uncorrupted. This insensitivity to the param- While the present Regularization method, the Hanning fil-
eter value is one of the problems with testing a method withter method, and the CG method all perform extremely well
clean data, since it will be shown that choosing the correcwith uncorrupted data, any effective comparison of methods
parameter value is more critical with noisy data. Also, themust be performed with the more practical case of noisy data
minimum values and the shape B{\), D(k), andD (k) and an inhomogeneous current distribution. Figui@) 6
are highly dependent on the precision of the data. All theshows the chosen test current distribution while Fif) 6
results presented in Figs. 3, 4, and 5 were computed witpresents theoisy datagenerated from the current distribu-
16-digit arithmetic, and with that level of precision the ill tion that will be used to test the multiple inversion methods.
posedness of the problem is scarcely evident, and the C@ote that the data is corrupted with a very small amount of

2. Noisy data with an inhomogeneous current distribution
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Vaev(N), the true mean square erdi(\), and the normal-
ized residual normp(\). The minimums ofVgcy(\) and
D(\) are marked with open circles. The minimum@{\)

is much sharper in this case, but the GCV method provides
excellent results anllgcy is very close to\p . Note that as
N—0, p(A\)—0 but D(\) is far from its minimum value.
This demonstrates again that minimizing the residual norm
p(\), and hence finding the solution that best satisfies 8.

is not an effective means for obtaining an approximate solu-
tion. HereAp and Agcy are ~60% of their values for the
data of Fig. 8b), even though the noise level is very similar.
The optimal value o\ is not only dependent on the noise
present in the data, but also on the shape of the data and
hence the shape of the current distribution.

For the approximate solution in Fig.(c¢J, the Hanning
window method was employed. The mean square error and
normalized residual norms are plotted in Figd)7 D(k.)
reaches its minimum value k=131 (marked with an open
circle), which is the optimal regularization parameter in this
instance. The minimum dD (k) is much sharper here than
in Fig. 5b), and the approximate solution is much more
sensitive to the choice d¢f.. As anad hocattempt to choose
k¢ from the data, leZ,,;, be replaced by, _in Eg. (15)
and letVgey(N) — Vgeu(ke). The functionVgey(ke) is plot-
ted in Fig. 7d) as well, but the minimum of thad hocGCV
function (marked with an open circjefails to provide an
acceptable value d€;. Another means of choosirlg. from
the data is the L-curve methdd,but this method lead to
over-smoothed results in numerical tests. Joeisal. have
shown that in many casek. may simply be chosen
empirically’® However, here the valué&,=131 from the
minimum of D(k;) was used to calculate the approximate
solution (black curve shown in Fig. 7c), which is a very
good approximation to the exact current profiight curve.

The flat regions of the exact profile are perhaps better recov-
ered than with the present methfEig. 7(a)], though the
oscillatory behavior is less well recovered. Visually the so-
lution may be equally acceptable to the results of the present
method, butD (\gcy) reached a slightly smaller value than

D(k,=131). This is remarkable, asgcy was determined
FIG. 6. (Color onling An inhomogeneous current distribution automatically using only the data, while was chosen by
and corresponding noisy, data to be used in the comparison of the directly minimizing the mean square error between the ap-
different inversion methods. For this distribution the concept ofproximate and exact solutiofi§q. (14)]. In this instance, the
sheet currents was use@ A density plot showing the absolute filter derived from Regularization theory is superior to the
value of the critical current for the test distribution. The sample iSHanning window filter.

2:‘36>.< 25§,um in size.(b) A 3D plot of thenoisy datafor the current The results for the CG method are shown in Fig) 7For
distribution of(a). The clean data was generated on a$%522 grid this example, the initiafy, was again chosen to be zero ev-

