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The Harris-Luck criterion judges the relevance(pbtentially spatially correlated, quenched disorder in-
duced by, e.g., random bonds, randomly diluted sites, or a quasiperiodicity of the lattice, for altering the critical
behavior of a coupled matter system. We investigate the applicability of this type of criterion to the case of spin
variables coupled toandom lattices Their aptitude to alter critical behavior depends on the degree of spatial
correlations present, which is quantified bwandering exponentWe consider the cases of Poissonian random
graphs resulting from the Voron@elaunay construction and of planar, “fay® Feynman diagrams and
precisely determine their wandering exponents. The resulting predictions are compared to various exact and
numerical results for the Potts model coupled to these quenched ensembles of random graphs.
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[. INTRODUCTION bond type might soften the transition to a continuous tne.
For the case of two dimensions it could be rigorously estab-
The concept of quenched disorder coupling to the localished that even an infinitesimally small amount of disorder
energy density has evolved to be the main framework for thesuffices to indeed induce this behavidr?’ In three dimen-
modeling of the types of randomness found in real physicasions, sufficiently strong disorder coupling to the local en-
systems:? In the presence of frustration this includes theergy density is numerically found to soften first-order phase
vast field of spin glasses, which in the past decades has dransitions to second-order ones, see, e.g., Refs. 28-30.
tracted an enormous amount of analytical and numerical re- Obviously, for many physical systems the assumption of
search, see, e.g., Refs. 2—5. Here, we will be concerned withn uncorrelated, isotropic distribution of defects is not an
the simpler case of models with purely ferromagnetic cou-adequate description. Instead, due to various reasons the dis-
plings. The first investigations of this problem have consid-tribution of defects is spatially correlated. This effect occurs
ered defects distributed in the system completely aisotropically due to long-range interactions between the non-
random®’ realized in lattice models, e.g., as random varia-magnetic ions or in the form of line or higher-dimensional
tion of the coupling strengths or random deletion of bonds odefects’~3°In these cases, the reasoning leading to Harris’
lattice site~10 relevance criterion is no longer directly applicable, but can
The relevance of this random-bond or dilution type ofbe generalized accordingly. For the case of algebraically de-
disorder for the universal behavior of spin systems has beecaying correlations one finds a relevance threshold depend-
the subject of much resear®fit=2" For the case of models ing on the dimension of the defects as well as the power of
undergoing a continuous phase transition on regular latticeshe decay of the correlatiod$3? For a different model, not
Harri€ argued that for models with a specific-heat exponentovered by the random-bond paradigm, namely the coordi-
a<0 the fluctuations in the local transition temperature in-nation number nonperiodicity found in quasicrystals and
duced by the disorder degrees of freedom are not strongther aperiodic structures, Lutiormulated a relevance cri-
enough to alter universal features of the model such as thierion that includes the situations discussed as special cases.
critical exponents. Albeit not originally claimed by Harfis, There, the “break-even point” for the relevance of random-
for the converse case of a positive specific-heat expament ness in terms of the specific-heat exponeris shifted from
significant change of the system’s behavior was expectedts uncorrelated valuer.=0 to somewhere in the region
The precise effect of such a relevant perturbation has been~<a. <1, depending on the strength of spatial correla-
the subject of some debaté.While it was originally be- tions of the disorder degrees of freedom measured by a geo-
lieved that the transition temperature fluctuations mightmetrical fluctuation omwandering exponenA structure con-
smoothen out the phase transition so far as to completelgeptually related to these aperiodic models is given by
destroy it, it was later on realized that this, in fact, does nodifferent varieties ofrandom graphssuch as Poissonian
happen and, instead, the system experiences a crossover fraforonorDelaunay triangulatiori§®’ or the planar, combina-
the pure fixed point to a new, disorder fixed point, resultingtorial triangulations encountered in the dynamical triangula-
in a new set of critical exponents and further universal proptions approach to quantum gravity resp. the dual planar and
erties such as amplitude rativs>148-2%This scenario has orientable¢® Feynman diagranm®.Although spin models on
been especially thoroughly analyzed for the case ofc¢he quenched ensembles of these graphs have been considered in
=2,3,4Potts models in two dimensions, where results fromnumerical simulation studi€€;*® no connection has been
perturbative method3™2° agree well with the outcome of made as yet with the predictions of LuU€Kor general sys-
numerical simulation studie§:>=2®From this general obser- tems with connectivity disorder. In particular, the geometri-
vation of a smoothening effect of disorder on phase transieal fluctuation exponents appearing in this relevance crite-
tions, one might expect that for systems exhibiting a first-rion have not been determined for the case of these random
order transition in the regular case, disorder of the randomgraphs.
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The rest of this paper is organized as follows. In Sec. Il
we introduce the ensembles of graphs to be considered,
elaborate on their generation in a computer experiment and
review some of their known properties. Section Il is devoted
to a presentation of a version of the Harris-Luck relevance
criterion suitable to be applied to the case of random graphs
considered here and a discussion of its connection with pre-
vious results. In Sec. IV we introduce different methods to
precisely determine the wandering exponent for both graph
types and present the results obtained. Finally, Sec. V con-
tains our conclusions.

