
,

PHYSICAL REVIEW B 69, 144429 ~2004!
Transverse spin dynamics in a spin-polarized Fermi liquid
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The linear equations for transverse spin dynamics in a weakly polarized degenerate Fermi liquid with
arbitrary relationship between temperatureT and polarizationgH are derived from Landau-Silin phenomeno-
logical kinetic equation with general form of two-particle collision integral. The temperature and polarization
dependence of the spin current relaxation time is established. It is found in particular that at finite polarization
transverse spin wave damping has a finite value atT50. The analogy between temperature dependences of
spin wave attenuation and ultrasound absorption in degenerate Fermi liquid at arbitrary temperature is pre-
sented. We also discuss spin-polarized Fermi-liquid in the general context of the Fermi-liquid theory and
compare it with ‘‘Fermi liquid’’ with spontaneous magnetization.
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I. INTRODUCTION

The relaxation properties in a degenerate Fermi liquid
determined by the collisions of quasiparticles. Due to
Pauli exclusion principle only the quasiparticles near
Fermi surface in a layer with thickness of the order of te
perature are effectively exchanged by energy and mom
tum. Consequently, the relaxation time is proportional toT22

that leads to the temperature dependences of kin
coefficients1,2 of viscosityh}T22 and thermal conductivity
k}T21. The longitudinal spin-diffusion coefficientD i deter-
mining the spin current in presence of a gradient of the
solute value of magnetization has been found3 proportional
to T22. So, kinetic coefficients diverge when temperatu
tends to zero. A similar situation takes place in a sp
polarized Fermi liquid, where there are two Fermi distrib
tions for spin-up and spin-down particles with differe
Fermi momentapF

↑ and pF
↓ . So long as we deal with re

laxation processes being determined by the collisions of q
siparticles from thermal vicinity of one of the Fermi surfac
@scattering of two quasiparticles with spins up~down!# or
scattering of quasiparticles from thermal vicinities of tw
different Fermi surfaces~scattering of spin up and spin dow
quasiparticles!, Refs. 4–6, the relaxation time and kinet
coefficients of viscosity and longitudinal spin diffusion a
proportional toT22 and the thermal conductivity toT21.

Another type of relaxation process characterizes the s
current due to gradient of direction of magnetization or
called transverse spin diffusion.7 Indeed atT50 all the states
with momenta below the smaller of two Fermi surfaces~say
for p,pF

↓) and with plus one-half or minus one-half pro
jections of the spin toan arbitrary oriented quantization axis
are completely occupied:Wp

↑5Wp
↓51. Hence the inhomo-

geneous rotation of magnetization does not change the e
librium state of quasiparticles with momentap,pF

↓ . But
for the Fermi particles with spin up and momenta in betwe
two Fermi surfacespF

↓,p,pF
↑ the probability to have

spin-up projection to the rotated quantization axis, de
mined by equilibrium direction of magnetization, is deviat
0163-1829/2004/69~14!/144429~8!/$22.50 69 1444
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from unity. Hence the relaxation process should involve
such particles even atT50. In Fermi liquid this independen
particle picture is changed due to interaction creating a
sipationless inhomogeneous magnetization rotation. H
ever, in the presence of finite polarization a dissipative tra
verse diffusion motion is also present. Correspond
relaxation time does not diverge at zero temperature7–11 and
transverse spin waves attenuate atT50.

The calculations of transverse spin-diffusion coefficie
D' have been done in dilute degenerate Fermi gas with
bitrary polarization atT50 in the papers by Jeon an
Mullin,7 Meyerovich and Musaelian,8 and atTÞ0 in Ref. 9.
A derivation and an exact solution of the kinetic equation
the s-wave scattering approximation for dilute degener
Fermi gas with arbitrary polarization atT50 and for a small
polarizationmH!«F at TÞ0 have been obtained also in th
papers by Golosov and Ruckenstein.10 For the treatment of
this problem in a Fermi liquid the Matthiessen-type rule
guments~sum of temperature-driven and polarization-driv
scattering rates! and simple relaxation-time approximatio
for the collision integral have been used.11 Thus the zero-
temperature attenuation of the transverse spin waves
been established.

