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Two-fluxon dynamics in an annular Josephson junction
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Two-fluxon state in an annular Josephson junction in the presence of external magnetic field is studied
analytically, numerically, and experimentally. We obtain an analytical expression for the potential of interaction
between the fluxons moving at arbitrary velocities~without the use of the ‘‘nonrelativistic’’ approximation!.
Treating the fluxons as quasiparticles, we then derive equations of motion for them. Direct simulations of the
full extended sine-Gordon equation are in good agreement with results produced by the analytical model, in a
relevant parameter region. Experimental data qualitatively agree with the numerical results.
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I. INTRODUCTION

A magnetic flux quantum~fluxon! in a long Josephson
junction ~LJJ! is a well-known physical example of a sine
Gordon soliton. Ring-shaped~annular! LJJ’s serve as the
ideal setting to study the fluxon dynamics, as it is not p
turbed by boundary conditions at edges, which is the case
linear LJJ’s.1 Due to the magnetic-flux quantization in a s
perconducting ring, the number of fluxons initially trapped
an annular junction is conserved. A handy tool, which ma
it possible to create an effective spatially periodic poten
for a fluxon trapped in the annular LJJ, is external dc m
netic field directed parallel to the ring’s plane.2 If u is the
angular fluxon coordinate along the ring, the effective pot
tial is U(u);H cosu, whereH is the strength of the mag
netic field. The minimum of the potential is located at t
spot where the fluxon’s magnetic moment is directed alo
the external field. The dynamics of a single fluxon in t
spatially periodic potential has attracted a great deal of in
est, as shown by many theoretical and experimental wo
dealing with this subject, see Refs. 3–11 and referen
therein. The potential for further investigations offered by t
annular LJJ’s with trapped fluxons is still far from exhau
tion, which is attested by the very recent experiments w
quantum fluxons in this system at ultralow temperature
the first ever direct observation of quantum tunneling
solitons.12

The objective of the present work is to study, both the
retically and experimentally, dynamics of two fluxons wi
equal polarities trapped in the annular LJJ. The system
schematically shown in Fig. 1. In the presence of the exte
magnetic field, the problem is distinguished by the interp
of the above-mentioned effective periodic potential acting
each fluxon and interaction~repulsion! between them. While
soliton-soliton interactions are a well-known topic for the
retical analysis,6 the present setting gives a unique possibil
to directly study interactions between solitons in a real phy
cal system under fully controllable conditions, which mak
the problem relevant to a much broader context than
LJJ’sper se. In fact, our approach to the interaction is esse
tially different in comparison with earlier works, and, in th
respect, it may also be of interest to many applications.

The interaction between two fluxons in LJJ’s was fi
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studied theoretically by Karpmanet al. ~see Ref. 13 and ref-
erences therein!. Those authors found an analytic expressi
for the interaction force between fluxons in the case o
small relative velocity, which corresponds to the ‘‘nonrel
tivistic’’ approximation, when the relative velocity is muc
smaller than the limit velocity in the LJJ~the Swihart veloc-
ity!. However, in the situation relevant to the experiment,
latter condition is not met, in the general case. In this pap
we aim to develop an analytical approach to the interact
which will be valid in the general~‘‘relativistic’’ ! case, and
will make the results interesting in a more general context
mentioned above. The theory will be based on an asympt
method for weakly interacting solitons in nonintegrab
systems.6,14,15The analysis will be followed by direct simu
lations and presentation of experimental results.

The theoretical model for the annular LJJ in the exter
magnetic field was proposed in Ref. 2. It is based on
extended~perturbed! sine-Gordon~sG! equation for the su-
perconducting phase differencew between the electrodes o
the junction:

wxx2w tt2sinw5aw t1g1h sin~qx!. ~1!

Herex is the coordinate along the ring, which is normaliz
to the Josephson penetration depthlJ , the timet is normal-

FIG. 1. The schematic view of an annular Josephson junc

with two trapped fluxons; the magnetic fieldHW is applied in the
plane of the junction. Josephson tunnel barrier is shown by th
black line; in gray are shown superconducting electrodes, which
extended in the junction plane in order to feed the bias current
©2004 The American Physical Society02-1
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ABDUMALIKOV, MALOMED, AND USTINOV PHYSICAL REVIEW B 69, 144502 ~2004!
ized to the inverse plasma frequencyv0
21, a is a coefficient

of the dissipation due to the quasiparticle tunneling acr
the junction, andg is the bias current density, normalized
the critical current densityj c of the junction. As commonly
accepted, we assume that the bias current is uniformly
tributed along the ring. Further,q[2p/L, whereL is the
normalized circumference of the junction andh is the
strength of the external magnetic fieldH, normalized by a
sample-specific geometric factor.2,8 If N fluxons are trapped
in the ring, Eq.~1! is supplemented by the boundary cond
tion

w~L1x,t !5w~x,t !12pN, ~2a!

wx~L1x,t !5wx~x,t !. ~2b!

