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Nonlocal electron-phonon coupling: Consequences for the nature of polaron states
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We develop a variational approach to an extended Holstein model, comprising both local and nonlocal
electron-phonon coupling. The approach is based on the minimization of a Bogoliubov bound to the Helmholtz
free energy. The ambivalent character of nonlocal coupling, which both promotes and hinders transport, is
clearly observed. Furthermore, a salient feature of our results is that the local and nonlocal couplings can
compensate each other, leading to a reduction of polaronic effects and a quasi-free character of the excitation.
Our findings have implications for organic crystals ofp-conjugated molecules, where this electron-phonon
coupling mechanism plays an important role.
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I. INTRODUCTION

Coupled electron-phonon or exciton-phonon~hereafter
e-ph! systems have long been an active research are
condensed-matter physics. A significant portion of the
search effort has been dedicated to the study of a si
electron or exciton interacting with the lattice vibratio
through a short-range, nonpolar potential that is linear in
lattice displacements and accounts for the dependence o
electronic or excitonic on-site energies on the lattice degr
of freedom. This physical situation, termed local linear e-
coupling, is traditionally described by what became kno
as the Holstein Hamiltonian, after Holstein’s groun
breaking work on this Hamiltonian.1 The Lang-Firsov uni-
tary transformation of the displacement-operator type2–4 was
another theoretical milestone. Later, the field received furt
developments in the theoretical analysis, including those
computational nature.5–7

In a recent work,8 we showed that in organic molecula
crystals of polyacenes~naphthalene, anthracene, and t
racene! there is a strong coupling of optical phonons, es
cially those of rotational provenance~librons!, to the elec-
tronic transfer integrals~nonlocal e-ph coupling!, dominating
the local-coupling mechanism. Nonlocal~Peierls’ type! cou-
pling is also expected to play an important role in the crys
of other p-conjugated molecules. In particular, nonloc
exciton-phonon coupling appears to be important for the
scription of excimers in, e.g., pyrene anda-perylene.9–11

Perhaps the best known model dealing with nonlocal c
pling is the Su-Schrieffer-Heeger~SSH! model,12,13 intro-
duced to describe solitons and polarons in the quasi-o
dimensional conductive polymer trans-polyacetylene.
However, in its original form, the model leans on a classi
treatment of the lattice dynamics, which is allowed only
the case when a typical electronic transfer integral is m
smaller than a typical phonon energy~antiadiabatic limit!.
There are a few accounts of a quantum-mechanical treatm
of the lattice together with nonlocal e-ph couplin
mechanism.14–18In our previous work,8,19we generalized the
Lang-Firsov transformation to account for both local a
nonlocal e-ph coupling. We showed that, after some appr
mations, a rather simple expression can be obtained for
0163-1829/2004/69~14!/144302~13!/$22.50 69 1443
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temperature-dependent polaron transfer integrals, clo
analogous to the equivalent expression for the Holst
Hamiltonian. An additional term appears, however, which
related to the promotion of transport by nonlocal e-ph co
pling.

In this previous work,8,19 we assumed that a full nonloca
transformation should be performed for an approximate
coupling of polaronic and phononic degrees of freedom.
other words, we assumed a full ‘‘dressing’’ of the electron
a phonon cloud forming a polaron. In the present work,
go beyond that assumption. Our approach utilizes the met
of temperature-dependent, variationally optimized canon
transformations.20 The variational principle used is base
upon the Bogoliubov bound to the Helmholtz free energy
the e-ph system under consideration. For local coupling
similar approach was followed by Yarkony and Silbey21 and
it is in this sense that our treatment constitutes a genera
tion of their work. A variational treatment of combined loc
and nonlocal coupling performed by Zhaoet al.22 makes use
of Toyozawa’s Ansatz states, commonly employed in loc
coupling theory.23–25However, the latter variational analys
is limited to the ground-state polaron structure, whereas
treatment also covers the regime of finite temperatures.

The outline of the paper is as follows. In Sec. II we intr
duce the Hamiltonian of our coupled e-ph system and
canonical transformation to be used throughout. In Sec.
we first give a short exposition of the variational princip
employed, then demonstrate its application to the coup
e-ph system, and, finally, specialize to a one-dimensio
model with dispersionless~Einstein! phonons. Section IV
provides the numerical results obtained for this model s
tem. We discuss the zero- and finite-temperature results
the optimal dressing parameter and present phase diag
for the parameter regions of strong and weak dressing. P
sible implications of our work to optical and transport pro
erties are briefly touched upon in Sec. V. Finally, the ma
conclusions are summarized in Sec. VI. Some cumbers
derivations are relegated to the Appendices.

II. MODEL

The system under study consists of an excess elec
~hole, exciton! interacting with harmonic lattice vibration
©2004 The American Physical Society02-1
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STOJANOVIĆ, BOBBERT, AND MICHELS PHYSICAL REVIEW B69, 144302 ~2004!
~nonpolar optical phonons!. Both local and nonlocal e-ph
coupling are taken into account, within the framework of
extended Holstein Hamiltonian, encompassing an electro
part (He), a phonon part (Hph), and the interaction~e-ph!
part (He-ph):

H5He1Hph1He-ph . ~1!

The respective forms of the three read (\51 in what fol-
lows!

He5(
m,n

«mnam
† an , ~2!

Hph5(
q

vqS bq
†bq1

1

2D , ~3!