This conclusion has been contested by Fomin,12 who has
proposed dissipationless spin-wave dispersion relation

v5vL1xk2, ~1!

wherex is a coefficient of proportionality between spin cu
rent and the chiral spin velocity arising at an inhomogene
rotation of spin space. Fomin has not presented a calcula
of this value. He just has established the spin-wave dis
sion law in the assumptions that in a polarized Fermi liqu
at T50 all the spin current is the chiral current and it can
derived as response to the generalized gauge transform
or inhomogeneous spin space rotation like it has been d
for superfluid 3He.13,14

Certainly, if in the process of such a type of derivation w
shall ignore the quasiparticles’ finite scattering rate, one
obtain the dissipationless spin current originating fro
©2004 The American Physical Society29-1
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Fermi-liquid interaction. However, besides the reactive p
the total spin current calculated in presence of collisions
cludes dissipative or spin-diffusion part resulting in ima
nary part of dispersion law for the transverse spin waves
the microscopic level the collisions treatment is equivalen
derivation of kinetic equation that was done for the case
spin-polarized diluted Fermi gas.7–10

Being addressed to the same problem in polarized Fe
liquid, we need the kinetic equation. The derivation of it f
a strongly interacting Fermi liquid is unreal problem. How
ever, for a weakly polarized Fermi liquid it seems natural
work on the basis of semi-phenomenological Silin-type
netic equation.15 Assuming its validity in the present pape
we reexamine the derivation of transverse spin dynamic
weakly polarized Fermi liquid for arbitrary relationship b
tween temperatureT and polarizationgH. At small space
and time variations of transversal part of vectorial quasip
ticle distribution function we shall obtain Leggett-type16

equations for spin and spin current densities. Then from
general form of two-particle collision integral similar to th
was derived in Refs. 17,18 we deduce the spin current re
ation term. The latter is essentially simplified when both
temperatureT and the polarizationgH are much smaller than
Fermi energy«F and the momenta of all excitations are co
fined to lie in the vicinity of both Fermi surfaces and ther
fore one may decouple the angular and energy variable
the collision integral in the manner first introduced by Ab
kosov and Khalatnikov.2

We confirm the results of the papers7–10 where the same
problem were treated for the dilute Fermi gas. It is found
particular that at finite polarization spin-wave damping ha
finite value atT50. More precisely, at low temperatures
proves to be proportional to the number of collisions b
tween quasiparticles

1

t
}@~gH !21~2pT!2#. ~2!

This corresponds to the law of zero sound attenuation19

g}@v21~2pT!2#, ~3!

which is also determined by the number of collisions b
tween quasiparticles. One can find the results of recent m
surements of low-temperature zero sound attenuation
surway of previous experimental works on this subject
Ref. 20.

In general, all regimes of the temperature behavior of
spin-wave absorption in the degenerate Fermi liquid can
juxtaposed with correspondent regimes in the absorption
ultrasound. We shall consider this analogy in the conclus

At the end we shall discuss spin-polarized Fermi liquid
the general context of the Fermi-liquid theory and compar
with an imaginary ferromagnetic Fermi liquid or liquid wit
spontaneous magnetization.

II. SPIN DYNAMICS EQUATIONS

The quasiparticle distribution function as well as qua
particle energy are given by 232 matrix in spin space,
14442
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n̂k~r ,t !5nk~r ,t ! Î 1sk~r ,t !ŝ, ~4!

«̂k~r ,t !5«k~r ,t ! Î 1hk~r ,t !ŝ. ~5!

