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Quasi-one-dimensional dynamics and nematic phases in the two-dimensional Emery model
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We consider the Emery model of a Cu-O plane of the high-temperature superconductors. We show that in a
strong-coupling limit, with strong Coulomb repulsions between electrons on nearest-neighbor O sites, the
electron dynamics is strictly one dimensional, and consequently a number of asymptotically exact results can
be obtained concerning the electronic structure. In particular, we show that a nematic phase, which spontane-
ously breaks the point-group symmetry of the square lattice, is stable at low enough temperatures and strong
enough coupling.

DOI: 10.1103/PhysRevB.69.144505 PACS number~s!: 71.10.Hf, 71.27.1a, 74.20.2z
re

n
h

di
ob

-
xid

ic
a
or
fe
c

es
on

a
rv

a
sp
s
n
he

er

ic
r i

a

s
u
ce

as

les

les
d
an

r of

er a

a Cu
e-

ith
e

has

full
The
, as
Immediately following the discovery of high-temperatu
superconductivity in the cuprates, it was realized1,2 that the
novel physics of these materials is dominated by the stro
short-range repulsion between electrons. However, there
been considerable debate over what is the simplest ‘‘para
matic’’ model that captures the essential physics of the pr
lem. Despite the fact, pointed out early on by Emery2 and by
Varma and co-workers,3 that the minimal model which cap
tures the essential local chemistry of the doped copper-o
planes is the three-band copper-oxide or Emery model~de-
fined below!, it has generally been the accepted pract
among theoreticians to, instead, consider the single-b
Hubbard or t-J model—certainly reasonable models f
studying the interplay between the localized quantum anti
romagnetism of the undoped system and the charge delo
ization produced by doping. Moreover, since none of th
strongly interacting models can be solved in two dimensi
~2D!, any theoretical results that can be established with
acceptable degree of rigor can shed light on the obse
physics of the actual materials.

In this paper we show that there exists a limit~which is
not wildly unphysical! of the Emery model about which
number of exact statements are possible. Specifically, de
the fact that the model itself possesses the symmetrie
the square lattice, the electron dynamics is quasi-o
dimensional in this limit. It is also possible to establish t
existence of various electronic liquid crystalline phases,4 in-
cluding especially an Ising-nematic phase5 which spontane-
ously breaks the fourfold rotational symmetry of the und
lying lattice.

I. THE MODEL

We consider a model defined on the copper-oxide latt
shown in Fig. 1; the corresponding Hamiltonian operato
written explicitly in the Appendix. The copper sites define
simple square lattice at lattice positionsRW with lattice con-
stanta, while the oxygen sites sit at the center of the neare
neighbor bonds on this lattice, and so define a second sq
lattice, rotated by 45° relative to the Cu lattice, with latti
0163-1829/2004/69~14!/144505~7!/$22.50 69 1445
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positionsRW 1(a/2)êx and RW 1(a/2)êy , which we will call
site (RW ,x) and (RW ,y), respectively. The vacuum is defined
the state in which all the Op orbitals and Cud orbitals are
full. The relevant Fock space is constructed by adding ho
~removing electrons! from the Cu 3dx22y2 and O 2ps orbit-
als ~i.e., the 2px orbital associated with the oxygens atRW ,x
and the 2py for the oxygens atRW ,y!. The corresponding hole
creation operators aredRW ,s

† andpRW ,a,s
† .

The various interactions in the model~also shown in Fig.
1! are defined as follows: The repulsion between two ho
on the same site isUd andUp , respectively, for a copper an
an oxygen site, while the repulsion between two holes on
adjacent copper and oxygen or a nearest-neighbor pai
oxygens areVpd and Vpp . All further neighbor interactions
are neglected. The hopping matrix elements which transf
hole between a nearest-neighbor O-Cu pair aretpd[t, while
those between nearest-neighbor O’s aretpp , and the differ-
ence between the energies of an electron on an O and
site is e.0. The signs of the various hopping matrix el
ments are determined by the symmetry of the relevantd and
p orbitals. However, a simple gauge transformation w
wave vectorpW [(p/a)(1,1) changes the signs so that all th
relevant hopping matrix elements are positive.

The insulating parent state of the undoped cuprates

FIG. 1. Schematic representation of the Cu-O lattice. The
circles represent Cu sites and the open circles are O sites.
various terms in the Emery-model Hamiltonian are represented
discussed in the text.
©2004 The American Physical Society05-1
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one hole per unit cell which, becausee.0, live preferen-
tially on the Cu sites. Additional doped holes, whose conc
tration per unit cell we denotex, go preferentially on O sites
becauseUd@e.

