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Transverse spin dynamics in a spin-polarized Fermi liquid
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The linear equations for transverse spin dynamics in a weakly polarized degenerate Fermi liquid with
arbitrary relationship between temperatiirand polarizationyH are derived from Landau-Silin phenomeno-
logical kinetic equation with general form of two-particle collision integral. The temperature and polarization
dependence of the spin current relaxation time is established. It is found in particular that at finite polarization
transverse spin wave damping has a finite valug=a0. The analogy between temperature dependences of
spin wave attenuation and ultrasound absorption in degenerate Fermi liquid at arbitrary temperature is pre-
sented. We also discuss spin-polarized Fermi-liquid in the general context of the Fermi-liquid theory and
compare it with “Fermi liquid” with spontaneous magnetization.
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[. INTRODUCTION from unity. Hence the relaxation process should involve all
such particles even d=0. In Fermi liquid this independent
The relaxation properties in a degenerate Fermi liquid argarticle picture is changed due to interaction creating a dis-
determined by the collisions of quasiparticles. Due to thesipationless inhomogeneous magnetization rotation. How-
Pauli exclusion principle only the quasiparticles near theever, in the presence of finite polarization a dissipative trans-
Fermi surface in a layer with thickness of the order of tem-verse diffusion motion is also present. Corresponding
perature are effectively exchanged by energy and momerfelaxation time does not diverge at zero temperdtdtend
tum. Consequently, the relaxation time is proportional t§ ~ ransverse spin waves attenuaterat0. n
that leads to the temperature dependences of kinetic The calculations qf transverse spln-dlffu3|or_1 coeffl_C|ent
coefficientd? of viscosity 7« T2 and thermal conductivity D_L have begn dpne n d|Iutg degenerate Fermi gas with ar-
k=T~ The longitudinal spin-diffusion coefficiem deter- bltra_ry 7polar|zat|9n atT=0 in t_h§e1 Papers by_ Jeon and
mining the spin current in presence of a gradient of the abMu"m' Meyerovich and Musaelianand afT #0 in Ref. 9.

o . A derivation and an exact solution of the kinetic equation in
solute value of magnetization has been folptbportional : L .
the sswave scattering approximation for dilute degenerate

:O -(I; t SO, klniuc _co_lefflcn_atntst_dwtir?(e Whlen te_mperatu_reFermi gas with arbitrary polarization &= 0 and for a small
enas 1o -zero. A simiiar situation takes piace in a S.pm'polarization,uH<sF at T#0 have been obtained also in the
polarized Fermi liquid, where there are two Fermi d|str|bu-papers by Golosov and Ruckenst&irEor the treatment of
tions for spln-upTand spin-down particles with different ;s yropiem in a Fermi liquid the Matthiessen-type rule ar-
Fermi momentepe andpg". So long as we deal with re-  gyments(sum of temperature-driven and polarization-driven
laxation processes being determined by the collisions of quascattering ratesand simple relaxation-time approximation
siparticles from thermal vicinity of one of the Fermi surfacesfg, the collision integral have been usBdThus the zero-
[scattering of two quasiparticles with spins (own)] or  temperature attenuation of the transverse spin waves has
scattering of quasiparticles from thermal vicinities of two peen established.

different Fermi surfacegcattering of spin up and spin down  This conclusion has been contested by Fofhiwho has

quasiparticles Refs. 4-6, the relaxation time and kinetic proposed dissipationless spin-wave dispersion relation
coefficients of viscosity and longitudinal spin diffusion are

proportional toT 2 and the thermal conductivity t6 1. _ 2
- . . w=w_+ xk, (1)
Another type of relaxation process characterizes the spin

current due to gradl_ent_of o!lrectlon of magnetization or SOherey is a coefficient of proportionality between spin cur-
called transverse spin diffusidrindeed aff =0 all the states et and the chiral spin velocity arising at an inhomogeneous
with momenta below the smaller of two Fermi surfa¢esy  (otation of spin space. Fomin has not presented a calculation
for p<pg') and with plus one-half or minus one-half pro- of this value. He just has established the spin-wave disper-
jections of the spin tan arbitrary oriented quantization axis - sjon law in the assumptions that in a polarized Fermi liquid
are completely occupied,,'=W,'=1. Hence the inhomo- atT=0 all the spin current is the chiral current and it can be
geneous rotation of magnetization does not change the equierived as response to the generalized gauge transformation
librium state of quasiparticles with momenga<p:'. But  or inhomogeneous spin space rotation like it has been done
for the Fermi particles with spin up and momenta in betweerfor superfluid 3He '3