with A,=A,=1 um at a height oz=5 wm above the sample sur- . . :
face. Txhe cyleanlfjata was thgen corrup"?ed with Gaussian \E)vhite nois%ryWhere' WItkgk:O_.O’ F.Ig' 7(.f) shows the funCtlonQ(k)
of variancea?=0.001 maf{B,}. and p(k) fqr successive |ter§1t!on£)(k) decreases with the
number of iterations to a minimum value lat 8, and then
begins to increase. Beyorkl=8, D(k) remains a strictly
noise (@2=0.001maf|B,}), and that the added noise is increasing function ok for at least an additional two thou-
barely detectable in the image. sand iterations. The sharp minimum@{k) demonstrates a
Figure 7a) shows the results of the present method whemmuch stronger dependence of the approximate solution on
applied to the data of Fig.(B). Current profiles through the the number of iterations. Initially, théth iterate g, ap-
center of the sample are shown for the ex#ight curve) and  proaches the exact solution, but then diverges and becomes
approximate(black curve current distribution, wheragcy,  dominated by noise. This behavior of the CG method for
was used to calculate the approximate solution. The exacioisy data is well known and is referred to as
current profile is very well reconstructed, particularly wheresemiconvergencg=° Due to the semiconvergent nature of
it is oscillating. Shown in Fig. (b) are the GCV function the CG method, it is necessary to know when to “stop” the
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iterative procedure. This determination can be madef D(k) occurred at eight iterations, and the minimum of
empirically;® but the GCV method is applicable in this case. p(k) at ten iterations. The difference betweBik=8) and
Observe that the minimum @ (k) is close to the first mini- D(k=10) is not large, and Eq17) provides an acceptable
mum of p(k). As an approximation to the GCV function for estimate to the minimizer ob (k). Figure 7e) shows the
the CG method, Hansen gives exact current profilésolid light curve and approximate cur-
(K) rent profiles (dotted and solid black curvedor the CG
Veey(K)~ p—zy (179  method withk=8. Employing the method described in Sec.
(NM=k) I B above for calculating the derivatives gf, results in the
which is valid whenNM>k (Ref. 29. WhenNM>k, the  dotted curve in the figure. The current profile is dominated
denominator of Eq(17) may be weakly stationary, and the by noise, and the exact profile is poorly reproduced. This is
first minimum of p(k) can provide a good estimate of the due to the large amount of noise that was present in the
optimal number of iterations. In this example, the minimumreconstructed stream functiay,_g. Note that for the CG
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x108 D. Other geometries

10 4 All the examples presented so far have been for thin films

ﬂ using the concept of sheet currents in the fully penetrated
| | state. It is interesting to consider the performance of the tech-
0.5 | / | niques in other geometries as well. Figure 8 provides an

pd | example of flux screening at a relatively low magnetic field.
d
o

In this example, the sample is an infinite strip of width 256
U P pm and thickness 0.gm. The magnetic field data was cal-
I 7 culated analyticallf{using the formula present in Ref. pat

/ a height ofz=3 um above the sample surface. The inset to

'[/ the figure shows th®, profile at the sample surface=0.

J, (Arem?)

| No noise was added to the data, and the exact current profile
is plotted in the figurdsolid curve along with the results for
. : the Hanning window(dotted curvg CG (short-dash curvye
0 100 200 300 400 500 and present(long-dash curve methods. For the present
method,\ was chosen using GCV, and for the Hanning win-
dow and CG methods. andk were chosen from the minima
FIG. 8. (Color onling Comparison of the present method of of D(k;) andD(k), respectively. All four profiles are nearly
regularization, the Hanning window method, and the CG methodverlapping, and all methods perform equally well in the
for a case of flux screening at low magnetic fields. The etgaitd  limit of flux screening with clean data. For noise-corrupted
black curve profile is shown, along with the results for the Hanning data, performance was similar to that shown in Fig. 7, and
window (dotted curvg, CG (short-dash curve and presentlong- Aacy again provided excellent estimates)f .
dash curvgmethods. The four profiles are nearly overlapping. The |4 numerical tests with slab geometry, the present method
B, data for inversion was calculated analytically on aB]_SZ.Z grid  gptained results of quality equal to those for thin film geom-
at a height ofz=3 um above the sample surface wili,=A, gty including the performance of the GCV method. Using
=1 um. The sample was 0,8m thick, 256um wide, and extended g5\, g0 ometry, regularization and GCV have previously been

beyond the measurement window in the directions. The sample : ; " o
J. was 1 MA/cnf and the applied field was 0.2 mT. The inset f;’pp;ﬁﬂ to determine supercurrents in BiSrCa@3CCQ

shows the profile 0B, for z=0.