He-ph5 (
q,m,n

vq gmn
q ~bq1b2q

† !am
† an , ~4!

whereinam
† andbq

† create an electron in the Wannier state
site m ~positionRm) and a phonon with wave vectorq and
frequencyvq , respectively.«mn is a compact notation for the
electronic on-site energies («mm[«) and transfer integrals
(«mn ,mÞn). Like in our previous work8,19 we assume the
form

gmn
q 5

gmn

2AN
~e2ıq•Rm1e2ıq•Rn! ~5!

for the q-dependent e-ph coupling constants, wheregmn de-
pends only onuRm2Rnu ~abbreviated in the following as
um2nu), and whereN is the number of sites. This form
obeys the property (gmn

q )* 5gnm
2q required for the Hermiticity

of He-ph and satisfies the translational symmetry. In the c
m5n one recoversgmm

q 5ge2ıq•Rm/AN, the usual choice for
the q-dependent local-coupling constants.

In order to account for both local and nonlocal e-ph co
pling, we utilize a unitary transformationH→H̃5eSHe2S

of the initial Hamiltonian, the generator of which is given b

S5 (
m,n,q

Amn
q ~bq

†2b2q!am
† an . ~6!

Being also of the displacement-operator type,20 it represents
an obvious nonlocal generalization of the Lang-Firsov
nonical transformation. The transformation parameters h
to meet the same conditions as theq-dependent e-ph cou
pling constants, in order to satisfy the anti-Hermiticity ofS
(S†52S) and translational invariance. As can straightfo
wardly be demonstrated, the latter property guarantees
invariance of the total crystal momentum, defined as

P5(
k

kak
†ak1(

q
qbq

†bq , ~7!

i.e., the validity of the relationeSPe2S5P. Our particular
choice of the transformation parameters readsAmn

q 5lgmn
q ,

whereinl is the as yet undetermined~implicitly temperature
dependent! variational parameter, representing a measure
14430
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the phonon dressing of the excitation. The generator of
transformation can be recast in the form

S5(
m,n

Cmnam
† an , ~8!

whereCmn5Cmn($bq
† ;bq%) stands for the operator

Cmn5(
q

Amn
q ~bq

†2b2q!5l(
q

gmn
q ~bq

†2b2q!. ~9!

Once transformed, the electronic and phononic opera
read, respectively,8,19

eSame2S5(
n

~e2C!mnan , ~10!

eSbqe
2S5bq1(

m,n
@~eCbqe

2C!mn2bqdmn#am
† an . ~11!

Leaving out the terms describing two-particle intera
tions, which is valid for the low electron densities we a
interested in, the transformed HamiltonianH̃ acquires the
form

H̃5(
m,n

ẽmnam
† an1(

q
vqS bq

†bq1
1

2D
1 (

m,n,q
vq~ b̃q

†g̃q1g̃qb̃2q1b̃q
†b̃q2bq

†bq!mnam
† an ,

~12!

wherein «̃mn5(eC«e2C)mn , g̃mn
q 5(eCgqe2C)mn , b̃mn

q

5(eCbqe2C)mn , and (bq
†bq)mn is a shorthand notation fo

bq
†bqdmn . For further use, it is convenient to rewrite th

Hamiltonian as

H̃5(
m,n

Ṽmnam
† an1(

q
vqS bq

†bq1
1

2D , ~13!

whereṼmn5Ṽmn($bq
† ;bq%) stands for

Ṽmn5 «̃mn1(
q

vq~ b̃q
†g̃q1g̃qb̃2q1b̃q

†b̃q2bq
†bq!mn .

~14!

The presence of phonon operators inṼmn necessitates the us
of the transformation~6! in the sense of a temperature
dependent optimal transformation.20

We point to the following difference with the bare loca
coupling case: while the Lang-Firsov transformation, wh
applied to the Holstein Hamiltonian, introduces only a co
stant shift of the electronic on-site energies~usually referred
to as polaronic shift, or polaron binding energy!, the trans-
formation ~6! brings about the presence of a remnant of
e-ph coupling in the corresponding term ofH̃. In other
words, in the transformed on-site term, the electronic a
phononic degrees of freedom are not completely decoup
2-2
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III. FREE-ENERGY MINIMIZATION

A. Variational principle

The Helmholtz-free-energy~henceforth free energy! of a
system with a HamiltonianH that acts upon states in a sep
rable Hilbert spaceH is defined by (b[1/kBT)

F52b21ln Z52b21ln@Tr~e2bH!#. ~15!

In view of the well-known relation between the free ener
and the ground-state energy of the system~denoted byE0),
given by

lim
T→0

F~T!5E0 , ~16!

the free-energy minimization is a natural finite-temperat
generalization of the ground-state variational principle
quantum mechanics~used by Zhaoet al.22 in the study of
zero-temperature polaron structure!. Owing to the Jensen
convexity of the functionf (x)5e2bx, the following theorem
holds true~Bogoliubov’s inequality!:26,27

For an arbitrary splitting of the HamiltonianH5H0
1(H2H0), under the condition thate2bH ande2bH0 have
finite traces forb.0, an upper bound to the free energyF is
given by

F<F01^H2H0&H0
, ~17!

where F052b21ln@Tr(e2bH0)# is the free energy corre
sponding to the Hamiltonian H0 and ^H2H0&H0

5Tr@e2bH0(H2H0)#/Tr(e2bH0) stands for the thermal av
erage ofH2H0 with respect toH0.