two Fermi surfacespFl<p< pFT the probability to have Certainly, if in the process of such a type of derivation we
spin-up projection to the rotated quantization axis, detershall ignore the quasiparticles’ finite scattering rate, one can
mined by equilibrium direction of magnetization, is deviatedobtain the dissipationless spin current originating from
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Fermi-liquiq interaction. However, besides the reagti_ve part n(r,H=ne(r,01 + o (r,t) o, (4)

the total spin current calculated in presence of collisions in-

cludes dissipative or spin-diffusion part resulting in imagi- ~ ~ ~

nary part of dispersion law for the transverse spin waves. At e (r,) =gy (r,Hl+h(r,t)o. )

the microscopic level the collisions treatment is equivalent to . o

derivation of kinetic equation that was done for the case oHere o= (oy,0y,0,) are Pauli matrices. The scalar and

spin-polarized diluted Fermi gds® vector parts of matrix distribution function obey the coupled
Being addressed to the same problem in polarized Ferniiinetic equations® As it was pointed out by Leggéftin the

liquid, we need the kinetic equation. The derivation of it for case of small polarizations, the equation for the scalar part of

a strongly interacting Fermi liquid is unreal problem. How- the distribution functiom,(r,t) decouples from the equation

ever, for a weakly polarized Fermi liquid it seems natural tofor the vector part of distribution functiomor(r,t) and we

work on the basis of semi-phenomenological Silin-type ki-may putn, equal to its equilibrium value, namely, usual

netic equatiort®> Assuming its validity in the present paper Fermi function. At that the equation far(r,t) still shall be

we reexamine the derivation of transverse spin dynamics imonlinear: as long as the polarization is small by its absolute

weakly polarized Fermi liquid for arbitrary relationship be- value one can consider the arbitrary large variations of the

tween temperaturd and polarizationyH. At small space direction of magnetization. On the other hand, the similar

and time variations of transversal part of vectorial quasipardecoupling of the equation for the scalar part of the distribu-

ticle distribution function we shall obtain Leggett-tyfe tion function from the equation for the vector part of distri-

equations for spin and spin current densities. Then from théution function including the collision integralsee below

general form of two-particle collision integral similar to that takes place at arbitrary polarizations as long as we consider

was derived in Refs. 17,18 we deduce the spin current relaxhe small deviations of the magnetization direction from its

ation term. The latter is essentially simplified when both theequilibrium direction. We shall be interested in the latter

temperaturd and the polarizatioryH are much smaller than case.

Fermi energyer and the momenta of all excitations are con-  In general, the equation for the (r,t) has the form

fined to lie in the vicinity of both Fermi surfaces and there-

fore one may decouple the angular and energy variables in = 54, 9e, do, e, doy, Iy, N Ihy Iy

the collision integral in the manner first introduced by Abri- et ot
kosov and Khalatniko®. gt ok oxi 0% dki Ik 9% X dK;

We confirm the results of the pap&r¥ where the same Jo
problem were treated for the dilute Fermi gas. It is found in —2(hyXay)= ) (6)
particular that at finite polarization spin-wave damping has a coll
finite value atT=0. More precisely, at low temperatures it . . . I e
proves to be proportional to the number of collisions be_We divide all matrices in equilibrium and nonequilibrium
tween quasiparticles parts,
1 ne=nC+8n,, 7
—a[(yH)2+ (2aT)7), @ Mo "
A a
This corresponds to the law of zero sound attenuétion ex=¢, T ey, 8
y<[w?+(27T)?], (3)  where
which is also determined by the number of collisions be- - A LA
y nC=2(ny"+ny, )i +%(n,"—ny ) (om) (9)

tween quasiparticles. One can find the results of recent mea-

surements of low-temperature zero sound attenuation and th ilibrium distribution function of polarized Fermi
surway of previous experimental works on this subject in'> the equ u stributio P

Ref. 20. liquid and

In general, all regimes of the temperature behavior of the
spin-wave absorption in the degenerate Fermi liquid can be T } (B&r) (10)
juxtaposed with correspondent regimes in the absorption of Ek B T VPO
ultrasound. We shall consider this analogy in the conclusion.