II. THE STRONG-COUPLING LIMIT

We start by defining the ‘‘strong-coupling limit’’ of this
model, in which the interaction strengths are large compa
to the one-electron energies. Here we discuss the salient
tures of this regime. In the Appendix we present details a
prove that the statements we make here are asymptoti
exact in this limit.

By the strong-coupling limit we formally mean that w
consider the model in the limitU/t→`, where all the inter-
actions Up ,Ud ,Vpd ,Vpp;U and the hopping matrix ele
mentstpd[t and tpp;t. Even in this limit, the physics de
pends on the finite ratios of the various interaction streng
In particular, we will always assume that the following i
equalities are satisfied:Ud.e.0 and Ud.Up.Vpd.Vpp
.0, consistent with chemical intuition.~Somewhat more re
strictive inequalities must be assumed in order to prove
the stated results, as is discussed explicitly in the Append!
Finally, since the hopping matrix elements depend expon
tially on separation, we settpp /t→0. This final assumption
may not be well satisfied in the actual materials, where c
ter calculations6 suggest thattpp /t;1/3. We will study this
model as a function ofx and for arbitrary ratio ofe/t.

For the undoped system,x50, the ground-state has zer
energy and is 2N-fold degenerate, with one hole on ea
copper. Of course, this degeneracy is resolved for finite
teraction strengths when antiferromagnetic superexcha
interactions, withJ'8t4/UpVpd

2 , are included. However, in
the strong-coupling limit, this~and most of the other spin
physics we will encounter! involves energy scales that vanis
as t/U and t/V→0; we will therefore ignore this physics a
first, and then return to it when we consider ‘‘t-J-like’’ phys-
ics that arises from low order corrections to the stron
coupling limit.

Neglecting the spin degeneracy, the first excited state i
exciton, shown in Fig. 2~a!, with a large energyEex5Vpd
1e1O(t), and so can be ignored at low energies and te
peratures.

Now, consider one additional doped hole. SinceU@V,
adding one hole means increasing the number of occu
sites by 1, and so necessarily costs a minimum energy om
[2Vpd1e. Some possible representative states are show
Figs. 2~b!–2~d!: ~b! shows the bare hole state, which to z
roth order int has energym; ~c! shows a hole-exciton boun
state, with zeroth-order energym1e; ~d! shows a hole bro-
ken into two chargee/2 solitons separated byL54 sites,
with zeroth-order energym1Le; ~e! shows a bent hole
exciton bound state which is the lowest energy state wh
involves a disturbance outside of this row and has zero
order energym1Vpp1e, and so can be neglected in th
strong-coupling limit.7

The most salient point to notice is that if the doped hole
added to an oxygen on a given row, all states with ene
nearm involve disturbances which are confined to the sa
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row. Any state which involves a noncollinear disturbanc
such as the bent-hole exciton in 2~e!, costs infinite energy in
the strong coupling limit.

In this limit, therefore, the number of holes on each ro
and each column of the lattice are separately conser
quantities, and the charge dynamics is purely one dim
sional. More precisely, in the Appendix we show that,
leading order in the strong-coupling expansion and fortpp
50, each rowp has a conserved quantityXp and each col-
umn q a conserved quantityYq , which qualitatively corre-
spond to the number of hole quasiparticles on that row
column. Indeed, doped holes on distinct parallel rows do
interact with each other. However holes on rows and c
umns do interact with each other~where they meet!. We will
show below that these interactions play a crucial role.
course, when we back off from the strong-coupling limit,
if we include a small but nonzerotpp , small effective inter-
actions which violate these conditions will be generated.

