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Polarized Raman scattering studies of crystal-field excitations in ErNiB,C
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Raman-scattering measurements have been carried out to study magnetic properties of the quaternary mag-
netic superconductor ErpB,C (T,=10 K, Ty=6 K). The crystal field(CF) of Er* splits the 16-fold
degeneraté'l ;5,, ground-state multiplet of #* electrons into eight Kramers doublet$' &+ 4I', within the
D4y, site symmetry. Therefore, one expects seven ground-state CF transitions from thellgwseste to the
higher states. Excitation symmetries and transition characteristics between these levels can be identified sys-
tematically by a proper use of the Raman polarization selection rules. As a result, temperature-dependent and
polarized Raman-scattering spectra reveal six ground-state CF transitions:*7(Eg-1";), 48 cm' (I'g
—Tg), 56 cmi L (I'g—T5), 145 cm ! (I'g—T5), 149 cm ! (I'g—1Tg), and 153 cm? (I's—1I';). Using the
CF transition characteristics of the obtained data, we expect that one unobserved CF level trakigition (
—T) lies between 56 cm and 145 cm?.
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[. INTRODUCTION Inelastic(Raman scattering provides useful means to si-
multaneously probe electronic and phononic excitatfdns.
The magnetic rare-earth borocarbide superconductorBy controlling polarization directions of the incident and
RNi,B,C (R=Tm, Er, Ho, Dy have attracted a great deal of scattered light, the Raman polarization selection rules allow
interest due to the strong correlations between superconduone to identify the symmetry information of a particular ex-
tivity and magnetisnt- ' Effects of the magnetic moments at citation. Raman-scattering studies BNi,B,C have been
the rare-earth sites on the superconductivity in these materperformed on optical phonons iRNi,B,C (R=Lu, Ho,
als exhibit exotic behavior governing the interplay betweenY),?>?® low-frequency electronic excitations in Y)B,C,>*
superconductivity and magnetism. Both the superconductingnd superconducting gaps RNi,B,C (R=Y, Lu).?>%
transition temperaturesT() and the antiferromagnetic- In this paper, we use polarized Raman scattering to ex-
ordering temperaturesT{) of RNi,B,C are systematically plore scattering symmetries and transition characteristics of
scaled by the de Gennes factor, indicating that the itinerarthe CF excitations in superconducting EsB4C in the tem-
electrons are weakly coupled to the localizefdedectrons of ~ perature range 4—300 K. Using a triple-spectrometer system
the rare-earth ions, and bof, and Ty originate from the uniquely designed for high-stray-light rejection and high
same conduction electron-local magnetic moment exchangéiroughput, we obtained six CF excitations and identified
interactions:? In contrast to the mutually exclusive nature each scattering symmetry. The observed CF excitations in-
between superconductivity and magnetism, experimentatiude a low-lying CF excitation at 7 cnt (~0.86 meV)
evidences of coexistence of these two phenomena iproposed by Bonvilleet al!® based on their specific-heat
RNi,B,C elucidate a new understanding of magnetic prop-measurements. Note that previous inelastic
erties in the superconducting state as well as in the normaileutron-scattering*>'’ and Raman-scatterifiy measure-
state. For instance, transport and neutron measurements fiments from ErNjB,C revealed only a few CF excitations.
ErNi,B,C reveal that superconductivity coexists not only
with antiferromagnetism folT<~6 K (Refs. 1,3-5% but
also with spontaneous weak ferromagnetismTer2.3 K.° Il. EXPERIMENT
_ Studi(_as of the crystal-fieI_CCF) excitgtions provide useful_ A single crystal ErNiB,C sampl&Lwas mounted inside
information on the magnetic properties of superconducting, continuous Helium-flow cryostat with a variable-
materials. The CF interactions are primarily responsible fokemnerature option. Raman-scattering measurements were
the strong magnetic anisotropies observed in the normafertormed in a backscattering geometry along the growth (
states ofRNi;B,C (Refs. 2,7-9 and RRh,B, (Ref. 12 as  5yiq direction of the sample using a Kr-ion laser with the
well as the 50*}2{2‘9 anomalies observed in the specific hegf47 1 nm excitation wavelength. Linearly or circularly polar-
measurements:*~**The highly anisotropic nature of the l0- j;eq light was employed in various polarization configura-

cal moments's'trongly influences the interplay between thg < 1o identify the scattering symmetries for EsRjC:
superconductivity and the magnetism, and for these reason —