The theorem has proved useful in the treatment of m
problems in condensed-matter theory and statist
physics.26,27 As regards its use in the present paper, the
lowing two properties are of major importance.

~a! If the Hamiltonian H5H01V is transformed by
means of a unitary transformationU5eS, so that H̃

5eSHe2S5H̃01Ṽ, the above inequality adopts the form

F<2b21ln Tr~e2bH̃0!1^Ṽ&H̃0
. ~18!

~b! If the Hilbert spaceH of the system is partitioned into
the mutually orthogonal subspaces, each invariant to the
tary transformation employed, then the preceding re
holds for each of these subspaces separately.

B. Application to the coupled e-ph system

In order to make practical use of the Bogoliubov inequ
ity, one has to have the possibility to perform an independ
averaging over the electronic and phononic degrees of f
dom. To that end, we make use of the splitting

H̃5H̃01Ṽ ~19!

of our transformed Hamiltonian, with

H̃05(
m,n

^Ṽmn&pham
† an1(

q
vqS bq

†bq1
1

2D , ~20!
14430
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Ṽ5(
m,n

~Ṽmn2^Ṽmn&ph!am
† an , ~21!

where^•••&ph denotes a thermal phonon average. The n
interacting HamiltonianH̃0 can be rewritten as

H̃05(
k

e~k!ak
†ak1(

q
vqS bq

†bq1
1

2D , ~22!

with e(k)5e1^Ṽkk&ph , where^Ṽkk&ph stands for the Fou-
rier transform of̂ Ṽmn&ph , given by

^Ṽkk&ph5(
m

^Ṽmn&phe
ık•(Rm2Rn). ~23!

In what follows, we make use of the bounds that can
derived for the free energies pertaining to the subspace
the total Hilbert space that correspond to different values
the total momentum; namely, the total-crystal-momentum
variance practically translates into the possibility to divi
the total Hilbert spaceH of our e-ph system into orthogona
sectors, each of which is characterized by the particular
genvalue of the total momentum operator and is invari
under the canonical transformation employed. As shown
what follows, this enables one to isolate the contributionsFK
to the overall free energy originating from the subspacesHK
~which correspond to different eigenvaluesK of the total
momentum! and find the corresponding Bogoliubov bound
In order to findFK , one has to take traces in the gene
formulas pertaining to the Bogoliubov inequality, but on
over the statesuK2Q;$nq%& with the total momentum equa
to K , where$nq% denotes the set of phonon occupation nu
bers andQ is the phonon contribution to the total mome
tum:

Q5(
q

qnq . ~24!

Along these lines, in the case of the splitting~19!, one ob-
tains the bound21

FK52b21ln Zph2b21ln~e2bṼ!mm, ~25!

where Ṽ is the matrix with the elements (Ṽ)mn[^Ṽmn&ph ,
depending onum2nu only. On account of the fact that21

~e2bṼ!mm5N21(
k

exp@2be~k!#, ~26!

Eq. ~25! can be given the form

FK52b21ln Zph2b21lnFN21(
k

exp@2be~k!#G ,
~27!

thereby evincing that at finite temperatures the boundFK
does not bear anyK dependence.

The thermal phonon average ofṼmn can be calculated
approximately, at the level of second-order cumulant exp
2-3
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sion ~Appendix A!. In the Einstein~dispersionless! phonon
limit with one phonon mode of frequencyv, the result reads

^Ṽmm&ph5«1~l222l!D, ~28!

and formÞn one has

^Ṽmn&ph5«mne
2l2Umn1Fe2l2Umn21

Umn

1A p

Umn
~l21!erf~lAUmn!GDmn , ~29!

wherein the auxiliary quantitiesD, Dmn , and Umn are de-
fined as

Dmn[v(
q

~gqg2q!mn , ~30!

Dmm[D, ~31!

Umn[S 1

2
1NTDGmn , ~32!

Gmn[Gmm1Gnn2gmn
2 , ~33!

Gmm[gmm
2 1

1

2 (
kÞm

gmk
2 , ~34!

with NT5(ebv21)21 being the thermally averaged phono
occupation number.

It is important to point out that, strictly speaking, th
variational scheme we employ is not the most general p
sible. The more typical use of the Bogoliubov inequality
conjunction with the method of canonical transformatio
involves not only the dependence of a canonical transfor
tion on a certain set of variational parameters, but als
dependence of the splitting of the initial Hamiltonian on o
or more parameters, a common place in the variatio
mean-field theories.26 In our case such an approach could
conveyed through the more general splittingH̃5H̃0(m)
1Ṽ(m) of the initial Hamiltonian, withH̃0(m) and Ṽ(m)
being given by

H̃0~m!5m(
m,n

^Ṽmn&pham
† an1(

q
vqS bq

†bq1
1

2D , ~35!

Ṽ~m!5(
m,n

~Ṽmn2m^Ṽmn&ph!am
† an . ~36!