III. THE 1D DYNAMICS

Consider a system in which we add a fixed number
doped holes to one and only one row of the lattice. Beca
the number of electrons in each row is conserved, none
these holes can leak out onto other rows or columns, wh
thus remain undoped. Indeed, the electron dynamics a
this row is exactly equivalent to those of the 1D Cu-
model, which was analyzed previously in Ref. 8:

Hrow52t(
j ,s

@cj ,s
† cj 11,s1H.c.#1(

j
e j n̂ j

1(
j

@U jn̂j ,↑n̂ j ,↓1Vpdn̂j n̂ j 11#, ~1!

where even numbered sites are Cu sites and odd numb
sites are O,e2 j50, e2 j 115e, U2 j5Ud , U2 j 115Up , n̂ j ,s

FIG. 2. Schematic representation of various states discusse
the text. The dark circles are Cu and O sites occupied by a hole
open circles are sites not occupied by holes.
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5cj,s
† cj,s , and n̂ j5(sn̂ j ,s . In the strong-couplingU j→`

limit, the charge degrees of freedom can be treated as s
less fermions,8 with effective Hamiltonian

Hc52t(
j

@cj
†cj 111H.c.#1(

j
@e j n̂ j1Vpdn̂j n̂ j 11#,

~2!

while again the dynamics of the spin degrees of freedom
obtained only when corrections to the strong-coupling lim
of orderxt2/U j are included. The density of spinless ferm
ons per site is simply (2N)21( j n̂ j511x.

Manifestly, for x50, the system is insulating, with on
hole on each copper site and a charge gapDc52Vpd
1O(t). For small, positivex, thedoped holesare dilute and
can be treated within the context of an effective-mass
proximation, as free spinless fermions with creation ene
Dc and effective massm* . In particular, the ground-stat
energy per site~with W[\2p2/6m* ) is

E5E01Dcx1Wx31O~x5!. ~3!

Both Dc and W are continuous functions ofe/t: Dc52Vpd
1eFD(e/t) and W5(8p2/3)ta2FW(e/t). For e@t, FD51
1O(t/e)2 and W58(t/e)@11O(t/e)2#. In the opposite
limit, e/t→01, the fermions fractionalize to form twice a
many chargee/2 solitonic fermions. However, the ground
state energy has the samex dependence, but withFD5
24(t/e)@11O(e/t)# and W511O(e/t). An important
qualitative point to recognize here is that the Fermi press
is a decreasing function ofe/t which vanishes ase/t→`.
Various correlation functions can be accurately estimated
well, from the well-known theory of the 1D Luttinger liquid

For x51, the system is again insulating, with one hole
each site. Expanding about this limit, for 12x small, yields a
result similar to those obtained for smallx. Other interesting
states occur in the vicinity of various commensurate val
of x. For instance,x51/2 corresponds to commensurability
in the spinless fermion problem, where an incompress
charge-density wave state is the ground state of this stro
interacting problem.

Indeed, given the large number of exact, or well co
trolled approximate, results that can be obtained for the
electron gas, and the ease with which quantum Monte-C
simulations can be employed to flesh out the analytic res
quantitatively, we consider the problem of a single Cu-O r
to be a solved problem. This also means that a large num
of ‘‘fully nematic’’ states can also be completely characte
ized. A fully nematic state is defined to be one in whi
doped holes are placed only on rows~or only on columns!.
Since holes on neighboring rows do not interact at all~unless
we were to add longer range interactions to the model!, the
dynamics of the holes on each row are determined by
same 1D Hamiltonian we have just analyzed. This does
constitute a complete solution of the problem, since state
which some doped holes lie on rows, and others on colum
are still complicated and require additional analysis to ch
14450
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acterize. However, we will show below that, under ma
circumstances, the ground state is fully nematic.

IV. THE NEMATIC PHASE

We now move from the analysis of the hole dynam
along a single row or column to study the phases of the
two-dimensional model.

A. The nematic insulator, xÄ1

At x51 there are two holes per unit cell, and in th
ground state each Cu and O site along each row is occu
by exactly one hole, while the O sites along columns
empty. The energy per unit cell of this state is 2Vpd1e.
There is a second, degenerate, ground state obtained b
changing rows and columns. Each ground state spont
ously breaks the 90° rotational invariance of the square
tice but is translationally invariant since all unit cells a
equivalent. Furthermore these strong-coupling ground st
at x51 have a charge gap. Hence this phase is a nem
insulator.

B. The ‘‘classical limit,’’ eÕt\`

In this limit ~still with Ud.e) thechargedegrees of free-
dom define a classical lattice gas which can be mapped
cisely to an antiferromagnetic Ising model on the oxyg
lattice with exchange couplingVpp/4. Here spin up indicates
an occupied state and spin down an unoccupied state. U
this mapping, the magnetization of the Ising model ism51
2x and the Ne´el state is the insulating nematic state.