active investigations of the CF excitations have been carriea%x’x)z' BigtAig: Z(XY)Z, BagtAgg; 2(X'.X)Z, By
out for RNi,B,C using various experimental techniques TA1g:  Z(X'.¥")Z, BigtAzg; Z(L,L)zZ,  AggtAgg;
such as inelastic neutron scatterfg!® Mossbauer z(L,R)z, Big+Byy, WhereBiy, Byg, Ay, and Ay are
spectroscopy’ and Raman-scatterifgmeasurements. irreducible representatioritR’s) of the space group 4. In
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the notation ofz(x,y)z, zandz represent wave-vector direc-
tions of the incident and scattered light, respectivekyy)
represents the polarization directions of the incident and ana-
lyzed (i.e., scattered light, respectively, andx|/[1,0,0],
y|l[0,1,0], andz|[0,0,1]. Symbolsx’ andy’ represent two
mutually orthogonal directions parallel t§1,1,0] and
[—1,1,0], respectively. Symbolt andR represent left and
right circularly polarized light, respectively. Scattered light
was dispersed through a triple spectrometer equipped with an
1800 g/mm grating, and recorded using a liquid-nitrogen-
cooled charge-coupled devi@8CD) detector. All the spectra
were corrected, first, by removing the CCD dark current re- L L T
sponse, and then by normalizing the spectrometer response 0 50 100 150 200
using a calibrated white light source. Finally, the corrected Energy Shift (cm'1)
spectra were divided by the Bose thermal factor 1.2
[1—exp(4w/kgT)] ™1, giving rise to the resultant spectra - (b) '
proportional to the imaginary part of the Raman susceptibil- W
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IIl. RESULTS AND DISCUSSION

The rare-earth nickel borocarbide single crystals have the
body-centered-tetragonal structure with space group
Dif-14immm?” The ground state of the 11f4electrons
(41 in EP" is 16-fold degeneratél ;5/,. The total angular
momentumJ=15/2 comes from the spin-orbit coupling: the 4
angular momentunb. =6 and the spinS=3/2. Within the
D4, site symmetry at the Er site, the CF level splits the
ground-state multiplet into eight Kramers doublet$ ¢4
+4T,, whereI’s are IR’s of the grou,,.?® Therefore,
one expects seven grounq-state CF transitions In ZBN scattering spectra of ErjB,C upon heating from top to bottom. A
between the lowest and higher CF levels. Electronic tran5|§trong Raman response &t199 ci ® is the NiBy, phonon re-

tions between these levels are governed in decomposition Qfnse. (b) Summary of the spectral linewidth changéspen
the direct products df g andI’; with the four IR’s discussed  ¢jrcleg and the corresponding normalized spectral intensity

Linewidth (cm ™)

Normalized Intensity

I”10 o 160
Temperature (K)

e
o

FIG. 1. (a) Temperature evolution of th&,,+A,, Raman-

in Sec. Il above: changes(filled square} of the 48 cm! CF excitation response,
respectively, as a function of temperature. The dotted and dashed
BigX1'67=BogXI's7=1'76, (1) lines are guides to the eye.
A1gXTg7=AggXT'g 7= g 7. 2

observed in inelastic  neutron-scattefihg and
Polarized Raman scattering wiByy or B,; symmetry cor-  Raman-scatterirfy measurements from ErpB,C. Figure
responds to electronic transitionsg—1'; and I';—I's.  1(b) summarizes the spectral linewidth and normalized inten-
Likewise, polarized Raman scattering wi, or A,; sym-  sity changes, obtained from fits to a Lorentzian profile, for
metry corresponds to electronic transitiong—1I'¢ andI';  the 48 cm® CF transition with increasing temperature. The
—TI'7. In this way, the CF excitation symmetries and theirspectral linewidth and intensity start to broaden and weaken,
transition characteristics can be identified. respectively, forT>~Ty, clearly demonstrating that this
Figure 1@ illustrates theB,4+A,, Raman-scattering Raman response is electronic in origin and reflects a CF ex-
spectra of ErNiB,C with increasing temperature from top to citation. Likewise, all the other CF excitations show the
bottom. The strong spectral peak-al99 cm ! is assigned same behavior as a function of temperature. Note that, in
to theB,4 phonon mode from the-axis Ni vibration?*In  comparison to the previous Raman-scattering reétlise
addition to the NiB;y phonon mode, numerous Raman ex-B;4+A,, Raman spectra in Fig.(d exhibit at least two
citations were observed. With increasing temperature, the adkdditional CF excitations at 7 ¢cm and 56 cm* shown
ditional Raman responses broaden and weaken in spectmaore clearly in Fig. 2 and discussed below.
weight. Finally, abovd =260 K, the Raman responses were  The eight CF levels in ErNB,C consist ofl'g, I';, I'g,
weak as to be barely observable. These features are chardc;, 'y, I';, I's, andI'; from the lowest doublet ground
teristics of the CF excitations, as observed in the High- state to the higher doublet staté$® To explore the CF ex-
superconductors and their parent compounds containing rareitations and their transition properties in detail, we per-
earth atom$?3° Indeed, the electronic Raman peaks atformed polarized Raman-scattering measurements in various
48 cmi ! and 145 cm* are very close to the CF transitions scattering configurations. As a result, six CF excitations are
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FIG. 3. (a) The CF ground-state energy level scheme and tran-
sition characteristics of the current work. The six arrows indicate
the observed CF transitions. A dashed line lying between 56'cm

| | and 145 cm? denotes an energetic location of the unobserved CF

. transition.(b) The CF ground-state energy level scheme and transi-
160 tion characteristics by Martinhet a

