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Spin waves in antiferromagnetic spin chains with long-range interactions

Eddy Yusuf, Anuvrat Joshi, and Kun Yang
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We study antiferromagnetic spin chains with unfrustrated long-range interactions that decay as power laws
with exponentb, using the spin-wave approximation. We find for sufficiently large spinS that the Neel order
is stable atT50 for b,3, and survives up to a finite Neel temperature forb,2, validating the spin-wave
approach in these regimes. We estimate the critical values ofS and T for the Neel order to be stable. The
spin-wave spectra are found to be gapless but have nonlinear momentum dependence at long wavelength,
which is responsible for the suppression of quantum and thermal fluctuations and stabilizing the Neel state. We
also show that forb<1 and for a large but finite-size system sizeL, the excitation gap of the system
approaches zero slower thanL21, a behavior that is in contrast to the Lieb-Schultz-Mattis theorem.
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I. INTRODUCTION

Antiferromagnetic~AF! spin chains have attracted consi
erable interest of physicists in the last two decades, and
tinue to be a subject of active research at present. There
several reasons why they are of such strong interest. F
quantum antiferromagnetic spin chains are important
amples of a larger class of strongly correlated syste
whose ground state and low-energy behavior differ fr
their higher-dimensional counterparts in qualitative ways
the case of AF spin chains, quantum fluctuations destroy
Neel order in the ground state no matter how big the size
the spin is, while in higher dimensions the Neel order
stable regardless of spin size, in the absence of frustra
Second, the spin chains are of interest to physicists bec
they are ideal playgrounds for various types of theoret
approaches. A prominent example here is the work
Haldane,1 who mapped the AF spin chains to quantum no
linear s models and predicted that the integer chains hav
gap in their excitation spectra while no gap exists for ha
integer chains, based on the absence or presence of a
logical term in the mapping. This fundamental difference
consistent with, and to a certain degree implied in, the Li
Schultz-Mattis ~LSM! theorem,2 which states that for
Heisenberg AF chains with lengthL and periodic condition,
for half-integer spins, there exists an excited state with
ergy separated from the ground state that is of order 1/L; no
such theorem exists for integer chains however.

The studies of AF spin chains, and the results mentio
above, are restricted to models with short-range interacti
In this work we study AF chains with interactions that dec
as power laws and without frustration:

H5(
i j

~21! i 2 j 11Ji j Si•Sj , ~1!

with

Ji j 5J/u i 2 j ub, ~2!

whereJ.0 determines the overall energy scale of the s
tem andb is the power-law exponent that controls the dec
of the interaction. The factor (21)i 2 j 11 ensures that spin
0163-1829/2004/69~14!/144412~7!/$22.50 69 1444
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sitting on opposite sublattices have antiferromagnetic in
actions and those sitting on the same sublattice have fe
magnetic interactions, thus there is no frustration. Our m
vation for the study comes from the followin
considerations. First, such power-law long-range interacti
can, in principle, be realized in experimental systems; o
example of which being the Ruderman-Kittel-Kasuy
Yosida3 interaction mediated by conduction electrons th
decay as power laws, with an exponent that depends on
details of the conduction-electron Fermi surface. Second
we will show, such long-range interactions tend to suppr
quantum as well as thermal fluctuations, thus increasing
range of interaction has an effect that is somewhat simila
increasing the dimensionality of the system. On the ot
hand, the dimensionality is discrete while the power-law e
ponent for the interaction can be tuned continuously, th
providing a tuning parameter for the fluctuations; it is
interest to study how the system behaves under such tun

Anticipating the stability of the Neel order in the presen
of such long-range interactions, we study the models us
the spin-wave method. We obtain the following results.

~i! We show that the Neel order is stable at zero tempe
ture forb,3 and sufficiently largeS, justifying the usage of
spin-wave method in this case. We also estimate the crit
size of the spin for the Neel order to be stable, as a func
of b.

~ii ! In this case the spin-wave excitation spectra take
form vk;kg in the long wavelength, withg,1 and varying
continuously withb.

~iii ! Extending the spin-wave calculation to finite tem
perature, we show that the Neel transition temperatureTN is
zero forb>2 while finite for b,2. We determineTN as a
function of S andb.

