PHYSICAL REVIEW B 69, 144412 (2004

Spin waves in antiferromagnetic spin chains with long-range interactions
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We study antiferromagnetic spin chains with unfrustrated long-range interactions that decay as power laws
with exponentB, using the spin-wave approximation. We find for sufficiently large $pihat the Neel order
is stable aff=0 for 8<3, and survives up to a finite Neel temperature for 2, validating the spin-wave
approach in these regimes. We estimate the critical valuesafd T for the Neel order to be stable. The
spin-wave spectra are found to be gapless but have nonlinear momentum dependence at long wavelength,
which is responsible for the suppression of quantum and thermal fluctuations and stabilizing the Neel state. We
also show that forB<1 and for a large but finite-size system sizgethe excitation gap of the system
approaches zero slower than?®, a behavior that is in contrast to the Lieb-Schultz-Mattis theorem.
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[. INTRODUCTION sitting on opposite sublattices have antiferromagnetic inter-
actions and those sitting on the same sublattice have ferro-

Antiferromagnetid AF) spin chains have attracted consid- magnetic interactions, thus there is no frustration. Our moti-

erable interest of physicists in the last two decades, and cowation for the study comes from the following

tinue to be a subject of active research at present. There atensiderations. First, such power-law long-range interactions
several reasons why they are of such strong interest. Firsgan, in principle, be realized in experimental systems; one

guantum antiferromagnetic spin chains are important eXexample of which being the Ruderman-Kittel-Kasuya-

amples of a larger class of strongly correlated systemsyosidg interaction mediated by conduction electrons that
whose ground state and low-energy behavior differ fromyecay as power laws, with an exponent that depends on the
their higher-dimensional counterparts in qualitative ways. Inyetails of the conduction-electron Fermi surface. Second, as
the case of AF spin chains, quantum fluctuations destroy thee \il show, such long-range interactions tend to suppress
Neel order in the ground state no matter how big the size OEvuantum as well as thermal fluctuations, thus increasing the

the spin is, while in hlghe_r d|n_1en3|ons b Order.'srange of interaction has an effect that is somewhat similar to
stable regardless of spin size, in the absence of frustration

Second, the spin chains are of interest to physicists becau%%creasmg Fhe dlmenglor}allty of the system. On the other
they are ideal playgrounds for various types of theoretica and, the d|meq5|onallty Is discrete while the power-law ex
approaches. A prominent example here is the work Opone'n.t for the !nteractlon can be tuned cont!nuous',ly., thus
Haldane! who mapped the AF spin chains to quantum non__prowdlng a tuning parameter for the fluctuations; it is qf
linear o models and predicted that the integer chains have Hltérest to study how the system behaves under such tuning.
gap in their excitation spectra while no gap exists for half- _Anticipating the stability of the Neel order in the presence
integer chains, based on the absence or presence of a topy-Such long-range interactions, we study the models using
logical term in the mapping. This fundamental difference isthe spin-wave method. We obtain the following results.
consistent with, and to a certain degree implied in, the Lieb- (i) We show that the Neel order is stable at zero tempera-
Schultz-Mattis (LSM) theoren? which states that for ture for 3<3 and sufficiently larges justifying the usage of
Heisenberg AF chains with lengthand periodic condition, spin-wave method in this case. We also estimate the critical
for half-integer spins, there exists an excited state with ensize of the spin for the Neel order to be stable, as a function
ergy separated from the ground state that is of ordey a6 of g.
such theorem exists for integer chains however. (i) In this case the spin-wave excitation spectra take the
The studies of AF spin chains, and the results mentioneform w,~k?” in the long wavelength, withy<1 and varying
above, are restricted to models with short-range interactiongontinuously withs.
In this work we study AF chains with interactions that decay (iii) Extending the spin-wave calculation to finite tem-

as power laws and without frustration: perature, we show that the Neel transition temperatyyés
zero for B=2 while finite for 5<2. We determinél’y as a
H=Z (_1)i71+1\]ij3.s' (1) function of Sand 3.
i