]
0 40 80 120

12° The dashed and solid lines
. -1 indicate the calculated results. Two arrows indicate the Raman-
Energy Shlﬁ (Cm ) scattering resultsc) The CF ground-state energy level scheme by

Gasseet all” The dashed lines indicate the calculated results. Four

. FIG‘ 2. Polarlz_ed Ram_a n-sc_attermg sp(_ectra_of ERIC at .4.K arrows indicate the inelastic neutron-scattering results. Two CF
in various scattering configurations, showing six CF transitions al nsitions at-6.5 et and~ 12 ot result from splitting of the
7cm?t, 48cm?t, 56cm?t, 145cm?t, 149cm?, and low-lying CF transition

153 cm' %, as indicated by the dotted lines. '

CF transition. Similarly, the 48 cit CF excitation is ob-
observed, as summarized in Fig. 2. We did not find any conserved in the X',y’), (x,y), and (,L) scattering configu-
siderable Raman scattering response due to the CF exciteations which havé\,; Raman symmetry in common. There-
tions in the higher-energy region. fore, the 48 cm! CF excitation has the totally

To identify each of the CF transition characteristics, first,antisymmetricA,, Raman symmetry, corresponding to a
consider the low-lying CF excitation at 7 ¢rh Although I's—T'¢ CF transition. Note that there is slight leakage of
the low-energy shoulder of this excitation was cut off this mode in other scattering configurations probably due to
~4 c¢cm™* due to the spectral limit of the spectrometer, thethe imperfect polarization geometry. The 153 ¢hCF ex-
peak at 7 cm! was clearly resolved. Because the 7°¢m citation is observed in theL(R), (x,y), and ',x’) scatter-

CF excitation is observed in the'(y") scattering configu- ing configurations and, therefore, it hBs, Raman symme-
ration, it has eitheB,4 or A,; Raman symmetry. However, it try, corresponding to & —1I'; CF transition. It is not clear

is also observed in thex(x) scattering configuration with whether the 149 cmt CF excitation, clearly observed in the
B,4+ A1y Raman symmetries. Therefore, the 7ChCFex-  (L,L) scattering configuration, has, 4 or A,y Raman sym-
citation, observed in these two scattering configurations, isnetry. However, both Raman symmetries correspond to a
related neither toA;4 nor to A,y Raman symmetry. If the T'¢—T'g CF transition[see Eq.(2)]. In addition, a weak CF

7 cm ! CF excitation had thé\;4 or the A,; Raman sym-  scattering response at 56 chwas observed withB,4 Ra-
metry, it would not be observed in both scattering configu-man symmetry, corresponding tol'a—1I'; CF transition.
rations. Thus, we conclude that the 7 emCF excitation Figure 3a) summarizes the results of the CF ground-state
hasB;y Raman symmetry, corresponding to a CF transitionenergy level scheme and transition characteristics in
from the lowestl' state to the highef'; state[see Eq(1)]. ErNi,B,C obtained by our polarized Raman-scattering re-
The fact that the 7 cm' CF excitation ha®8,, Raman sym-  sults. Additionally, other experimental resultsp arrows
metry is further exemplified by its appearance in the Ramambserved in Raman-scatterflg  and inelastic
spectrum obtained in thé_(R) scattering configuration with neutron-scatterifg measurements are added in Figéb)3
Bigt BZ% Raman symmetries. In the same way, theand 3c) for comparison. Note that, in comparison to the
145 cm -+ CF excitation observed in the(,y’), (x,x), and  previous Raman-scattering results which identified two CF
(L,R) scattering configurations is unambiguously assignedexcitations, our work resolved six CF excitations. The Ra-
to haveB;, Raman symmetry, corresponding td'g—I'; ~ man polarization selection rules and the CF transition char-
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acteristics tell us that the unobserved CF excitatiog) (cor-  identify the CF excitation symmetries and transition charac-
responds to al'¢c—I'g CF transition and, therefore, lies teristics but also to obtain useful information on the unob-
between the 56 cit (I';) and the 145 cm! (I';) CF lev-  served CF excitations. These results should provide an excel-
els, as indicated by a dashed line in Figa)3 lent starting point to obtain more refined CF parameters as
well as useful information on the magnetic ground states of

IV. CONCLUSIONS ErNi,B,C.
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