~iv! For a finite-size system with sizeL and periodic
boundary condition, andb<1, we find that the lowest exci
tation energy approaches zero slower than 1/L asL increases
for both half-integer and integer spins, thus ‘‘violating’’ th
LSM theorem. Of course the LSM theorem applies to s
chains with short-range interaction only; here we have p
vided explicit examples of how it is invalidated by the pre
ence of long-range interaction.
©2004 The American Physical Society12-1
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The remainder of the paper is organized as follows.
Sec. II we discuss the application of spin-wave technique
this model. In Secs. III and IV we present and discuss
significance of our results. In Sec. V we summarize our w
and discuss the implications of our results.

II. THE SPIN-WAVE APPROACH

We consider a Heisenberg antiferromagnetic chain w
unfrustrated power-law long-range interaction with t
Hamiltonian given by Eq.~1!. The central issue we addres
in this work is the stability of Neel state at zero or lo
temperature. It is thus natural to use the spin-wave met
based on the Holstein-Primakoff transformation4 that maps
spin operators to boson operators, and check its s
consistency. The procedure is rather standard;5 we neverthe-
less include the details here for the sake of completeness
establish notation for later treatment. We divide the ch
into two sublattices and represent the spin operators in te
two types of bosons:a bosons which live onA sublattice and
b bosons which live onB sublattice. Up to order 1/S, where
S is the size of spin, the Holstein-Primakoff transformati
for the spin operators can be written as the following:

Si
z5S2a†a, Si

25A2Sa†@12a†a/~2S!#1/2.A2Sa†;

i Podd,

Si
z52S1b†b, Si

25A2S@12b†b/~2S!#1/2b.A2Sb;

i Peven. ~3!

Using this transformation, the Hamiltonian in Eq.~1! can be
separated into three terms as follows:

H5Hodd-even1Hodd-odd1Heven-even ,

whereHodd-even ,Hodd-odd , andHodd-even are defined as

Hodd-even5(
i , j

L

J2i 21,2j@2S21S~a2i 21
† a2i 211b2 j

† b2 j

1a2i 21b2 j1a2i 21
† b2 j

† !#,

Hodd-odd52(
i , j

L

J2i 21,2j 21@2S21S~a2i 21
† a2i 21

1a2 j 21
† a2 j 211a2i 21a2 j 21

† 1a2i 21
† a2 j 21!#,

Heven-even52(
i , j

L

J2i ,2j@2S21S~b2i
† b2i1b2 j

† b2 j1b2ib2 j
†

1b2i
† b2 j !#. ~4!

We diagonalize this quadratic Hamiltonian by going to m
mentum space and then diagonalizing by a Bogoliubov tra
formation:
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H5const1JS(
k

$@a2 f ~k!#~ak
†ak1bk

†bk!

1g~k!~ak
†bk

†1akbk!%, ~5!

where

a52 lim
L→`

(
n51

L/2
1

~2n21!b
,

f ~k!54 lim
L→`

(
n51

L/2
1

~2n!b
@cos~2nk!21#,

g~k!52 lim
L→`

(
n51

L/2
1

~2n21!b
cos~2n21!k; ~6!

using the Bogoliubov transformation, the Hamiltonian~5!
can be diagonalized and be written in terms of free bo
operatorsck anddk :

H5const1JS(
k

vk~ck
†ck1dk

†dk!, ~7!

where

vk5A@a2 f ~k!#22@g~k!#2. ~8!

The correction to staggered magnetization is given by

Dm5
1

V (
k

^ak
†ak&5Dmq1DmT~T!, ~9!

whereDmq andDmT(T), which represent the quantum an
thermal fluctuation corrections, respectively, are given by

Dmq5E dk

2p

1

2 Fa2 f ~k!

vk
21G ,

DmT~T!5E dk

2p Fa2 f ~k!

vk
G 1

eEk /kBT21
. ~10!

We will visit these equations frequently when we discuss
validity of the spin-wave approach later in the text.

It is clear that the correction to magnetization is dom
nated by the smallk behavior of the spin-wave spectrum. W
thus need to obtain the smallk behavior of the expression
given in Eq.~6!. To do that we express them in terms of th
Bose-Einstein integral function6 defined as

F~a,v !5
1

G~a!
E dx

xa21

ex1v21
5

e2v

1a
1

e22v

2a
1

e23v

3a
1•••

5 (
n51

`
e2nv

na
, ~11!

and rewrite the cos(nk) term in f (k) and g(k) as the
following:
2-2
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(
n

`
cos~nk!

nb
5ReF(

n

eink

nb G5Re@F~b,2 ik !#. ~12!