Here ŝ5 (ŝx ,ŝy ,ŝz) are Pauli matrices. The scalar an
vector parts of matrix distribution function obey the coupl
kinetic equations.15 As it was pointed out by Leggett16 in the
case of small polarizations, the equation for the scalar par
the distribution functionnk(r ,t) decouples from the equatio
for the vector part of distribution functionsk(r ,t) and we
may put nk equal to its equilibrium value, namely, usu
Fermi function. At that the equation forsk(r ,t) still shall be
nonlinear: as long as the polarization is small by its abso
value one can consider the arbitrary large variations of
direction of magnetization. On the other hand, the sim
decoupling of the equation for the scalar part of the distrib
tion function from the equation for the vector part of dist
bution function including the collision integrals~see below!
takes place at arbitrary polarizations as long as we cons
the small deviations of the magnetization direction from
equilibrium direction. We shall be interested in the latt
case.

In general, the equation for thesk(r ,t) has the form

]sk

]t
1

]«k

]ki

]sk

]xi
2

]«k

]xi

]sk

]ki
1

]hk

]ki

]nk

]xi
2

]hk

]xi

]nk

]ki

22~hk3sk!5S ]sk

]t D
coll

. ~6!

We divide all matrices in equilibrium and nonequilibrium
parts,

n̂k5n̂k
01dn̂k , ~7!

«̂k5 «̂k
01d«̂k , ~8!

where

n̂k
05 1

2 ~n0
11n0

2! Î 1 1
2 ~n0

12n0
2!~ŝm̂! ~9!

is the equilibrium distribution function of polarized Ferm
liquid and

«̂k
05«kÎ 2

1

2
g~Bŝ! ~10!

is the equilibrium quasiparticle energy. Here there are t
Fermi distribution functions

n0
6~«k!5n0S «k7

gH

2 D5
1

expS «k7
gH

2
2m

T
D 11

~11!
9-2
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shifted on the value of polarizationgH/2, g is the gyromag-
netic ratio, Planck constant\51 throughout the paper, th
polarization direction is determined by the unit vectorm
5H/H.

The ‘‘effective’’ magnetic fieldH is the field correspond
ing to the magnetization created by the external magn
field H0 and by the pumping.21 The pumped part in view o
very long time of longitudinal relaxation should be cons
ered as equilibrium part of magnetization. The difference
tweenB andH originates from the pumping that changes t
quasiparticle distribution functions but does not directly
fect on the energy of quasiparticles. FieldB consists of an
external magnetic fieldH0 and the Fermi-liquid molecula
field. To defineB we must consider the equilibrium distribu
tion matrix ~9! and equilibrium energy matrix~10! as devia-
tions from the corresponding matrices for nonpolariz
Fermi liquid,

n̂k
05n0~«k! Î 1dn̂k

0 , ~12!

«̂k
05«kÎ 2

1

2
g~Bŝ!5«kÎ 2

1

2
g~H0ŝ!

1
1

2
Sp8E dt8 f kk8

ss8dn̂k8
0 , ~13!

wheredt52dk/(2p)3 and the Fermi-liquid matrix of inter-
action is

f kk8
ss85 f kk8

sÎ Î 81 f kk8
aŝŝ81 f kk8

bm̂~ŝÎ 81 Î ŝ8!

1 f kk8
c
~m̂ŝ!~m̂ŝ8!. ~14!

These three equation together give an equation forB deter-
mination

gB5gH02m̂E dt8@~ f kk8
a
1 f kk8

c
!~n0

12n0
2!

1 f kk8
b
~n0

11n0
222no!#. ~15!

In the absence of a pumped magnetization the field,B5H
and Eq.~15! is just the self-consistency equation for the fie
H determination as the function of an external fieldH0.
When the part of magnetization is created by pumpingH
presents an independent value and the total energy
g(Bŝ)/2 is determined by means of two fields: externalH0
and effectiveH. We shall assume that they are parallel ea
other.