The paper is organized as following. The single-flux
dynamics in the annular LJJ is reviewed in Sec. II A. In S
II B, the derivation of an effective force of interaction b
tween two fluxons, valid in the general~relativistic! case, is
presented. Results of numerical calculations are displaye
Sec. III. In Sec. III A, we analytically consider a special ca
of an ostensible resonance in the two-fluxon system. In S
IV, we present experimental results for two fluxons trapp
in an annular LJJ.

II. THEORY

A. The basic model

In our theoretical approach, we assume, as usual, tha
fluxons are well separated from each other,uj12j2u@1,
wherej1,2 are coordinates of their centers. In this case
two-soliton state may be represented by a linear combina
of two single-soliton solutions:

w5w11w2 , ~3!

where

wn54arctanF expS 2
x2jn~ t !

A12 j̇n
2 D G12p~n21!, ~4!

(n51,2) is the single-soliton solution of the unperturbed
equation, andj̇n is its velocity. The last term in Eq.~4! is a
shift of the background phase which is necessary to desc
a two-fluxon configuration.

Before discussing the interaction of the fluxons, w
briefly recall known results for a single fluxon trapped in
annular LJJ. This fluxon may be considered as a quasipar
obeying the well-known equation of motion3,16

d

dt S j̇

A12 j̇2
D 1

aj̇

A12 j̇2
1

ph

4
sechS p2

L
D sin~qj!5

pg

4
,

~5!

which is equivalent to the equation of motion for a relativ
tic pendulum in a lossy medium under the action of a c
stant torque. This equation has solutions of two types.
first type gives rise touj(t)u growing indefinitely. It describes
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progressive motion~‘‘rotation’’ ! of the fluxon around the
ring, with a nonzero mean value of the velocityj̇. Solutions
of the second type correspond to small oscillations of
fluxon around the minimum of the effective potential wi
the frequency

v05Ap2

2L Fh2sech2S p2

L D2g2G1/2

, ~6!

the average velocity being zero. This state exists ifugu is
below the critical value,

gc
(1)5h sech~p2/L !. ~7!

In the presence of dissipation (aÞ0), the oscillations are
damped, and in the stationary state the fluxon is at rest.
the other hand, the progressive motion remains possib
the dissipation is not too strong. The fluxon moves with t
average velocity, which, in the first approximation, is giv
by the McLaughlin-Scott formula3

^j̇0&5F11S 4a

pg D 2G21/2

. ~8!

Equation~8! determines the normalized current-voltage ch
acteristics of the junction with a single trapped fluxon.

In the case of two trapped fluxons, we assume that t
are quasiparticles interacting with a certain force~see be-
low!, and all the forces in Eq.~5! act on each fluxon sepa
rately. In this case, three different dynamical regimes
expected:~i! oscillations of both fluxons@due to dissipation,
the oscillations of fluxons in the well are damped, i.e.,
zero-voltage state, hence, we call this state ‘‘static-sta
~S-S! regime#, ~ii ! rotation of both fluxons~‘‘R-R’’ regime!,
and ~iii ! rotation of one fluxon and oscillations of the oth
one ~‘‘R-O’’ regime!. Note that in the R-O regime oscilla
tions take place even in the presence of dissipation, bec
the fluxon whose average velocity is zero is periodically e
cited by collisions with the rotating one.

B. The interaction force

In order to find the interaction force between two fluxon
we use the center-of-mass reference frame~C frame!. In this
frame, the solitons move with velocities6u. It follows from
the Lorentz transformation that

u5
12 j̇1j̇22A12 j̇1

2A12 j̇2
2

j̇12 j̇2

. ~9!

In the subsequent calculation, we setj1,j2 for the definite-
ness’ sake.

To calculate an effective potential of the interaction b
tween the fluxons, which will then produce the interacti
force, we start with the Hamiltonian of the unperturbed
equation in the infinitely long system:

H5E
2`

`

dxS 1

2
w t

21
1

2
wx

2112cosw D . ~10!
2-2
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TWO-FLUXON DYNAMICS IN AN ANNULAR JOSEPHSON . . . PHYSICAL REVIEW B69, 144502 ~2004!
For the calculation of the Hamiltonian~10!, we divide the
space into two parts. The left~right! part occupies the spac
from 2` (1`) to the midpoint between the two fluxon
a[(j11j2)/2. We perform the actual calculation for the le
part only, as for the right part the calculation is just a mirr
image.