This would subsequently lead to the corresponding set of
Girardeau-Huber-type equations20,26involving l and the new
variational parameterm. Yet, in order to alleviate the calcu
lational burden, we elect a somewhat less flexible variatio
scheme withm51, which also bears certain technical adva
tages, stemming from the fact that^Ṽ(m51)&ph50.
14430
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C. One-dimensional model with Einstein phonons

We now resort to a one-dimensional situation, where
assume only nearest-neighbor coupling with transfer inte
«m,m61[J.0, local coupling constantgm,m[g, and nonlo-
cal coupling constantgm,m61[f. The nonlocal part of the
electron-phonon coupling Hamiltonian then reads

vf(
m

~um1um11!am
† am111H.c., ~37!

with um[bm
† 1bm ~phonon-displacement operators!. It corre-

sponds to the case ofsymmetricnonlocal coupling.22 Further-
more, we defineGm,m61[G1 , Um,m61[U1 , Dm,m61[D1 ,
Ṽm,m61[Ṽ1, andRm2Rm6157a. In Appendix B we de-
rive the equalities

G152g21f2, ~38!

D5v~g21f2!, ~39!

D15vgf. ~40!

The HamiltonianH̃0 of the preceding section reduces to t
form ~22!, with

e~k!5e12^Ṽ1&phcos~k•a!, ~41!

where

^Ṽ1&ph5Je2l2U11Fe2l2U121

U1

1A p

U1
~l21!erf~lAU1!GD1 . ~42!

Hence, thek sum in the expression~27! takes the form

N21(
k

exp@2be~k!#

5e2beN21(
k

exp@22b^Ṽ1&phcos~k•a!#. ~43!

Upon replacing this sum by an integral over the Brillou
zone and recalling that32

1

2pE2p

p

ez cosudu5I 0~z!, ~44!

whereI 0(z) is the zeroth-order modified Bessel function
the first kind, one finds

N21(
k

exp@2be~k!#5e2beI 0~2b^Ṽ1&ph!, ~45!

and, consequently,

FK5«1~l222l!D2b21ln Zph2b21ln I 0~2b^Ṽ1&ph!.

~46!

The value ofl that minimizes Eq.~46! satisfies the equation
2-4
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l215
1

D

I 1~2b^Ṽ1&ph!

I 0~2b^Ṽ1&ph!

d

dl
~^Ṽ1&ph!, ~47!

where use has been made of the identitydI0 /dx5I 1(x). The
pure local-coupling limit of the last equation reads

lS 11
2J

v
e2g2l2[(1/2)1NT]

I 1~2bJe2g2l2[(1/2)1NT] !

I 0~2bJe2g2l2[(1/2)1NT] !
D 51,

~48!

equivalent to what was found by Yarkony and Silbey.21 Ow-
ing to the asymptotic relation for the modified Bess
functions,32

I n~x!;
ex

A2px
~x@1!, ~49!

and to the fact that the zero-temperature (b→1`) limit of

^Ṽ1&ph is finite,

^Ṽ1&ph→Je2(1/2)l2G11F2
e2(1/2)l2G121

G1

1A2p

G1
~l21!erfS lAG1

2 D GD1 , ~50!

one has

I 1~2b^Ṽ1&ph!

I 0~2b^Ṽ1&ph!
→1. ~51!

As a consequence of Eqs.~50! and ~51! one obtains the fol-
lowing self-consistency equation for the zero-temperatu
bottom-of-the-band situation:

l215A2p

G1

D1

D
erfSAG1

2
l D 2S J

D
G1l12

D1

D De2(1/2)G1l2
.

~52!

In the limit of pure local coupling (f→0, and consequently
G1→2g2, D1→0, D→vg2) the last equation goes over int

lS 11
2J

v
e2g2l2D51, ~53!

equivalent to what was derived by Yarkony and Silbey21 in
the zero-temperature bottom-of-the-band situation. In
limit of pure nonlocal coupling one finds a similar equatio

lS 11
J

v
e2(1/2)f2l2D51. ~54!

The transcendental equations~47! and~52! can be solved
numerically for different choices of values of the paramet
(J,v,g,f,T). The numerical results thereby obtained a
presented in the following section.

As for the allowed values of the variational parameterl,
a remark has to be made here: unlike the case of the Hols
Hamiltonian, where in the limit of vanishing electronic tran
fer integrals (J50) the Lang-Firsov transformation yield
14430
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the exact diagonalization~and, consequently, possible opt
mal values of the variational parameter are bound fr
above by one21! our transformation does not possess suc
plausible limit. Rephrasing, there is noa priori physical rea-
son for the optimal values ofl to be always smaller than
one.

IV. RESULTS AND DISCUSSION

A. Zero-temperature case

The self-consistency equation~52! for the optimal value
of l ~denoted byl* ) is apparently determined by the pa
rametersJ/v, f, g. Since we are interested in the effec
inherent to nonlocal coupling we can adopt as our parame
J/v andf, with g being fixed. In the presence of both loc
and nonlocal coupling, the relative sign of the correspond
coupling constants plays a role. For definiteness, we keeg
positive, and letf take on both positive and negative value

In Fig. 1~a! we plot the value ofl* which gives the
minimal free energy at zero temperature for five differe
values ofJ/v between 0.25 and 4.0, andg50.25. The de-
pendence ofl* on f is clearly nonmonotonous, with th
minimum equal zero atf/g51 and the limiting value of one
realized at higher values off. The dependence is smoot
and continuous for small values ofJ/v, whereas for larger
values an abrupt transition occurs between ‘‘weakly dress
and ‘‘strongly dressed’’ states. In the latter case, the f
energy of the system has two minima~as a function ofl). At
a certain coupling strength the free energies of the t
minima become equal, marking the onset of the abrupt tr
sition between the weakly dressed and strongly dres
states. As stressed elsewhere,22 the discontinuities registere
in such transitions might be the result of the changes in
polaron structure occurring too rapidly to be accurately
counted for by the variational entities used, and our meth
is not devoid of that. In order to illustrate the character of t
dependence ong, in Fig. 1~b! we present the same informa
tion for g50.5. For negativef the behavior is qualitatively
similar, whereas for positivef the abrupt transitions appea
already for rather small values ofJ/v. For g50 @Fig. 1~c!#
the dependence ofl* on f is monotonous and does no
depend on the sign off.

