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Quasi-one-dimensional dynamics and nematic phases in the two-dimensional Emery model
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We consider the Emery model of a Cu-O plane of the high-temperature superconductors. We show that in a
strong-coupling limit, with strong Coulomb repulsions between electrons on nearest-neighbor O sites, the
electron dynamics is strictly one dimensional, and consequently a number of asymptotically exact results can
be obtained concerning the electronic structure. In particular, we show that a nematic phase, which spontane-
ously breaks the point-group symmetry of the square lattice, is stable at low enough temperatures and strong
enough coupling.

DOI: 10.1103/PhysRevB.69.144505 PACS nuni®er71.10.Hf, 71.27a, 74.20-z

Immediately following the discovery of high-temperature positions R+ (a/2)e, and F§+(a/2)éy, which we will call

supercondgctivity in the cuprates, it was realizéthat the site (Ii,x) and (ﬁ,y), respectively. The vacuum is defined as
novel physics of these materials is dominated by the StronGpe state in which all the ® orbitals and Cud orbitals are

Eggg'gi?gﬁj;ﬁgg:g'zzbbaig\’gfgr sxlﬁ;iriosntsﬁeHsciJrvnvgYeesrt, fgg:g dri"fﬁll. The relevant Fock space is constructed by adding holes
. ) . removing electronsfrom the Cu 3l,2_,2 and O orbit-
matic” model that captures the essential physics of the prob- 9 et x2-y2 Po

lem. Despite the fact, pointed out early on by Erﬁe&yd by als (i.e., the 2, orbital assoclated with the oxygensRjx
Varma and co-workersthat the minimal model which cap- and the , for the oxygens aR,y). The corresponding hole
tures the essential local chemistry of the doped copper-oxidereation operators artdaﬁvg and p:i,a,a-
planes is the three-band copper-oxide or Emery madie The various interactions in the modallso shown in Fig.
fined below, it has generally been the accepted practicel) are defined as follows: The repulsion between two holes
among theoreticians to, instead, consider the single-bangh the same site g4 andU,, respectively, for a copper and
Hubbard ort-J model—certainly reasonable models for an oxygen site, while the repulsion between two holes on an
studying the interplay between the localized quantum antiferadjacent copper and oxygen or a nearest-neighbor pair of
romagnetism of the undoped system and the charge delocalxygens areV,q and V. All further neighbor interactions
ization produced by doping. Moreover, since none of thes@re neglected. The hopping matrix elements which transfer a
strongly interacting models can be solved in two dimensionsiole between a nearest-neighbor O-Cu pairtgget, while
(2D), any theoretical results that can be established with afhose between nearest-neighbor O’s gyg and the differ-
acceptable degree of rigor can shed light on the observeghce between the energies of an electron on an O and a Cu
physics of the actual materials. site is e>0. The signs of the various hopping matrix ele-
In this paper we show that there exists a livithich is  ments are determined by the symmetry of the reledeemd
not wildly unphysical of the Emery model about which a p orbitals. However, a simple gauge transformation with
number of exact statements are possible. Specifically, despite,, ¢ vectorm=(/a)(1,1) changes the signs so that all the
the fact that the model itself possesses the symmetries ¢ levant hopping matrix elements are positive.

the square lattice, the electron dynamics is quasi-One- tpq ingyating parent state of the undoped cuprates has
dimensional in this limit. It is also possible to establish the

existence of various electronic liquid crystalline phases,

cluding especially an Ising-nematic phasehich spontane- Uy l Vd
ously breaks the fourfold rotational symmetry of the under- Wt S
lying lattice. /,,{/pp tpa
o’i]F @
|. THE MODEL top
6 o\,
We consider a model defined on the copper-oxide lattice, 5 s
shown in Fig. 1; the corresponding Hamiltonian operator is T
written explicitly in the Appendix. The copper sites define a
simple square lattice at lattice positioRswith lattice con- FIG. 1. Schematic representation of the Cu-O lattice. The full

stanta, while the oxygen sites sit at the center of the nearestcircles represent Cu sites and the open circles are O sites. The

neighbor bonds on this lattice, and so define a second squavgrious terms in the Emery-model Hamiltonian are represented, as
lattice, rotated by 45° relative to the Cu lattice, with lattice discussed in the text.
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one hole per unit cell which, becauge-0, live preferen- $ OS¢ S o9 —9
tially on the Cu sites. Additional doped holes, whose concen-
tration per unit cell we denote go preferentially on O sites
becausdJ > e.

