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Resolution of two-dimensional currents in superconductors from a two-dimensional magnetic field
measurement by the method of regularization

D. M. Feldmann*
Applied Superconductivity Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
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The problem of reconstructing a two-dimensional~2D! current distribution in a superconductor from a 2D
magnetic field measurement is recognized as a first-kind integral equation and resolved using the method of
regularization. Regularization directly addresses the inherent instability of this inversion problem for nonexact
~noisy! data. Performance of the technique is evaluated for different current distributions and for data with
varying amounts of added noise. Comparisons are made to other methods, and the present method is demon-
strated to achieve a better regularizing~noise filtering! effect while also employing the generalized-cross
validation ~GCV! method to choose the optimal regularization parameter from the data, without detailed
knowledge of the true~and generally unknown! solution. It is also shown that clean, noiseless data is an
ineffective test of an inversion algorithm.
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I. INTRODUCTION

Considerable effort has been spent to probe the local c
cal current density (Jc) of high-temperature superconductin
~HTS! materials. Of particular interest is YBa2Cu3O7 coated-
conductors~CCs! and BiSrCaCuO~BSCCO! tapes, where
current percolates and transportJc values are frequently a
macroscopic average of large local variations inJc ~Ref.
1–9!. Probing the localJc may be done directly with trans
port measurements, but such measurements are destru
and provide information only in localized regions.3,5 Indirect
methods of probingJc , frequently done through a spatiall
resolved magnetic field measurement, can provide infor
tion about the localJc over large areas.1,2,4,10Under certain
restrictions, a 2D map of the localJc in a superconductor ca
be resolved from a 2D magnetic field measurement thro
inversion of the Biot-Savart law. The local magnetic fie
required for the inversion may be obtained through magn
optical imaging ~MOI! or scanning Hall probe
techniques.11–15

This magnetic inverse problem has been addressed m
times by a variety of methods,2,16–23but these methods ma
suffer from several shortcomings. The inversion of the Bi
Savart law exhibits an inherent instability for nonexa
~noisy! data, but the results of these methods are often o
presented for clean~noiseless! data, which is a poor test o
any method. Experimental data always contains some l
of noise, and the performance of any method should
evaluated in the presence of such noise, where the instab
of the inversion problem is evident. Several of these meth
require a user-chosen parameter, such as the cutoff frequ
in the low-pass Fourier filtering method of Rothet al.17 or
the number of iterations in the conjugate-gradient~CG!
method of Wijngaardenet al.,18,23 but no systematic mean
of choosing these parameters is presented in those wo
While these parameters can be chosen empirically, it is p
erable to have a means of choosing such parameters dir
from the data. These methods also fail to recognize the
version of the Biot-Savart law as a member of a larger cl
0163-1829/2004/69~14!/144515~14!/$22.50 69 1445
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of integral equations that have been well studied in the
erature. Such shortcomings are overcome in the pre
work.

Inversion of the Biot-Savart law, separate from the phy
cal representation of reconstruction of current flow, requi
the resolution of an integral equation. If all the restrictio
required for inversion of the Biot-Savart law are satisfie
then the problem of resolving a 2D current distribution fro
a 2D magnetic field measurement reduces to an inte
equation of the form

E
A
K~x2x8,y2y8!g~x8,y8!dx8dy85 f ~x,y!, ~1!

where the integral kernelK is known,g is to be determined,
and f is known at only a discrete number of points and w
errors. Equation~1! is a member of a larger class of equ
tions known as Fredholm integral equations of the first k
and is characterized by an inherent instability for nonex
data, since small variations inf can produce large variation
in g, andg does not depend continuously onf ~Ref. 24!. Such
problems are termed ill posed.25 The degree of ill-posednes
of Eq. ~1! depends on the form of the kernelK, with very
smooth kernels generally leading to highly ill-posed pro
lems andd-function-like kernels being highly desirable.
consequence of this ill-posed nature is that the functiog
that best satisfies Eq.~1! for a given data setf may deviate
greatly from the true solution. First kind integral equatio
have been well studied in the literature and several meth
exist for their evaluation.24,26–35One of the most popular o
these is the method of regularization, developed by Phillip27

in 1962 and expanded by Tikhonov35 in 1963, which usesa
priori information about the solution to replace Eq.~1! with
a similar, but well-posed problem. For regularization, thea
priori information generally concerns the smoothness~or the
allowed oscillations! of g. Integral equations such as Eq.~1!
are not unique to the magnetic inverse problem and occu
many areas of science.36–38An excellent primer on first kind
©2004 The American Physical Society15-1
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equations is given by Wing.24 In this paper, the method o
regularization is used to resolve the magnetic inverse p
lem.

II. RESOLUTION OF THE MAGNETIC INVERSION
PROBLEM

A. Formulation of the problem

The geometry of the magnetic inverse problem is sho
in Fig. 1. To derive the current flow in a superconductor fro
a spatially resolved 2D magnetic field measurementBz(x,y),
it is necessary for the current to be adequately approxim
as 2D, i.e., that thez component of the current is zero. It
also required that the superconductor be in a magnetos
state such that“•J50. This condition can be incorporate
by writing the current in terms of the scalar fieldg(x,y)
~Ref. 39!

J5“3@g~x,y!k̂#. ~2!

Substituting Eq.~2! into thez component of the Biot-Savar
law gives

Bz~x,y!5E
2`

` E
2`

`

K~x2x8,y2y8!g~x8,y8!dx8dy8,

~3!

where the kernelK(x,y) is given by

K~x,y!5
m0

4p

z

~x21y21z2!3/2 ~4!

for slab geometry,40

K~x,y!5
m0

4p S z

~x21y21z2!3/22
a1z

@x21y21~a1z!2#3/2D
~5!

for thin films of thicknessa, and

FIG. 1. The geometry of the magnetic inverse problem. The d
Bz is assumed to measured on a rectangular grid ofN3M data
points a heightz above the surface of the sample with grid spac
of Dx andDy in the x andy directions, respectively. The surface
the sample is parallel to the measurement plane. The sample
arbitrary shape with uniform thicknessa, which may be zero when
the concept of sheet currents is used or infinite in the case of
geometry.
14451
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K~x,y!5
m0

4p

2z22x22y2

~x21y21z2!5/2 ~6!

when the concept of sheet currents is used.39 m0 is the per-
mittivity of free space,Bz is thez component of the magneti
field ~perpendicular to the sample surface!, z is the height of
the measurement plane above the sample surface, andz
dependence ofK(x,y) has been suppressed. In order to d
termine the current in a sample, Eq.~3! must be resolved for
g(x,y). Onceg(x,y) has been adequately determined, E
~2! can be applied to determine the current vectorsJx and
Jy . Resolving g(x,y) from Eq. ~3! when the dataBz is
known only at a discrete number of points and with errors
the main topic of this paper, and is done with the method
regularization as described in the next section.