The analytical properties ofF(a,v) near v50 are known
and are given by

F~a,v !5G~12a!va211 (
n50

`
z~a2n!

n!
~2v !n, ~a¹Z!,

F~a,v !5
~2v !a21

~a21!! F (
r 51

a21
1

r
2 ln~v !G

1 (
nÞa21

z~a2n!

n!
~2v !n, ~aPZ!, ~13!

wherez(s) is the zeta function. We will use these properti
in our later treatment.

III. SPIN-WAVE SPECTRA AND CORRECTIONS
TO STAGGERED MAGNETIZATION

In this section we analyze Eq.~6! for different values ofb
to obtain the spin-wave spectra and calculate the correc
to staggered magnetization, to determine the validity of
spin-wave approach.

A. bÐ3

Equations~12! and ~13! are the main ingredients to ana
lyze Eq.~6! which can be summed up in closed forms. Up
leading order ink the relations in Eq.~6! for b.3 read

a52(
n51

`
1

~2n21!b
52~1222b!z~b!,

f ~k!54(
n51

`
1

~2n!b
@cos~2nk!21#

5222b@Re„F~b,22ik !…2z~b!#.ck2,

g~k!52(
n51

`
1

~2n21!b
cos~2n21!k

52(
n51

` Fcos~nk!

nb
2

cos~2nk!

~2n!b G.a2c8k2, ~14!

wherec andc8 are positive constants. The same results
also be obtained by expanding the cos(nk) term to orderk2 in
f (k):

(
n

cos~nk!21

nb
.2k2(

n
n22b, ~15!

in which the sum converges as long asb.3; together with a
similar expansion forg(k) one reproduces Eq.~14!. The
spin-wave spectrum can be easily shown to be linear ink:
vk}k, and theT50 correction to the staggered magnetiz
tion from long-wavelength spin-wave fluctuation:
14441
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Dmq;E dk

vk
, ~16!

diverges logarithmically forb.3. This immediately indi-
cates that the spin-wave approach is not valid forb.3 at
zero temperature. The results obtained here are essen
the same as the spin-wave calculation for nearest-neigh
interactions only.5

For b53 the expansion we did above is no longer va
because the sum is divergent. We rely instead on the B
Einstein integral function as defined in Eq.~11! to calculate
vk and Dmq . After a little algebra we findvk;kAu ln(k)u
which leads to the correction of staggered magnetization
diverges asAu ln(L)u, where L is the system size. We thu
conclude that the quantum fluctuation destroys the Neel
der, and the spin-wave approach is not valid forb>3. Our
results also agree with the calculation presented by Sa
mento and Vieira,17 who showed the absence of a gap inS
51 antiferromagnetic chains for 1,b,3.

B. 1ËbË3

We now turn our attention to the case 1,b,3. As in b
53 case we are no longer able to expand the cos(nk) term in
f (k) and g(k) because the coefficient ofk2 is divergent so
we again take advantage of the mapping onto the Bo
Einstein integral function. In the long-wavelength regim
the relations given in Eq.~6! read

a52(
n51

`
1

~2n21!b
52~1222b!z~b!,

f ~k!54(
n51

`
1

~2n!b
@cos~2nk!21#

5222b@Re„F~b,22ik !…2z~b!#.2f~b!kb21,

g~k!52(
n51

`
1

~2n21!b
cos~2n21!k

52(
n51

` Fcos~nk!

nb
2

cos~2nk!

~2n!b G.a2
1

2
f~b!kb21,

~17!

where the functionf(b) is given by

f~b!5
p

G~b!

1

cos@p~b22!/2#
, ~18!

with G(b) being the gamma function. The long-waveleng
spin-wave spectrum is given by

vk.A3af~b!k(b21)/2, ~19!

which is sublinear, and theT50 correction to staggered
magnetization by
2-3
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Dmq.
1

2p FA a~b!

3f~b!

2

32b
p (32b)/2

1A f~b!

3a~b!

2

11b
p (11b)/22pG , ~20!

which is convergentfor b,3. These results show that th
system supports gapless excitations, the spectrum follow
sublinear power law at small momentumk, and that the Nee
order at zero temperature survives, for large enoughS, for
1,b,3. Our results agree with an earlier work presen
by Parreira, Bolina, and Perez7 who show the existence o
Neel order forb>3 and the presence of Neel order forb
,3 at zero temperature using rigorous proof. However,
excitation spectra were not studied in this work, nor was
critical value ofS for the stability for Neel order calculated
Another support for our results at zero temperature is offe
by the work of Aoki8 who studied the same model we a
studying for the caseb52 in one dimension~1D! and 2D
using spin-wave theory. In that work he found that the
exists Neel order at zero temperature in one dimension
b52, which is in agreement with our conclusion.