The most interesting feature that we observe is the e
tence of a ‘‘dressing minimum’’ atf5g. While the value of
the relative coupling strength at which it appears, and
absolute value of the minimum might be at least partly
artifact ~i.e., the consequence of the approximations mad
the derivation of the expression for the bound on free ene
to be minimized!, the very existence of this minimum seem
to be a robust characteristic. Wheng→0 the feature related
to the minimum becomes narrower and narrower, and a
gularity remains forg50 @not displayed in Fig. 1~c!#.

B. Finite-temperature case

While the zero-temperature self-consistency equation~47!
depends onJ and v only through their ratio, its finite-
temperature counterpart~52! depends both onJ/v and v
itself ~through the Boltzmann factore2bv incoming into the
2-5
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FIG. 1. Optimal dressing parameterl* as a function of the
nonlocal-coupling strengthf, at T50 K, for different values of
J/v and local-coupling strengths~a! g50, ~b! g50.25, and~c! g
50.5. The dashed line indicates the limiting valuel* 51.
14430
expression forU1). Therefore, it seems natural to look at th
solution to this equation for fixed values ofJ/v andg, and
different nonlocal coupling strengths, expressing tempera
in units v/kB .

The dependence ofl* on the temperature forJ/v51,
and different nonlocal coupling strengths~both positive and
negative! is depicted in Figs. 2~a!–2~e! for g50, 0.25 and
0.5. What can be clearly observed is that wheng andf have
the same sign this dependence is monotonous, i.e.,l* in-
creases monotonously as temperature is increased. How
wheng50, or g andf have opposite signs, the dependen
is nonmonotonous for smaller absolute values off, and be-
comes monotonous for larger absolute values off.

The variational parameterl does not have a direct phys
cal meaning. Its implicit dependence on temperature and
parameters of the model (J,v,g,f) illustrates only the non-
trivial character of the phonon dressing of the excitation.
that end, it is of interest to examine the character of
temperature dependence of the renormalized transfer inte
Je f f5^Ṽ1&ph , where^Ṽ1&ph is given by the expression~42!.
Figures 3~a!–3~c! depict the ratioJe f f /J in the caseJ/v
51 for g50 andg50.25~in the latter case both for positiv
and negative nonlocal-coupling strengths!. It can be ob-
served that for smaller nonlocal-coupling strengths (uf
u50.25,0.5) the temperature-dependent renormalization
mild ~at least up to the higher temperaturesT.4v/kB),
whereas for larger values off it becomes much stronger. W
also register cases when simultaneous local and nonl
coupling changes the sign of the electronic transfer integ
@Fig. 3~b!#, and when the ratioJe f f /J at low temperatures
acquires values slightly larger than one@Fig. 3~c!#. While the
first feature we ascribe to the nonlocal coupling being
additional transport mechanism, the second one might be
least to a certain extent, an artifact of the approximatio
made.

C. Phase diagrams

We define the phase boundaries between regions of w
dressing and strong dressing as the parameter values
which l* 50.5 ~obviously, there is some arbitrariness in th
choice!. In Figs. 4~a!–4~c! we plot these phase boundaries
the T-f plane for different values of the ratioJ/v and fixed
values of the local-coupling strength (g50,0.25,0.5, respec
tively!. For any particular pair of boundary curves~i.e., for
any fixed value ofJ/v and the two possible signs o
nonlocal-coupling strength! the region between them repre
sents weak dressing and the outer region depicts str
dressing.

For positive values ofg, we see that the curves forJ/v
51.0,2.0,4.0 look qualitatively the same. The obvious tre
is that whenJ/v becomes larger, the weak dressing regi
becomes more and more extended, which is to be expec
However, for smallerJ/v equal to 0.5 this region is confine
to a small, ‘‘tonguelike’’ shaped, closed domain in theT-f
plane.

For nonzerog phase boundaries for negative values off
exhibit differences with respect to that of positive values
f in the region of low temperatures (kBT&v). The region
2-6
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FIG. 2. Optimal dressing parameterl* as a function of temperature, atJ/v51 and different values of the nonlocal-coupling strengthf,
for local-coupling strengths~a! g50, ~b! g50.25 (f.0), ~c! g50.25 (f<0), ~d! g50.5 (f.0), and~e! g50.5 (f<0). The dashed
line indicates the limiting valuel* 51.
144302-7
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STOJANOVIĆ, BOBBERT, AND MICHELS PHYSICAL REVIEW B69, 144302 ~2004!
FIG. 3. Relative renormalizationJe f f /J of the electronic trans-
fer integral as a function of temperature, atJ/v51 and different
values of the nonlocal-coupling strengthf, for local-coupling
strengths~a! g50, ~b! g50.25 (f.0), and~c! g50.25 (f<0).
14430
FIG. 4. Phase diagrams indicating regions of strong dress
(l* .0.5) and weak dressing (l* ,0.5) in theT-f plane, for dif-
ferent values ofJ/v and local-coupling strengths~a! g50, ~b! g
50.25, and~c! g50.5.
2-8