II. THE STRONG-COUPLING LIMIT

We start by defining the “strong-coupling limit” of this
model, in which the interaction strengths are large compared ¢ o @ o o] q
to the one-electron energies. Here we discuss the salient fea- S }
tures of this regime. In the Appendix we present details and L. ‘
prove that the statements we make here are asymptotically o) o) q 4y 9 g
exact in this limit.

By the strong-coupling limit we formally mean that we
consider the model in the liml)//t— o, where all the inter-
actionsU,,Uq,Vpq,Vpp~U and the hopping matrix ele-
mentst,q=t andt,,~t. Even in this limit, the physics de-
pends on the finite .ratios of the various interaction stlrengths. FIG. 2. Schematic representation of various states discussed in
In pa(t!cular, we V,V'”, always assume that the following in- the text. The dark circles are Cu and O sites occupied by a hole; the
equalities are satisfiedJ;>e>0 andUq>Uy>Vp4>Vpp  gpen circles are sites not occupied by holes.
>0, consistent with chemical intuitiofSomewhat more re-
strictive inequalities must be assumed in order to prove all
the stated results, as is discussed explicitly in the Appendixrow. Any state which involves a noncollinear disturbance,

Finally, since the hopping matrix elements depend exponersych as the bent-hole exciton iteg, costs infinite energy in
tially on separation, we sef,/t—0. This final assumption the strong coupling limit.

may not be well satisfied in the actual materials, where clus- |n this limit, therefore, the number of holes on each row
ter calculation$ suggest that,,,/t~1/3. We will study this and each column of the lattice are separately conserved
model as a function ok and for arbitrary ratio ok/t. quantities, and the charge dynamics is purely one dimen-
For the undoped systerm=0, the ground-state has zero sional. More precisely, in the Appendix we show that, to
energy and is 2-fold degenerate, with one hole on eachleading order in the strong-coupling expansion andtfgr
copper. Of course, this degeneracy is resolved for finite in=0, each rowp has a conserved quanti¥, and each col-
teraction strengths when antiferromagnetic superexchangémn q a conserved quantity ,, which qualitatively corre-
interactions, withJ~8t*/U V3, are included. However, in  spond to the number of hole quasiparticles on that row or
the strong-coupling limit, thigand most of the other spin column. Indeed, doped holes on distinct parallel rows do not
physics we will encountgiinvolves energy scales that vanish interact with each other. However holes on rows and col-
ast/U andt/V—0; we will therefore ignore this physics at umns do interact with each othewvhere they meet We will
first, and then return to it when we considdrJ-like” phys-  show below that these interactions play a crucial role. Of
ics that arises from low order corrections to the strong-course, when we back off from the strong-coupling limit, or
coupling limit. if we include a small but nonzerg,, small effective inter-
Neglecting the spin degeneracy, the first excited state is aactions which violate these conditions will be generated.
exciton, shown in Fig. @), with a large energyEq,=Vq

+e+0(t), and so can be ignored at low energies and tem- IIl. THE 1D DYNAMICS
peratures. ) ) ] .
Now, consider one additional doped hole. SindeV, Consider a system in which we add a fixed number of

adding one hole means increasing the number of occupiedoPed holes to one and only one row of the lattice. Because
sites by 1, and so necessarily costs a minimum energy of the number of electrons in each row is conserved, none of
=2V, 4+ €. Some possible representative states are shown ify€se holes can leak out onto other rows or columns, which
Figs. 2b)—2(d): (b) shows the bare hole state, which to Ze_thys remain undoped. Indeed, the electron dynamics along
roth order int has energys: (c) shows a hole-exciton bound this row is exactly equivalent to those of the 1D Cu-O
state, with zeroth-order energy+e€; (d) shows a hole bro- Model, which was analyzed previously in Ref. 8:
ken into two chargee/2 solitons separated bly=4 sites,
with zeroth-order energy.+Le; (e) shows a bent hole- A
exciton bound state which is the lowest energy state which Hrow= _tjzg (6] oCjsrot H'C']+; €N
involves a disturbance outside of this row and has zeroth- ’
order energyu+V,,+ €, and so can be neglected in the
strong-coupling limit’