At the end we shall discuss spin-polarized Fermi liquid inis the equilibrium quasiparticle energy. Here there are two
the general context of the Fermi-liquid theory and compare ifermi distribution functions
with an imaginary ferromagnetic Fermi liquid or liquid with

spontaneous magnetization. . yH 1
- =n F—=
Ny~ (&) =No| &x+ > H
Il. SPIN DYNAMICS EQUATIONS 8k+7_
The quasiparticle distribution function as well as quasi- exp T 1
particle energy are given by>X22 matrix in spin space, (11
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shifted on the value of polarizatiopH/2, vy is the gyromag- determined just by zeroth-order term in expansion of the
netic ratio, Planck constarit=1 throughout the paper, the functionsfkk,' on spherical harmonics.
polarization direction is determined by the unit vector We shall discuss the only perpendicular deviations from
=H/H. the initial equilibrium state,
The “effective” magnetic fieldH is the field correspond-
ing to the magnetization created by the external magnetic . . R
field Hy and by the pumping* The pumped part in view of ong=doy(r,t)yo,  (Mdoy)=0. (16)
very long time of longitudinal relaxation should be consid-
ered as equilibrium part of magnetization. The difference beThen the energy deviation matrix has the form
tweenB andH originates from the pumping that changes the
guasiparticle distribution functions but does not directly af-
fect on the energy _of quasiparticles. Fie_EBdconsists of an 58= Shy o, 5hk:f dT’fkkra&"w 17)
external magnetic fieldd, and the Fermi-liquid molecular
field. To defineB we must consider the equilibrium distribu-
tion matrix (9) and equilibrium energy matriglO) as devia- and the kinetic equatio(6) can be rewritten as
tions from the corresponding matrices for nonpolarized

Fermi liquid, 0 i _
(950’k+(78k (950’k 1 a(no +n0 ) (95hk
n2=no(ey)i+on,°, (12) at ook ox 2 ki aXi
. S R vB 1
Skozskl _ E,}/(Ba_):gkl _ E (Ho(r) _2{( - 7‘{‘ 5hk (E(no _no )m+ 50"()}
1 "o 0 _ (2o 18
+55p'f dr'f,. 7 on,,°, (13) ) (18)
wheredr=2dk/(27)® and the Fermi-liquid matrix of inter-
action is We deal with linear indoy, equation with coefficients in-
dependent of space and time variables. In the lowest order on
fkk,‘”’,: fkkfﬁr +fkk’a&&’+fkk’bﬁ](&’|\’ +1o) polarization, these coefficients are expressed through Fermi-
liquid parameters for nonpolarized Fermi liquid which are
+ fkk,c(rﬁfr)(rﬁfr’). (14) introduced as usual by
These three equation together give an equatiorBfaieter-
mination fkk/a:N0712| F|aP|(|2,|2,), (19)

yB=yHo—mJ dr'[(f g+ g (g —ng ") . . .
whereNy=m*kg /7 is the density of states. As mentioned,
n fkk’b(n0+ +ny —2n,)]. (15) for large polarizations the coefficients in the kinetic equation
are not well determined, although the structure of the equa-
In the absence of a pumped magnetization the fiBkdH tion looks similar. So, for simplicity we limit ourselves by
and Eq.(15) is just the self-consistency equation for the fieldthe treatment of the left hand side of the equation in the
H determination as the function of an external fietd. lowest order on polarization. One can neglect in this ¢g8e
When the part of magnetization is created by pumpidg, andF,°. Then following Leggetf one may rewrite Eq(18)
presents an independent value and the total energy shifis two equations for the first two harmonigeagnetization
y(B@)/2 is determined by means of two fields: exterhgl ~ density and spin current densityf the distribution function
and effectiveH. We shall assume that they are parallel each
other. 1
For the finite polarization the vectd proves to be en- M(r,t):_f dréoy, (20)
ergy dependent. This reflects the impossibility to formulate a 2
Fermi-liquid theory with finite polarization in terms of Lan-
dau Fermi-liquid parameters which are just numbers charac-