For the finite polarization the vectorB proves to be en-
ergy dependent. This reflects the impossibility to formulat
Fermi-liquid theory with finite polarization in terms of Lan
dau Fermi-liquid parameters which are just numbers cha
terizing the intensity of interaction of quasiparticles near
Fermi surface. The problem is not resolved even by introd
tion of Fermi-liquid parameters separately for each Fe
sphere with Fermi momentapF

↓ and pF
↑ . To avoid this

complexity we shall limit ourselves by the case of sm
polarization assuming independence of the functionsf kk8 of
energy. Then it is clear thatB is energy independent an
14442
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determined just by zeroth-order term in expansion of
functions f kk8

i on spherical harmonics.
We shall discuss the only perpendicular deviations fr

the initial equilibrium state,

dn̂k5dsk~r ,t !ŝ, ~m̂dsk!50. ~16!

Then the energy deviation matrix has the form

d«̂k5dhkŝ, dhk5E dt8 f kk8
adsk8 ~17!

and the kinetic equation~6! can be rewritten as

]dsk

]t
1

]«k
0

]ki

]dsk

]xi
2

1

2

]~n0
11n0

2!

]ki

]dhk

]xi

22F S 2
gB

2
1dhkD S 1

2
~n0

12n0
2!m̂1dskD G

5S ]sk

]t D
coll

. ~18!

We deal with linear indsk equation with coefficients in-
dependent of space and time variables. In the lowest orde
polarization, these coefficients are expressed through Fe
liquid parameters for nonpolarized Fermi liquid which a
introduced as usual by

f kk8
a
5N0

21(
l

Fl
aPl~ k̂,k̂8!, ~19!

whereN05m* kF /p2 is the density of states. As mentione
for large polarizations the coefficients in the kinetic equat
are not well determined, although the structure of the eq
tion looks similar. So, for simplicity we limit ourselves b
the treatment of the left hand side of the equation in
lowest order on polarization. One can neglect in this caseFl

b

andFl
c . Then following Leggett16 one may rewrite Eq.~18!

as two equations for the first two harmonics~magnetization
density and spin current density! of the distribution function

M ~r ,t !5
1

2E dtdsk , ~20!

Ji~r ,t !5
1

2E dtFvFidsk2
]n0

]ki
dhkG

5
1

2 S 11
F1

a

3 D E dtvFidsk . ~21!

They are
9-3
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]M

]t
1

]Ji

]xi
2M3gH050, ~22!

]Ji

]t
1

1

3
vF

2~11F0
a!S 11

F1
a

3 D ]M

]xi
2Ji3gH0

1
4

N0
S F0

a2
F1

a

3 D ~Ji3M i!

5
1

2 S 11
F1

a

3 D E dtvFi S ]sk

]t D
coll

. ~23!

Here

M i5
gN0

4
H. ~24!

So far we developed the theory for the homogeneous
ternal field. In this case one can excite transverse spin wa
in an infinite medium. The situation has been described
Appendix A in Ref. 22. However, the theory is valid als
when the magnetic field is coordinate dependent by its ab
lute value and includes a small but in general fast in ti
supplementary rf part directed in a perpendicular directio

H0~r ,t !5H0~r !1h~r ,t !, H0~r !5 ẑ@H01dH0~r !#,

~ ẑh~r ,t !!50. ~25!

This situation is typical for the spin-waves experimen
~see, for instance Ref. 23!. In this case we must introduce th
additional longitudinal deviations in the distribution functio
and the energy of quasiparticles. So, Eqs.~16! and ~17! are
modified as follows:

dn̂k5dsk~r ,t !ŝ1dsk
i~r ,t !ŝz , ẑdsk50, ~26!

d«̂k52
1

2
g@ ẑdH0~r !1h~r ,t !#ŝ1dhkŝ

1E dt8 f kk8
adsk8

iŝz ,

dhk5E dt8 f kk8
adsk8 . ~27!

In linear approximation to the perpendicular toẑ deviations
the equations for the perpendicular and the parallel part
the distribution function including the collision integral a
independent. Thus for the transversal part we return bac
the slightly modified system of equations~22! and ~23!:

]M

]t
1

]Ji

]xi
2M3gH0~r !2@M i1dM i~r !#3gh~r ,t !50,

~28!
14442
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]Ji

]t
1

1

3
vF

2~11F0
a!S 11

F1
a

3 D ]M

]xi
2Ji3gH0~r !