The most salient point to notice is that if the doped hole is
added to an oxygen on a given row, all states with energyvhere even numbered sites are Cu sites and odd numbered
nearu involve disturbances which are confined to the samesites are Og,;=0, €j.1=€, Uy =Ugy, Uy 1=Up, ﬁj,(,

+; [Ujn;,inj,,+ Voaninj s, 1)
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T

= L,cj,g, andn;=2,n; ,. In the strong-couplingJ;— c° _ T
limit, the charge degrees of freedom can be treated as spin-
less fermion$, with effective Hamiltonian

Isotropic Nematic

ch _tz [C]TCJ'+1+ HC]‘*’? [6jﬁj+vpdﬁjﬁj+1],
(2

while again the dynamics of the spin degrees of freedom are
obtained only when corrections to the strong-coupling limit
of orderth/Uj are included. The density of spinless fermi-
ons per site is simply (8) 'S;n;=1+x. o z I
Manifestly, forx=0, the system is insulating, with one
hole on each copper site and a charge ghp=2vpd and doped-hole concentration in the strong-coupling litaitth

+0(t). For small,_ pc_)3|t|ve<, thedoped holesre Q|Iute and magnetic ordering suppresse®nly the classical phase boundaries
can be treated within the context of an effective-mass aPzre shown; thicKthin) line, discontinuougcontinuous transitions;

proximation, as free spinless fermions with creation energy,icie, tricritical point; shaded regions, nematic phases stabilized at
A, and effective massn*. In particular, the ground-state /¢~
energy per sitéwith W=7#272/6m*) is

Quantum Nematic

FIG. 3. Schematic phase diagram as a function of temperature

acterize. However, we will show below that, under many

— 5
E=Eo+Ax+ Wi +0(x%). ©) circumstances, the ground state is fully nematic.

Both A; and W are continuous functions af/t: A =2V

+ eF y(e/t) and W= (87?/3)ta’Fy(e/t). For e>t, Fy=1 IV. THE NEMATIC PHASE

+0(t/€)? and W=8(t/e)[1+O(t/€)?]. In the opposite

limit, e/t—07, the fermions fractionalize to form twice as

many charges/2 solitonic fermions. However, the ground-

state energy has the samedependence, but witlF,=

—4(t/e)[1+0O(e/t)] and W=1+0(e/t). An important o

qualitative point to recognize here is that the Fermi pressure A. The nematic insulator, x=1

is a decreasing function of/t which vanishes ag/t—oo. At x=1 there are two holes per unit cell, and in the

Various correlation functions can be accurately estimated, aground state each Cu and O site along each row is occupied

well, from the well-known theory of the 1D Luttinger liquid. by exactly one hole, while the O sites along columns are
Forx=1, the system is again insulating, with one hole onempty. The energy per unit cell of this state ¥R+ €.

each site. Expanding about this limit, for-k small, yields a  There is a second, degenerate, ground state obtained by ex-

result similar to those obtained for smallOther interesting  changing rows and columns. Each ground state spontane-

states occur in the vicinity of various commensurate valuegusly breaks the 90° rotational invariance of the square lat-

of x. For instancex= 1/2 corresponds to commensurability 2 tice but is translationally invariant since all unit cells are

in the spinless fermion problem, where an incompressibl@quivalent. Furthermore these strong-coupling ground states

charge-density wave state is the ground state of this strongljt x=1 have a charge gap. Hence this phase is a nematic
interacting problem. insulator.

Indeed, given the large number of exact, or well con-
trolled approximate, results that can be obtained for the 1D
electron gas, and the ease with which quantum Monte-Carlo
simulations can be employed to flesh out the analytic results In this limit (still with U 4> €) the chargedegrees of free-
quantitatively, we consider the problem of a single Cu-O rowdom define a classical lattice gas which can be mapped pre-
to be a solved problem. This also means that a large numbeisely to an antiferromagnetic Ising model on the oxygen
of “fully nematic” states can also be completely character-lattice with exchange coupling, /4. Here spin up indicates
ized. A fully nematic state is defined to be one in whichan occupied state and spin down an unoccupied state. Under
doped holes are placed only on rogs only on columns  this mapping, the magnetization of the Ising modetnis: 1
Since holes on neighboring rows do not interact atalless —x and the Nel state is the insulating nematic state.
we were to add longer range interactions to the modeé The phase diagram of this model, shown in Fig. 3, is well
dynamics of the holes on each row are determined by th&nown?® For x<1, there is a continuous finite temperature
same 1D Hamiltonian we have just analyzed. This does ndransition from a high-temperature disordered phase to the
constitute a complete solution of the problem, since states itow-temperature Nel phase. However, at a critical=x,,
which some doped holes lie on rows, and others on columnthere is a tricritical point, such that ferx<x, the transition is
are still complicated and require additional analysis to chardiscontinuous. At low temperatures, for anyK<1, there

We now move from the analysis of the hole dynamics
along a single row or column to study the phases of the full
two-dimensional model.