The phase diagram of this model, shown in Fig. 3, is w
known.9 For x&1, there is a continuous finite temperatu
transition from a high-temperature disordered phase to
low-temperature Ne´el phase. However, at a criticalx5xc ,
there is a tricritical point, such that forx,xc the transition is
discontinuous. At low temperatures, for any 0,x,1, there

FIG. 3. Schematic phase diagram as a function of tempera
and doped-hole concentration in the strong-coupling limit~with
magnetic ordering suppressed!. Only the classical phase boundarie
are shown; thick~thin! line, discontinuous~continuous! transitions;
circle, tricritical point; shaded regions, nematic phases stabilize
t/e.0.
5-3
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is two-phase coexistence between a ferromagnetic (x50
Mott insulating! and a Ne´el (x51 insulating nematic! phase.

At elevated temperatures, this classical phase diagra
relatively insensitive to the addition of perturbations to t
Hamiltonian. Specifically, even fort/e.0, the phase dia-
gram is hardly altered by quantum effects so long asT
@t/At21e2. However, at low temperatures, addition
longer range interactions, either added explicitly to t
model or induced by quantum fluctuations, can affect
nature of the stable phases substantially. For instance, ev
the classical level, including the effect of weak Coulom
repulsion between holes on second-neighbor O orbitals
stabilize an electronic crystalline phase in a narrow range
x near 1/2 and at low enough temperatures. Here the do
holes form a period 2~Wigner crystal! density wave along
each row, while the O’s along vertical bonds remain u
doped. More generally, at lowT and intermediatex, the
phase diagram is complex and dependent on details. H
ever, for x near 0 or 1, we will see that quantum effec
generically stabilize homogeneous quantum nematic pha
shown as shaded areas in Fig. 3.

C. Quantum effects,tÕeÌ0, for x™1 and 1Àx™1

At low temperatures,T!t/At21e2, quantum effects are
important, even for smallt/e. We start by addressing th
nature of the low-temperature phase forx!1.

Since the doped holes are fermions, one would gener
expect an associated Fermi pressure which tends to fav
uniform state. As shown in Eq.~3!, the 1D dynamics of the
doped holes imply that the Fermi pressure;Wx3, rather
than the strongerWx2 dependence of a 2D Fermi gas. How
ever, absent any attractive effective interactions betw
doped holes the Fermi pressure is always sufficient to st
lize a uniform phase at smallx. ~Effective attractions can
arise from magnetic fluctuations but are negligible at stro
coupling.!

More specifically, an upper bound to the ground-state
ergy per site,E(x), at allx is given by the energy of the fully
nematic state,Enem(x), i.e., the ground-state energy of th
1D Emery model computed from Eq.~1! or ~2!. It can easily
be imagined that there is an isotropic state~or a less nematic
state! that has lower energy. However, while the properties
such an isotropic state cannot be computed exactly, a sim
estimate shows that forx!1, the ground state is alway
nematic.

To see this, we compare the energy of the nematic ph
with that of an isotropic version of this phase. If we igno
the interactions between doped holes on rows and colum
the isotropic phase would have lower energy, since there
twice as many 1D systems each with 1/2 the density
doped holes, resulting in a factor of 4 reduction in the Fe
pressure. Now, forx small enough, the contributions to th
ground-state energy from theVpp coupling between holes o
crossing Cu-O rows and columns is a regular function ox,
free of infrared divergences. In particular, when two dop
holes approach each other at the intersection of a row a
column, the repel each other strongly, and the probab
of such an interaction is proportional tox2. Thus, the energy
14450
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per site of the nematic state isEnem5E01Dcx1Wx3

1•••, while that of the isotropic state isEiso5E01Dcx
1(1/4)Wx31Veffx21•••, whereVeff is an effective repul-
sion between holes on intersecting rows and columns. M
festly, at small enoughx, the nematic state has lower energ

The Fermi pressure similarly stabilizes the uniform pha
for x&1. Here the nematic character of the resulting unifo
phase is considerably more obvious: the nematic phase
sists of an array of Luttinger liquids~one per row! with an
effective Luttinger charge parameterKc and an effective
charge velocityvc .

V. CORRECTIONS TO THE STRONG-COUPLING LIMIT

Low-order corrections to the strong-coupling limit resol
the spin degeneracies we have neglected, and produce
important changes in the physics, which we will discuss el
where; here we comment on a few salient features.