In the left part, we substitute the solution as the line
combination~3!, wherew2 is considered as a small perturb
tion, once the two fluxons are assumed to be well separa
Then, the Hamiltonian is written, in the first approximatio
as

H left5H11dH left,int , ~11!

whereH158/A12u2 is the Hamiltonian of the unperturbe
sG soliton, and the interaction term is of the first order w
respect to the weak fieldw2,

dH left,int5E
2`

a

dx@~w1!x~w2!x1~w1! t~w2! t1w2sinw1#.

~12!

Substituting the expression valid for a moving solito
(wn) t52 j̇n(wn)x and, integrating by parts, we obtain

dH left,int5~12u2!~w1!xw2u2`
a

1E
2`

a

dx@2~w1!xx1~w1! tt1sinw1#w2 .

~13!

The integral term in Eq.~13! is zero as the bracketed expre
sion is the sine-Gordon equation~this way of nullifying the
integral terms is known in the general analysis of the int
action between separated solitons15!. The contribution to the
first term in Eq.~13! at the left limit, x52`, is zero too
because both (w1)x andw2 decay exponentially at infinity. In
order to calculate the contribution from the upper limit, w
use the asymptotic forms of (w1)x and w2 valid at large
values ofx ~it is also a known point in the general analysis
the soliton-soliton interactions15!:

~w1,x!asymp52
4

A12u2
expS 2

x2j1

A12u2D ,

~w2!asymp524expS x2j2

A12u2D . ~14!

After the substitution of the expressions~14! into Eq.~13!
and calculation of the nonvanishing contribution to the fi
term from the right limit,x5a, and then getting back from
the C frame to the laboratory reference frame~L frame!, we
arrive at an expression for the interaction potential for t
moving fluxons in the infinitely long junction,

dH int532
A12u2

A12V2
expS 2

uj12j2u

A12u2 D , ~15!
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r

r

d.
,

,

r-

t

where the contribution of the right half space is taken in
account, and

V5
11 j̇1j̇22A12 j̇1

2A12 j̇2
2

j̇11 j̇2

~16!

is the velocity of the center of mass of the two-fluxon co
figuration in L frame. In the case of equal velocities, t
potential~15! reduces to the well-known result of Karpma
et al.13

Due to the ring geometry of the system, the potential~15!
gives rise totwo forces acting on each soliton, which shou
be added to the individual forces in Eq.~5!. These interaction
forces are

~F int!152~F int!252
1

8

d

dDx
dH int

ring

5
4

A12V2 FexpS 2
DX

12u2D 2expS 2
L2DX

12u2 D G ,

~17!

whereDX5uj12j2u, and 8 is for the effective mass of th
fluxon in the present notation. Equations~5! and ~17! de-
scribe the dynamics of the two-fluxon system in an annu
LJJ.

III. NUMERICAL CALCULATIONS

In order to verify the theory presented above, we chec
numerical solutions of the quasiparticle equations of mot
against direct simulations of the full equation~1!. The qua-
siparticle equations of motion were numerically solved
means of the fourth-order Runge-Kutta method. The ti
step wasDt50.05. Equation~1! with boundary conditions
~2! was numerically integrated using the stabilized ‘‘lea
frog’’ method.17 The steps in time and space were taken
Dt5Dx50.05. We verified the accuracy of the numeric
routine by halving and doubling the discretization of t
steps. Here we present numerical results for experiment
relevant values ofa50.02 andL520. The bias currentg
was varied in steps of 0.002.

The general behavior of the system can be describe
follows. Whileg increases from zero, both fluxons original
stay pinned in the effective potential induced by the ma
netic field, so that the voltage across the junction is zero
a critical value of the currentgc , the system switches into
the R-O regime, in which one of the fluxons rotates, wh
the other one oscillates due to periodic collisions with t
moving fluxon. This state is stable in a regiong,gs , up to
another critical pointgs . On the other hand, decreasing th
bias current leads to a transition to the regime with b
fluxons pinned~zero voltage! at a different value,g5g r .

At g.gs , the system operates in R-R regime with bo
fluxons rotating. Further increase of the bias current does
change the state of the system, up to a large value of
current, at which the junction switches to the ‘‘whirling
~resistive! state, with uniform rotation of the phase over a
the system. When decreasing the bias current, the sys
2-3
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switches first into the R-O regime and then into the ze
voltage one.