- . . . . L 1 dang
terizing the intensity of interaction of quasiparticles near the Ji(r,t)= —f dr{vgidoy— —5hk}
Fermi surface. The problem is not resolved even by introduc- 2 ki
tion of Fermi-liquid parameters separately for each Fermi 1 Ea
sphere with Fermi momentp:' and p'. To avoid this it (F IR deUFiéa'k- 21)
complexity we shall limit ourselves by the case of small 2 3

polarization assuming independence of the functifgps of
energy. Then it is clear théB is energy independent and They are
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oM aJ _MX yHo=0, (22 % 1 a Fla
Fra YHo= St T3vF (1+FH)| 1 3 ) ox —Ji X yHo(r)
a 4 2
g 1, . Fy +—| Fo?— — | (3 xMl)
E+§UF (1+F0 ) 1+T (?_xi_JiXYHO NO
J o
B 315 el z
“lpa_tlgxml TUF| : (29
+ N, Fo (J;x M1 coll
&o-k where sM(r) is a change of spin density due &1(r).
d7'U|:| (23)
coll
IIl. COLLISION INTEGRAL TREATMENT
Here
The collision integral for the vectorial part of distribution
wNo function is determined through the general collision integral
Mll=— 2 H (24)  for the matrix distribution function as follows:
So far we developed the theory for the homogeneous ex- ﬁ _E ~ 5
1 H P ; - Spo-l colls (30)
ternal field. In this case one can excite transverse spin waves at | on

in an infinite medium. The situation has been described in

Appendix A in Ref. 22. However, the theory is valid also

when the magnetic field is coordinate dependent by its abso- af_ _ }f dr, dr,dk, S(eq+e,—e, —&,')

lute value and includes a small but in general fast in time ~ ¢°" R

supplementary rf part directed in a perpendicular direction: , , . ,
X 8K+ Ky —ko—k, )FP(k,ky" Ky, Ky').

Ho(r,)=Ho(r)+h(r,t), Ho(r)=2[Hg+ sHo(r)], (3D

A _ Here in absence of relativistic interactions =gy, &,
(zh(r.1))=0. (29 =¢y,, etc. For only two-particle collisions the functi¢if?

must contain the products of the matrix distribution functions

This situation is typical for the spin-waves experlmentsof the general form

(see, for instance Ref. 23n this case we must introduce the
additional longitudinal deviations in the distribution function R o . o
and the energy of quasiparticles. So, E4$) and (17) are (nrr2(l—ny )M )she(l —ny r)r7he
modified as follows: ! ?
R ~ ~ R multiplied on some tensor function depending of all mo-
ong= 0o (r,t)o+ 50’kH(r,t)oz, z80=0, (26) menta and the spin indices. However, in absence of relativ-
istic interactions in such the products the only matrix prod-
R 1 . R R ucts of two types are possible:
Sgy=— > y[z6Ho(r)+h(r,t)Jo+ Shyo

HIn(=ni NP+ 10 =0 NI *FSHNk, (=i )]

+ f dT’fkk,aéo'k,”(}Z,
and

5hk:f dT’fkk/aﬁo'k'. 27 Hin(i - )nk a _nk 2)id

In linear approximation to the perpendicularzaleviations +HL( =N (1= N ] A

the equations for the perpendicular and the parallel parts of

the distribution function inClUding the collision integral are As usua| in quantum mechanics one must take the symme-
Independent Thus for the transversal part we return back t9|zed (Herm|t|ar‘b products of Operators and Correspond|ng
the slightly modified system of equatiofi&2) and (23): matrices. Adding to this expressions describing the scattering
processes “going out” of initial state, the corresponding ex-
pressions for processes for “going in” initial state we can
write the general form for the functioR determining the
(28 scattering integral for the binary collisions

M 4,
— K—M><yHo(r>—[M”+6M"<r>]><yh<r,t>=o,
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ap L AP =he N*B+1(T =00 HRTBYSH R (1= T—non, 198
FP(k k" ko ko) = 5 Wak,ky ' ko ko )| (LN =i NP+ =nye A P Spni (1= D] ={[(T=nioni /]

A a A X A A 1 N m A A a oA
+ne (T=n) 1P SH (= ni)ni D+ 5 Wak,ky" ko ko ){Imi(T =i ni (1 —ng, )1