1
4

N0
S F0

a2
F1

a

3 D ~Ji3M i!

5
1

2 S 11
F1

a

3 D E dtvFi S ]sk

]t D
coll

, ~29!

wheredM i(r ) is a change of spin density due todH(r ).

III. COLLISION INTEGRAL TREATMENT

The collision integral for the vectorial part of distributio
function is determined through the general collision integ
for the matrix distribution function as follows:

S ]sk

]t D
coll

5
1

2
SpŝÎ coll , ~30!

I coll
ab52

1

4E dt18dt2dk28d~«11«22«182«28!

3d~k1k182k22k28!Fab~k,k18 ,k2 ,k28!.

~31!

Here in absence of relativistic interactions«15«k , «2
5«k2

, etc. For only two-particle collisions the functionFab

must contain the products of the matrix distribution functio
of the general form

~ n̂k!l1l2~ Î 2n̂k
18

!l3l4~ n̂k2
!l5l6~ Î 2n̂k

28
!l7l8

multiplied on some tensor function depending of all m
menta and the spin indices. However, in absence of rela
istic interactions in such the products the only matrix pro
ucts of two types are possible:

1
2 $@ n̂k~ Î 2n̂k

18
!#ab1@~ Î 2n̂k

18
!n̂k#ab%Sp@ n̂k2

~ Î 2n̂k
28

!#

and

1
2 $@ n̂k~ Î 2n̂k

18
!n̂k2

~ Î 2n̂k
28

!#ab

1@~ Î 2n̂k
18

!n̂k2
~ Î 2n̂k

28
!n̂k#ab%.

As usual, in quantum mechanics one must take the sym
trized ~Hermitian! products of operators and correspondi
matrices. Adding to this expressions describing the scatte
processes ‘‘going out’’ of initial state, the corresponding e
pressions for processes for ‘‘going in’’ initial state we ca
write the general form for the functionF̂ determining the
scattering integral for the binary collisions
9-4
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Fab~k,k18 ,k2 ,k28!5
1

2
W1~k,k18 ,k2 ,k28!S „$@ n̂k~ Î 2n̂k

18
!#ab1@~ Î 2n̂k

18
!n̂k#ab%Sp@ n̂k2

~ Î 2n̂k
28

!#2$@~ Î 2n̂k!n̂k
18

#ab

1@ n̂k
18

~ Î 2n̂k!#ab%Sp@~ Î 2n̂k2
!n̂k

28
#…1

1

2
W2~k,k18 ,k2 ,k28!$@ n̂k~ Î 2n̂k

18
!n̂k2

~ Î 2n̂k
28

!#ab

1@~ Î 2n̂k
18

!n̂k2
~ Î 2n̂k

28
!n̂k#ab2@~ Î 2n̂k!n̂k

18
~ Î 2n̂k2

!n̂k
28

#ab2@ n̂k
18

~ Î 2n̂k2
!n̂k

28
~ Î 2n̂k!#ab%. ~32!
s
in

on
-

t-
e

-

s
g
l-

ion
-

hat
tum
Due to the total quasiparticle densitySp*dk Î coll and the
total quasiparticle spin densitySpŝ*dk Î coll/2 conservation,
the functionsW1 and W2 obey the following conditions:
W1(k,k18 ,k2 ,k28)5W1(k18 ,k,k28 ,k2) and W2(k,k18 ,k2 ,
k28)5W1(k18 ,k2 ,k28 ,k). The two-particle collision inte-
gral for the matrix distribution function determined by Eq
~31! and ~32! corresponds to collision integral derived
Born approximation by Silin17 ~see also Ref. 18!. When all
the distribution function matrices are diagonal, the collisi
integral ~26!, Eq. ~29! reduces to the diagonal form of two
particle collision integral24 with W152W↑↓ and W11W2
5W↑↑ .