0 microns 512

microns

. E. Influence of the measurement heigh
method, the normalized mean square error norm reached a

minimum value of only 2.X10°3, whereas the for the  The degree of ill posedness of E() is controlled in
present method and the Hanning window method values darge part by the measurement heighis z increases, the
3.8x10°® and 9.8<10 ° were obtained, respectively. This KernelK becomes smoother and the problem becomes more
demonstrates that the CG method had much less of a regill Posed. Consequently, for increasiaga greater degree of
larizing effect than the other methods. To compensate for thEfularization(filtering) will be required, resulting in re-
larger amount of noise, the method used to calculate th uced accuracy and spatial resolution. All three methods ex-
derivatives was then changed to have an increased smootRiored in this work(regularization, Hanning window, and

ing effect. The black curve of Fig.(@ was generated using O\Ferrgﬁgog}?rgﬁrfgr;??/ilsg:i%rwse%g] tge CeIZ?Zodna;::rhT(I)t
ng=n, =5 for a total ofng+n +1=11 data points fit to g g y app Y

) . . - the results of Ref. 1 t the comparisons made in that work
each quadratic polynomial for the calculation of the deriva € results of Ref. 18, bu parnso a

. f her | in th | dan. led “are not representative of either the present method or the
tives ofgy . Further increases in the valuesrgf andn,_le Hanning window method but rather with direct Fourier de-

to a reducgd amount of noise in the f!atter regions of theconvolution(no regularizationequivalent taz,,, , =1 in Eq.
current profile, but the oscillatory behavior of the exact Pro-(11). For noisy data, the present method and the Hanning
file became poorly reproduced. Of course, the exact currentindow method produced similar resultshen the optimal
profile was used to determine the optimalandn, , defeat- k. was known at each value of, and the CG method ex-
ing the purpose of using E@17) to choosek. For the appli-  hibited an insufficient regularizing effect. Figure 9 demon-
cation of Eq.(17) the initial guess of,—o=0 is required. strates the influence af on the approximate solution using
For the proposed starting value fgg_o in Ref. 18,D(k) the present method and the current distribution of Fig. 3. In
after one iteration was more than®1@nd did not fall below  Fig. 9, \p (triangles and D(\p) (circles are shown as a
10° in an additional five thousand iterations. Thereforefunction of z for uncorrupted datgbottom two curvesand
within five thousand iterations, no acceptable solution wasor noise corrupted datatop two curvey with o?
found using Eq(11) with Z,,.,=1 as the starting value for =0.001 max/B,} [as in Fig. 3b)]. For both the uncorrupted
Ok=0o- A variant of the CG algorithm, CGNERef. 29, pro-  and corrupted data it can be seen tBéh ) is an increasing
vided a superior regularizing effect, achieving a minimum offunction of z, and hence solution quality is decreasing. Note
D(k) of 7x 10 ° after only 34 iterations. However, this is that noisy data and a small value pfmay provide better
still inferior to the regularizing effects of the present andresults than clean datavith 16 digits of precisiopand a
Hanning window methods. largerz. The behavior ok in the plot may appear counter-
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104 | 103 technique, or sensor to sample distance in the scanning Hall
probe method, may be difficult to quantify. Figure 10 exam-
my = L 104 ines the effect of error in the value of the measurement
— heightz used for the integral kerné{. Using the homoge-
1044 105 ~  neous current distribution of Fig. 3, daa was generated at
2 1ol < a heightz=5 um above the sample surface. No noise was
- L 106 a added to the data. For the inversion, “guess” valags 1, 3,
103 — 5, 5.5, and 6um were used. The present method of regular-
[ 107 ization with GCV was used for the inversion. Current pro-
10 files through the center of the sample for each valu,aire
1020 i i : i . —1 10¢ shown in the figure. Fozy=5 um, the results are the same
0 5 10 15 20 25 30 as that of Fig. 89). When the true value of is underesti-
z (um) mated ¢,<<5 um), the value of the current density is gen-

