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Nonlocal electron-phonon coupling: Consequences for the nature of polaron states
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We develop a variational approach to an extended Holstein model, comprising both local and nonlocal
electron-phonon coupling. The approach is based on the minimization of a Bogoliubov bound to the Helmholtz
free energy. The ambivalent character of nonlocal coupling, which both promotes and hinders transport, is
clearly observed. Furthermore, a salient feature of our results is that the local and nonlocal couplings can
compensate each other, leading to a reduction of polaronic effects and a quasi-free character of the excitation.
Our findings have implications for organic crystals ®fconjugated molecules, where this electron-phonon
coupling mechanism plays an important role.
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[. INTRODUCTION temperature-dependent polaron transfer integrals, closely

analogous to the equivalent expression for the Holstein

Coupled electron-phonon or exciton-phon¢nereafter ~Hamiltonian. An additional term appears, however, which is
e-ph systems have long been an active research area r@_lated to the promotion of transport by nonlocal e-ph cou-

condensed-matter physics. A significant portion of the rePliNg. . 19
search effort has been dedicated to the study of a single In this Previous work;'we assumed that a full n_onIocaI

electron or exciton interacting with the lattice vibrations transformation should be performed for an approximate de-

through a short-range, nonpolar potential that is linear in th&2UP!ing of polaronic and phononic degrees of freedom. In

lattice displacements and accounts for the dependence of tfier words, we assumed a full “dressing” of the electron by

electronic or excitonic on-site energies on the lattice degree® Phonon cloud forming a polaron. In the present work, we

of freedom. This physical situation, termed local linear e—phgo beyond that assumption. Ou_r gpproach u_tili_zes the met.hod
coupling, is traditionally described by what became knownPf temperature-dependent, variationally optimized canonical
as the Holstein Hamiltonian. after Holstein's ground- transformationg® The variational principle used is based
breaking work on this HamiltoniahThe Lang-Firsov uni- UPON the Bogoliubov bound to the Helmholtz free energy of

tary transformation of the displacement-operator fypaas the_le-ph systenr: unde}r ”consgjirationk For Iogal .%’;p"c;]g' a
another theoretical milestone. Later, the field received furthep!™ar approach was followed by Yarkony and Silbegn

developments in the theoretical analysis, including those of IS in th's. sense that our treatment constitutes a'generallza-
computational naturé.’ tion of their work. A variational treatment of combined local

H 22
In a recent work, we showed that in organic molecular &1 nonlocal coupling performed by Zhaval™ makes use

crystals of polyacenegnaphthalene, anthracene, and tet-Of T0yozawa's Ansatz states, commonly employed in local-

racene there is a strong coupling of optical phonons, espe£2UPIing theory?>~2*However, the latter variational analysis

cially those of rotational provenandébrons), to the elec- is limited to the ground-state .polaron.sFructure, whereas our
tronic transfer integralhonlocal e-ph coupling dominating treatment a}lso covers the regime of finite temperature;.
the local-coupling mechanism. Nonlod&eierls’ typé cou- The outline of the paper is as follows. In Sec. Il we intro-

pling is also expected to play an important role in the crystalsduce t_he Hamlltoman_ of our coupled e-ph system and the
of other m-conjugated molecules. In particular, nonlocal canonical transformation to be used throughout. In Sec. IlI

exciton-phonon coupling appears to be important for the deWve first give a short exposition of the variational principle

scription of excimers in, e.g., pyrene amdperylene’*! employed, then dempnstrate itsf a}pplication to the cou_pled
Perhaps the best known model dealing with nonlocal cou?'ph sys_tem,_and, _flnaIIy, gpe0|§1||ze to a one-dlmensmnal
pling is the Su-Schrieffer-HeegdSSH model 213 intro- model with dispersionles¢Einstein phonons. Section IV
duced to describe solitons and polarons in the quasi-onsp-rov'des the numerical results o}ot@med for this model sys-
dimensional conductive polymer trans-polyacetylene. tem. Wg discuss Fhe zero- and finite-temperature reSl_JIts for
However, in its original form, the model leans on a c:IassicaIthe optimal dressing parameter and present phase_dlagrams
treatment of the lattice dynamics, which is allowed only infor the parameter regions of strong and weak dressing. Pos-

the case when a typical electronic transfer integral is mucﬁ'b.Ie |mpI|ca'g|ons of our waork to _opt|cal and transport prop-
smaller than a typical phonon enerdggntiadiabatic limir. erties are briefly toucheq upon in Sec. V. Finally, the main
There are a few accounts of a quantum-mechanical treatmeg?nC|u$'°ns are summarized in Sec. VI. Some cumbersome
of the lattice together with nonlocal e-ph coupling erivations are relegated to the Appendices.
mechanisnt?~*8In our previous worl*%ve generalized the
Lang-Firsov transformation to account for both local and
nonlocal e-ph coupling. We showed that, after some approxi- The system under study consists of an excess electron
mations, a rather simple expression can be obtained for thghole, exciton interacting with harmonic lattice vibrations

Il. MODEL
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(nonpolar optical phononsBoth local and nonlocal e-ph
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the phonon dressing of the excitation. The generator of the

coupling are taken into account, within the framework of antransformation can be recast in the form
extended Holstein Hamiltonian, encompassing an electronic

part (He), a phonon partki,,), and the interactiorte-ph

part (H e-ph):
H= He+ th+ He—ph .