We may also estimate the critical size of the spin,Sc ,
above which the Neel order survives, by setting the corr
tion to the staggered magnetization equal to the spin s
Dmq5Sc . As b→3, Dmq is dominated by long-wavelengt
spin-wave fluctuations, and we obtain

Sc~b!.
1

2p FA a~b!

3f~b!

2

32b
p (32b)/2

1A f~b!

3a~b!

2

11b
p (11b)/22pG.

0.41

A32b
,

~21!

a result we expect to be asymptotically exact in the limitb
→3. On the other hand, we also find that the quantum c
rection gets suppressed very rapidly asb decreases from 3
for example, we findSc.1/2 for b52.63 andSc.1 for b
52.85, suggesting that the Neel order would survive for a
spin for b&2.6.

We also calculate the correction to staggered magne
tion at finite temperature. First, we discuss the case fob
.2. The thermal correction to staggered magnetization
given by

DmT~T!.
kBT

2pJSE dkF k12b

3f~b!
1

1

3aG , ~22!

which diverges asLb22 for b.2. For b52, it is a simple
exercise to show that the spectrum behaves likevk;Ak, and
the smallk contribution to the thermal correction of sta
gered magnetization diverges asAu ln(L)u. These results indi-
cate that thermal fluctuations destroy the Neel order fob
>2 at any finite temperature. They are consistent with
extension of the Mermin-Wagner theorem that Bru
advanced,9 which proves the absence of Neel order forb
14441
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>2. For classical antiferromagnets in 1D, it has been sho
using Monte Carlo simulation, that there is no magnetic
dering at finite temperature.10

For b,2 the correction to staggered magnetization
given by

DmT~T!.
kBT

pJSF p (22b)

3~22b!f~b!
1

p

3aG . ~23!

This convergentcorrection shows that the Neel order su
vives at finite temperature forb,2. The Neel transition
temperatureTN can also be estimated by applying the sa
rationale used to estimate the critical value ofS at zero tem-
perature. By using Eq.~23! we find

TN~S,b!5
pJS

kB
F p22b

3~22b!f~b!
1

p

3aG21

. ~24!

In the limit b→2, we find thatTN vanishes linearly:

TN.
3p2JS

kB
~22b!. ~25!

We see that increasing the range of interactions~or de-
creasingb) in the chains has effects that are similar to i
creasing the dimensionality of the systems. Forb>3 we find
the absence of Neel order at both zero and finite tempera
a genuine one-dimensional behavior. For 2<b,3 we have
finite Neel order at zero temperature which gets destro
at any finite temperature, similar to the 2D situatio
Finally, for b,2 the Neel order is stable at zero and
low-enough finite temperature, a behavior expected for
mensions above 2.

In contrast to the antiferromagnetic case we are study
here, the ferromagnetic models with long-range interacti
have been studied more extensively. Classical Heisen
model with long-range ferromagnetic interactions has
phase transition at finite temperature in one dimension w
the interactions decay slower than 1/r 2. There is no phase
transition at finite temperature when the interactions de
faster than 1/r 2.11 This result for the classical case in on
dimension is confirmed by Monte Carlo simulation.12 The
quantum Heisenberg model with long-range interactions
also been studied using the modified spin-wave theory.13,14 It
was shown that there exists a magnetic ordering in one
mension as long as the interactions decay slower than 1r 2.

C. bÏ1

In this section we consider the caseb<1. The reason we
separateb<1 case with the rest is that there are divergen
in the thermodynamic limit which require special care
their analysis. Physically, this is closely related to the f
that the ground-state energy grows faster than the sys
size ~i.e., it becomes ‘‘superextensive’’!, if the local energy
scaleJ is not rescaled according to the system size. For
reason we will not discuss the finite temperature~or thermo-
dynamic! properties of the system, as the definition of te
2-4
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perature becomes somewhat ambiguous; we will focus
stead on the ground-state properties of the system, whic
free of such ambiguity.