(iv) For a finite-size system with size and periodic
boundary condition, angg<1, we find that the lowest exci-
tation energy approaches zero slower thdndgL increases
;=i | 14, ) for both half-integer and integer spins, thus “violating” the_

LSM theorem. Of course the LSM theorem applies to spin
whereJ>0 determines the overall energy scale of the syschains with short-range interaction only; here we have pro-
tem andp is the power-law exponent that controls the decayvided explicit examples of how it is invalidated by the pres-
of the interaction. The factor{1)'~1** ensures that spins ence of long-range interaction.

with
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The remainder of the paper is organized as follows. In
Sec. Il we discuss the application of spin-wave technique to

H=const-JSY, {[a—f(k)](ala,+bby)
this model. In Secs. Il and IV we present and discuss the K

significance of our results. In Sec. V we summarize our work +g(k)(ajbf +agb)t, (5)
and discuss the implications of our results.
where
Il. THE SPIN-WAVE APPROACH L/2

1
a=21lm >,

We consider a Heisenberg antiferromagnetic chain with Lo =1 (2n—1)8’

unfrustrated power-law long-range interaction with the

Hamiltonian given by Eq(1). The central issue we address Li2
in this work is the stability of Neel state at zero or low f(k)=4 lim 2
temperature. It is thus natural to use the spin-wave method L n=1 (2n)#

based on the Holstein-Primakoff transformafighat maps

spin operators to boson operators, and check its self- L2

consistency. The procedure is rather standase; neverthe- g(k)=2 lim 2 ———co92n—-1)k; (6)

less include the details here for the sake of completeness and Loe f=1 (2n—1)F

establish notation for later treatment. We divide the chain . _ . I

into two sublattices and represent the spin operators in ternf$>'"Y the_ Bogol!ubov transform_atlon_, the Hamiltoni¢s)

two types of bosons bosons which live or sublattice and can be diagonalized and be written in terms of free boson
b bosons which live oiB sublattice. Up to order & where operatorscy anddy:

Sis the size of spin, the Holstein-Primakoff transformation

[cog2nk)—1],

for the spin operators can be written as the following: H:const—l—JS; w(cle+dldy), (7)
S=S-a'a, S =2Sa[1-a'a/(29)]"*=2S4; where
i e odd, o= [a—f(K)1?—[g(k)]2 (8)
S=-S+b'h, S = \/2—S[1—bTb/(28)]1’2b: 25k The correction to staggered magnetization is given by
i e even. 3 Am= % ; (afa)=Amg+Amy(T), 9

Using this transformation, the Hamiltonian in Ed) can be
separated into three terms as follows:

H=Hoddevent Hoddoddt Hepeneven:

whereH yqqepensHoddodd: @NdHogg.even are defined as

L
- 2 T T
Hodd-even_z ~]2i—1,2j[_S +S(ay_qa-1+ szsz
1)
+ay 1by+ak_,bh)]
2i—1M2j 2i—1%2j/ 1y

L
_ 2 t
Hoddodd™ _2, Joi—1g-1[ =S+ S(ay_1a5 1
i<i

T t t
+apj_ 181+ 1351t Az _132-1)],

L
Heveneven= — ZJ Joi 5l — S+ S(bj;by; + b;jsz + b2ib]2Lj

+bhby)]. 4

We diagonalize this quadratic Hamiltonian by going to mo-

whereAm, and Am¢(T), which represent the quantum and
thermal fluctuation corrections, respectively, are given by

A _f dk 1[a— (k)
") 273 w Y
dk| a—f(k) 1
AmT(T):fﬂ o |oBReT_ 1 (10)

We will visit these equations frequently when we discuss the
validity of the spin-wave approach later in the text.