D

The respective forms of the three real<1 in what fol-
lows)

Hezz 8mnaTmana 2
m,n
|
thzg wq| bbg+ 5 . 3
He_phzzn wa9h(bg+b pala,, (4)

whereina!, and bZ; create an electron in the Wannier state at

site m (positionR,;,) and a phonon with wave vector and
frequencywq, respectivelye ,,, is a compact notation for the
electronic on-site energies: (,,=¢) and transfer integrals
(emn,m#n). Like in our previous work!® we assume the
form

gq _ gmn
mn 2\/N

for the g-dependent e-ph coupling constants, whgtg de-
pends only on|R,—R,| (abbreviated in the following as

[m—nl), and whereN is the number of sites. This form
obeys the propertyg, )* =g, required for the Hermiticity

(e*|Q‘Rm+ ef'q‘Rn)

©)

of He.ph and satisfies the translational symmetry. In the case- (gCpae=C),

m=n one recoverg? =ge '9Rn/ /N, the usual choice for
the g-dependent local-coupling constants.

S= 2 Cmna:qan ) (8)
m,n

whereC = Cpnn({b? ;by}) stands for the operator

cmn:% Aﬂm(bg—b,q)z)\%‘, ghbi=b_g). (9

Once transformed, the electronic and phononic operators
read, respectively:°

eSane S= 2 (€ ) mrn, (10)

eSbye S=by+ > [(e°hee™ ©)mn—bgdmnlata,. (11)
m,n

Leaving out the terms describing two-particle interac-
tions, which is valid for the low electron densities we are

interested in, the transformed Hamiltoni&h acquires the
form

~ 1
€mnaran+ % wq( bibg+ E)

+ wq(big+9%_ 4+ by~ blbg) mmahan,

(12

N%n:(ecgqeic)mnv Bﬁwn
and (ngq)mn is a shorthand notation for
b;bqﬁmn. For further use, it is convenient to rewrite the
Hamiltonian as

wherein Emn=(ecsefc)mn,

In order to account for both local and nonlocal e-ph cou-

pling, we utilize a unitary transformatiod —H=eSHe S

of the initial Hamiltonian, the generator of which is given by

S= > A%(bi-b_pala,. (6)
m,n,q

Being also of the displacement-operator typé, represents

an obvious nonlocal generalization of the Lang-Firsov ca-
nonical transformation. The transformation parameters have

to meet the same conditions as tha@lependent e-ph cou-
pling constants, in order to satisfy the anti-Hermiticity ®f

(S'=-19) and translational invariance. As can straightfor-
wardly be demonstrated, the latter property guarantees the

invariance of the total crystal momentum, defined as

P=> kalak+2 qbgbq, (7)
k q

i.e., the validity of the relatioreSPe S=P. Our particular

choice of the transformation parameters reAds=\g3,,,

wherein\ is the as yet undetermindomplicitly temperature

: (13

~ ~ 1
_ t t
H= ;1 Vinrdlhan+ % wq< bibg+ 5
whereV =V, ({b};by}) stands for

Vin=€mnt % wq(Blg9+9%_ 4 +bbg—blbg)mn-
(14

The presence of phonon operatord/ip,, necessitates the use
of the transformation(6) in the sense of a temperature-
dependent optimal transformatiéh.

We point to the following difference with the bare local-
coupling case: while the Lang-Firsov transformation, when
applied to the Holstein Hamiltonian, introduces only a con-
stant shift of the electronic on-site energiesually referred

to as polaronic shift, or polaron binding energthe trans-
formation (6) brings about the presence of a remnant of the

e-ph coupling in the corresponding term bf. In other
words, in the transformed on-site term, the electronic and

dependentvariational parameter, representing a measure ophononic degrees of freedom are not completely decoupled.
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Ill. FREE-ENERGY MINIMIZATION
A. Variational principle

The Helmholtz-free-energghenceforth free energyf a
system with a Hamiltoniail that acts upon states in a sepa-
rable Hilbert spacé{ is defined by B=1/kgT)