erally underestimated and the current distribution appears

FIG. 9. (Color onling Influence of the measurement heigran ~ Over smoothed. Whenis overestimatedz,>5 um), large
Ao andD(\p). For the bottom two curves, the uncorrupted data ofSPikes occur in the profile at the sample edges and where the
Fig. 3 was used. For the top two curves, the same data was cogurrent changes sign, and current is observed outside of the
rupted with Gaussian white noise of varianeg=0.001 maf/B,}.  sampleoppositein direction to the current just inside the
The triangles represent the values\gf and the circles the values sample. This suggests a procedure to determine the measure-
of D(\p). ment heightz. The guess value of (z;) used in the kernel
may be overestimated, and then reduced until the current
intuitive; asz increases, the problem becomes more ill posediowing outside the samplén direction opposite to the cur-
and more regularization is required, which would sugaest rent flowing inside the samplés just reduced to zero. Jo-
should be an increasing function af While \ controls the  hanseret al. have shown that current may be observed out-
trade off between the residual nomwt\) and the smoothing  side of the sample when thg, data is obtained via the MOI
norm Q[g,], z has a large influence on the magnitude oftechnique, due to errors iB, caused by the in-plane field
p(\). This can be understood by noting tlﬂﬁnm;zllﬁ dimin-  effect of the indicator filnf! Lavianoet al. propose an itera-
ishes rapidly with increasing Therefore, even thougkp is  tive procedure to correct for this effettA combination of
not an increasing function afin Fig. 9, the values ok do  the iterative procedure of that work, and the procedure de-
give more weight to the smoothing no}{ g, ] in Eq.(7) as  scribed here, may be useful to estimate the effective value of
Z increases. z when theB, data is obtained via the MOI technique and a
In practice, in may be difficult to know accurately the gooda priori estimate ofz is not known.
measurement height. In the MOI technique for example, the
indicator film itself may be 1—%m thick>*?so the correct
value ofz to use may not be clear. Also, the separation be-
tween the indicator film and the sample surface in the MOl There is a significant difference in the behavior of the
Hanning window, CG, and regularization methods for uncor-
x10° rupted and corrupted data. For uncorrupted data, the methods

IV. DISCUSSION

18 are very insensitive to the choice of their respective param-
104 eters, and excellent results can be obtained by all methods.
' However, the magnetic inverse problem exhibits an inherent
Ty instability for noisydata, and the ill-posed nature of E®)
NE ' : is not very apparent when uncorrupted, high precision data is
5 R T— used. For corrupted data, the ill-posed nature of E§.is
3 ' clear as evidenced by the behavior BfA), D(k.), and
=’ 054 D(k) in Figs. 7b), 7(d), and 7f). The minima ofD(\),
D(k.), andD(k) are much sharper, making a good choice of
104 N\, ke, or k (and hence the degree of regularizajionore
important. Since any experimental technique for making a
15 & &= . spatially resolvedB, measuremerii.e., MOI or Hall probes
0 100 200 300 400 500 exhibits some level of noise, the performance of any method
. to resolve Eq.(3) should be evaluated under such a noise
microns level, where the ill posedness of the problem is apparent.

FIG. 10. (Color onling The effect of “guessing” the wrong For the present method of regularizati@nd for the CG
value ofz on the approximate solution. For this example the uncor-Mmethod, GCV provides a remarkable means of choosing the
rupted data of Fig. 3 was used. Current profiles resolved from thi®ptimal parameter automatically from tfi&, data. For the
data are shown, assuming measurement heights of 1, 3, 5, 5.5, altAnning window method, no automated means of choosing
6 um. The exact current distribution is shown as a solid black line k. was found, meaning tha(, needs to be determined em-
and the exact measurement heightis5 xm. pirically. In many cases, one has a well defined “guess” of
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the true current distribution, and choosikgempirically can  method are discussed in more detail in Refs. 16 and 18. Due
yield excellent resultd®>! However, when the underlying to these issues, there may be circumstances where it is pre-
current distribution is significantly varying on length scalesferred to implement regularization theory with matrix inver-
approaching the spatial resolution of tRemeasurementas  sion methods rather than through Fourier deconvolution. In
in BSCCO tapes?, it is this author’s experience that in de- fact, this is the general case, as only special cases of ill-posed
termining\ empirically, it can be rather subjective to estab- problems(such as convolution equationsffer the opportu-

lish the right balance between spatial resolution and noisaity to use Fourier methods. Minimizing the regularization
filtering. In such an instance, there is a significant advantag&inctional of Eq.(7) is equivalent to solving the linear sys-

to be able to apply the statistical considerations of the GC\Mem

method to determine the optimal parameter value. There are T T T

limitations to the GCV method, however. It was shown in (KT-K+AL'-L)g=K "B, (20)

F|gS 3 and 4 and the GCV may fail in the clean data ||m|tf0r 0. Here the assumption of the Smoothnesgdﬁ incor-