+[(A=n Ing(T=n NPT =non (T=n)n 1= (T-n)n(T-n 14 (32

Due to the total quasiparticle densiS'pfdkTw” and the tions sn. We deal only with the terms containing deviations
total quasiparticle spin densi§pefdki. /2 conservation, n,= o (r,t)o and do not consider the terms containing
the func/tionszl and W, ,obey ,the following cond{itions: deviationsb‘ﬁklr etc. because after all integrations in the col-
W}(k'kl ’kz;kz ):\,Nl(kl Kiks" k) apd WZ(K"_(l k2 lision integral (31) they are independent of tHe direction
Ko')=Walky' Ky ky k). The two-particle collision inte- (equilibrium distribution matrixn,° is isotropic in thek
gral for the matrix distribution function determined by Egs. d k P

spacé. Hence they disappear at final stage after integration

31) and (32) corresponds to collision integral derived in
(Bor)n app(rox)lmauon [l?)y Siliif (see also Ref, g])8When all in the right hand side of Ec(29) We choose the local direc-

the distribution function matrices are diagonal, the collisiontion of the quantization axis along z direction, such that

integral (26), Eq. (29) reduces to the diagonal form of two- (zdo)=0. We can perform the integration ovie' in Eq.

particle collision integral with W;=2W,, and W;+W, (31) eliminating é function of momenta and also, following

=W,;. the procedure of Ref. 2 reproduced in Ref. 25 in somewhat
For the case of low temperatuie<er and small polar- different manner, reexpress the integration over momentum

ization yH<<eg when all the quasiparticle momenta of scat- space as

tering particles lie near the Fermi surface of nonpolarized

Fermi liquid one can suppose as in Ref. 2 that functidhs (m*)3 L,

andW, depend only on the angibetweerk andk, and on dkodk,’ md%dsl de,’ sinfdodgde,.

the angle¢ between the planesk(k,) and k;',k,"). Now

we must take Eq(32) in the linear approximation on devia- So, the linear part of the collision integral is

*3

8 gon=— &Ny

2(277)5j deyde, de,’ S(e1+e,— &’ —82’){V_V1{[1—n0+(81')+ 1-ny (g,)][Ng " (e2)(L—ngy " (&,"))

+ngy (g2)(1— noi(sz,))]+[no+(81,)+n07(81,)][(1_no+(82))no+(82,)+(1_ noi(sz))noi(szl)]}

+V_V2{(1_ no+(81,))no+(32)(1_no+(82,))+(1_ no_(gl,))no_(sz)(l_no_(sz’))

+no+(81’)(1_no+(82))no+(82')+no_(slr)(l_no_(gz))no_(gzr)}}, (33
|
where X+h—t
p f dxf(— x) 1
v_vizf Wy(6,4)sinydodg,  i=1.2. (34)
2772-1-(h—'[)2
Integration over energies is easily performed. Let us do it for =T 2 f(h—1). (35
one particular term in this expression.
f fdsl,dsz,[l_no+(81,)]n0+(8l,+82,_81) Here x=(g,'—u—yH/2)IT, y=(s,'—u—yH/2)/T, h
=yH/2T, andt= (e —u)/T, f(x)=(e*+1)"L. It should be
X[1-nyt(g,")] stressed that the definitions of variables of integraiamd

y depend on particular products liké (1—n~)n~ under the
I _ _ B integral. On the contrary, the variableand the parametér
=T j f dxdy 1-f()If(x+y—t+h)[1-f(y)] have an invariant definition for all the terms. Thus we obtain
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R . m*3 o o T2
5|co||: — 5nkm(2wl+wz)?[(ﬂ-2+(h_t)Z)
X f(h—t)+ (7?+(h+1t)®)f(—h—t)

+(m2+ (t—h)D)f(t—h)+ (72 + (t+h)?)f(t+h)]

. m*3 . -
:_5nk2(27T)5(2W1+W2)
H 2
x| (7T)2+ 77 +(s—p,)2} (36)
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e r| 1 EE ™M 5 om
ot T3VF ( 0) EN o(r)
L2 Fa FlaJXM”— % 41
N() 0 3 ( i )_ T’ ( )
where the current relaxation time is
m*3 . o

—= 2W +Wo)[(27T)2+(yH)?]. (42

- o2y Wt W)l (YH)?]

This system has the same structure as the Leggett spin dy-
namic equations® However, unlike the Leggett equations

Now we must substitute this expression in the right-handhese are linear equations for thé and J; in presence of

side of Eq.(29),

1

Fla 1 ~ T
L EE ESpdevFi(O'&coll)

1(1 Fla) W)
=— |1+ —= +
2 3 /202m5 Tt TP

2
XJ dTUFi

Taking into account the definitio21) one can directly ex-
press part of this integral containingzT)?+ (yH/2)?