A. Magnetic interactions

In the undoped Mott insulator atx50, the most obvious
induced interaction2 is the superexchange interaction b
tween nearest-neighbor Cu spins, which to leading~fourth!
order in t is J58t4/@(Vpd1e)2(Up12e)#$11(Up
12e)/(2Ud)%. However, unlike the one-band model, und
some circumstances, for the strong-coupling limit of the E
ery model other higher-order interactions can be compara
in magnitude to this interaction. Thus, there is a four-s
ring exchange interaction on a plaquette generated at ei
order, which does not vanish forU→`. @For Ud5Ud5`
and Vpd5Vpp5V@e, we get J45(23/2)t8/V7 while the
leading order contribution toJ is J;t4tpp /V4.# Thus,
whereas the Mott insulating ground state atx50 of the
single band model is inevitably magnetically ordered, t
Emery model has, in addition, quantum disordered~likely
dimerized! phases.

B. 2D charge dynamics

For any of the conducting phases discussed above,
corrections to strong coupling not only resolve the spin
generacies but also lead to important changes in the ch
dynamics at asymptotically low energies. In particular, un
most circumstances, we expect that the peculiar non-Fe
liquid behavior resulting from the strictly 1D dynamics o
the strong-coupling limit will be destroyed at vanishing tem
peratures by induced interactions~either proportional totpp
or t2/Vpp) which permit holes to hop from a row to a co
umn. These couplings will either lead to a crossover
Fermi-liquid behavior at low temperatures, or to a brok
symmetry ground state. However, so long as these inte
tions are weak, they cannot restore the point-group sym
try, so the nematic character of the resulting states shoul
robust.10,11 Moreover, as is characteristic of quasi-1D sy
tems, the non-Fermi-liquid character will still be manifest
nonzero temperatures, energies, or wave vectors.
5-4
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C. Coulomb interactions

The fact that the model considered has regions of tw
phase coexistence, and others where various susceptibi
~including the compressibility! are large, means that the low
temperature physics can be strongly modified by the effec
even weak additional interactions. Of these, the most o
ous is the long-range Coulomb interaction, which alwa
frustrates phase separation and instead results in variou
cally inhomogeneous phases such as stripe and bu
phases.

D. Particle-hole asymmetry

At least at strong coupling, the Mott insulating state ax
50 is strongly particle-hole asymmetric: added electro
(x,0) remove holes from the Cu sites; these ‘‘doped el
trons’’ have no local tendency to be dynamically confined
rows or columns.

VI. CONCLUSIONS

It has long been accepted that the Emery model prov
a reasonable description of the relevant electronic degree
freedom in the cuprates. In this paper, we have obtai
theoretically well controlled results in a strong-coupling r
gime of this model. Although cluster calculations sugg
that this limit may not be entirely appropriate in the re
materials, the insights obtained here may nevertheless
ture important features of the physics.

Perhaps the most salient feature of the results obta
here is the existence of a strongly nematic phase in a sig
cant portion of the phase diagram. This contrasts with
behavior of the same model in the weak-coupling lim
where it behaves in similar fashion to the single band H
bard model in which such a phase, if it occurs at all,
confined to special fillings associated with the proximity
Van Hove singularities.11,12Experimental evidence of the ex
istence of a nematic phase4 in the cuprates was recently re
viewed in Ref. 13. The other feature of the phase diagram
the existence of a large region of two-phase coexistenc
phase separation. This may be the simplest example
generic tendency of highly correlated systems to form in
mogeneous states.14
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APPENDIX: DETAILS OF THE DERIVATIONS

In this appendix, we formalize the statements concern
the strong-coupling limit. The Cu sites are labeled by
Bravais lattice vectorsRW and thehole density on the Cu is
n(RW ). The hole densities on the two O sites in the same u
cell are labeledn6x(RW ) and n6y(RW ), respectively.@Notice
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that n2x(RW )5nx(RW 2ax̂), andn2y(RW )5ny(RW 2aŷ).# In the
strong-coupling limit, the Hamiltonian for the model de
scribed in Fig. 1 can be written as the sum of two terms,H
5H01H1, with

H05
Ud

2 (
RW

n~RW !@n~RW !21#1
Up

2 (
RW

$nx~RW !@nx~RW !21#

1ny~RW !@ny~RW !21#%1Vpd(
RW

@n~RW !21#@nx~RW !

1n2x~RW !1ny~RW !1n2y~RW !22#

1Vpp(
RW

@nx~RW !ny~RW !1ny~RW !n2x~RW !