B. Regularization

The method of regularization replaces the problem of
verting Eq. ~3! with the problem of minimizing the func-
tional

C~g,l!5 I E
2`

` E
2`

`

K~x2x8,y2y8!g~x8,y8!dx8dy8

2Bz~x,y!I
2

2

1lV@g# ~7!

with respect tog, where the 2-norm is defined asi f (x,y)i2
2

5*2`
` *2`

` u f (x,y)u2dxdy. The operatorV is a user-defined
measure of the smoothness ofg, andl is the regularization
parameter that controls the trade off between smoothness
the degree to which Eq.~3! is satisfied. A common~and
convenient! choice ofV is the norm of annth derivative of
the unknowng. It is desirable for the application of Eq.~2!
that the first derivatives ofg be smooth, so hereV is chosen
to be

V@g#5 I ]2g

]x2 1
]2g

]y2I
2

2

. ~8!

The value ofV@g# will be larger wheng is rapidly oscillat-
ing ~noisy! and smaller wheng is smooth. With this choice
for V it can be shown that the minimizer of Eq.~7!, gl , is
given by41

gl~x,y!5E
2`

` E
2`

` uK̂~u,v !u2

uK̂~u,v !u21l~2p!4~u21v2!2

3S B̂z~u,v !

K̂~u,v !
D ei2p~ux1vy!dudv, ~9!

where a hat denotes a Fourier transform. The problem
minimizing C(g,l) has been reduced to a simple Four
transform with a filter function. However, unlike other Fo
rier inversion methods,16,17,21the filter can be directly related
back to the imposed smoothness condition ong. Using
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ĥuv5 (
m50

M21

(
n50

N21

hnmei2pun/N1 i2pvm/M

and

hnm5
1

NM (
v50

M21

(
u50

N21

ĥuve2 i2pun/N2 i2pvm/M

~10!

as the definitions of the discrete Fourier transform~DFT! and
inverse DFT~IDFT! respectively, the minimizer of the dis
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crete version of Eq.~7! is given by

gnm;l5
1

NDxMDy
(
v50

M21

(
u50

N21

Zuv;l

B̂uv;z

K̂uv

e2 i2pun/N2 i2pvm/M,

~11!

where the filterZuv;l is
Zuv;l5
uK̂uvu2

uK̂uvu2116lDx
22Dy

22@Dx
22 sin2~pu/N!1Dy

22 sin2~pv/M !#2
. ~12!
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n
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-
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The second order accurate central difference approxima
was used for the discrete version of Eq.~8!, assuming a
periodic extension of the$gnm;l% ~Ref. 42!. Let the discrete
residual norm be defined as

r~l!5i~K* gl!nm2Bnm;zi2
2, ~13!

where the discrete 2-norm isi f i j i2
25DxDy( i , j u f i j u2 and

the definition of discrete convolution is (r * s)nm
5DxDy(m8,n8r (m2m8)(n2n8)sn8m8 . The discrete normr~l! is
a measure of the degree to which the regularized solutiongl

satisfies Eq.~3!.
Before Eq.~11! can be applied, it is necessary to choos

value forl. A large value ofl will result in gl being quite
smooth, with an unnecessary loss of detail. A small value
l will result in the residual normr~l! being small, but the
regularized solutiongl may deviate considerably from th
true solution. It needs to be emphasized that a small value
the residual norm does not necessarily mean thatgl will be
close to the true solution since the dataBz is inexact. The
value ofl may be chosen empirically by varyingl until the
smoothness of either the scalar fieldg or the current vectors
Jx and Jy appears most reasonable. This can be rather
jective, however, and a more systematic means of choo
the optimall is desired. Before discussing means of cho
ing l, it is helpful to define what a ‘‘good choice’’ ofl is.
The best choice ofl is one that minimizes the differenc
between the approximate and the exact solution as meas
in some user-defined way. Here, let the measure be the
malized true mean square errorD(l),

D~l!5
ignm;l2gnm;exacti2

2

ignm;exacti2
2 , ~14!

wheregexact is the exact~true! solution. If we chooseD(l)
as the goodness of fit criterion for an approximate solut
gl , then the minimizer ofD(l), lD , is the best possible
choice ofl for a given data setBz . More simply, smaller
values forD(l) represent better solutions than larger valu
In practice,gexact is generally unknown, and Eq.~14! cannot
n
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be minimized directly. In this case, a means of choosingl
from the dataBz is desired, such that this choice ofl results
in a solution close to the exact~unknown! solution as mea-
sured by our goodness of fit criterionD(l). There are mul-
tiple methods for choosingl from the data,31,33,43and one of
the most successful is the generalized cross-valida
~GCV! method of Wahba.33 The GCV method is based o
statistical considerations, namely, that if an arbitrary elem
of Bz is left out, then the regularized solution should pred
this missing data point well. GCV also seeks to minimize t
predictive mean square error.44 For a more detailed discus
sion of these points see Ref. 45. Using GCV, the optim
regularization parameterlGCV is the minimizer of

VGCV~l!5

(
v50

M21

(
u50

N21

~12Zuv;l!2uB̂uv;zu2

S 12
1

MN
(
v50

M21

(
u50

N21

Zuv;lD . ~15!

VGCV(l) is a simple one-dimensional function ofl depend-
ing only on K̂ and B̂z . The calculation ofK̂ and B̂z are
already required for Eq.~11!, and minimization ofVGCV(l)
is relatively quick.