Typical current-voltage (I -V) characteristics, which dis
play all these states and transitions, are presented in Fi
Points shown by dots correspond to the numerical solutio
the full equation~1!, while the lines depict solutions of th
quasiparticle model based on Eqs.~5! and ~17!. As is seen,
the analytical quasiparticle model making use of the exp
sion ~17! for the interaction forces is in good agreement w
the direct simulations.

The comparison of the critical valuesgc of the bias cur-
rent, obtained from the full simulations and from the analy
cal model, is shown in Fig. 3. A small difference betwe
them is explained by the fact that, in the S-S regime,
actual distance between the pinned fluxons is small, he
the assumption of far separated ones is not accurate in
case. Indeed, the numerical computations show that the
tance between the fluxons in the static case varies, depen
on the magnetic field, in the range of 0.8–1.5.

FIG. 2. The current-voltage characteristics of the long annu
junction with two trapped fluxons found from direct numeric
simulation of Eq.~1! ~dots! and from the analytical model based o
Eqs.~5! and~17! ~solid line!. In this case, the magnetic field is fixe
to h50.3.

FIG. 3. The critical currentgc vs the magnetic fieldh, obtained
from direct numerical simulations of the full equation~1! ~dots! and
from the quasiparticle model~line!.
14450
-

2.
of

s-

-

e
ce
is

is-
ing

For small currents, theI -V curves for the R-O and R-R
regimes, found from the direct simulations of Eq.~1!, feature
additional small steps. Additional analysis shows that th
are due to resonant generation of radiation by the flux
moving in the periodic potential; this phenomenon has b
studied in detail before.7

The comparison of the other critical value of the bi
current,gs ~which corresponds to the first step of theI -V
characteristics!, again as found from the direct simulation
and from the analytical model, is shown, vs the magne
field, in Fig. 4. At small values of the field, these depende
cies agree very well. However, forh.0.48 the curve gener
ated by the direct simulations goes down with the increas
the field. Clearly, in this region the parametersg and h are
too large to apply the perturbation theory. The ansatz use
our approach breaks down, since largeh generates extra flux
ons in the junction. With the further increase ofh, gs de-
creases until it becomes equal togc . At a still stronger field
(h.0.58), the system jumps from the S-S regime direc
into the whirling state.

On the other hand, the curve produced by the analyt
approximation continues to go up with the field untilh
50.5. For fields larger than 0.5, the system resonan
switches from the R-O regime into the R-R one, but at
large values of the field the quasiparticle model based on
perturbation theory becomes irrelevant.

A. The resonance condition

A noteworthy feature of the two-fluxon dynamics in th
R-O regime is a possibility of a resonance between the n
ral frequency of oscillations of the trapped fluxon and pe
odic excitation due to its collisions with the rotating one. T
resonance condition can be predicted by equating the sm
oscillation frequencyv0, which is given by Eq.~6!, and the
rotation frequencyv r5q^j̇ r&, wherej̇ r is the velocity of the
rotating fluxon, that can be obtained from Eq.~8!. This yields

r FIG. 4. The dependence of the maximum current of the first s
in the I -V curve,gs , on the magnetic fieldh, as found from direct
simulations of the full equation~1! ~dots!, and from the analytical
model based on Eqs.~5! and ~17! ~line!.
2-4
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TWO-FLUXON DYNAMICS IN AN ANNULAR JOSEPHSON . . . PHYSICAL REVIEW B69, 144502 ~2004!
h5g rescoshS p2

L DA11
64p4g res

2

L2~p2g res
2 116a2!2

, ~18!

whereg res is the value of the bias current corresponding
the resonance.

It may be expected that this resonance would result i
resonant switching from the R-O regime into the R-R o
and there would appear a drop in the dependence of
first-step critical currentgs vs the magnetic fieldh. This drop
is predicted by the numerical solution of the analytical mo
~the solid line in Fig. 4!. However, at low magnetic fields th
system actually switches into the R-O branch at a hig
current than the current value corresponding to the re
nance. At larger magnetic fields, it switches directly into t
R-R branch, because the total perturbation~field and bias
current! becomes too strong.

In fact, the perturbation approach is not applicable in t
situation, as a more detailed consideration of the analyt
model shows that it formally predicts strong periodic ov
lapping between the two fluxons, which cannot take place
reality. With the increase of the junction’s lengthL, the in-
tersection point of the curvesgc(h) and g res(h) moves up-
ward in bias current, while its dependence on magnetic fi
is very weak.