F=—pB"lnz=

— B Hn[Tr(e ™). (15

PHYSICAL REVIEW B9, 144302 (2004

’\7:% (vmn_ <vmn>ph)a:nana (21

where(- - ), denotes a thermal phonon average. The non-
interacting HamiltoniarH, can be rewritten as

: (22

- 1
Ho=> e(k)ajac+ >, wq( bibg+ >
k q

In view of the well-known relation between the free energy

and the ground-state energy of the syst@®noted byE),
given by

lim F(T)=E,,
T—0

(16)

with (k) = e+ (Vig)pn, where(Vyy)on stands for the Fou-
rier transform of(an>ph, given by

<vkk>ph:§m: <’\7mn>phelk.(Rm7Rn)- (23

the free-energy minimization is a natural finite-temperature

generalization of the ground-state variational principle of

quantum mechanicéused by Zhacet al?? in the study of
zero-temperature polaron structuré©wing to the Jensen
convexity of the functiorf (x) =e~#*, the following theorem
holds true(Bogoliubov’s inequality: 26

For an arbitrary splitting of the Hamiltoniatd=H,
+(H—Hy), under the condition that™ A" ande™#"o have
finite traces for3>0, an upper bound to the free eneigys
given by

F<Fo+(H=Ho)u, a7

where Fo=— B~ 1In[Tr(e #"0)] is the free energy corre-
sponding to the HamiltonianH, and <H—H0>Ho
=Tr e A"o(H—H,)]/Tr(e #Ho) stands for the thermal av-
erage ofH—Hg with respect toH,,.

The theorem has proved useful in the treatment of man
problems in condensed-matter theory and statistic

physics?®?’ As regards its use in the present paper, the foly

lowing two properties are of major importance.
(@ If the Hamiltonian H=Hy+V is transformed by

means of a unitary transformatio)=eS, so that H
=eSHe S=H,+V, the above inequality adopts the form
F<—8"1n Tr(e*3ﬁ0)+<\~/>go. (18

(b) If the Hilbert spaceH of the system is partitioned into

the mutually orthogonal subspaces, each invariant to the un
tary transformation employed, then the preceding resul

holds for each of these subspaces separately.

In what follows, we make use of the bounds that can be
derived for the free energies pertaining to the subspaces of
the total Hilbert space that correspond to different values of
the total momentum; namely, the total-crystal-momentum in-
variance practically translates into the possibility to divide
the total Hilbert spacét of our e-ph system into orthogonal
sectors, each of which is characterized by the particular ei-
genvalue of the total momentum operator and is invariant
under the canonical transformation employed. As shown in
what follows, this enables one to isolate the contributibps
to the overall free energy originating from the subspadgs
(which correspond to different eigenvaluls of the total
momentum and find the corresponding Bogoliubov bounds.
In order to findFy, one has to take traces in the general
formulas pertaining to the Bogoliubov inequality, but only
over the statefK —Q;{n,}) with the total momentum equal

YoK, where{n,} denotes the set of phonon occupation num-

ers andQ is the phonon contribution to the total momen-
um:

Q= % ang- (24)
Along these lines, in the case of the splittifitP), one ob-
tains the bountt

Fe=—B"nZy— B (e ), (25
i-

whereV is the matrix with the elementsV(),=(Vpon.
depending odm—n| only. On account of the fact tHat

B. Application to the coupled e-ph system (e_B\N/)mm= N_12 exg —Be(k)], (26)
k
In order to make practical use of the Bogoliubov inequal-
ity, one has to have the possibility to perform an independenkqg. (25 can be given the form
averaging over the electronic and phononic degrees of free-
dom. To that end, we make use of the splitting Fo=—p4"tn th—,Bflln N*12 exd — Be(k)]|,
k
H=Hy+V (19 (27
of our transformed Hamiltonian, with thereby evincing that at finite temperatures the botnd
does not bear ani{ dependence.
~ - 1 o
H.= v ala + (bTb il 20 The.thermal phonon average df,, can be calculated
0 %1 (Vi prman % @a| BaaT 2 20 approximately, at the level of second-order cumulant expan-
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sion (Appendix A). In the Einstein(dispersionlegsphonon C. One-dimensional model with Einstein phonons

limit with one phonon mode of frequenay, the resultreads  \yg now resort to a one-dimensional situation, where we