Once the functiongl has been determined, Eq.~2! still
needs to be applied to determineJx andJy . Since the dataBz
contain noise so too willgl , and differentiating a noisy
function is itself an ill-posed problem.46 Small oscillations in
gl can cause large oscillations in its derivatives and there
in Jx andJy , and the method chosen to take the derivativ
will obviously affect the values ofJx and Jy . The method
chosen to perform the required differentiation in this pap
had a slight smoothing effect and proceeds as follows. F
the point of interest (f n) plus a number of data points to th
left (nL) and to the right (nR) were fit to a quadratic poly-
nomial (f n2nL

,...,f n21 , f n , f n11 ,...,f n1nR
). The estimate of

the derivative at the point of interestf n is then the value of
the analytical derivative of the polynomial at that poin
5-3
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D. M. FELDMANN PHYSICAL REVIEW B 69, 144515 ~2004!
Throughout this work, unless stated otherwise,nR5nL52
for a total of nR1nL1155 data points fit to each polyno
mial, centered on the point of interest. This was carried
in an efficient manner with the use of Savitsky-Gol
coefficients.47 This method of calculating the derivatives r
sults in a slight reduction of spatial resolution. The quadra
polynomials are fit to five grid points, though they would
fully defined by only three. For the examples of this wo
where noisy data has been used, this reduction in sp
resolution is less than that due to the added noise.

III. NUMERICAL RESULTS

A. L-curve analysis

The regularization functional@Eq. ~7!# imposes a trade of
between the smoothness ofgl and the degree to which Eq
~3! is satisfied. This trade off is shown graphically in Fig.
where the smoothing normV@gl# is plotted versusr~l!
for increasing values ofl. The exact form of the curren
distribution is given in Fig. 3, and the dataBz have been
corrupted with Gaussian white noise with variances2

50.01 max$uBzu%. The smallest value ofl occurs in the upper
left portion of the plot and the largest in the lower right.
can be seen that smalll will result in the normr~l! being
small and largel will causeV@gl# to be small. The optima
value of l as defined by the goodness of fit criterionlD is
marked with an open circle in Fig. 2.lD is often in the
‘‘corner’’ of the ‘‘L-curve,’’ which gets its name from its ‘‘L’’
shape. The inset shows the L-curve on a linear scale, w
the data appears to lie entirely on the plot axes. The cor
or point of maximum curvature of the L-curve, is anoth

FIG. 2. L-curve demonstrating the trade off betweenV@gl# and
r~l! imposed by the regularization functional. For this example
concept of sheet currents was used, and a 5123512 point grid ofBz

data with Dx5Dy51 mm was generated from a uniform squa
sample of size 2003200mm at a height ofz55 mm above the
sample surface. The dataBz where corrupted with Gaussian whit
noise of variances250.01 max$uBzu%. The parameterl varies from
1026 in the upper left portion of the plot to 109 in the lower right.
The inset shows the same data on a linear scale. The optimal v
of l, lD , is marked with an open circle.lD often lies in the corner
of the L curve. Solutions withl,lD represent under-smoothe
solutions, and solutions withl.lD represent over-smoothed solu
tions.
14451
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means of choosing the optimall ~Ref. 48!. Solutions to the
left of the corner (l,lD) represent ‘‘under-smoothed’’ so
lutions, while solutions to the right of the corner (l.lD)
represent ‘‘over-smoothed’’ solutions. The L-curve demo
strates that minimizing the residual normr~l! is not an ef-
fective means of determining an approximate solutiongl .
As l is reduced belowlD , r~l! continues to decrease, bu
gl becomes dominated by noise as evidenced by the r
increase inV@gl#. For a discussion of why the L-curve ha
its shape, and why the optimall lies in the corner of the L-
curve, see Ref. 47. It should be observed thatl varies fifteen
orders of magnitude in Fig. 2, from 1026 to 109.

B. Regularization with noisy data

Since Eq.~3! exhibits an inherent instability for nonexac
~noisy! data, it is necessary to test any inversion algorithm
the presence of noise. Figure 3 shows the exact~light curves!
and reconstructed~black curves! current profiles for a uni-
form thin square, where the dataBz have been corrupted with
varying amounts of gaussian white noise of variances2

5a max$uBzu%, and the GCV method has been used to de
mine the regularization parameter. For Fig. 3~a! there is no
added noise (a50), and the exact and reconstructed curre
are in excellent agreement. Note thatlD.0, due to the finite
precision of the data. For Fig. 3~b! a50.001, which is a
noise level approximately equal to that typically obtain
from the MOI technique.49 This is a relatively low noise
level and results in very good agreement between the e
and reconstructed current as well, but note thatlGCV has
increased by more than fourteen orders of magnitude rela
to the uncorrupted data. Further increases in the added n
lead to larger values oflGCV, Fig. 3~c!. Figure 3~d! is a 3D
plot of noise corrupted dataBz with a50.2. The signal is
barely distinguishable from the noise, but a good represe
tion of the exact current distribution can still be obtain
@Figs. 3~e! and 3~f!#. While it is unlikely that this extreme
level of noise would ever be encountered measuring
magnetic field above a superconductor, it may be commo
magnetic inversion problems in other areas, such as med
imaging. It should be emphasized that no knowledge of
exact current distribution was used to obtain the rec
structed current in any of these examples, beyond the
sumption of smoothness imposed byV@gl#. The regularized
solutions shown in Figs. 3~a!–3~c!, 3~e!, and 3~f! were cal-
culated usinglGCV, the minimizer of VGCV(l), which de-
pends only on the data and the integral kernel. The m
mizer of the true mean square errorlD is also shown in Figs.
3~a!–3~c!, 3~f!, and with the exception of the uncorrupte
data@Fig. 3~a!# lGCV is within ;10% oflD in each case. As
the noise level is varied in Fig. 3, the optimal regularizati
parameterlD varies by nearly 24 orders of magnitude. Th
regularized solutiongl is somewhat insensitive to sma
changes inl, and varyingl by ;20% or more generally
leads to negligible changes ingl . In this respect, Fig. 3
demonstrates thatlGCV can be an excellent approximation
lD . For the uncorrupted data of Fig. 3~a!, the success of the
GCV method may appear to be somewhat dubious, si
lGCV is nearly five orders of magnitude away fromlD .