It is clear that the correction to magnetization is domi-
nated by the smak behavior of the spin-wave spectrum. We
thus need to obtain the sm&lbehavior of the expressions
given in Eq.(6). To do that we express them in terms of the
Bose-Einstein integral functi8rdefined as
a—1

—2v —3v

F ! f d X = e’ + € +e +
(CY,U) F(a) XeX+U_1_ 1a 2a 3a
* e
=2 , (11)
n=1 n¢%

mentum space and then diagonalizing by a Bogoliubov transand rewrite the cosk) term in f(k) and g(k) as the

formation:

following:
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i cognk) _R{E elnk

n n# n#

dk

(I)k'

=RdF(B,—ik)]. (12 Amg~ (16)

The analytical properties df(a,v) nearv=0 are known diverges logarithmically for3>3. This immediately indi-

and are given by cates that the spin-wave approach is not valid gor3 at
zero temperature. The results obtained here are essentially
w1 ” {(a—n) N the same as the spin-wave calculation for nearest-neighbor
Flaw)=T(1-a)v +HZO o (Tt (aed), interactions only.

For =3 the expansion we did above is no longer valid
(—p)et a-1 because the sum is divergent. We rely instead on the Bose-
Fla,v)= —{ > ——In(v)} Einstein integral function as defined in Ed1) to calculate
(a=Dt{F=1r w, and Amg. After a little algebra we findw,~k/|In(K)|
which leads to the correction of staggered magnetization that

a—n
d | )(—v)“, (ae?), (13) diverges asy|In(L)|, whereL is the system size. We thus

nfa-1 M conclude that the quantum fluctuation destroys the Neel or-

where{(s) is the zeta function. We will use these propertiesder, and the spin-wave approach is not valid ¢ 3. Our
in our later treatment. results also agree with the calculation presented by Sacra-

mento and Vieird who showed the absence of a gapSn

lll. SPIN-WAVE SPECTRA AND CORRECTIONS =1 antiferromagnetic chains for<5<3.
TO STAGGERED MAGNETIZATION
B. 1<B<3

In this section we analyze E¢F) for different values of3
to obtain the spin-wave spectra and calculate the correction We now turn our attention to the casecB<3. As in 8
to staggered magnetization, to determine the validity of the=3 case we are no longer able to expand therdgserm in
spin-wave approach. f(k) andg(k) because the coefficient & is divergent so
we again take advantage of the mapping onto the Bose-
A. B=3 Einstein integral function. In the long-wavelength regime,

. o _ the relations given in Eq6) read
Equations(12) and (13) are the main ingredients to ana-

lyze Eq.(6) which can be summed up in closed forms. Up to

leading order irk the relations in Eq(6) for >3 read a=2§ ;=2(1—27ﬂ)§(,3),
) n=1 (2n—1)#
1
_  _5(1_9o8
“« 2:121 (2n—1)# 2imz e, f(k) 4% ! [cog2nk)—1]
= cog2nk)—
. ( n=1 (2n)#
f(k)=4n§::l (zn)ﬁ[cos(an)—l] =2 P[Re(F(B,—2ik))— {(B)]=— ¢p(B)K 1,
=22 P[Re(F(B,~2ik))— {(B)]=ck?, - 1
g(k)=2>, ————cog2n—1)k
. L n=1 (2n—1)#
9=22, (2n_1)p OX2N LK 5 |cognk) cog2nk) 1 .
=2> i 5 =a—§¢(ﬂ)k’6 L
- i cognk) cog2nk)| s elen (2n)
AN (2n)# Terele a8 0

wherec andc’ are positive constants. The same results canvhere the functions(g) is given by
also be obtained by expanding the augterm to ordeik? in

f(k): . _ . "
cognk)—1 PR= I'(B) co§ m(B—2)/2]’
; o _kzz % (15 with I'(B) being the gamma function. The long-wavelength

spin-wave spectrum is given by
in which the sum converges as long/s 3; together with a
similar expansion forg(k) one reproduces Eq.14). The w=\3ap(B)kFE~ D2 (19
spin-wave spectrum can be easily shown to be linedt in
w>k, and theT=0 correction to the staggered magnetiza-which is sublinear and theT=0 correction to staggered
tion from long-wavelength spin-wave fluctuation: magnetization by
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1 a(B) 2 =2. For classical antiferromagnets in 1D, it has been shown,
Amg=5— 3(;‘)(,6’)@7(37@/2 using Monte Carlo simulation, that there is no magnetic or-
dering at finite temperaturg.