2

+(8—,LL)2} So(r,t).

37)

(7TT)2+(7—B

small but finite polarization. They contain all the information
about spin rotation or Leggett-Rice effect. The current relax-
ation time is proved to be finite at zero temperature thereby
the result that has been obtained earlier for the dilute Fermi
gas''%is confirmed.

The damping response of the transverse magnetization on
the transverse rf fieltl(r,t) has been found in Ref. 23 and in
more rigorous manner in Ref. 22. The corresponding trans-
verse magnetization fluctuations can be established by means
of standard fluctuation-dissipation relations.

The known dispersion law of the transversal spin waves
following from Eqgs.(40) and(41) is

through the spin current density. The integral as a whole is

not in general expressed in terms of the current. That pre-
vents to consider Eq$28) and(29) as the closed system of
equations for the spin densilf and the spin current density

w=o_+(D"—iD")k? (43
wherew = yHg is the Larmor frequency,
2 a a
VS (I+FN(1+F,%3) 7
= ° - D"=k7yHD’
3[1+(kTyH)?]
(44)

J; . However, one can make an assumption which is plausible
for weakly polarized Fermi liquid that the energy depen-are correspondingly the diffusion coefficient and its reactive
dence ofda(r,t) is factorized from the space and direction part, k= F,*—F,%3. The spin wave damping is determined

of k dependences:
Say(r,H)=[ny " (2) =Ny~ () J[A(r,) +By(r,bki].
(39)

In this case in the lowest order of the ratj¢d/u one can
rewrite the expressiofB7) as

* 3
—#(Mﬁwz)[(zﬂ)%<7H>2]Ji(r,t>. (39)

IV. RESULTS AND DISCUSSION

by diffusion coefficient D’. In hydrodynamic region

| k| TyH<1 its temperature dependence is determined by the
time of scatteringr<T 2. Then, passing through the maxi-
mum at|«|7yH~1 (Leggett-Rice effect, see Ref. Réat
lower temperaturedx|7yH>1 the diffusion coefficient
starts to be proportional to the number of collisions between
the quasiparticlesc 7~ 1. Finally, at very low temperatures
T<yH/27 and finite polarization it comes to the finite con-
stant value. Thus the transverse spin waves in a Fermi liquid
with finite polarization have a finite attenuationat0.

The behavior of transverse spin wave damping is similar
to, and in fact has the same origin as, the attenuation of
ultrasound with frequency in a degenerate Fermi liquid:?

The latter decreases assT~ 2 in hydrodynamic regiono 7
<1, then it passes through the maximunmuwat~1 and be-

So, finally we have come to the closed system of equahaves as the number of collisionsl/r<[ w?+(2aT)?] in

tions for the spin densiti and the spin current densidy,

M 4,
—+ — —MX yH(r)—[MI+ sMmI(r)]x yh(r,t) =0,

at " oox
(40

collisionless regionvr>1 (see Ref. 2). It keeps the finite
valuexw? at T=0 (see Ref. 2

It will be appropriate to repeat here the conditions under
which our derivation is valid. The most important is that we
were working in the linear on the space and time variations
of the transverse part of vectorial quasiparticle distribution
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function. In polarized Fermi liquid the large deviations of the V. CONCLUDING REMARKS: SPIN-POLARIZED
magnetization direction are always accompanied by the FERMI LIQUID VERSUS FERROMAGNETIC
changes of its longitudinal part, therefore we cannot un- “FERMI LIQUID"