1n2x~RW !n2y~RW !1n2y~RW !nx~RW !# ~A1!

and

H152t(
RW ,s

@dRW ,s
†

pRW ,x,s1dRW ,s
†

pRW 2ax̂,x,s1dRW ,s
†

pRW ,y,s

1dRW ,s
†

pRW 2aŷ,y,s1H. c.#1e(
RW

@nx~RW !1ny~RW !#,

~A2!

wheres56 is the spin label. As discussed in the text, w
set direct O-O hopping amplitudetpp to zero.

To begin with we consider just the effect of the unpe
turbed HamiltonianH0. To make the proofs simpler, we wil
consider the case in which the following inequalities are s
isfied:

Ud.2Vpd , Up.2Vpd , Vpp.
Vpd

2
. ~A3!

In this case,H0 is positive semidefinite, as we will now
demonstrate. It is apparent from the structure of the Cu
lattice, that for every Cu siteRW it is possible to define four
triangles, located, respectively, northeast~NE!, northwest
~NW!, southwest~SW!, and southeast~SE! of the Cu site,
and each having the Cu site and two adjacent O sites fo
vertices~see Fig. 1!. We will label a triangle$RW ,s,s8% ac-
cording to its Cu vertexRW and by a pair of labelss56 and
s856, where $s,s8%5$1,1% corresponds to the triangl
NE of RW , $s,s8%5$1,2% to the triangle NW, etc. We denot
by nss8(R

W ) the total hole occupancy of triangle$RW ,s,s8%:

nss8~RW !5n~RW !1nsx~RW !1ns8y~RW !. ~A4!

By using this notation we can equivalently writeH0 in terms
of the hole occupancy of each triangle and of the occupa
of the Cu and O sites:
5-5
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H05S Ud

2
2VpdD(

RW
n~RW !@n~RW !21#1S Up

2
2VpdD

3(
RW

$nx~RW !@nx~RW !21#1ny~RW !@ny~RW !21#%

1
Vpd

2 (
RW ,s,s8

@nss8~RW !21#@nss8~RW !22#

1S Vpp2
Vpd

2 D(
RW

$nx~RW !ny~RW !1ny~RW !n2x~RW !

1n2x~RW !n2y~RW !1n2y~RW !nx~RW !%. ~A5!

Since each operator appearing in this expression is indiv
ally positive semidefinite, so isH0, so long as all the in-
equalities of Eq.~A3! are satisfied.

~Strictly, in the strong-coupling limit, violating the in
equalities of Eq.~A3! can lead to major restructuring of th
ground state. For instance, forVpp,Vpd/2, the system phas
will separate for anyx.0, albeit if t is not infinitesimal,
quantum effects may lead to inhomogeneous ordered st
Indeed, close to the ‘‘fully frustrated’’ pointVpp5Vpd/2, in-
teresting forms of quantum order-from-disorder effects c
arise. We will not consider these interesting issues furthe
this paper.!

Thus, provided the inequalities of Eq.~A3! are satisfied,
the Hilbert space of~generally degenerate! zero energy state
consists of the set of configurations in which~a! the Cu and
the O sites are either empty or singly occupied~by holes!, ~b!
each triangle is either singly or doubly occupied~also by
holes!, and ~c! nearest-neighboring O sites are not simul
neously occupied by holes. All other states are separ
from these zero energy states by a finite energy gap. Th
the low-energy Hilbert space of states that we will consi
here.

Hence, so long as 1>x>0, there exist zero energ
ground states and an extensive ground-state degene
Here, the density of ‘‘doped holes,’’x, is defined in terms of
the total hole density per site,

11x[
1

N (
RW

$n~RW !1nx~RW !1ny~RW !%, ~A6!

which is, of course, a conserved quantity. (N is the total
number of Cu sites on this lattice.!

To analyze the strong-coupling limit to lowest order
perturbation theory, we confine our attention to the zero
ergy subspace of the full Hilbert space. Thus, the effec
Hamiltonian Heff is obtained by simply taking matrix ele
ments of the perturbing HamiltonianH1 defined in Eq.~A2!
between states in this subspace. Higher-order terms in
perturbative expansion can be obtained, as is done in de
ing the t-J model from the largeU limit of the Hubbard
model, by including the effects of virtual transitions to th
finite energy states of the unperturbed Hamiltonian. For
present purposes, we discuss only the first-order prob
i.e.,
14450
u-
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Heff5P0H1P0 , ~A7!

whereP0 is the projection operator onto the subspace of z
energy eigenstates ofH0 ~see Fig. 2!.