fe

th

ry
in

n
-

ta

in
e

n
n
b

i-

i
e

g-
is

ti-

a
s
th

ab

on
s
a
H

th

ible
ar-

os-
n-
e-
one
e
an

xist,
in-
we

of

yti-
an

ical
r to
-
iple
ee
d is
ap-
es

ela-

ron
u-
al

ling
sing

to
We
om-
his
the
rge
w-

e of
the
the
the

uali-
m-
se

itz-
,
aul

NONLOCAL ELECTRON-PHONON COUPLING . . . PHYSICAL REVIEW B69, 144302 ~2004!
corresponding to weak dressing is less extended, the last
ture being more and more pronounced asJ/v becomes
smaller. However, in the region of higher temperatures
behavior is similar, regardless of the sign off ~i.e., the rela-
tive sign ofg andf).

V. IMPLICATIONS FOR OPTICAL AND TRANSPORT
PROPERTIES

Within the framework of Kubo’s linear-response theo
transport coefficients are determined by the correspond
time-correlation functions.28,29 In particular, dc conductivity
is expressed through the current-current autocorrelation fu
tion ^ j (t) j (0)&H , where^•••&H stands for the thermal ex
pectation value with respect to HamiltonianH of the system.
In the zero-temperature limit, it reduces to the ground-s
expectation value.

The utility of the method of canonical transformations
this context is based on the simple property of thermal av
ages@ j̃ 5exp(S)j exp(2S), H̃5exp(S)H exp(2S)]

^ j ~ t ! j ~0!&H5^ j̃ ~ t ! j̃ ~0!&H̃ , ~55!

being an immediate consequence of the relation20 ^A&H

5^Ã&H̃ @with Ã5exp(S)Aexp(2S)], which is valid for an
arbitrary operatorA and an arbitrary unitary transformatio
U5exp(S). When H stands for the local-coupling Holstei
Hamiltonian, the corresponding current operator is given

j 5 ieJ(
m

am11
† am1H.c., ~56!

and the use of the relation~55! is supplemented by an add
tional assumption that the thermal average overH̃ can be
approximated by taking thermal average over the Ham
tonian in which the electronic transfer term, as transform
by the Lang-Firsov transformation~non-adiabatic terms!, is
removed.20 This is justified at least in the adiabatic stron
coupling regime. However, in case nonlocal coupling
taken into account, the current operator adopts the form~the
‘‘ 1’’ and ‘‘ 2 ’’ signs correspond to the symmetric and an
symmetric nonlocal couplings, respectively!

j 5 ie(
m

@J1f~um116um!#am11
† am1H.c., ~57!

i.e., it depends explicitly on phonon operators throughum

[bm
† 1bm . Besides, our generalized canonical transform

tion does not yield an exact diagonalization in any limit. A
a consequence, the straightforward generalization of
aforementioned procedure would necessitate uncontroll
approximations, and is therefore rather unwieldy.

However, the problem can be addressed by computati
means, through the device of Lanczos-diagonalization-ba
calculation of dynamical correlations. This was done by C
poneet al.30 for the case of the quantal version of the SS
model ~antisymmetric nonlocal coupling!, with optical in-
stead of acoustic phonons. They found an evidence for
occurrence of a new, high-energy absorption feature~at en-
ergy 4Ep , where Ep is the polaron binding energy!, not
14430
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present in the local-coupling case, and gave a plaus
physical explanation of its nature, in terms of the bond ch
acter of nonlocal coupling. In our forthcoming publication31

we study the extended Holstein model by means of Lancz
diagonalization, both for symmetric and antisymmetric no
local coupling. We calculate the optical conductivity corr
sponding to this model and corroborate results of Cap
et al.30 in the case of antisymmetric nonlocal coupling. W
also show that in the case of symmetric nonlocal coupling
analogous high-energy absorption feature does not e
which is to be expected from the physical circumstances
herent to symmetric coupling. More elaborate discussion
defer to this forthcoming publication.

VI. SUMMARY AND CONCLUSIONS

In the present work we have investigated the influence
simultaneous local and nonlocal electron-phonon~e-ph! cou-
pling on the nature of polaron states, mainly through anal
cal means. As our point of departure, we have adopted
extended Holstein Hamiltonian and a generalized canon
transformation of the displacement-operator type. In orde
allow for an additional flexibility of the transformation pa
rameters, use has been made of the variational princ
based upon the Bogoliubov inequality for the Helmholtz fr
energy of the system. The variational parameter introduce
a measure for the phonon dressing of the polaron. The
pealing feature of the variational approach is that it do
away with the need to make any assumption about the r
tive magnitude of the electronic transfer integralJ and the
phonon energyv.