For the case of low temperatureT!«F and small polar-
ization gH!«F when all the quasiparticle momenta of sca
tering particles lie near the Fermi surface of nonpolariz
Fermi liquid one can suppose as in Ref. 2 that functionsW1
andW2 depend only on the angleu betweenk andk2 and on
the anglef between the planes (k,k2) and (k18 ,k28). Now
we must take Eq.~32! in the linear approximation on devia
fo

14442
.

d

tions dn̂. We deal only with the terms containing deviation
dn̂k5dsk(r ,t)ŝ and do not consider the terms containin
deviationsdn̂k

18
etc. because after all integrations in the co

lision integral ~31! they are independent of thek direction
~equilibrium distribution matrixn̂k

0 is isotropic in thek
space!. Hence they disappear at final stage after integrat
in the right hand side of Eq.~29!. We choose the local direc
tion of the quantization axism̂ along ẑ direction, such that
( ẑdsk)50. We can perform the integration overk28 in Eq.
~31! eliminatingd function of momenta and also, following
the procedure of Ref. 2 reproduced in Ref. 25 in somew
different manner, reexpress the integration over momen
space as

dk2dk185
~m* !3

2 cos~u/2!
d«2d«18d«28 sinududfdf2 .

So, the linear part of the collision integral is
d Î coll52dn̂k

m* 3

2~2p!5E d«2d«18d«28d~«11«22«182«28!ˆW̄1$@12n0
1~«18!112n0

2~«18!#@n0
1~«2!„12n0

1~«28!…

1n0
2~«2!„12n0

2~«28!…#1@n0
1~«18!1n0

2~«18!#@„12n0
1~«2!…n0

1~«28!1„12n0
2~«2!…n0

2~«28!#%

1W̄2$„12n0
1~«18!…n0

1~«2!„12n0
1~«28!…1„12n0

2~«18!…n0
2~«2!„12n0

2~«28!…

1n0
1~«18!„12n0

1~«2!…n0
1~«28!1n0

2~«18!„12n0
2~«2!…n0

2~«28!%‰, ~33!
in
where

W̄i5E W1~u,f!sin
u

2
dudf, i 51,2. ~34!

Integration over energies is easily performed. Let us do it
one particular term in this expression.

E Ed«18d«28@12n0
1~«18!#n0

1~«181«282«1!

3@12n0
1~«28!#

5T2E E dxdy@12 f ~x!# f ~x1y2t1h!@12 f ~y!#
r

5T2E dx f~2x!
x1h2t

ex1h2t21

5T2
p21~h2t !2

2
f ~h2t !. ~35!

Here x5(«182m2gH/2)/T, y5(«282m2gH/2)/T, h
5gH/2T, andt5(«2m)/T, f (x)5(ex11)21. It should be
stressed that the definitions of variables of integrationx and
y depend on particular products liken1(12n2)n2 under the
integral. On the contrary, the variablet and the parameterh
have an invariant definition for all the terms. Thus we obta
9-5
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d Î coll52dn̂k

m* 3

2~2p!5
~2W̄11W̄2!

T2

2
@„p21~h2t !2

…

3 f ~h2t !1„p21~h1t !2
…f ~2h2t !

1„p21~ t2h!2
…f ~ t2h!1„p21~ t1h!2

…f ~ t1h!#

52dn̂k

m* 3

2~2p!5
~2W̄11W̄2!

3F ~pT!21S gH

2 D 2

1~«2m!2G . ~36!

Now we must substitute this expression in the right-ha
side of Eq.~29!,

1

2 S 11
F1

a

3 D1

2
SpE dtvFi~ŝd Î coll!

52
1

2 S 11
F1

a

3 D m* 3

2~2p!5
~2W̄11W̄2!

3E dtvFiF ~pT!21S gB

2 D 2

1~«2m!2Gdsk~r ,t !.

~37!