e

lue
5-4



or this

e
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FIG. 3. ~Color online! Reconstructed current distributions for a uniform square thin film with varying amounts of added noise. F
example the concept of sheet currents was used, and a 5123512 point grid ofBz data withDx5Dy51 mm was generated from a uniform
square sample of size 2003200mm at a height ofz55 mm above the sample surface. The dataBz were corrupted with Gaussian white nois
of variances25a max$uBzu%. ~a! Linear profile through the center of the sample for both the reconstructed current~black curve! and the exact
current~light curve!. ~b! Same as~a! with a50.001,~c! same as~a! with a50.01,~d! A 3D plot of the dataBz after being corrupted with
noise witha50.2. The signal is barely distinguishable from the noise. The linear profile in the inset shows the uncorrupted data.~e! The
streamlines of the reconstructed current for the noisy data of~d!. The exact streamlines are uniformly spaced concentric squares.~f! Same
as ~a! with a50.2.
144515-5



ge

ax

u

en
Th

o
o
th
b

n-
s

uc
e

cu

he
on

n

f
l

ers
ery

n-

-
and
ing

r

-

ar-
r

nly

e
CG

f it-

ns.

ry

the

no

D. M. FELDMANN PHYSICAL REVIEW B 69, 144515 ~2004!
However, the figure clearly shows that the choice oflGCV
provides excellent results. For noiseless data,D(l) generally
exhibits a very shallow minimum, which results in a lar
range of values ofl ~several orders of magnitude! that pro-
vide perfectly acceptable results. Davies provides a m
mum likelihood method for choosing the optimal value ofl
that may provide better estimates oflD in the limit of clean
data,31 but otherwise led to under-smoothed solutions in n
merical tests.

C. Comparison to other methods

It is instructive to compare the performance of the pres
method to other methods under different test conditions.
test conditions include uncorrupted~noiseless! data gener-
ated from a homogeneous current distribution and the m
practical circumstance of noisy data and an inhomogene
current distribution. The methods for comparison are
present method, the Fourier-filtering method employed
Rothet al.17 and the iterative CG method employed by Wij
gaardenet al.18 ~In Ref. 18 the CG method is referred to a
CG-FFT.! The latter two methods are among the more s
cessful in the literature and each exhibits a regularizing
fect as well.

1. Uncorrupted data with a homogeneous current distribution

The first comparison is made using the homogeneous
rent distribution of Fig. 3 with uncorrupted~clean! data. Fig-
ure 3~a! shows the results for the present method, and t
are in excellent agreement. Figure 4 shows the functi
D(l), VGCV(l), andr~l! for the data of Fig. 3~a!, wherelD
andlGCV have been marked with open circles.r~l! has been
normalized byiBnm;zi2

2, and is a strictly increasing functio
of l. The values oflD andlGCV reveal that GCV may not be
able to provide good estimates oflD in the limit of clean
data, but because the minimum ofD(l) is extremely shallow
in this instance, a very large range of values forl produce

FIG. 4. The functionsD(l), VGCV(l), andr~l! for the present
method using the uncorrupted data generated from the homoge
current distribution of Fig. 3.
14451
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equally acceptable results. The minimum ofD(l) for this
data set isD(lD)58.131028, but in this case any value o
l that givesD(l),1026 produces visually nearly identica
results to those presented in Fig. 3~a!. Using the criterion
D(l),1026, any value 10225,l,;731023 produces
equally acceptable results. This is a range of over 22 ord
of magnitude demonstrating that the present method is v
insensitive to the value ofl for cleandata.

For the Fourier-filtering method of Rothet al.,17 a regu-
larizing effect is achieved by low-pass filtering with a Ha
ning window. For this method the approximate solutiongkc
is given by Eq.~11! with the filter Zuv;l replaced byZuv;kc

,
where

Zuv;kc
5~Au21v2,kc!@11cos~pAu21v2/kc!#/2

~16!

and the Boolean notation (x,y) has value 1 if true and 0 if
false. Here the cutoff frequencykc plays the role of the regu
larization parameter. The normalized mean square error
residual norms for this method may be obtained by replac
gl with gkc

in Eqs. ~13! and ~14! resulting inr(l)→r(kc)

andD(l)→D(kc), respectively. Figure 5~b! plotsD(kc) and
the normalizedr(kc) function. For kc50, gkc

50 every-

where, andr(kc)/iBnm;zi2
25D(kc)51. The residual norm

r(kc) is a constantly decreasing function ofkc , and askc
→`, Zuv;kc

→1, and r(kc)→0. The mean square erro

D(kc) reaches a minimum value atkc51604 ~marked with
an open circle!, which is the optimal regularization param
eter in this instance. Using the value ofkc51604, the exact
~light curve! and approximate~black curve! current distribu-
tions for this method are shown in Fig. 5~a!, and are in ex-
cellent agreement. Note that the minimum ofD(kc) is again
extremely shallow. Using the same criterionD(kc),1026,
any value 135,kc,25 0001 would have provided equally
acceptable results.

The iterative CG method also has a well-known regul
izing ~noise-filtering! effect, and in this method the numbe
of iterationsk acts as the regularizing parameter.29,30 Note
that in this case the regularization parameter takes on o
discrete~integer! values. The exact form of the CG algorithm
used here can be found in Refs. 18 and 50. Withk as the
number of iterations, letgl→gk , and as before, we defin
the residual and true mean square error norm for the
method asr(l)→r(k) andD(l)→D(k), respectively. For
the CG method, besides choosing the optimal number o
erationsk, an initial starting point forgk (k50) must be
chosen. Usinggk5050, Fig. 5~d! shows the functionsD(k)
and the normalized residual norm for successive iteratio
In this case,D(k50)5r(k50)/iBnm;zi2

251, and both func-
tions exhibit a rapid initial decrease.D(k) reaches a mini-
mum atk540 725 iterations, and again the minimum is ve
shallow. The CG algorithm converged at;100 000 iterations
in this example, and further iterations did not change
value ofD(k). Using the optimal valuek540 725 iterations,
the exact~light curve! and approximate~black curve! current
distributions for the CG method are shown in Fig. 5~c!, and
are in excellent agreement. The functionD(k) in Fig. 5~d!