2 For B<2 the correction to staggered magnetization is

AP —— AR, (200 given by

3a(pB)1+pB
ich i kgT w(2=P) T
which is convergentfor 8<3. These results show that the Ame(T)= B 29

system supports gapless excitations, the spectrum follows a mJS|3(2—B)p(B) * 3a|’

sublinear power law at small momentmand that the Neel

order at zero temperature survives, for large eno8gfor ~ This convergentcorrection shows that the Neel order sur-

1<8<3. Our results agree with an earlier work presentedvives at finite temperature fo8<<2. The Neel transition

by Parreira, Bolina, and Perewho show the existence of temperaturely can also be estimated by applying the same

Neel order for3=3 and the presence of Neel order f8r rationale used to estimate the critical valueSadt zero tem-

<3 at zero temperature using rigorous proof. However, thgerature. By using Eq23) we find

excitation spectra were not studied in this work, nor was the

critical value ofS for the stability for Neel order calculated. wJS w? P m ]t

Another support for our results at zero temperature is offered Tn(SB) =~ 32-8)4(p) ta,l o @4

by the work of Aokf who studied the same model we are .

studying for the cas@=2 in one dimensior(1D) and 2D |n the limit 3—2, we find thatT, vanishes linearly:

using spin-wave theory. In that work he found that there

exists Neel order at zero temperature in one dimension for 3.723S

B=2, which is in agreement with our conclusion. Ty= (2—B). (25)
We may also estimate the critical size of the s, Ke

above which the Neel order survives, by setting the correc-

tion to the staggered magnetization equal to the spin size: We see that increasing the range of interactiGosde-

Amy=S;. As §—3, Am, is dominated by long-wavelength creasingB) in the chains has effects that are similar to in-

spin-wave fluctuations, and we obtain creasing the dimensionality of the systems. Ber3 we find
the absence of Neel order at both zero and finite temperature,
1 a(B) 2 a genuine one-dimensional behavior. FGEE_,B<3 we have
S(B)==— T w3 AR finite Neel order at zero temperature which gets destroyed
2m 34(B)3-p at any finite temperature, similar to the 2D situation.
5(B) 2 0.41 Finally, for B<2 the Neel order is stable at zero and at
AL (S )l R P , low-enough finite temperature, a behavior expected for di-
3a(B)1+p V3-8 mensions above 2.
1) In contrast to the antiferromagnetic case we are studying

here, the ferromagnetic models with long-range interactions
a result we expect to be asymptotically exact in the ligit have been studied more extensively. C_Iassica! Heisenberg
—3. On the other hand, we also find that the quantum corModel with long-range ferromagnetic interactions has a
rection gets suppressed very rapidly @slecreases from 3; Phase transition at finite temperature in one dimension when
for example, we finds,~1/2 for =2.63 andS,~1 for g the interactions decay slower tharr21/There is no phase
=2.85, suggesting that the Neel order would survive for anyiransition at flnlltle temperature when the interactions decay
spin for B<2.6. faster t.hanllrlz. This result for the classical case in one

We also calculate the correction to staggered magnetiz4limension is confirmed by Monte Carlo simulatiSnThe

tion at finite temperature. First, we discuss the casegor guantum Heisenberg model with long-range interactions has

>2. The thermal correction to staggered magnetization /SO been studied using the modified spin-wave th&’%’lt _
given by was shown that there exists a magnetic ordering in one di-

mension as long as the interactions decay slower thih 1/

: (22) C. B<1

Amy(T)= BT J dk K +—
MmN =5738) M358 " 3a
In this section we consider the cg8e<1. The reason we

which diverges as#~2 for B>2. For =2, itis a simple  separatgd<1 case with the rest is that there are divergences
exercise to show that the spectrum behavesdike \k, and  in the thermodynamic limit which require special care in
the smallk contribution to the thermal correction of stag- their analysis. Physically, this is closely related to the fact
gered magnetization diverges ébn(L)l. These results indi- that the ground-state energy grows faster than the system
cate that thermal fluctuations destroy the Neel orderdor size(i.e., it becomes “superextensivg”if the local energy