cqup[e the klr!etlc equatlons'f(')r the spala}r 'and vec'tongl dis- The established zero-temperature attenuation of transver-
tribution functions in a F_e_rml liquid with finite polgrlzatlon. sal spin waves in polarized Fermi liquid is transferred to
We also lose the possibility to transform the matrix product§ongitudinal modes like paramagnons and sound waves via
in the collision integral as we did. spin nonconserving magnetic dipole-dipole interacffoin
Thus the important point in our treatment of transversalits turn the finite damping of longitudinal collective motions
spin motion was its independence of longitudinal degrees ofauses the finite damping of the Fermi-liquid quasiparticles.
freedom. So long we consider only linear dynamics there iSThe latter means that, strictly speaking, a polarized Fermi
no coupling between transversal and longitudinal parts unkquid at T=0 is not the Fermi liquid. This effect, however,
less we do not take into account spin nonconserving collibeing proportional to the square of the amplitude of dipole-
sions(see below. In that sense we do not see a necessity indipole interaction will manifest itself at extremely low tem-
limitations of the developed here theory like —w, |7<1  peratures.
[see Eq(43)] with both r* given by Eq.(42) and7«T~2 as A Fermi-liquid theory for the spin waves in a ferromag-
discussed in Ref. 10. Nevertheless, it is worth noting that tillnetic metal has been developed by Abrikosov and
now the measurements have been performed in frame d¥zialoshinskii®® It was done in neglecting of quasiparticle
these hydrodynamic conditioris. collisions, hence the dampingless spectrum has been ob-
Another important assumption is the condition of the t@ined. However, the following was noted by Herritigor
weak polarizationyH<er of degenerate Fermi liquid with & férromagnetic meta. . if the spin of quasiparticle at the
T<er, however, with arbitrary relation between polariza- F€'MI surface is reversed, the corresponding quasiparticle
tion yH and temperatur@. This confines all the quasiparti- ztate W'lfl. n'(tJ Iongt(ra]r b?hclosed .to.;.het Fgrm|lsgrface, a?d,ft_l‘_"r’]'"
cle momenta to lie in the vicinity of the Fermi surface of f.a'\;e 3 inite, r? efr an an 'tf“l'”' (-:s;ma, eacay raﬂ?. e i
nonpolarized Fermi liquid, and therefore one may decoupl inite decay rate of quasiparticie states produces the zero

the energy and the angular variables in the collision integra,[rearg?cet;attgr?hz’pgo\l'é:oen:tﬁg%‘g%n%C;I;hae if(t)tt?(; ﬁirgz'rr:gm?n_'
like it was done in Ref. 2 and finally to obtain the closed P g

system of the equations. netic ground state. So, starting from a Fermi-liquid approach

Experimentally, the transverse spin current relaxation tim Ohéh?eggjtrg?f éfiﬁrsnag?:éowxeisc?g (ta iaoa;[r?eitizcé?gr?td;gtrlgl.
is determined by measurements of the spin echo attenuation IS P . L
agnet the formation of off-diagonal deviations of the

or damping of the standing spin waves. The results o e . ;
whether or not the transverse relaxation time saturates at lomntqjgj:n;li:rg_\?aef;;t?g::taglcscgrrlc?#nnOtnof;jhn:tlfr?;(t(icr:'2 32‘;0';5 wil
temperatures in spin-polarized Fermi liquids so far have beeE/ P ding . q
contradictory. The recent spin echo experiments most prob-e blocked up by the alteration of orbital part of the electron

ably suggest that spin current relaxation remains finite aév r?(\e/re funsc;;uotr;]:r;d S:triroensrz)?nnilc?t?o:]n%?e?: r?(];t?cn (;Zterrsecgoor}
temperature tends to zefd>! At first sight the large angle gy. =0, 9 9 9

deviations, which are the principal feature of the spin echgreedom IS not formulat_ed irk(r) or phase space but only in
method, prevent of application of our theory where the transzhe space .0;8 coordinates as .has be.en done by
verse spin attenuation is calculated in linear on the transverﬁe‘”‘mj""u'l"fShIt for the magnetization densit(r.t).
perturbation approximation. Nevertheless, the linear theory
does work because the fastly varying in time “transverse”
magnetization is always kept small during the whole course | am grateful to I. A. Fomin who had stimulated my in-
of the spin echo experiment if one chooses as the natural axierest in the problem. | express my acknowledgment to G. A.
of quantization slowly varying in time the direction of local Vermeulen for valuable help and numerous wholesome dis-
magnetizatior’? cussions. Also | am indebted to D. I. Golosov for very inter-
On the contrary, the direct measurements of spin wives esting conversations on the subject as well to E. Kats, T.
demonstrates much smaller damping than expected on tt&man, G. Jackeli for valuable remarks and questions. |
basis of the spin echo experiments. Here, however, the alwould like to thank O. Buu and W. Mullin for the interest in
sence of zero-temperature attenuation is probably masked gy results and explanations concerning spin echo, and D.
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