Also, as GCV is a statistical method, it may also fail in the porated througl.. For the one-dimensional case, the second
limit of a small sample sizésmall number of grid poinis' derivative operator is the tridiagonal matrix
In numerical testsN,=N,=64 or more was sufficient get

excellent results. -2 1
In this work,J, andJ, were determined by application of 1 L
Eq. (2) to the approximate stream functignThis method of L= . , (21)
calculatingJ, and J, was chosen for ease of comparison -2 01
amongst the different methods. However, it has been shown 1 =2

that J, and J, may be determined directly from the data,
without first calculating an approximation fgr'®!’ For ex-
ample, for a thin film of finite thickness, J, can be deter-

which is equivalent to Eq(8). Equation(20) is well posed
and may be inverted directly yielding

mined directly by using the integral kernel g =A L KT-B,, (22)
2 H uT T .
- Mo uc\ sinh(raw) —om(z—al2) whereA,=K"'-K+\L"-L. In this case the preferred form
K(u)=—1 ﬂ(v+ 7) wZ o ° e, of the GCV function %’
(18)
IK-g B3
wherew=\u?+v?, and as before, a hat denotes a Fourier Veeu(N) = TI—K.AHZ’ (23

transform andz is the height of theB, measurement above P _
the sample surface. Insertifg, for K in Eq. (9) will yield ~ WhereA :ATm -K'. As an alternative to Eq22), one may
Jy., instead ofg, . The GCV method may now be applied defineb=K"-B,, which allows Eq.(20) to be written as

(using the kernekK,) to determine the optimal value affor A,-g=b. (24)
resolvingJ,., directly from the data. GCV produces excel-

lent results in this instance as well, and allows all the noise’he CG method may now be applied to Eg4). This re-
filtering for the current components to be determined througfitires determination of both and the stopping indek, but
statistical means, rather than applying smoothing polynomiit allows the regularizing effects of both methods to be
als to determine the derivatives @fs described in Sec. II B. incorporated®>*

It can be seen from the integral kernels that resoluing Finally, discussion of the speed of the various methods is
from the data is a slightly more ill-posed problem than re-deserved. The fast Fourier transfoffFT) is an algorithm
solving g, and the values of c¢y for each are not expected for computing the DFT, and the FFT can certainly be em-

to be the same, even though the data Be} (s. Oncel, has  Ployed where appropriate. Obvious symmetriesKi(x,y)
been determined], may be found from may also be exploited to save computation time and storage

space, though no attempt to do so was made in this work. It
u is well known that the time taken to compute the 2D FFT
y= T (19 scales atN>M?log,(NM) (Ref. 46, but quoting such scaling
factors may be misleading. Fi=M =512 the total time
Note that determiningd), from J, (or vice versais not an taken to compute thBl XM arraysg, , Jy, Jy, and|J| from
ill-posed problem. anNXM B, data array was less than 25 s in 16-digit arith-
The regularization theory presented in this study was emmetic on a Sun Blade 100 500 MHz UltraSPARC-lie coded
ployed using the DFT. This provides a very simple and comin FORTRAN. Employing the FFT algorithm, the time taken to
putationally efficient implementation of regularization and compute the DFT’s oK andB,, and the multiplication and
GCV. However, the DFT has its implementation issues. ThdDFT required by Eq(11), was only 22% of the total time
DFT introduces a periodic continuation of the resolved solu+taken to resolvey, , Jy, J,, and|J| from the data. Only 7%
tion that requiresB, to be measured over an area signifi- of the total time taken was used to determine the minimum
cantly greater than the sample siabout twice the width of of Vgcy()\), and the remainder of the tim@1%) was ex-
the sample Also, edge effects may give rise to spurious pended through filé/O, calculation ofJ,, J,, and|J| from
Fourier components. These and other issues of the Fourigr, , and miscellany. The Hanning window method is just as

J
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quick if a good value ok is knowna priori. If k; needs to  Direct implem_entation Qf the CG method.produces superior
be determined empirically, E43) must be resolved repeat- results with high precision data, but here it was not found to
edly for each “guess” value ok.. In that case, there is a have a sufficient regularizing effect for practical noise levels.
speed advantage to the present method, sings is deter- ~However, the direct CG method can successfully employ
mined beforean approximate solution is produced. For the GCV for choosing the stopping index. The Hanning window
CG method, the calculation of onldxM DFT and one Method exhibits a sufficient regularizing effect for noisy
Nx M IDFT are required for each iteration, which is signifi- data, producing results nearly equivalent to the present
cantly slower than the other two methods, though the speefi€thod when a good value ki is known. Unfortunatelyk,
of the CG methodas implemented in Ref. 1&cales in the MUst be determined empirically at present. The results of this
sample sizeNM equivalently to FFT methods. In any case, Study also show that any method for resolving &).should
speed should be less of an issue than accuracy. be tested with noisy data.
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