=2 at any finite temperature. They are consistent with arscaleJ is not rescaled according to the system size. For this
extension of the Mermin-Wagner theorem that Brunoreason we will not discuss the finite temperat(oethermo-
advanced, which proves the absence of Neel order #or dynamig properties of the system, as the definition of tem-
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perature becomes somewhat ambiguous; we will focus in- a=L,
stead on the ground-state properties of the system, which is
free of such ambiguity.

For the reasons mentioned we need to work explicitly
with a finite system sizé, defined as the number of spins
per sublatticgso the total number of spins id.2, and treat

f(k)=% (e %2+e K %_2]=2 (8, 1),

k andL as two independent variables. For a start, the sum-

mation in«,

L/2
1

P& Gna 0

diverges forB=<1 if we run the summation to infinity. For

large but finiteL, we have

In(L), B=1
TlLs1-p), B<1.

Similarly,
L2 cog2nk)—1
f(k)= = - 2
(=42, onf (27)
—2[In(k)+In(L)], B=1
f(k)={ 2I'(1-p)cog m(B—1)/2]kP~1=2L1"Fl(1-p),
B<1
and
L2 cog(2n—1)k]
K=2> —— — = 2
g=22 o Df (28
In(k), Bg=1
g(k)z[I‘(l—ﬂ)cos{w(ﬂ—l)/Z]kﬁ1, B<1.

The spin-wave spectrum reads

2 2
Ek=Jka=JSa\/(l—m> —(?) , (29

o
3JSIN(L)[1+bIn(k)], B=1
O=13551-81-bKE"Y), <1,

which approachL-dependent constants &—0. Here b

«1/In(L) for B=1 and bxLA" for B<1. Correction to

g(k)=2 e =L5,. (3D)
o
The spin-wave spectrum fde+ 0 is given by

E,=JSLJ(14+2)?=3JSL, (32

which isk independentand the correction to staggered mag-
netization is given by

1 1

Amq~§k‘, oL (33)

We will compare these with an exact solution for this special
case in the following section.

D. B=0: Exact solution

The infinite range B=0) antiferromagnetic chain with
no frustration is given by the following Hamiltonian:

2L
H=J> (-1)71*'s g, (39
ij

which can be solved exactly in the following manner. We
introduce

sfé S, ssng S, (39)

whereS,(Sg) is the total spin operator for sublattieg B),
to rewrite the Hamiltonian in the following form:

H=J

SaSe— (SA+SH) +

%(sw% (3)2”.
(36)

We define the total spin operat@,,;=S,+Sg to further
simplify the Hamiltonian given above to become

. (37)

H =JB§M— g(s§+ S3)+3L/2

The Hamiltonian in Eq(37) can be diagonalized in the total-

staggered magnetization at zero temperature can be calcy-Pasis of states given HYS ,Sg); Sior), WhereSa(Sg) and

lated easily using the relations derived above to yield

Amq’\*m, B=1

G A<l (30)

Siot are the total spin quantum numbers in sublaté¢®)
and in the system, respectively. Using this basis, the energy
can be easily obtained as

1 3
E:\J[Eslm(smpL 1)—§[SA(SA+ 1)+ Sg(Sg+ 1)]+3L/2}
(38)
To minimize the energy we must have all spins aligned in

suggesting that the quantum fluctuation gets completely supeach sublattice and have a minimumSyf;. This means that

pressed as system size grows.