B. The “classical limit,” e/t—
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is two-phase coexiste'nce between a ferromagnetie O  per site of the nematic state iEpom=Eq+AX+Wx
Mott insulating and a Nel (x=1 insulating nematicphase.  +... while that of the isotropic state iEi,=Eq+AX

At elevated temperatures, this classical phase diagram is (1/4)w>3+Vefx2+ ... whereVe" is an effective repul-
relatively insensitive to the addition of perturbations to thegion petween holes on intersecting rows and columns. Mani-
Hamiltonian. Specifically, even for/e>0, the phase dia- festly, at small enougk, the nematic state has lower energy.
gram is hardly altered by quantum effects so longTas  The Fermi pressure similarly stabilizes the uniform phase
>1/yt*+e”. However, at low temperatures, additional tor x<1. Here the nematic character of the resulting uniform
longer range interactions, either added explicitly t0 the,ase is considerably more obvious: the nematic phase con-
model or induced by quantum fluctuations, can affect theis of an array of Luttinger liquidéne per row with an
@f*ective Luttinger charge paramet&r, and an effective

the classical level, including the effect of weak Coulomb X
Fharge velocity . .

repulsion between holes on second-neighbor O orbitals wil
stabilize an electronic crystalline phase in a narrow range of
x near 1/2 and at low enough temperatures. Here the doped
holes form a period ZWigner crystal density wave along V- CORRECTIONS TO THE STRONG-COUPLING LIMIT

gachdrow, while the IP,S altl)ng ver(tjlcgl bondd; remalhn UN-" | ow-order corrections to the strong-coupling limit resolve
oped. More generally, at low and intermediatex, the o gpin degeneracies we have neglected, and produce other

phase diagram is complex and dependent on details. HOWg, a0t changes in the physics, which we will discuss else-
ever, forx near 0 or 1, we will see that quantum effects where: here we comment on a few salient features.
generically stabilize homogeneous quantum nematic phases, '

shown as shaded areas in Fig. 3.
A. Magnetic interactions

C. Quantum effects,t/€>0, for x<1 and 1—-x<1 In the undoped Mott insulator at=0, the most obvious

At low temperaturesT <t/\t?+ €2, quantum effects are induced interactioh is the superexchange interaction be-
important, even for smalt/e. We start by addressing the tWeen nearest-neighbor Cu spins, which to leadiogrth)
nature of the low-temperature phase fo€1. order in t is J=8t"/[(Vyat€)*(Up+2€) {1+ (U

Since the doped holes are fermions, one would generally” 2€)/(2Uq)}. However, unlike the one-band model, under
expect an associated Fermi pressure which tends to favor 3PMe circumstances, for the strong-coupling limit of the Em-
uniform state. As shown in EG3), the 1D dynamics of the €Y model other higher-order interactions can be comparable