us
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FIG. 5. ~Color online! Application of the Hanning window and CG methods for the uncorrupted data of Fig. 3.~a! Linear profiles through
the center of the sample for the reconstructed current obtained using the Hanning window method~black curve! and for the exact curren
~light curve!. ~b! The functionsD(kc) and the normalizedr(kc) for the uncorrupted data of Fig. 3.~c! Linear profiles through the center o
the sample for the reconstructed current obtained using the CG method~black curve! and for the exact current~light curve!. ~d! The functions
D(k) and the normalizedr(k) for the uncorrupted data of Fig. 3.
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reaches values several orders of magnitude smaller
D(kc) or D(l), though visually there is little difference be
tween the solutions of Figs. 3~a!, 5~a!, and 5~c!. D(k) falls
below 1026 after only 19 iterations, and stopping the iter
tive CG procedure any time after 19 iterations would ha
produced visually equivalent results. In Ref. 18, the start
value forgk50 was Eq.~11! with Zuv;l51. Using this start-
ing value forgk50 the results were nearly the same.

In short, Figs. 3~a!, 5~a!, and 5~c! demonstrate that al
three methods can produce excellent results with uncorru
~noiseless! data. They also show that all three methods
very insensitive to the choice of their respective parame
when the data is uncorrupted. This insensitivity to the para
eter value is one of the problems with testing a method w
clean data, since it will be shown that choosing the corr
parameter value is more critical with noisy data. Also, t
minimum values and the shape ofD(l), D(k), andD(kc)
are highly dependent on the precision of the data. All
results presented in Figs. 3, 4, and 5 were computed w
16-digit arithmetic, and with that level of precision the
posedness of the problem is scarcely evident, and the
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method clearly produces superior results as measured by
functionsD(l), D(k), and D(kc). When eight-digit arith-
metic is used for the same problem, the present metho
regularization is superior, withD(l) able to achieve smalle
than values than eitherD(k) or D(kc). The minima of all
three functions are less shallow using eight-digit arithme
though there is still a significant insensitivity to the para
eter values. For noisy data, accuracy may be limited to 2
digits or less.

2. Noisy data with an inhomogeneous current distribution

While the present Regularization method, the Hanning
ter method, and the CG method all perform extremely w
with uncorrupted data, any effective comparison of metho
must be performed with the more practical case of noisy d
and an inhomogeneous current distribution. Figure 6~a!
shows the chosen test current distribution while Fig. 6~b!
presents thenoisy datagenerated from the current distribu
tion that will be used to test the multiple inversion method
Note that the data is corrupted with a very small amount
5-7
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D. M. FELDMANN PHYSICAL REVIEW B 69, 144515 ~2004!
noise (s250.001 max$uBzu%), and that the added noise
barely detectable in the image.

Figure 7~a! shows the results of the present method wh
applied to the data of Fig. 6~b!. Current profiles through the
center of the sample are shown for the exact~light curve! and
approximate~black curve! current distribution, wherelGCV
was used to calculate the approximate solution. The e
current profile is very well reconstructed, particularly whe
it is oscillating. Shown in Fig. 7~b! are the GCV function

FIG. 6. ~Color online! An inhomogeneous current distributio
and corresponding noisyBz data to be used in the comparison of t
different inversion methods. For this distribution the concept
sheet currents was used.~a! A density plot showing the absolut
value of the critical current for the test distribution. The sample
2563256mm in size.~b! A 3D plot of thenoisy datafor the current
distribution of~a!. The clean data was generated on a 5123512 grid
with Dx5Dy51 mm at a height ofz55 mm above the sample sur
face. The clean data was then corrupted with Gaussian white n
of variances250.001 max$uBzu%.
14451
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ct

VGCV(l), the true mean square errorD(l), and the normal-
ized residual normr~l!. The minimums ofVGCV(l) and
D(l) are marked with open circles. The minimum ofD(l)
is much sharper in this case, but the GCV method provi
excellent results andlGCV is very close tolD . Note that as
l→0, r(l)→0 but D(l) is far from its minimum value.
This demonstrates again that minimizing the residual no
r~l!, and hence finding the solution that best satisfies Eq.~3!,
is not an effective means for obtaining an approximate so
tion. HerelD and lGCV are ;60% of their values for the
data of Fig. 3~b!, even though the noise level is very simila
The optimal value ofl is not only dependent on the nois
present in the data, but also on the shape of the data
hence the shape of the current distribution.

For the approximate solution in Fig. 7~c!, the Hanning
window method was employed. The mean square error
normalized residual norms are plotted in Fig. 7~d!. D(kc)
reaches its minimum value atkc5131 ~marked with an open
circle!, which is the optimal regularization parameter in th
instance. The minimum ofD(kc) is much sharper here tha
in Fig. 5~b!, and the approximate solution is much mo
sensitive to the choice ofkc . As anad hocattempt to choose
kc from the data, letZuv;l be replaced byZuv;kc

in Eq. ~15!

and letVGCV(l)→VGCV(kc). The functionVGCV(kc) is plot-
ted in Fig. 7~d! as well, but the minimum of thead hocGCV
function ~marked with an open circle! fails to provide an
acceptable value ofkc . Another means of choosingkc from
the data is the L-curve method,47 but this method lead to
over-smoothed results in numerical tests. Joosset al. have
shown that in many caseskc may simply be chosen
empirically.16 However, here the valuekc5131 from the
minimum of D(kc) was used to calculate the approxima
solution ~black curve! shown in Fig. 7~c!, which is a very
good approximation to the exact current profile~light curve!.
The flat regions of the exact profile are perhaps better rec
ered than with the present method@Fig. 7~a!#, though the
oscillatory behavior is less well recovered. Visually the s
lution may be equally acceptable to the results of the pres
method, butD(lGCV) reached a slightly smaller value tha
D(kc5131). This is remarkable, aslGCV was determined
automatically using only the data, whilekc was chosen by
directly minimizing the mean square error between the
proximate and exact solutions@Eq. ~14!#. In this instance, the
filter derived from Regularization theory is superior to t
Hanning window filter.