Sioi=0 andS,=Sg=LS, whereSis the spin size, will mini-

For 8=0 the calculation becomes particularly simple; themize the energy and give us the ground state. The momen-

relations fora, f(k), andg(k) in Eq. (6) become

tum quantum number of the ground state is#) for even
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(odd L. The lowest-energy excited state is obtained by havdiagonalized independently. The spin-wave treatment for the

ing S;or=1 while still maintaining maximumS, and Sg. k#0 terms gives the spectra obtained earlier, excepting that
The energy gap is given by k must be nonzero. On the other hand, k0 term
AE=Ecy—Egs=1J. (39

1
This particular excited state has a momentum quantum nurﬂ’-| k=0~ ;1 J(51)< i% S) '(;B S
ber that differs from the ground state by, which corre-

sponds to momenturk=0 in the spin-wave approach, due 1 2 2

to the doubling of the unit cell in that approach. We will say L zﬁz: 3(52)[(i§A S|+ ng S‘) }

more about this in the following section. To obtain excita-

tions with generik, however, we must change either tBg 1 1

or Sg quantum numbers. There exist two branches of degen-  ~ | ; J(61)Sa- S5~ L ; J(3)(Sa+Sp) (43

erate low-lying excitations, corresponding$g=LS—1 or ! :

Sg=LS—1 andS,,;=1, with excitation energy takes a form identical to the Hamiltonian f@=0 which

was solved exactly in the preceding section. We can easily

AE=Eegx—Egs=J(1+3LS), (40 solve this Hamiltonian to obtain the excitation energy at mo-

which grows linearly with system size and haskdepen- mentums measured from the ground-state momentum, or
dence. This result agrees with the spin-wave solution obk=0 for the doubled unit cell:

tained earlier in the limiS—«, as expected. 3
o
AE=—, (44)
IV. EXCITATIONS AT k=0 AND STATUS OF THE LIEB- L

SCHULTZ-MATTIS THEOREM wherea depends on the power-law exponghtaind is given

The LSM theorerfistates that for half-integer spin chains by Ed.(6). For 8>1, « is convergent in the large limit and
with lengthL and short-range interaction, there exists an exis given by Eq.(14). This means that the energy of the
cited state whose momentum differs from the ground state b§xcited-state vanishes ad ldsL —c. For =1, a diverges
, with energy that vanishes at least as fast dsda¢L  as In() as shown in Eq(26) and the energy vanishes as
—.».2 Recently the theorem has been extended to spifn(L)/L. ForB<1, « diverges as.'~# as shown again in Eq.
chains with power-law long-range interaction, and it was(26) and the excitation energy vanisheslag’. We thus find
found that the theorem remains valid f6r>2.2>'The situ-  that the LSM behavior holds for15<2, despite the ab-
ation is unclear foB<2. sence of a proof for this range @f. On the other hand, the

In this section we check if the LSM behavior still holds LSM theorem is “violated” forg<1. The *“violation” of the
for B<2, using the spin-wave method. As discussed above-SM theorem is also observed in spirsystems with finite-
due to the doubling of the unit cell, the excitations whoserange interactions in higher dimensions. It was shown that
momenta differ from the ground state by eitheior 0 show  the excitation energy is bounded by(WL (Ref. 18 rather
up ask=0 excitation in the spin-wave approach. If one than by 1L as found in one dimension.
blindly uses the linear spin-wave results, however, one
would always findE,_,=0. But this is an artifact of the V. SUMMARY
linear spin-wave approach which maps tke 0 modes to
harmonic oscillatorsvithout a restoring force. Thus in order
to study the excitation that is relevant to the LSM theorem
we must treat th&=0 modes more carefully.

To do that, we start by rewriting the Hamiltonian as given
in Eq. (1) in the momentum space:

We have studied antiferromagnetic chains with unfrus-
trated long-range interactions using the spin-wave technique.
We find that this approach is valid f@#<3 at zero tempera-
ture for sufficiently large size of spin, angl<2 for suffi-
ciently low finite temperature, due to the stability of Neel
order. Within the range of validity of this approach we find
that the system has a gapless excitation and the excitation

H=2 > J(6)S-Se 0 a-2> > [U(5)S spectrum follows a nontriviak dependence. We also study
koo k% how the excitation gap closes in this system in the limit
e k215,88 ek %], (41  —, and find a behavior that is in contrast to that predicted
by Lieb-Schultz-Mattis theorem for chains with short-range
where interactions, wheB<1.
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