Taking into account the definition~21! one can directly ex-
press part of this integral containing (pT)21(gH/2)2

through the spin current density. The integral as a whol
not in general expressed in terms of the current. That p
vents to consider Eqs.~28! and ~29! as the closed system o
equations for the spin densityM and the spin current densit
Ji . However, one can make an assumption which is plaus
for weakly polarized Fermi liquid that the energy depe
dence ofdsk(r ,t) is factorized from the space and directio
of k̂ dependences:

dsk~r ,t !}@n0
1~«!2n0

2~«!#@A~r ,t !1Bi~r ,t !k̂i #.

~38!

In this case in the lowest order of the ratiogH/m one can
rewrite the expression~37! as

2
m* 3

6~2p!5
~2W̄11W̄2!@~2pT!21~gH !2#Ji~r ,t !. ~39!

IV. RESULTS AND DISCUSSION

So, finally we have come to the closed system of eq
tions for the spin densityM and the spin current densityJi ,

]M

]t
1

]Ji

]xi
2M3gH0~r !2@M i1dM i~r !#3gh~r ,t !50,

~40!
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d
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e-
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-

-

]Ji

]t
1

1

3
vF

2~11F0
a!S 11

F1
a

3 D ]M

]xi
2Ji3gH0~r !

1
4

N0
S F0

a2
F1

a

3 D ~Ji3M i!52
Ji

t
, ~41!

where the current relaxation time is

1

t
5

m* 3

6~2p!5
~2W̄11W̄2!@~2pT!21~gH !2#. ~42!

This system has the same structure as the Leggett spin
namic equations.16 However, unlike the Leggett equation
these are linear equations for theM and Ji in presence of
small but finite polarization. They contain all the informatio
about spin rotation or Leggett-Rice effect. The current rel
ation time is proved to be finite at zero temperature ther
the result that has been obtained earlier for the dilute Fe
gas9,10 is confirmed.

The damping response of the transverse magnetizatio
the transverse rf fieldh(r ,t) has been found in Ref. 23 and i
more rigorous manner in Ref. 22. The corresponding tra
verse magnetization fluctuations can be established by m
of standard fluctuation-dissipation relations.

The known dispersion law of the transversal spin wav
following from Eqs.~40! and ~41! is

v5vL1~D92 iD 8!k2, ~43!

wherevL5gH0 is the Larmor frequency,

D85
vF

2~11F0
a!~11F1

a/3!t

3@11~ktgH !2#
, D95ktgHD8

~44!

are correspondingly the diffusion coefficient and its react
part,k5F0

a2F1
a/3. The spin wave damping is determine

by diffusion coefficient D8. In hydrodynamic region
ukutgH!1 its temperature dependence is determined by
time of scatteringt}T22. Then, passing through the max
mum at ukutgH;1 ~Leggett-Rice effect, see Ref. 26!, at
lower temperaturesukutgH.1 the diffusion coefficient
starts to be proportional to the number of collisions betwe
the quasiparticles}t21. Finally, at very low temperature
T,gH/2p and finite polarization it comes to the finite con
stant value. Thus the transverse spin waves in a Fermi liq
with finite polarization have a finite attenuation atT50.

The behavior of transverse spin wave damping is sim
to, and in fact has the same origin as, the attenuation
ultrasound with frequencyv in a degenerate Fermi liquid.19,2

The latter decreases ast}T22 in hydrodynamic regionvt
!1, then it passes through the maximum atvt;1 and be-
haves as the number of collisions}1/t}@v21(2pT)2# in
collisionless regionvt@1 ~see Ref. 27!. It keeps the finite
value}v2 at T50 ~see Ref. 20!.

It will be appropriate to repeat here the conditions und
which our derivation is valid. The most important is that w
were working in the linear on the space and time variatio
of the transverse part of vectorial quasiparticle distribut
9-6
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TRANSVERSE SPIN DYNAMICS IN A SPIN- . . . PHYSICAL REVIEW B 69, 144429 ~2004!
function. In polarized Fermi liquid the large deviations of t
magnetization direction are always accompanied by
changes of its longitudinal part, therefore we cannot
couple the kinetic equations for the scalar and vectorial
tribution functions in a Fermi liquid with finite polarization
We also lose the possibility to transform the matrix produ
in the collision integral as we did.