We have mainly been interested in the changes of pola
structure resulting from the inclusion of nonlocal e-ph co
pling. We find nonmonotonous dependence of the optim
value for the dressing parameter on the nonlocal-coup
strength. Moreover, we observe the existence of a dres
minimum, which in the zero-temperature case goes down
zero, indicating the absence of the bandwidth reduction.
interpret this dressing minimum as a compensation phen
enon between the local and nonlocal e-ph couplings. T
compensation phenomenon could be of importance in
area of organic crystals, since weak dressing implies la
bandwidths and high mobilities, registered in these narro
band materials.

The general message of this paper is that the presenc
nonlocal e-ph coupling introduces, in certain regimes of
involved physical parameters, qualitative changes into
nature of polaron states. The approximate character of
present treatment makes the obtained results inevitably q
tative. An independent corroboration and quantitative i
provement utilizing the computational methods akin to tho
employed in the local-coupling context5–7 is needed.
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APPENDIX A: CALCULATION OF THERMAL AVERAGES

While an exact evaluation is not possible, the therm
averages required in this paper are amenable to an app
mate calculation at the level of second-order cumul
expansion.27,33 For an arbitrary operatorV and an arbitrary
sort of averaging involved, the expansion up till the seco
order cumulant reads

^expV&.exp$^V&1 1
2 ~^V2&2^V&2!%, ~A1!

which in the casêV&50 goes over to

^expV&.exp~ 1
2 ^V2&!. ~A2!

An example when this expansion is exact rather than
proximate is the thermal average of expA, where A5c1â

1c2â† is a linear combination of the harmonic-oscillat
creation and annihilation operators, in which case it redu
to the well-known Bloch identity.34 The multiphonon opera
tors appearing in the nonadiabatic terms of the transform
Holstein Hamiltonian assume such form, withc252c1* ,
characteristic of the displacement operator which gener
coherent states when acting on the linear-harmonic-oscill
vacuum.35 However, in our case one is confronted with t
more complicated thermal expectation values.

One type of thermal average we have to perform is

^ f̃ mm8&ph5^~eCf e2C!mm8&ph , ~A3!

where f mm8 is a number matrix, that is,

^ f̃ mm8&ph5 (
n,n8

Lmm8
nn8 f nn8 , ~A4!

with

Lmm8
nn8 5^~eC!mn~e2C!n8m8&ph5^~eC2C8!mn,n8m8&ph

~A5!

representing the shorthand notation in which the primed
trix elements ofC are invoked every timeC8 is encountered.
Up to the second-order cumulant~A2!, one has~because the
odd order cumulants are equal zero, in particular^C&ph
50),

Lmm8
nn8 .exp̂ 1

2 @~C2C8!2#mn,n8m8&ph

5exp̂ 1
2 ~C2!mn&ph exp̂ 1

2 ~C82!n8m8&ph

3exp̂ 2~CC8!mn,n8m8&ph , ~A6!

where, as can routinely be derived,
14430
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K 1

2
~C2!mnL

ph

52l2(
q,k

gmk
q gkn

2qS 1

2
1Nq,TD ,

K 1

2
~C82!n8m8L

ph

52l2(
q,k8

gn8k8
q gk8m8

2q S 1

2
1Nq,TD ,

^2~CC8!mn,n8m8&ph52l2(
q

gmn
q gn8m8

2q S 1

2
1Nq,TD ,

~A7!

with Nq,T representing the thermally averaged phonon oc
pations.

If the elements of the matrixf depend only onm2m8
~translational invariance! one can defineFm2m8[ f mm8 and
rewrite Eq.~A4! in the form

^F̃m&ph5(
n

TmnFn , ~A8!

wherein

Tmn5(
n8

Ln1n8,n8
m0 . ~A9!

If we assume that in Eq.~A7! the most important contribu
tions come from the terms withm5n and m85n8,8,19 the
matrix Tmn becomes diagonal, with elements given by

Tmm5expF2l2(
q

S 1

2
1Nq,TDGm0

q G , ~A10!

Gmn
q [ugmm

q 2gnn
q u21 (

kÞm,n
~ ugmk

q u21ugnk
q u2!. ~A11!

Hence, in the Einstein phonon limit (vq→v; Nq,T
→NT) one obtains

^ f̃ mm&ph. f mm, ~A12!

^ f̃ mn&ph.e2l2[(1/2)1NT]Gmnf mn ~mÞn!, ~A13!

with Gmn given by

Gmn[(
q

Gmn
q 5Gmm1Gnn2gmn

2 , ~A14!

Gmm[gmm
2 1

1

2 (
kÞm

gmk
2 . ~A15!

We now turn to the phonon average^Ṽmn&ph appearing in
Eq. ~20!:

^Ṽmn&ph5^ẽmn&ph1(
q

vq^~ b̃q
†g̃q1g̃qb̃2q1b̃q

†b̃q

2bq
†bq!mn&ph . ~A16!
2-10
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In order to find the thermal average of (b̃q
†g̃q1g̃qb̃2q

1b̃q
†b̃q2bq

†bq)mn , we first calculatê (b̃q
†g̃q1g̃qb̃2q)mn&ph

starting from the operator identity

d

dx
^@exC~bq

†gq1gqb2q!e2xC#mn&ph

5^~exC@C,bq
†gq1gqb2q#e2xC!mn&ph . ~A17!

On account of the fact that@C,bq
†#5@C,b2q#52lg2q, this

can easily be reduced to

d

dx
^@exC~bq

†gq1gqb2q!e2xC#mn&ph522l^~ g̃qg̃2q!mn&ph .

~A18!