The results for the CG method are shown in Fig. 7~e!. For
this example, the initialgk was again chosen to be zero e
erywhere. Withgk5050, Fig. 7~f! shows the functionsD(k)
andr(k) for successive iterations.D(k) decreases with the
number of iterations to a minimum value atk58, and then
begins to increase. Beyondk58, D(k) remains a strictly
increasing function ofk for at least an additional two thou
sand iterations. The sharp minimum ofD(k) demonstrates a
much stronger dependence of the approximate solution
the number of iterations. Initially, thekth iterate gk ap-
proaches the exact solution, but then diverges and beco
dominated by noise. This behavior of the CG method
noisy data is well known and is referred to a
semiconvergence.29,30 Due to the semiconvergent nature
the CG method, it is necessary to know when to ‘‘stop’’ t
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RESOLUTION OF TWO-DIMENSIONAL CURRENTS IN . . . PHYSICAL REVIEW B69, 144515 ~2004!
FIG. 7. ~Color online! Com-
parison of the present method o
regularization to the Hanning win
dow and iterative CG methods us
ing the noisy data of Fig. 6~b!. ~a!
The exact~light curve! and recon-
structed~black curve! current pro-
files for the present method o
regularization.~b! The functions
VGCV(l), D(l), and the normal-
ized r~l! for the regularization
method. ~c! Same as~a! for the
Hanning window method. ~d!
Same as ~b!, with respective
VGCV(kc), D(kc), andr(kc) func-
tions. ~e! Same as~a! for the CG
method. The light-dotted and
solid-black curves both represen
the approximate solution for the
CG method, with different meth-
ods used for calculation of the de
rivatives. For the dotted curve
nR5nL52, and for the black
curve nR5nL55. ~f! Same as~a!
with respectiveD(k) and r(k)
functions.
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iterative procedure. This determination can be ma
empirically,18 but the GCV method is applicable in this cas
Observe that the minimum ofD(k) is close to the first mini-
mum ofr(k). As an approximation to the GCV function fo
the CG method, Hansen gives

VGCV~k!'
r~k!

~NM2k!2 , ~17!

which is valid whenNM@k ~Ref. 29!. WhenNM@k, the
denominator of Eq.~17! may be weakly stationary, and th
first minimum of r(k) can provide a good estimate of th
optimal number of iterations. In this example, the minimu
14451
e
.
of D(k) occurred at eight iterations, and the minimum
r(k) at ten iterations. The difference betweenD(k58) and
D(k510) is not large, and Eq.~17! provides an acceptabl
estimate to the minimizer ofD(k). Figure 7~e! shows the
exact current profile~solid light curve! and approximate cur-
rent profiles ~dotted and solid black curves! for the CG
method withk58. Employing the method described in Se
II B above for calculating the derivatives ofgk results in the
dotted curve in the figure. The current profile is dominat
by noise, and the exact profile is poorly reproduced. This
due to the large amount of noise that was present in
reconstructed stream functiongk58 . Note that for the CG
5-9
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D. M. FELDMANN PHYSICAL REVIEW B 69, 144515 ~2004!
method, the normalized mean square error norm reach
minimum value of only 2.231023, whereas the for the
present method and the Hanning window method value
3.831026 and 9.831026 were obtained, respectively. Th
demonstrates that the CG method had much less of a r
larizing effect than the other methods. To compensate for
larger amount of noise, the method used to calculate
derivatives was then changed to have an increased smo
ing effect. The black curve of Fig. 7~e! was generated usin
nR5nL55 for a total ofnR1nL11511 data points fit to
each quadratic polynomial for the calculation of the deriv
tives of gk . Further increases in the values ofnR andnL led
to a reduced amount of noise in the flatter regions of
current profile, but the oscillatory behavior of the exact p
file became poorly reproduced. Of course, the exact cur
profile was used to determine the optimalnR andnL , defeat-
ing the purpose of using Eq.~17! to choosek. For the appli-
cation of Eq.~17! the initial guess ofgk5050 is required.
For the proposed starting value forgk50 in Ref. 18,D(k)
after one iteration was more than 106 and did not fall below
106 in an additional five thousand iterations. Therefo
within five thousand iterations, no acceptable solution w
found using Eq.~11! with Zuv;l51 as the starting value fo
gk50 . A variant of the CG algorithm, CGNE~Ref. 29!, pro-
vided a superior regularizing effect, achieving a minimum
D(k) of 731025 after only 34 iterations. However, this i
still inferior to the regularizing effects of the present a
Hanning window methods.

FIG. 8. ~Color online! Comparison of the present method
regularization, the Hanning window method, and the CG met
for a case of flux screening at low magnetic fields. The exact~solid
black curve! profile is shown, along with the results for the Hannin
window ~dotted curve!, CG ~short-dash curve!, and present~long-
dash curve! methods. The four profiles are nearly overlapping. T
Bz data for inversion was calculated analytically on a 5123512 grid
at a height ofz53 mm above the sample surface withDx5Dy

51 mm. The sample was 0.3mm thick, 256mm wide, and extended
beyond the measurement window in the6x directions. The sample
Jc was 1 MA/cm2 and the applied field was 0.2 mT. The ins
shows the profile ofBz for z50.
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D. Other geometries

All the examples presented so far have been for thin fil
using the concept of sheet currents in the fully penetra
state. It is interesting to consider the performance of the te
niques in other geometries as well. Figure 8 provides
example of flux screening at a relatively low magnetic fie
In this example, the sample is an infinite strip of width 2
mm and thickness 0.3mm. The magnetic field data was ca
culated analytically~using the formula present in Ref. 21! at
a height ofz53 mm above the sample surface. The inset
the figure shows theBz profile at the sample surfacez50.
No noise was added to the data, and the exact current pr
is plotted in the figure~solid curve! along with the results for
the Hanning window~dotted curve!, CG ~short-dash curve!,
and present~long-dash curve! methods. For the presen
method,l was chosen using GCV, and for the Hanning wi
dow and CG methodskc andk were chosen from the minima
of D(kc) andD(k), respectively. All four profiles are nearl
overlapping, and all methods perform equally well in t
limit of flux screening with clean data. For noise-corrupt
data, performance was similar to that shown in Fig. 7, a
lGCV again provided excellent estimates oflD .