doped holes imply that the Fermi pressuréV>¢, rather ir_1 magnitude to this ir_1teraction. Thus, there is a four-s_pin
than the strongeW2 dependence of a 2D Fermi gas. How- ring exchgnge interaction on a plaquette generated at eighth
ever, absent any attractive effective interactions betweeR'der, which does not vanish fdy— . [I:80r 9d:ud:°°
doped holes the Fermi pressure is always sufficient to stabfNd Vpa=Vpp=V>e€, we get‘]4:,(23/2)£ v X"h'le the
lize a uniform phase at sma¥. (Effective attractions can €ading order contribution ta) is J~t,p/V".] Thus,
arise from magnetic fluctuations but are negligible at strongvhereas the Mott insulating ground state>at0 of the
coupling) single band model is |ne\_/|_tably magnetlcqlly ordgred, the
More specifically, an upper bound to the ground-state enEmery model has, in addition, quantum disordetbkely
ergy per siteE(x), at allx is given by the energy of the fully dimerized phases.
nematic statek,.(X), i.e., the ground-state energy of the
1D Emery model computed from E€L) or (2). It can easily
be imagined that there is an isotropic staiea less nematic
state that has lower energy. However, while the properties of For any of the conducting phases discussed above, the
such an isotropic state cannot be computed exactly, a simplrrections to strong coupling not only resolve the spin de-
estimate shows that fox<1, the ground state is always generacies but also lead to important changes in the charge
nematic. dynamics at asymptotically low energies. In particular, under
To see this, we compare the energy of the nematic phasmost circumstances, we expect that the peculiar non-Fermi-
with that of an isotropic version of this phase. If we ignoreliquid behavior resulting from the strictly 1D dynamics of
the interactions between doped holes on rows and columnghe strong-coupling limit will be destroyed at vanishing tem-
the isotropic phase would have lower energy, since there angeratures by induced interactiofeither proportional td,
twice as many 1D systems each with 1/2 the density obr t2/vpp) which permit holes to hop from a row to a col-
doped holes, resulting in a factor of 4 reduction in the Fermiumn. These couplings will either lead to a crossover to
pressure. Now, fox small enough, the contributions to the Fermi-liquid behavior at low temperatures, or to a broken
ground-state energy from th&,, coupling between holes on symmetry ground state. However, so long as these interac-
crossing Cu-O rows and columns is a regular functiox,of tions are weak, they cannot restore the point-group symme-
free of infrared divergences. In particular, when two dopedry, so the nematic character of the resulting states should be
holes approach each other at the intersection of a row andrabust!®!! Moreover, as is characteristic of quasi-1D sys-
column, the repel each other strongly, and the probabilittems, the non-Fermi-liquid character will still be manifest at
of such an interaction is proportional ¥8. Thus, the energy nonzero temperatures, energies, or wave vectors.

B. 2D charge dynamics
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C. Coulomb interactions thatn_,(R)=n,(R—aXx), andn_,(R)=ny(R—ay).] In the

The fact that the model considered has regions of twostrong-coupling limit, the Hamiltonian for the model de-
phase coexistence, and others where various susceptibilitiésribed in Fig. 1 can be written as the sum of two terhts,
(including the compressibilityare large, means that the low- =Hg+H;, with
temperature physics can be strongly modified by the effect of
even weak additional interactions. Of these, the most obvi-
ous is the long-range Coulomb interaction, which always Ho == 2 n(R)[n R)— 1]+_p 2 {n, (R)[n (R)— 1]
frustrates phase separation and instead results in various lo-
cally inhomogeneous phases such as stripe and bubble

phases. +ny(R)[Ny(R)— 1]} + Ve [N(R)—1][Nny(R)
R

D. Particle r'10Ie asymmetry'/ ' (R)+n (R )+n y( R) 2]
At least at strong coupling, the Mott insulating statexat
=0 is strongly particle-hole asymmetric: added electrons
(x<0) remove holes from the Cu sites; these “doped elec-
trons” have no local tendency to be dynamically confined to R R . R
rows or columns. +n_(R)IN_y(R)+n_y(R)N(R)] (A1)

+Vpp2 [N(RING(R)+ny(R)N_,(R)
R

VI. CONCLUSIONS and

It has long been accepted that the Emery model provides
a reasonable description of the relevant electronic degrees of
freedom in the cuprates. In this paper, we have obtained
theoretically well controlled results in a strong-coupling re-
gime of this model. Although cluster calculations suggest
that this limit may not be entirely appropriate in the real
materials, the insights obtained here may nevertheless cap-
ture important features of the physics.

Perhaps the most salient feature of the results obtained, . . ~_
here is the existence of a strongly nematic phase in a signifi-
cant portion of the phase diagram. This contrasts with the
behavior of the same model in the weak-coupling limit,
where it behaves in similar fashion to the single band Hub-
bard model in which such a phase, if it occurs at all, is;
confined to special fillings associated with the proximity to
Van Hove singularitied:*? Experimental evidence of the ex-
istence of a nematic phdsim the cuprates was recently re-
viewed in Ref. 13. The other feature of the phase diagram is Ug>2V,g, Up>2Vpg, Vpp>
the existence of a large region of two-phase coexistence—
phase separation. This may be the simplest example of
generic tendency of highly correlated systems to form inho-
mogeneous state$.