For the reasons mentioned we need to work explic
with a finite system sizeL, defined as the number of spin
per sublattice~so the total number of spins is 2L), and treat
k and L as two independent variables. For a start, the su
mation ina,

a52(
n51

L/2
1

~2n21!b
, ~26!

diverges forb<1 if we run the summation to infinity. Fo
large but finiteL, we have

a.H ln~L !, b51

L12b/~12b!, b,1.

Similarly,

f ~k!54(
n51

L/2
cos~2nk!21

~2n!b
, ~27!

f ~k!.H 22@ ln~k!1 ln~L !#, b51

2G~12b!cos@p~b21!/2#kb2122L12b/~12b!,

b,1

and

g~k!52(
n51

L/2
cos@~2n21!k#

~2n21!b
, ~28!

g~k!.H ln~k!, b51

G~12b!cos@p~b21!/2#kb21, b,1.

The spin-wave spectrum reads

Ek5JSvk5JSaAS 12
f ~k!

a D 2

2S g~k!

a D 2

, ~29!

E~k!.H 3JSln~L !@11b ln~k!#, b51

3JSL12b~12bkb21!, b,1,

which approachL-dependent constants ask→0. Here b
}1/ln(L) for b51 and b}Lb21 for b,1. Correction to
staggered magnetization at zero temperature can be c
lated easily using the relations derived above to yield

Dmq;
1

ln~L !
, b51

;
1

L12b
, b,1, ~30!

suggesting that the quantum fluctuation gets completely s
pressed as system size grows.

For b50 the calculation becomes particularly simple; t
relations fora, f (k), andg(k) in Eq. ~6! become
14441
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a5L,

f ~k!5(
d2

@eik•d21e2 ik•d222#52L~dk,021!,

g~k!5(
d1

eik•d15Ldk,0 . ~31!

The spin-wave spectrum forkÞ0 is given by

Ek5JSLA~112!253JSL, ~32!

which isk independent, and the correction to staggered ma
netization is given by

Dmq;(
k

1

vk
;

1

L
. ~33!

We will compare these with an exact solution for this spec
case in the following section.

D. bÄ0: Exact solution

The infinite range (b50) antiferromagnetic chain with
no frustration is given by the following Hamiltonian:

H5J(
i j

2L

~21! i 2 j 11Si•Sj , ~34!

which can be solved exactly in the following manner. W
introduce

SA5(
i PA

Si , SB5(
i PB

Si , ~35!

whereSA(SB) is the total spin operator for sublatticeA(B),
to rewrite the Hamiltonian in the following form:

H5JFSA•SB2~SA
21SB

2 !1S (
i PA

~Si !
21(

i PB
~Si !

2D G .
~36!

We define the total spin operatorStot5SA1SB to further
simplify the Hamiltonian given above to become

H5JF1

2
Stot

2 2
3

2
~SA

21SB
2 !13L/2G . ~37!

The Hamiltonian in Eq.~37! can be diagonalized in the tota
S basis of states given byu(SA ,SB);Stot&, whereSA(SB) and
Stot are the total spin quantum numbers in sublatticeA(B)
and in the system, respectively. Using this basis, the ene
can be easily obtained as

E5JF1

2
Stot~Stot11!2

3

2
@SA~SA11!1SB~SB11!#13L/2G .

~38!

To minimize the energy we must have all spins aligned
each sublattice and have a minimum ofStot . This means that
Stot50 andSA5SB5LS, whereS is the spin size, will mini-
mize the energy and give us the ground state. The mom
tum quantum number of the ground state is 0 (p) for even
2-5



av

um

e
ay
a

e

ob

s
ex

b

p
a

s
v
s

e
n

r
m

en

f

the
that

sily
o-
or

e

s
.

hat

s-
ue.

el
d
tion
y

ted
ge

r
nter
re
is

EDDY YUSUF, ANUVRAT JOSHI, AND KUN YANG PHYSICAL REVIEW B69, 144412 ~2004!
~odd! L. The lowest-energy excited state is obtained by h
ing Stot51 while still maintaining maximumSA and SB .
The energy gap is given by

DE5Eex2Egs5J. ~39!

This particular excited state has a momentum quantum n
ber that differs from the ground state byp, which corre-
sponds to momentumk50 in the spin-wave approach, du
to the doubling of the unit cell in that approach. We will s
more about this in the following section. To obtain excit
tions with generick, however, we must change either theSA
or SB quantum numbers. There exist two branches of deg
erate low-lying excitations, corresponding toSA5LS21 or
SB5LS21 andStot51, with excitation energy

DE5Eex2Egs5J~113LS!, ~40!

which grows linearly with system size and has nok depen-
dence. This result agrees with the spin-wave solution
tained earlier in the limitS→`, as expected.