Thus the important point in our treatment of transver
spin motion was its independence of longitudinal degree
freedom. So long we consider only linear dynamics there
no coupling between transversal and longitudinal parts
less we do not take into account spin nonconserving co
sions~see below!. In that sense we do not see a necessity
limitations of the developed here theory likeuv2vLut!1
@see Eq.~43!# with botht' given by Eq.~42! andt i}T22 as
discussed in Ref. 10. Nevertheless, it is worth noting that
now the measurements have been performed in fram
these hydrodynamic conditions.28

Another important assumption is the condition of t
weak polarizationgH!«F of degenerate Fermi liquid with
T!«F , however, with arbitrary relation between polariz
tion gH and temperatureT. This confines all the quasipart
cle momenta to lie in the vicinity of the Fermi surface
nonpolarized Fermi liquid, and therefore one may decou
the energy and the angular variables in the collision integ
like it was done in Ref. 2 and finally to obtain the clos
system of the equations.

Experimentally, the transverse spin current relaxation ti
is determined by measurements of the spin echo attenua
or damping of the standing spin waves. The results
whether or not the transverse relaxation time saturates at
temperatures in spin-polarized Fermi liquids so far have b
contradictory. The recent spin echo experiments most p
ably suggest that spin current relaxation remains finite
temperature tends to zero.29-31 At first sight the large angle
deviations, which are the principal feature of the spin ec
method, prevent of application of our theory where the tra
verse spin attenuation is calculated in linear on the transv
perturbation approximation. Nevertheless, the linear the
does work because the fastly varying in time ‘‘transvers
magnetization is always kept small during the whole cou
of the spin echo experiment if one chooses as the natural
of quantization slowly varying in time the direction of loc
magnetization.32

On the contrary, the direct measurements of spin wav33

demonstrates much smaller damping than expected on
basis of the spin echo experiments. Here, however, the
sence of zero-temperature attenuation is probably maske
not enough precise temperature determination.34
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V. CONCLUDING REMARKS: SPIN-POLARIZED
FERMI LIQUID VERSUS FERROMAGNETIC

‘‘FERMI LIQUID’’

The established zero-temperature attenuation of trans
sal spin waves in polarized Fermi liquid is transferred
longitudinal modes like paramagnons and sound waves
spin nonconserving magnetic dipole-dipole interaction.35 In
its turn the finite damping of longitudinal collective motion
causes the finite damping of the Fermi-liquid quasiparticl
The latter means that, strictly speaking, a polarized Fe
liquid at T50 is not the Fermi liquid. This effect, howeve
being proportional to the square of the amplitude of dipo
dipole interaction will manifest itself at extremely low tem
peratures.

A Fermi-liquid theory for the spin waves in a ferroma
netic metal has been developed by Abrikosov a
Dzialoshinskii.36 It was done in neglecting of quasipartic
collisions, hence the dampingless spectrum has been
tained. However, the following was noted by Herring:37 ‘‘For
a ferromagnetic metal . . . if the spin of quasiparticle at the
Fermi surface is reversed, the corresponding quasipar
state will no longer be closed to the Fermi surface, and it w
have a finite, rather than an inifinitesimal, decay rate.’’ T
finite decay rate of quasiparticle states produces the z
temperature spin wave attenuation. The latter certainly c
tradicts to the Goldstone theorem for a isotropic ferrom
netic ground state. So, starting from a Fermi-liquid approa
to the itinerant ferromagnet we come to the contradicti
The resolution of this paradox is that in an itinerant ferr
magnet the formation of off-diagonal deviations of th
momentum-dependent distribution functiondsk(r ,t) and its
time-space variations according to the kinetic equation w
be blocked up by the alteration of orbital part of the electr
wave function and corresponding increase of an interac
energy. So, the equation of motion of magnetic degrees
freedom is not formulated in (k,r ) or phase space but only i
the space of coordinatesr as has been done b
Landau-Lifshitz38 for the magnetization densityM (r ,t).
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