Upon integrating the last equation between 0 and 1,
finds

^~ b̃q
†g̃q1g̃qb̃2q!mn&ph522lE

0

1

dx^~ g̃qg̃2q!mn&ph .

~A19!

As a special case of Eqs.~A12! and ~A13!, it holds that

^~ g̃qg̃2q!mm&ph5~gqg2q!mm, ~A20!

^~ g̃qg̃2q!mn&ph5e2l2[(1/2)1NT]Gmn~gqg2q!mn ~mÞn!.
~A21!

On performing the integral in Eq.~A19!, making use of the
last two equations, it follows that

^~ b̃q
†g̃q1g̃qb̃2q!mm&ph522l~gqg2q!mm ~A22!

and formÞn,

^~ b̃q
†g̃q1g̃qb̃2q!mn&ph52A p

Umn
erf~lAUmn!~gqg2q!mn ,

~A23!

where erfx5(2/Ap)*0
xe2t2 dt is the error function, and the

abbreviationUmn[(1/21NT)Gmn has been introduced.
The expression for the thermal averagê(b̃q

†b̃q

2bq
†bq)mn&ph can be obtained in a similar manner: the o

erator identity

d

dx
^@exC~bq

†bq!e2xC#mn&ph

52l^@exC~bq
†gq1gqb2q!e2xC#mn&ph , ~A24!

when integrated between 0 and 1, leads to

^~ b̃q
†b̃q2bq

†bq!mn&ph

52lE
0

1

dx^@exC~bq
†gq1gqb2q!e2xC#mn&ph . ~A25!

On making the replacementC→xC in Eqs. ~A22! and
~A23!, one obtains
14430
e

-

^@exC~bq
†gq1gqb2q!e2xC#mm&ph522lx~gqg2q!mm

~A26!

for m5n and

^@exC~bq
†gq1gqb2q!e2xC#mn&ph

52A p

Umn
erf~lAUmnx!~gqg2q!mn ~A27!

for mÞn. Upon executing the integral in Eq.~A19!, with the
aid of Eqs.~A26! and ~A27!, respectively, it follows that

^~ b̃q
†b̃q2bq

†bq!mm&ph5l2~gqg2q!mm ~A28!

and formÞn,

^~ b̃q
†b̃q!mn&ph5FA p

Umn
lerf~lAUmn!1

e2l2Umn21

Umn
G

3~gqg2q!mn , ~A29!

where the last equation has been derived by making us
the identity

E
0

a

erfu du5a erfa1
1

Ap
~e2a2

21!. ~A30!

Summing up the results~A22! and ~A28!, one finds

^~ b̃q
†g̃q1g̃qb̃2q1b̃q

†b̃q2bq
†bq!mm&ph

5~l222l!~gqg2q!mm. ~A31!

Similarly, from Eqs.~A23! and ~A29! it follows that

^~ b̃q
†g̃q1g̃qb̃2q1b̃q

†b̃q2bq
†bq!mn&ph

5Fe2l2Umn21

Umn
1A p

Umn
~l21!erf~lAUmn!G

3~gqg2q!mn . ~A32!

Upon inserting Eqs.~A31! and~A32!, along with Eqs.~A12!
and ~A13!, into the expression~42!, one finally obtains

^Ṽmm&ph5«1~l222l!D ~A33!

and, likewise, formÞn,

^Ṽmn&ph5«mne
2l2Umn1Fe2l2Umn21

Umn

1A p

Umn
~l21!erf~lAUmn!GDmn , ~A34!

whereinDmn andD are given by
2-11



-

e
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Dmn[v(
q

~gqg2q!mn , ~A35!

D[Dmm. ~A36!

APPENDIX B: EXPRESSIONS FOR G1 , D, AND D1

We begin by noting that the general expression~A11! in
the case ofGm,m61

q reduces to

Gm,m61
q 5ugmm

q 2gm61,m61
q u21ugm,m61

q u21ugm61,m62
q u2.

~B1!
On taking into account thatugm,m61

q u25ugm61,m62
q u2, the last

equation can be rewritten as

Gm,m61
q 5ugmm

q 2gm61,m61
q u212ugm,m61

q u2. ~B2!

With the general form of theq-dependent e-ph coupling con
stants, and the notationgmm[g, gm,m61[f, it is straight-
forward to obtain

ugmm
q 2gm61,m61

q u252g2N21@12cos~q•a!#, ~B3!

ugm,m61
q u25f2N21@11cos~q•a!#/2, ~B4!

which routinely leads to

Gm,m61
q 5N21@2g21f22~2g22f2!cos~q•a!#. ~B5!
on

-

c

od

14430
Hence, one readily obtains

G1[(
q

Gm,m61
q 52g21f2. ~B6!

For Dm,m[D andDm,m61[D1 one has, respectively,

D5v(
q

~gm,m11
q gm11,m

2q 1gm,m21
q gm21,m

2q 1gm,m
q gm,m

2q !,

~B7!

D15v(
q

~gmm
q gm,m61

2q 1gm,m61
q gm61,m61

2q !, ~B8!

which can easily be reduced to

D5vN21(
q

$f2@11cos~q•a!#1g2%, ~B9!

D15vN21(
q

gf@11cos~q•a!#. ~B10!

Upon executing theq sums in the last two equations, on
finally finds

D5v~g21f2!, ~B11!

D15vgf. ~B12!
s
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