In numerical tests with slab geometry, the present met
obtained results of quality equal to those for thin film geo
etry, including the performance of the GCV method. Usi
slab geometry, regularization and GCV have previously b
applied to determine supercurrents in BiSrCaCuO~BSCCO!
tapes.1,4

E. Influence of the measurement heightz

The degree of ill posedness of Eq.~3! is controlled in
large part by the measurement heightz. As z increases, the
kernelK becomes smoother and the problem becomes m
ill posed. Consequently, for increasingz, a greater degree o
regularization~filtering! will be required, resulting in re-
duced accuracy and spatial resolution. All three methods
plored in this work~regularization, Hanning window, an
CG methods! performed equally well in the clean data lim
over a large range of values ofz. This may appear contrary to
the results of Ref. 18, but the comparisons made in that w
are not representative of either the present method or
Hanning window method but rather with direct Fourier d
convolution~no regularization! equivalent toZuv;l51 in Eq.
~11!. For noisy data, the present method and the Hann
window method produced similar results~when the optimal
kc was known! at each value ofz, and the CG method ex
hibited an insufficient regularizing effect. Figure 9 demo
strates the influence ofz on the approximate solution usin
the present method and the current distribution of Fig. 3
Fig. 9, lD ~triangles! and D(lD) ~circles! are shown as a
function of z for uncorrupted data~bottom two curves! and
for noise corrupted data~top two curves! with s2

50.001 max$uBzu% @as in Fig. 3~b!#. For both the uncorrupted
and corrupted data it can be seen thatD(lD) is an increasing
function of z, and hence solution quality is decreasing. No
that noisy data and a small value ofz may provide better
results than clean data~with 16 digits of precision! and a
largerz. The behavior oflD in the plot may appear counter

d
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RESOLUTION OF TWO-DIMENSIONAL CURRENTS IN . . . PHYSICAL REVIEW B69, 144515 ~2004!
intuitive; asz increases, the problem becomes more ill pos
and more regularization is required, which would suggestlD
should be an increasing function ofz. While l controls the
trade off between the residual normr~l! and the smoothing
norm V@gl#, z has a large influence on the magnitude
r~l!. This can be understood by noting thatiBnm;zi2

2 dimin-
ishes rapidly with increasingz. Therefore, even thoughlD is
not an increasing function ofz in Fig. 9, the values oflD do
give more weight to the smoothing normV@gl# in Eq. ~7! as
z increases.

In practice, in may be difficult to know accurately th
measurement height. In the MOI technique for example,
indicator film itself may be 1–5mm thick,51,52 so the correct
value ofz to use may not be clear. Also, the separation
tween the indicator film and the sample surface in the M

FIG. 9. ~Color online! Influence of the measurement heightz on
lD andD(lD). For the bottom two curves, the uncorrupted data
Fig. 3 was used. For the top two curves, the same data was
rupted with Gaussian white noise of variances250.001 max$uBzu%.
The triangles represent the values oflD and the circles the value
of D(lD).

FIG. 10. ~Color online! The effect of ‘‘guessing’’ the wrong
value ofz on the approximate solution. For this example the unc
rupted data of Fig. 3 was used. Current profiles resolved from
data are shown, assuming measurement heights of 1, 3, 5, 5.5
6 mm. The exact current distribution is shown as a solid black li
and the exact measurement height isz55 mm.
14451
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technique, or sensor to sample distance in the scanning
probe method, may be difficult to quantify. Figure 10 exa
ines the effect of error in the value of the measurem
height z used for the integral kernelK. Using the homoge-
neous current distribution of Fig. 3, dataBz was generated a
a heightz55 mm above the sample surface. No noise w
added to the data. For the inversion, ‘‘guess’’ valueszg51, 3,
5, 5.5, and 6mm were used. The present method of regul
ization with GCV was used for the inversion. Current pr
files through the center of the sample for each value ofzg are
shown in the figure. Forzg55 mm, the results are the sam
as that of Fig. 3~a!. When the true value ofz is underesti-
mated (zg,5 mm), the value of the current density is ge
erally underestimated and the current distribution appe
over smoothed. Whenz is overestimated (zg.5 mm), large
spikes occur in the profile at the sample edges and where
current changes sign, and current is observed outside o
sampleopposite in direction to the current just inside th
sample. This suggests a procedure to determine the mea
ment heightz. The guess value ofz (zg) used in the kernel
may be overestimated, and then reduced until the cur
flowing outside the sample~in direction opposite to the cur
rent flowing inside the sample! is just reduced to zero. Jo
hansenet al. have shown that current may be observed o
side of the sample when theBz data is obtained via the MO
technique, due to errors inBz caused by the in-plane field
effect of the indicator film.21 Lavianoet al. propose an itera-
tive procedure to correct for this effect.51 A combination of
the iterative procedure of that work, and the procedure
scribed here, may be useful to estimate the effective valu
z when theBz data is obtained via the MOI technique and
gooda priori estimate ofz is not known.

IV. DISCUSSION

There is a significant difference in the behavior of t
Hanning window, CG, and regularization methods for unc
rupted and corrupted data. For uncorrupted data, the met
are very insensitive to the choice of their respective para
eters, and excellent results can be obtained by all meth
However, the magnetic inverse problem exhibits an inher
instability for noisydata, and the ill-posed nature of Eq.~3!
is not very apparent when uncorrupted, high precision dat
used. For corrupted data, the ill-posed nature of Eq.~3! is
clear as evidenced by the behavior ofD(l), D(kc), and
D(k) in Figs. 7~b!, 7~d!, and 7~f!. The minima ofD(l),
D(kc), andD(k) are much sharper, making a good choice
l, kc , or k ~and hence the degree of regularization! more
important. Since any experimental technique for making
spatially resolvedBz measurement~i.e., MOI or Hall probes!
exhibits some level of noise, the performance of any meth
to resolve Eq.~3! should be evaluated under such a no
level, where the ill posedness of the problem is apparen

For the present method of regularization~and for the CG
method!, GCV provides a remarkable means of choosing
optimal parameter automatically from theBz data. For the
Hanning window method, no automated means of choos
kc was found, meaning thatkc needs to be determined em
pirically. In many cases, one has a well defined ‘‘guess’’
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D. M. FELDMANN PHYSICAL REVIEW B 69, 144515 ~2004!
the true current distribution, and choosingkc empirically can
yield excellent results.16,51 However, when the underlying
current distribution is significantly varying on length scal
approaching the spatial resolution of theBz measurement~as
in BSCCO tapes1,4!, it is this author’s experience that in de
terminingl empirically, it can be rather subjective to esta
lish the right balance between spatial resolution and no
filtering. In such an instance, there is a significant advant
to be able to apply the statistical considerations of the G
method to determine the optimal parameter value. There
limitations to the GCV method, however. It was shown
Figs. 3 and 4 and the GCV may fail in the clean data lim
Also, as GCV is a statistical method, it may also fail in t
limit of a small sample size~small number of grid points!.45

In numerical tests,Nx5Ny564 or more was sufficient ge
excellent results.