IV. EXPERIMENT

Measurements of theI -V characteristics of the two-fluxon
state were performed in long annular Nb-Al-AlOx-Nb junc-
tions. Due to the magnetic flux quantization in the superc
ducting ring, the number of initially trapped fluxons~soli-
tons! is conserved. Trapping of a magnetic flux in th
junction was achieved while cooling the sample below
critical temperature of niobium,Tc

Nb59.2 K, in the presence
of a small bias current passing through the junction. T
number of trapped fluxons was determined from the high
voltage of the tallest resonant branch on the current-volt
characteristics~see Fig. 5!. Experiments were performed b

FIG. 5. Current-voltage characteristics of the annular Joseph
junction with two trapped fluxons. The open circles correspond
the experimental data and the solid line to the numerical solut
of Eq. ~1! with a50.025,L528.5, andh50.3.
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applying the bias currentI from the top electrode of the
junction to the bottom one and measuring the dc volta
generated due to the motion~rotation, in terms of the theo-
retical consideration! of the trapped fluxons. The results pr
sented below were obtained for a junction with the me
diameter 100mm and ring’s width 3mm. The circumfer-
ence~length of the annular junction! in the normalized units
wasL.28.5. The measurements were performed at 4.2

At zero magnetic field, depinning of a fluxon was o
served as a switching from the zero voltage state into
single-fluxon step of theI -V curve ~the state with one mov-
ing fluxon!, at the currentI c that was smaller by a factor o
about 65 than the critical current for the same junction, m
sured without trapped fluxons. This fact indicates a high
gree of homogeneity of the junction~a strong local inhomo-
geneity would give rise to a much larger value of the fluxo
depinning critical current!.

We measured theI -V curves of the state with two trappe
fluxons for different strengths of the applied magnetic fie
One of these curves is shown in Fig. 5~open circles!. The
solid line corresponds to the numerical solution of Eq.~1!
with parameters found from experimental data:a50.025,
L528.5, andh50.3 ~solid line in Fig. 5!. The experimental
curves agree quite well with those predicted by the ab
analysis. Two branches of theI -V characteristic are ob
served. The first branch, at the voltage of about 65mV, cor-
responds to the R-O regime, and the second one, observ
about 130mV, clearly pertains to R-R regime. The actu
losses in the experiment were apparently stronger than
taken for numerical simulations. This explains why sm
steps~generated by the resonant emission of plasma wa
by the fluxon! present in numerical data are suppressed in
experiment.

Figure 6 shows the measured value of the switching c
rent for the transition from the R-O regime to the R-R one
the external magnetic field. The curve is similar to the d
pendencegs(h) ~dots in Fig. 4!, which was obtained above
from the direct integration of the full sine-Gordon model~1!.

on
o
s

FIG. 6. The experimentally found critical current for the jum
from the one-fluxon step of theI -V curve to the two-fluxon one, as
a function of the magnetic field.
2-5
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V. SUMMARY

In this paper, we have reported results of theoretical
experimental studies of two-fluxon dynamics in a long an
lar Josephson junction in the presence of the external m
netic field. The analytical expression for the interaction fo
between two fluxons moving at different velocities has be
derived, without assuming the motion nonrelativistic~which
is an essentially unique element of the analysis!. Solutions of
the system of the two resultant coupled quasiparticle eq
tions of motion for the fluxons demonstrate good agreem
with direct numerical simulations of the two-fluxon state
the full sine-Gordon model including all the perturbations

Three distinct dynamical regimes of the two-fluxon sta
have been thus identified. First, both fluxons may be pin
in the potential induced by the magnetic field~the S-S re-
gime!. There is some discrepancy in the prediction of t
critical current, which destroys this static regime, betwe
the quasiparticle model and direct simulations, due to
fact that the separation between the two trapped fluxon
rather small, while the analytical model assumes them to
well separated.

In the second regime, one of the fluxons rotates aro
the junction, while the other one oscillates in the poten
well. For this R-O regime, the maximum current is ve
ys

h

p.
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accurately predicted by the quasiparticle model, if compa
to the direct simulations. For this case, we have also inv
tigated the possibility of the resonant excitation of t
trapped fluxon by periodic collisions with the rotating on
and eventually concluded that this case, although seem
superficially natural, is irrelevant, due to limitations on t
applicability of the perturbation theory.

In the third regime~the R-R one!, both fluxons rotate. The
correspondingI -V curves found in the direct simulation
demonstrate several additional small steps, which are
plained by resonant generation of small-amplitude plas
waves by fluxons moving in the periodic potential; the lat
effect was considered earlier for the single-fluxon case.7

The method developed in this work to calculate, in t
general case, the effective interaction force acting betw
two moving solitons may find application in other solito
bearing systems.
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