- ) assume only nearest-neighbor coupling with transfer integral
(Vmmph=e+(A"=2N)A, (28) &, m+1=J>0, local coupling constarg,, »=g, and nonlo-
cal coupling constang,, m+1=¢. The nonlocal part of the

and form#n one has electron-phonon coupling Hamiltonian then reads

e M Umn—1

Y _ -\%u
<an>ph_3mne mn-+ ]
mn

wcﬁ% (UpF Ups1)afams 1+ H.c., (37

= with u,,= b;rn+ b,, (phonon-displacement operatprk corre-
+ Vg (A Derf(a \/U_mn)}Amni (29 sponds to the case sfmmetrimonlocal coupling? Further-
m more, we defind’ , n=1=T1, Unme1=U1, Apme1=A1,
wherein the auxiliary quantitied, A,,,, andU, are de- Vm,milz\Nll, andR,—R,+1=Fa. In Appendix B we de-

fined as rive the equalities
I1=2g%+ ¢, (38)
AmnE""z (gqg_q)mn- (30
q A=w(g?+ ¢?), (39
Amm=4, (3D A= wgdo. (40)
1 The Hamiltonianﬁo of the preceding section reduces to the
U= §+NT | (320  form (22), with
e(k)=e+2(V,) ncodk-a), (41)
anEGmm+Gnn_g§1nv (33) P
where
GGt 5 S, 0 (34) - o, |6V
mm mm’ 5 & mk <V1>ph:\]e*}\ U1+ U
1

with Nr=(e#*—1)"! being the thermally averaged phonon

occupation number. b (= 1)erf(x Uy
It is important to point out that, strictly speaking, the Uy

v_ariational scheme we employ is not thg most.genera}l p.OSHence, thek sum in the expressiof27) takes the form

sible. The more typical use of the Bogoliubov inequality in

conjunction with the method of canonical transformations

involves not only the dependence of a canonical transforma- N‘lZ exd — Be(k)]

tion on a certain set of variational parameters, but also a K

dependence of the splitting of the initial Hamiltonian on one

or more parameters, a common place in the variational =e‘5EN‘12 exr[—2ﬁ<\~/1>phcos{k-a)]. (43

mean-field theorie® In our case such an approach could be K

conveyed through the more general splittiﬁ{;: FIO(,u) Upon replacing this sum by an integral over the Brillouin

+V(u) of the initial Hamiltonian, withFo(x) andV(x)  zone and recalling th&t
being given by

A, (42

2|7 azcose —
o) &do=1o(2), (44)

o Y T i 1
Ho()= 12 (Vinpraman+ 2 wq| bibg+ 5|, (39) | 3 _

m.n q wherely(z) is the zeroth-order modified Bessel function of
the first kind, one finds

V(M):E (Mmn— M(an>ph)a:1an- (36) .
mn N1 exif — Be(k)]=e#1o(25(Va)pn),  (45)

This would subsequently lead to the corresponding set of the

Girardeau-Huber-type equatiéig®involving A and the new ~and, consequently,

variational parametet. Yet, in order to alleviate the calcu- ~

lational burden, we elect a somewhat less flexible variational Fx =&+ (\*=2\)A=B71nZp,— BN 16(2B8(V1) pp).-

scheme withu= 1, which also bears certain technical advan- (46)

tages, stemming from the fact t|’1(37(u= 1))pn=0. The value ofA that minimizes Eq(46) satisfies the equation
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113(2B(V)pn) d o the exact diagonalizatiotand, consequently, possible opti-
=3 ! _1p d—((Vl)ph), (47 mal values of the variational parameter are bound from
1o(2B(V1)pn) dN above by on#) our transformation does not possess such a

plausible limit. Rephrasing, there is @opriori physical rea-

where use has been made of the iderdity/dx=1,(x). The )
son for the optimal values of to be always smaller than

pure local-coupling limit of the last equation reads

one.
23— @A2am)ing l3(2p3e SN )
MItoes (236 PR, =1 IV. RESULTS AND DISCUSSION
(48) A. Zero-temperature case
equivalent to what was found by Yarkony and Si'BéXDW' The self-consistency equati@s2) for the optimal value
ing to tgg: asymptotic relation for the modified Besselof \ (denoted byr*) is apparently determined by the pa-
functions; rameters)/w, ¢, g. Since we are interested in the effects

inherent to nonlocal coupling we can adopt as our parameters
J/w and ¢, with g being fixed. In the presence of both local
and nonlocal coupling, the relative sign of the corresponding
o coupling constants plays a role. For definiteness, we keep
and to the fact that the zero-temperatuge{ + =) limit of  yositive, and letp take on both positive and negative values.
(V1)pn is finite, In Fig. 1(@ we plot the value ofA* which gives the
) minimal free energy at zero temperature for five different
e (V2T values ofJ/w between 0.25 and 4.0, anp=0.25. The de-
r, pendence of\* on ¢ is clearly nonmonotonous, with the
minimum equal zero ap/g=1 and the limiting value of one
27 \/Fl realized at higher values ap. The dependence is smooth
+ T, (A—=D)erf| A Pl A1, (B0 and continuous for small values O0fw, whereas for larger

values an abrupt transition occurs between “weakly dressed”

(x>1), (49

2

(V) o J& BN

one has and “strongly dressed” states. In the latter case, the free
~ energy of the system has two minir(es a function of\). At