T R T . T R
H,= _tz [dﬁyng,x,(r"' dﬁ,ngfax,x,zr"' dﬁyng,y,a
R,o

1A% PR agyot H. 1+ e [N(R)+n,(R)],
R
(A2)

*+ is the spin label. As discussed in the text, we
set direct O-O hopping amphtucigp to zero.

To begin with we consider just the effect of the unper-
'turbed HamiltoniarH,. To make the proofs simpler, we will
consider the case in which the following inequalities are sat-
isfied:

pd
- (A3)
f this case \Ho is positive semidefinite, as we will now
‘demonstrate. It is apparent from the structure of the Cu-O
lattice, that for every Cu Sit® it is possible to define four
triangles, located, respectively, northedBlE), northwest
ACKNOWLEDGMENTS (NW), southwest(SW), and southeasiSE) of the Cu site,

We thank B. Moyzhes and J. Tranquada for discussiongand each having the Cu site and two adjacent O sites for its
This work was supported in part by the National Sciencevertices(see Fig. 1L We will label a tnangle{R s,s'} ac-
Foundation Grants Nos. DMR 01-10328.A.K,) and DMR  cording to its Cu verteR and by a pair of labels= + and
01- 32990(E F) and by the Department of Energy Unders ==+, Where{s IS } {+ +} Corresponds to the tr|ang|e
Contract No. DE-AC03-765F00513.H.G). NE of R, {s,s’}={+,—} to the triangle NW, etc. We denote

by nss(R) the total hole occupancy of triang{®,s,s’}:
APPENDIX: DETAILS OF THE DERIVATIONS

In this appendix, we formalize the statements concerning
the strong-coupling limit. The Cu sites are labeled by the

Bravais lattice vector® and thehole density on the Cu is By using this notation we can equivalently writg in terms
n(R). The hole densities on the two O sites in the same unibf the hole occupancy of each triangle and of the occupancy
cell are Iabeled1+X(R) and n+y(R) respectively[Notice  of the Cu and O sites:

Nss (R)=N(R) +Ng(R)+Ngy(R). (A4)
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[\
)

u - - U
Ho:(y"—vpd)% n(R)[n(R)~ 1]+ f—vpd)

l

X 2 AN (R[N (R) — 1]+ ny(R)[ny(R)— 1]}
R

\% - -
+ 27 2 [nse(R)~1nse(R)~2]

R,s,s’

+

+Nn_,(RIN_y(R)+n_y(RIN(R)}. (A5)

Since each operator appearing in this expression is individu-
ally positive semidefinite, so isly, so long as all the in-
equalities of Eq(A3) are satisfied.

(Strictly, in the strong-coupling limit, violating the in-  FiG. 4. Conservation ok, . Shown is a schematic of a segment
equalities of Eq(A3) can lead to major restructuring of the of the pth row of Cu-O sites and its immediate neighborhood. Cu
ground state. For instance, fgf,,<V,4/2, the system phase sites are located at the intersections of the lines; O sites are half way
will separate for anyx>0, albeit if t is not infinitesimal,  between two Cu sites. Fille@empty circles are occupiedempty)
guantum effects may lead to inhomogeneous ordered statestes. Empty squares are sites that can either be occupied or empty.
Indeed, close to the “fully frustrated” poin¥,,=V,4/2, in- In (a) we consider the change in the state produced when a hole
teresting forms of quantum order-from-disorder effects carhops between a Cu site labeled 1 in the row and the O site labeled
arise. We will not consider these interesting issues further i2. In the initial state, the Cu site must be occupied by a hole and the
this papen. O site must be empty. In order that both the initial and final states

Thus, provided the inequalities of EGA3) are satisfied, —Survive projection wittPo, the O sites to the left and right must be
the Hilbert space ofgenerally degenerateero energy states empty and the O site just belqw must be occupied. Tt\us, this pro-
consists of the set of configurations in whi@ the Cu and  cess necessarily decreasgpax) by 1, increased,(pax) by 1,
the O sites are either empty or singly occupiby holes, (b) and hence leaveX, unchanged. Irth) we illustrate the same con-
each triangle is either singly or doubly occupiso by Siderations for applied to the state in which a hole hops from the O
holes, and (c) nearest-neighboring O sites are not simulta-Site labeled 3 to the_Cu S|t_e labeled 4,_ and the_ notation is th_e same.
neously occupied by holes. All other states are separateBhe state of the O sites with squares is notAunlquer determlned. In
from these zero energy states by a finite energy gap. This #is case, this process leaves unchangguax)=1 andN,(pax)

the low-energy Hilbert space of states that we will consider=0. and so does not changg . Clearly, the same considerations
here. imply that the inverse processes and the processes involving sites