For x50, there is a threefold orbital degeneracy of t
unperturbed ground state, in addition to the 2N-fold spin de-
generacy~which is only lifted, as discussed in the text, whe
high-order superexchange processes are included!. Any e
.0 eliminates this orbital degeneracy, and uniquely choo
the ground state with one hole on each Cu site; there are
nonzero matrix elements of the hopping term between st
in the ground-state manifold.

For x51, there is a twofold orbital degeneracy of th
ground state, as already discussed in the text. As the
states involved are related by a symmetry operation of
Hamiltonian~rotation byp/4) this degeneracy is not lifted in
any order of perturbation theory—this is the nematic insu
ing phase discussed in the text.

For e@t, we perform a second perturbation expansio
which we refer to in the text as the ‘‘classical’’ limit: To firs

FIG. 4. Conservation ofXp . Shown is a schematic of a segme
of the pth row of Cu-O sites and its immediate neighborhood.
sites are located at the intersections of the lines; O sites are half
between two Cu sites. Filled~empty! circles are occupied~empty!
sites. Empty squares are sites that can either be occupied or e
In ~a! we consider the change in the state produced when a
hops between a Cu site labeled 1 in the row and the O site lab
2. In the initial state, the Cu site must be occupied by a hole and
O site must be empty. In order that both the initial and final sta
survive projection withP0, the O sites to the left and right must b
empty and the O site just below must be occupied. Thus, this

cess necessarily decreasesn(pax̂) by 1, increasesNx(pax̂) by 1,
and hence leavesXp unchanged. In~b! we illustrate the same con
siderations for applied to the state in which a hole hops from th
site labeled 3 to the Cu site labeled 4, and the notation is the sa
The state of the O sites with squares is not uniquely determined

this case, this process leaves unchangedn(pax̂)51 andNx(pax̂)
50, and so does not changeXp . Clearly, the same consideration
imply that the inverse processes and the processes involving
immediately below thepth row conserveXp . All other processes in
H1 trivially commute withXp .
5-6
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order in e, the ground-state degeneracy is reduced to
subset of states which have preciselyxN holes on O sites,
i.e., the fewest number possible. Since the term proportio
to t in H1 changes the number of holes on O sites, there
no matrix elements between these states to first ordert.
However, to ordert2/e, it is possible for holes to move with
out violating this constraint.

For intermediate values ofx andt/e, the effective Hamil-
tonian is generally fairly complicated and we have not o
tained a general solution. However, we will now prove th
under the dynamics ofHe f f , there are conserved quantitie
Xp andYp corresponding to the number of ‘‘quasiparticle
in each row or column:

Xp[(
q

$n~q,p!1nx~q,p!1Nx~q,p!%, ~A8!

where (q,p) is the Cu siteqax̂1paŷ and Nx(RW ) is an op-
erator defined by

Nx~RW !5H 1 if ny~RW !5n2y~RW !51, n~RW !50

0 otherwise.
~A9!

Explicitly, since doubly occupied sites are anyway su
pressed byUd andUp ,
ate

s.

C

14450
e

al
re

-
t

-

Nx~RW !5@12n~RW !#ny~RW !n2y~RW !. ~A10!

The first two terms in the sum in Eq.~A8! count the number
of holes along thepth row. The third term, as we shall se
properly accounts for the finite transverse width of the act
quasiparticle excitations by counting the number of vac
Cu sites along the row which have an occupied O siteboth
above and below. The column operatorsYp and the associ-
ated operatorNy(RW ) are defined analogously.

To show that each of these quantities is conserved,
first compute the commutator@H1 ,Xp# and then ~since
@P0 ,Xp#50) sandwich the resulting expression betwe
projection operators.Xp trivially commutes with all terms in
H1 except those that hop a hole between a Cu site in rop
and the O site immediately above@Fig. 4~a!# or below it, or
between a neighboring O site and the next Cu site imme
ately beyond it@Fig. 4~b!#. In general, the application o
these terms changes the value ofXp . However, as can be
seen in the figure, and is explained in the caption, if
enforce the condition that the initial and final states after
application ofH1 are still zero energy eigenstates ofH0,
only processes which conserveXp survive. This completes
the proof.
ys.
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