'1(23<V1>ph)H1 (51) a certain coupling strength the free energies of the two

IO(2ﬁ<vl>ph) ' minima become equal, marking the onset of the abrupt tran-

_ sition between the weakly dressed and strongly dressed
As a consequence of Eq&®0) and(51) one obtains the fol-  giates. As stressed elsewh&éhe discontinuities registered

lowing self-consistency equation for the zero-temperaturejy sych transitions might be the result of the changes in the
bottom-of-the-band situation: polaron structure occurring too rapidly to be accurately ac-
counted for by the variational entities used, and our method
A—1= A /Z_Wﬁerf( E)\> _ (irl)\Jr Zﬂ e7(1/2)1‘1>\2. is not devoid of that. In order to illustrate the character of the
r; A 2 A A dependence og, in Fig. 1(b) we present the same informa-
(52 tion for g=0.5. For negativep the behavior is qualitatively
In the limit of pure local coupling$— 0, and consequently similar, whereas for positive the abrupt transitiqns appear
I';—29% A, —0, A—wg?) the last equation goes over into already for rather small values dfw. Forg=0 [Fig. 1(c)]
the dependence of* on ¢ is monotonous and does not
22 depend on the sign ap.
Mlt+—e oM =1, (53 The most interesting feature that we observe is the exis-
tence of a “dressing minimum” a¢p=g. While the value of
equivalent to what was derived by Yarkony and Sifdep  the relative coupling strength at which it appears, and the
the zero-temperature bottom-of-the-band situation. In thebsolute value of the minimum might be at least partly an
limit of pure nonlocal coupling one finds a similar equation artifact (i.e., the consequence of the approximations made in
the derivation of the expression for the bound on free energy
-1 (54) to be minimized, the very existence of this minimum seems
to be a robust characteristic. Whgr-0 the feature related
to the minimum becomes narrower and narrower, and a sin-

The transcendental equatiof@) and(52) can be solved  gy|arity remains fog=0 [not displayed in Fig. @)].
numerically for different choices of values of the parameters

(J,0,9,¢,T). The numerical results thereby obtained are
presented in the following section.

As for the allowed values of the variational parameter While the zero-temperature self-consistency equadan
a remark has to be made here: unlike the case of the Holstetfepends onJ and o only through their ratio, its finite-
Hamiltonian, where in the limit of vanishing electronic trans- temperature counterpa(62) depends both od/w and w
fer integrals (=0) the Lang-Firsov transformation yields itself (through the Boltzmann facta #“ incoming into the

M 14 e @2
w

B. Finite-temperature case
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FIG. 1. Optimal dressing paramet&®* as a function of the
nonlocal-coupling strengtl$, at T=0 K, for different values of
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expression fokJ;). Therefore, it seems natural to look at the
solution to this equation for fixed values &fw andg, and
different nonlocal coupling strengths, expressing temperature
in units w/kg .

The dependence of* on the temperature fal/w=1,
and different nonlocal coupling strengtfisoth positive and
negative is depicted in Figs. @-2(e) for g=0, 0.25 and
0.5. What can be clearly observed is that wigeand ¢ have
the same sign this dependence is monotonous,N’e.in-
creases monotonously as temperature is increased. However,
wheng=0, org and ¢ have opposite signs, the dependence
is nonmonotonous for smaller absolute valuespofand be-
comes monotonous for larger absolute valuegof

The variational parameter does not have a direct physi-
cal meaning. Its implicit dependence on temperature and the
parameters of the model (w,q, ¢) illustrates only the non-
trivial character of the phonon dressing of the excitation. To
that end, it is of interest to examine the character of the
temperature dependence of the renormalized transfer integral
Jeti={(Va)pn, where(V,), is given by the expressio@2).
Figures 3a)—3(c) depict the ratioJe¢;/J in the casel/w
=1 for g=0 andg=0.25(in the latter case both for positive
and negative nonlocal-coupling strength& can be ob-
served that for smaller nonlocal-coupling strengthg (
|=0.25,0.5) the temperature-dependent renormalization is
mild (at least up to the higher temperaturés-4w/kg),
whereas for larger values ¢f it becomes much stronger. We
also register cases when simultaneous local and nonlocal
coupling changes the sign of the electronic transfer integrals
[Fig. 3(b)], and when the ratid.¢;/J at low temperatures
acquires values slightly larger than dreg. 3(c)]. While the
first feature we ascribe to the nonlocal coupling being an
additional transport mechanism, the second one might be, at
least to a certain extent, an artifact of the approximations
made.