In this work,Jx andJy were determined by application o
Eq. ~2! to the approximate stream functiong. This method of
calculatingJx and Jy was chosen for ease of comparis
amongst the different methods. However, it has been sh
that Jx and Jy may be determined directly from the dat
without first calculating an approximation forg.16,17 For ex-
ample, for a thin film of finite thicknessa, Jx can be deter-
mined directly by using the integral kernel

K& x~u,v !52 i
m0

2p S v1
u2

v D sinh~paw!

w2 e22p~z2a/2!w,

~18!

wherew5Au21v2, and as before, a hat denotes a Four
transform andz is the height of theBz measurement abov
the sample surface. InsertingK& x for K& in Eq. ~9! will yield
Jx;l instead ofgl . The GCV method may now be applie
~using the kernelK& x) to determine the optimal value ofl for
resolvingJx;l directly from the data. GCV produces exce
lent results in this instance as well, and allows all the no
filtering for the current components to be determined throu
statistical means, rather than applying smoothing polyno
als to determine the derivatives ofg as described in Sec. II B
It can be seen from the integral kernels that resolvingJx
from the data is a slightly more ill-posed problem than
solving g, and the values oflGCV for each are not expecte
to be the same, even though the data set (Bz) is. OnceJx has
been determined,Jy may be found from

J&y52J&x

u

v
. ~19!

Note that determiningJy from Jx ~or vice versa! is not an
ill-posed problem.

The regularization theory presented in this study was e
ployed using the DFT. This provides a very simple and co
putationally efficient implementation of regularization a
GCV. However, the DFT has its implementation issues. T
DFT introduces a periodic continuation of the resolved so
tion that requiresBz to be measured over an area sign
cantly greater than the sample size~about twice the width of
the sample!. Also, edge effects may give rise to spurio
Fourier components. These and other issues of the Fo
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method are discussed in more detail in Refs. 16 and 18.
to these issues, there may be circumstances where it is
ferred to implement regularization theory with matrix inve
sion methods rather than through Fourier deconvolution
fact, this is the general case, as only special cases of ill-po
problems~such as convolution equations! offer the opportu-
nity to use Fourier methods. Minimizing the regularizatio
functional of Eq.~7! is equivalent to solving the linear sys
tem

~KT
•K1lLT

•L !g5KT
•Bz ~20!

for g. Here the assumption of the smoothness ofg is incor-
porated throughL . For the one-dimensional case, the seco
derivative operator is the tridiagonal matrix

L5S 22 1

1 � �

� 22 1

1 22

D , ~21!

which is equivalent to Eq.~8!. Equation~20! is well posed
and may be inverted directly yielding

gl5Al
21

•KT
•Bz , ~22!

whereAl5KT
•K1lLT

•L . In this case the preferred form
of the GCV function is29

VGCV~l!5
iK•gl2Bzi2

2

tr~ I2K•A#!2 , ~23!

whereA#5Al
21

•KT. As an alternative to Eq.~22!, one may
defineb5KT

•Bz , which allows Eq.~20! to be written as

Al•g5b. ~24!

The CG method may now be applied to Eq.~24!. This re-
quires determination of bothl and the stopping indexk, but
it allows the regularizing effects of both methods to
incorporated.53,54

Finally, discussion of the speed of the various method
deserved. The fast Fourier transform~FFT! is an algorithm
for computing the DFT, and the FFT can certainly be e
ployed where appropriate. Obvious symmetries inK(x,y)
may also be exploited to save computation time and stor
space, though no attempt to do so was made in this wor
is well known that the time taken to compute the 2D FF
scales asN2M2 log2(NM) ~Ref. 46!, but quoting such scaling
factors may be misleading. ForN5M5512 the total time
taken to compute theN3M arraysgl , Jx , Jy , anduJu from
an N3M Bz data array was less than 25 s in 16-digit arit
metic on a Sun Blade 100 500 MHz UltraSPARC-Iie cod
in FORTRAN. Employing the FFT algorithm, the time taken
compute the DFT’s ofK andBz , and the multiplication and
IDFT required by Eq.~11!, was only 22% of the total time
taken to resolvegl , Jx , Jy , anduJu from the data. Only 7%
of the total time taken was used to determine the minim
of VGCV(l), and the remainder of the time~71%! was ex-
pended through fileI /O, calculation ofJx , Jy , anduJu from
gl , and miscellany. The Hanning window method is just
5-12
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RESOLUTION OF TWO-DIMENSIONAL CURRENTS IN . . . PHYSICAL REVIEW B69, 144515 ~2004!
quick if a good value ofkc is knowna priori. If kc needs to
be determined empirically, Eq.~3! must be resolved repea
edly for each ‘‘guess’’ value ofkc . In that case, there is
speed advantage to the present method, sincelGCV is deter-
mined beforean approximate solution is produced. For t
CG method, the calculation of oneN3M DFT and one
N3M IDFT are required for each iteration, which is signi
cantly slower than the other two methods, though the sp
of the CG method~as implemented in Ref. 18! scales in the
sample sizeNM equivalently to FFT methods. In any cas
speed should be less of an issue than accuracy.

V. CONCLUSION

In summary, regularization and GCV have been succe
fully applied to the problem of resolving 2D currents in s
perconductors from a 2D magnetic field measurement.
regularization method produced excellent results over a la
range of signal to noise ratios, and the GCV method w
highly successful in choosing the regularization parame
automatically and objectively, from statistical consideratio
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