Hence, so long as %x=0, there exist zero energy immediately below theth row conserveX,, . All other processes in
ground states and an extensive ground-state degenerajs Ivially commute withX,.
Here, the density of “doped holesy; is defined in terms of
the total hole density per site, Her= PoH1Po, (A7)

b)

wherePy, is the projection operator onto the subspace of zero
energy eigenstates ¢f, (see Fig. 2

For x=0, there is a threefold orbital degeneracy of the
unperturbed ground state, in addition to tH&fld spin de-
which is, of course, a conserved quantitil {s the total generacywhich is only lifted, as discussed in the text, when
number of Cu sites on this lattige. high-order superexchange processes are incjudsay e

To analyze the strong-coupling limit to lowest order in >0 eliminates this orbital degeneracy, and uniquely chooses
perturbation theory, we confine our attention to the zero enthe ground state with one hole on each Cu site; there are no
ergy subspace of the full Hilbert space. Thus, the effectivenonzero matrix elements of the hopping term between states
Hamiltonian Hy is obtained by simply taking matrix ele- in the ground-state manifold.
ments of the perturbing Hamiltonidt, defined in Eq(A2) For x=1, there is a twofold orbital degeneracy of the
between states in this subspace. Higher-order terms in thground state, as already discussed in the text. As the two
perturbative expansion can be obtained, as is done in deristates involved are related by a symmetry operation of the
ing the t-J model from the largeU limit of the Hubbard Hamiltonian(rotation byz/4) this degeneracy is not lifted in
model, by including the effects of virtual transitions to the any order of perturbation theory—this is the nematic insulat-
finite energy states of the unperturbed Hamiltonian. For théng phase discussed in the text.
present purposes, we discuss only the first-order problem, For e>t, we perform a second perturbation expansion,
ie., which we refer to in the text as the “classical” limit: To first

1 R 3 R
L+x=5 2 {NR)+n(R+n(R)},  (A6)
R

144505-6



QUASI-ONE-DIMENSIONAL DYNAMICS AND . . . PHYSICAL REVIEW B 69, 144505 (2004

order in e, the ground-state degeneracy is reduced to the N (R)=[1—n(R)]n,(R)n_.(R). (A10)

subset of states which have precisgl holes on O sites, X Y Y

i.e., the fewest number possible. Since the term proportional

to tin H, changes the number of holes on O sites, there arghe first two terms in the sum in EGA8) count the number

no matrix elements between these states to first ordér in of holes along thepth row. The third term, as we shall see,

However, to ordet?/, itis possible for holes to move with- properly accounts for the finite transverse width of the actual

out violating this constraint. _ _ quasiparticle excitations by counting the number of vacant
For intermediate values ofandt/e, the effective Hamil- ¢ sjtes along the row which have an occupied O kiith

tonian is generally fairly complicated and we have not 0b-gpgve and below. The column operatafs and the associ-
tained a general solution. However, we will now prove that 2 '
ated operatoN,(R) are defined analogously.

under the dynamics d.ﬂe”’ there are conserved _quar_1tities To show that each of these quantities is conserved, we
Xp andY, corresponding to the number of “quasiparticles first compute the commutatafHs,X,] and then (since

in each row or column: [Po.,Xp]=0) sandwich the resulting expression between
projection operatorsX,, trivially commutes with all terms in
Xp=2, {n(d,p)+ny(a,p)+Ny(q,p)}, (A8)  H, except those that hop a hole between a Cu site ingow
9 and the O site immediately aboVEig. 4(a)] or below it, or

where @,p) is the Cu siteqax+pay andN,(R) is an op- Petween a neighboring O site and the next Cu site immedi-

erator defined by ately beyond it[Fig. 4b)]. In general, the application of
R R R these terms changes the valueXgf. However, as can be

- 1 if n(R)=n_y(R)=1, n(R)=0 seen in the figure, and is explained in the caption, if we

N, (R)= (A9)  enforce the condition that the initial and final states after the

0 otherwise. application ofH, are still zero energy eigenstates Idf,

Explicitly, since doubly occupied sites are anyway sup-only processes which conser¥g survive. This completes

pressed byJy andU,,, the proof.
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