C. Phase diagrams

We define the phase boundaries between regions of weak
dressing and strong dressing as the parameter values for
which A* =0.5 (obviously, there is some arbitrariness in this
choice. In Figs. 4a)—4(c) we plot these phase boundaries in
the T-¢ plane for different values of the ratitw and fixed
values of the local-coupling strengtg<0,0.25,0.5, respec-
tively). For any particular pair of boundary curvés., for
any fixed value ofJ/w and the two possible signs of
nonlocal-coupling strengihtthe region between them repre-
sents weak dressing and the outer region depicts strong
dressing.

For positive values of, we see that the curves fdf
=1.0,2.0,4.0 look qualitatively the same. The obvious trend
is that whenJ/ @ becomes larger, the weak dressing region
becomes more and more extended, which is to be expected.
However, for smalled/w equal to 0.5 this region is confined
to a small, “tonguelike” shaped, closed domain in thep
plane.

For nonzeray phase boundaries for negative valuesfof
exhibit differences with respect to that of positive values of
¢ in the region of low temperature&{T=<w). The region
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line indicates the limiting valua*=1.
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corresponding to weak dressing is less extended, the last fe
ture being more and more pronounced Hg becomes

PHYSICAL REVIEW B9, 144302 (2004

present in the local-coupling case, and gave a plausible
physical explanation of its nature, in terms of the bond char-

smaller. However, in the region of higher temperatures thecter of nonlocal coupling. In our forthcoming publicafibn

behavior is similar, regardless of the signéfi.e., the rela-
tive sign ofg and ¢).

V. IMPLICATIONS FOR OPTICAL AND TRANSPORT
PROPERTIES

Within the framework of Kubo’s linear-response theory,
transport coefficients are determined by the correspondin
time-correlation function&®?° In particular, dc conductivity

we study the extended Holstein model by means of Lanczos-
diagonalization, both for symmetric and antisymmetric non-
local coupling. We calculate the optical conductivity corre-
sponding to this model and corroborate results of Capone
et al®®in the case of antisymmetric nonlocal coupling. We
also show that in the case of symmetric nonlocal coupling an
analogous high-energy absorption feature does not exist,
Which is to be expected from the physical circumstances in-
herent to symmetric coupling. More elaborate discussion we

is expressed through the current-current autocorrelation fungefer to this forthcoming publication.

tion (j(t)j(0))y, where(---) stands for the thermal ex-
pectation value with respect to Hamiltoniginof the system.

In the zero-temperature limit, it reduces to the ground-state

expectation value.
The utility of the method of canonical transformations in
this context is based on the simple property of thermal ave

ages|] =exp@©)j exp(—9), H=exp©H exp(=9)]
(0= M70)q, (55)

being an immediate consequence of the reldfiofA),
=(A)q [with A=exp©Aexp(—9)], which is valid for an
arbitrary operatoA and an arbitrary unitary transformation

U=exp@©. WhenH stands for the local-coupling Holstein
Hamiltonian, the corresponding current operator is given b

j=ied> al  ,am+H.c., (56)
m
and the use of the relatidi®5) is supplemented by an addi-

tional assumption that the thermal average oMecan be
approximated by taking thermal average over the Hamil

r_

VI. SUMMARY AND CONCLUSIONS

In the present work we have investigated the influence of
simultaneous local and nonlocal electron-phofesph cou-
pling on the nature of polaron states, mainly through analyti-
cal means. As our point of departure, we have adopted an
extended Holstein Hamiltonian and a generalized canonical
transformation of the displacement-operator type. In order to
allow for an additional flexibility of the transformation pa-
rameters, use has been made of the variational principle
based upon the Bogoliubov inequality for the Helmholtz free
energy of the system. The variational parameter introduced is
a measure for the phonon dressing of the polaron. The ap-

ypealing feature of the variational approach is that it does

away with the need to make any assumption about the rela-
tive magnitude of the electronic transfer integdahnd the
phonon energyo.

We have mainly been interested in the changes of polaron
structure resulting from the inclusion of nonlocal e-ph cou-

pling. We find nonmonotonous dependence of the optimal

tonian in which the electronic transfer term, as transformedf@ue for the dressing parameter on the nonlocal-coupling

by the Lang-Firsov transformatiomon-adiabatic termsis
removed® This is justified at least in the adiabatic strong-
coupling regime. However, in case nonlocal coupling is
taken into account, the current operator adopts the fone
“+"and “ —" signs correspond to the symmetric and anti-
symmetric nonlocal couplings, respectively

i :ie% [J+ d(Upsrtumlal jamtHe.,  (57)

i.e., it depends explicitly on phonon operators through

strength. Moreover, we observe the existence of a dressing
minimum, which in the zero-temperature case goes down to
zero, indicating the absence of the bandwidth reduction. We
interpret this dressing minimum as a compensation phenom-
enon between the local and nonlocal e-ph couplings. This
compensation phenomenon could be of importance in the
area of organic crystals, since weak dressing implies large
bandwidths and high mobilities, registered in these narrow-
band materials.