IV. EXCITATIONS AT kÄ0 AND STATUS OF THE LIEB-
SCHULTZ-MATTIS THEOREM

The LSM theorem2 states that for half-integer spin chain
with lengthL and short-range interaction, there exists an
cited state whose momentum differs from the ground state
p, with energy that vanishes at least as fast as 1/L as L
→`.2 Recently the theorem has been extended to s
chains with power-law long-range interaction, and it w
found that the theorem remains valid forb.2.15,16The situ-
ation is unclear forb<2.

In this section we check if the LSM behavior still hold
for b<2, using the spin-wave method. As discussed abo
due to the doubling of the unit cell, the excitations who
momenta differ from the ground state by eitherp or 0 show
up as k50 excitation in the spin-wave approach. If on
blindly uses the linear spin-wave results, however, o
would always findEk5050. But this is an artifact of the
linear spin-wave approach which maps thek50 modes to
harmonic oscillatorswithout a restoring force. Thus in orde
to study the excitation that is relevant to the LSM theore
we must treat thek50 modes more carefully.

To do that, we start by rewriting the Hamiltonian as giv
in Eq. ~1! in the momentum space:

H5(
k

(
d1

J~d1!Sk
A
•S2k

B e2 ik•d122(
k

(
d2

@J~d2!Sk
A

•S2k
A e2 ik•d21J~d2!Sk

B
•S2k

B e2 ik•d2#, ~41!

where

Si
A/B5

1

AL
(

k
Sk

A/Be2 ik•xi ~42!

andA(B) denotes odd~even! sublattice. Instead of applying
the Holstein-Primakoff mapping for all terms inH, we sepa-
rate out thek50 term in H and apply Holstein-Primakof
mapping to thekÞ0 terms only. Since to linear order thek
50 term commutes with the other terms inH, they can be
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-

-

-

n-

-

-
y

in
s

e,
e

e

,

diagonalized independently. The spin-wave treatment for
kÞ0 terms gives the spectra obtained earlier, excepting
k must be nonzero. On the other hand, thek50 term

Hk505
1

L (
d1

J~d1!S (
i PA

Si D •S (
i PB

Si D
2

1

L (
d2

J~d2!F S (
i PA

Si D 2

1S (
i PA

Si D 2G
5

1

L (
d1

J~d1!SA•SB2
1

L (
d2

J~d2!~SA
21SB

2 ! ~43!

takes a form identical to the Hamiltonian forb50 which
was solved exactly in the preceding section. We can ea
solve this Hamiltonian to obtain the excitation energy at m
mentump measured from the ground-state momentum,
k50 for the doubled unit cell:

DE5
Ja

L
, ~44!

wherea depends on the power-law exponentb and is given
by Eq.~6!. Forb.1, a is convergent in the largeL limit and
is given by Eq.~14!. This means that the energy of th
excited-state vanishes as 1/L asL→`. Forb51, a diverges
as ln(L) as shown in Eq.~26! and the energy vanishes a
ln(L)/L. Forb,1, a diverges asL12b as shown again in Eq
~26! and the excitation energy vanishes asL2b. We thus find
that the LSM behavior holds for 1,b<2, despite the ab-
sence of a proof for this range ofb. On the other hand, the
LSM theorem is ‘‘violated’’ forb<1. The ‘‘violation’’ of the
LSM theorem is also observed in spin-1

2 systems with finite-
range interactions in higher dimensions. It was shown t
the excitation energy is bounded by ln~L!/L ~Ref. 18! rather
than by 1/L as found in one dimension.

V. SUMMARY

We have studied antiferromagnetic chains with unfru
trated long-range interactions using the spin-wave techniq
We find that this approach is valid forb,3 at zero tempera-
ture for sufficiently large size of spin, andb,2 for suffi-
ciently low finite temperature, due to the stability of Ne
order. Within the range of validity of this approach we fin
that the system has a gapless excitation and the excita
spectrum follows a nontrivialk dependence. We also stud
how the excitation gap closes in this system in the limitL
→`, and find a behavior that is in contrast to that predic
by Lieb-Schultz-Mattis theorem for chains with short-ran
interactions, whenb<1.
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