The general message of this paper is that the presence of
nonlocal e-ph coupling introduces, in certain regimes of the

Eb;rn+ b.,. Besides, our generalized canonical transformainvolved physical parameters, qualita_tive changes into the
tion does not yield an exact diagonalization in any limit. Asnature of polaron states. The approximate character of the
a consequence, the straightforward generalization of th@resent treatment makes the obtained results inevitably quali-
aforementioned procedure would necessitate uncontrollabl@tive. An independent corroboration and quantitative im-
approximationsy and is therefore rather unwie|dy_ provement UtI|IZ|ng the Computational methods akin to those
However, the problem can be addressed by computation@mployed in the local-coupling contéxt is needed.
means, through the device of Lanczos-diagonalization-based
calculation of dynamical correlations. This was done by Ca-
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APPENDIX A: CALCULATION OF THERMAL AVERAGES

1
. . . . <_(CC mn,n’m’ >ph_2}\ z gmngn m’ +Nq T):
While an exact evaluation is not possible, the thermal
averages required in this paper are amenable to an approxi- (A7)
mate calculation at the level of second-order cumulant iy N
expansiorf’2 For an arbitrary operatoy and an arbitrary pat|ons

so(;t of averi':lglng m(\j/olved the expansion up till the second- |t the elements of the matrig depend only orm—m’
order cumulant reads (translational invariandeone can defing ,,_ = fny and

(expV) = expl (V) + 2 ((V3)— (V)?)}, (A1) rewrite Eq.(A4) in the form

q,7 representing the thermally averaged phonon occu-

which in the caséV)=0 goes over to <|~:m>ph:; T,.Fo, (A8)
(expV)=exp(3(V)). (A2) wherein

An example when this expansion is exact rather than ap-

proximate is the thermal average of éxpwhere A=c,a TngE Anmfn/ o (A9)

+c2£ﬂ is a linear combination of the harmonic-oscillator n’

creation and annihilation operators, in which case it reduceg \ye assume that in EqA7) the most important contribu-
to the well-known Bloch identity* The multiphonon opera- tions come from the terms withh=n andm’=n’.89 the

tors appearing in the nonadiabatic terms of the transformef,o+rix T becomes diagonal, with elements given by
Holstein Hamiltonian assume such form, with=—c¥ , m ’
characteristic of the displacement operator which generates
coherent states when acting on the linear-harmonic-oscillator Tom= ex;{ 22
vacuum>> However, in our case one is confronted with the
more complicated thermal expectation values.

One type of thermal average we have to perform is

: (A10)

+ Ng, T) Gho

Gq =|gmm gnn|2 2 (|g(ran|2+|ggk|2) (All)
k#m,n

(fmm’)ph:«ecfefc)mm’)phv (A3) . . . L
Hence, in the Einstein phonon limitwg— ; Ngr
wheref .,y IS @ number matrix, that is, —N;) one obtains
mm’>ph_2 Amm' nn’ (A4) <fmm>phzfmmv (A12)
~ 2
with <fmn>ph:e » [(lIZHNT]anfmn (m#n), (A13)

nn’ c _c c_c' with T",,, given by
Amm':<(e )mn(e )n’m’>ph:<(e )mn,n’m’>ph

(A5)

. o . Tmn=2 Gihn=Gmmt Gon=Gmns  (AL4)
representing the shorthand notation in which the primed ma- q
trix elements ofC are invoked every tim€’ is encountered.
Up to the second-order cumulai2), one hagbecause the B 1 Z
odd order cumulants are equal zero, in particul@) Gn= it 2 & (A15)
:0),

We now turn to the phonon averag"\%mn>ph appearing in
Amm,~exp( [(C—C')? Tmnnrme)ph Eq. (20):
=Xz (CHmnph €XXZ(C"?)nrme) ph - ~ e
m”,p nme <an>ph:<€mn>ph+2 wq((bgéq'l'gqbfq'l'bng
XeX[X—(CC )mn,n’m’>ph- (AG) q

where, as can routinely be derived, _bgbq)mn>ph- (Al6)
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In order to find the thermal average ob/@%+g%_|
+bg5q—b:;bq)mn, we first 'calcglate((bcréqugqb_q)mn>ph
starting from the operator identity

d
Ty {[€¥(bggi+ g% e Tnon

_< XC[C b gq+gqb—q]e_xc)mn>ph

On account of the fact th@C,bg]z[C,b,q]= —\g 9, this
can easily be reduced to

(A17)

d xC(plga 4 —xC = —2\{(g% ¢
&<[e ( qg +9 —q)e ]mn>ph_ <(g g )mn>ph-
(A18)

PHYSICAL REVIEW B9, 144302 (2004

([€*°(blg9+ 9% _g)e *“Tnmpn= —2AX(9%9 ™ D mm

(A26)
for m=n and
([e*%(big+g%_g)e *“Tnmon
7T —
= (gqg q)mn (A27)
Umn

for m#n. Upon executing the integral in EGA19), with the
aid of Egs.(A26) and (A27), respectively, it follows that
((bib

o= bIbmmph=A2(0%G D (A28)

Upon integrating the last equation between 0 and 1, on&nd form#n,

finds

~ ~ o~ 1 ~ o~
(B3 ndpr=—2) | AXET Do
(A19)
As a special case of Eq6A12) and(A13), it holds that

<(aq§7q)mm>ph:(gqgiq)mm’ (A20)
(@G pr=e N TV gag=a) | (m£n).
(A21)

On performing the integral in EQA19), making use of the

last two equations, it follows that

((0Fg9+9%_ ) mmph=—2M(Q%G Vi (A22)

and form#n,

~ ~ e~ [
<(bc1;éq+gqbfq)mn>ph:_ U_erf()\ \/Umn)(gqgiq)mm
mn

(A23)

where erf<=(2/\/?)f0e*t2dt is the error function, and the

abbreviationU ,,,=(1/2+ N:)I',,, has been introduced.
The expression for the thermal averaggb!b,

—b! bq)mn>ph can be obtained in a similar manner: the op-

erator identity

d
Tx{Le(bgb)e ™ Tmn)pn

:_)\<[exC(ngq+gqb xC ]mn>ph7 (A24)

when integrated between 0 and 1, leads to
<(Ec§6q_ bgbq)mn>ph

1
=- kf dx([€*“(blg?+g%_g)e *Tnpn. (A25)
0

On making the replacemenf—xC in Egs. (A22) and

(A23), one obtains

—)\zUmn_ 1
\/ )\erf()n/ mn) T ———————

mn

((0IDg)mn) ph=

X(gqg’q)mn, (A29)

where the last equation has been derived by making use of

the identity

a 1 2
f erffudu=aerfat+ —(e @ —-1). (A30)
0

Jm

Summing up the resul#A22) and (A28), one finds

((0;g9+9% _ 4+ blbg—0ibg) mmpn
:()\2_2)\)(9(‘9 q)mm-

Similarly, from Egs.(A23) and (A29) it follows that

(A31)

<(B(¥§q+’éq'57q+’5g5q_ babq)mn>ph
e*)\ZUmn_ 1

a
+1/ (A—l)erf()\\/umn)}
Umn Umn

X (999" D mn-

Upon inserting EqstA31) and(A32), along with Eqs(A12)
and (A13), into the expressiof42), one finally obtains

(A32)

(Vinmph=e+(A2=20)A (A33)

and, likewise, fom#n,

e MUmn—1
Umn

~ )
<an>ph=8mne MUmnt

U” (A—l)erf()\\/umn)}Amn, (A34)

whereinA,, andA are given by
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AmnEw% (gqg_q)mn: (A35)

A

A (A36)

APPENDIX B: EXPRESSIONS FORTI'{, A, AND A,

We begin by noting that the general expressiéil) in
the case oG], ., reduces to

Gﬂmm:1=|g?nm_ g%tl,mt1|2+|gg1,mt1|2+|g?ntl,mt2|2'
(B1)
On taking into account thagy, . 1|?=[9f 1 m=2|?, the last
equation can be rewritten as

Ghme1=0mm Omeamea?+ 2|00 meal? (B2

With the general form of thg-dependent e-ph coupling con-

stants, and the notatiofy,=9, 9mm=1=¢, it is straight-
forward to obtain

|98 = 90~ 1 m=1]°=209°N"[1—cogq-a)], (B3

|98 me1]?=*N"[1+cogq-a)]/2, (B4)

which routinely leads to

G me1=N"1[29%+ ¢?—(29%— ¢?)cogq-a)]. (B5)

PHYSICAL REVIEW B69, 144302 (2004

Hence, one readily obtains

[=2 GY 1o1=20%+ ¢2. (B6)
q

ForAn, m=A andAp, n+1=A; one has, respectively,

A= w% (g?n,m-#lgr;?—l,m_*' g(rqn,m—lgr;ﬂl,m_*' g(rqn,mgr;l,qm)'

(B7)

A= w% (g%mgr;,qmtl_l_ g?n,mtlgr;gl,mil)* (B8)

which can easily be reduced to

A=wN"1TY {¢?[1+cogq-a)]+g?}, (B9)
q

A;=wN" 1> gé[1+cogq-a)]. (B10)
q

Upon executing thel sums in the last two equations, one
finally finds
A=w(g®+¢?), (B1D)
Ar=wgd. (B12)
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