Il. RANDOM GRAPHS

In the following we present construction techniques and
properties of two different kinds of two-dimensional topo-  FIG. 1. Patch of a Poissonian VororDelaunay triangulation of
logical graphs whose randomness is solely encoded in thi&e plane. The spherical, shaded dots denote the randomly distrib-
degree distribution of their vertices, resulting in a topologicaluted generators. The solid lines enclosing these generators define
connectivity disorder. In contrast to the generic randomconvex polygonal areas whose points are closer to the origin than to
graphs discussed in the context of scale-free networks, smafy other generator. They form the network of Vorooelis, which
world models, etc?’*®the ensembles of random structures results in a three-valent graph whose vertices are depicted by the
considered here aneot fully determined by their degree or dark boxes.. Its geometr_ical d_ual, consisting of _the geqerators and
coordination number distributions, but additionally exhibit a "€ ¢onnecting dashed lines, is the Delaunay triangulation.
well-defined topology and long-range correlations of their

disorder degrees of freedom. T i _ N
A. Poissonian VoronotDelaunay triangulations for any closed spherical triangulation, whe¥edenotes the

Irregular cell structures or froths appear in a large variet)f1umber of triangles. In the I'mi of infinite triangulations,

of natural systems, such as foams or biological tissi@e N—, one thus obviously hagy)=(q;)=6. The second
common inverse problem of constructing such a connectiviynoment ofq is not exactly known, but is numerically found
or cell structure from a given irregular arrangement of verti-to be”™

ces(so-called generatorss solved by the VoroneDelaunay 2 )

constructior?® In two dimensions, the Voronocell of a mo=(d;)—(0;)*~1.781, 2)

given generator is a convex polygon around it, enclosing ths N— . It turns out that the random variables are not
part of its neighborhood which is closer to it than to anyindependently distributed, but are reflecting a spatial corre-
other generator, cf. Fig. 1. This is in complete analogy withjation of the disorder degrees of freedom in addition to the
the notion of a Wigner-Seitz elementary cell in crystallogra-trivial correlation induced by the constraifi). The form of
phy. This construction results in the three-valent Voronotthese correlations for nearest-neighbor vertices is commonly
graph and the dual Delaunay triangulation. If the generatorgescribed by the Aboav-Weaire lafvwhich states that the
are located completely at random, as is the case in the exota] expected number of edges of the neighbors g&iled

ample of Fig. 1, the resulting graph is known as Poissoniaiel|, qm(q), should vary linearly withg,
VoronotDelaunay triangulatioi®

These lattices are randomly disordered in several respects: am(q)=(6—a)q+b, 3

edge lengths, cell volumes,_ ete. vary, as well as the Coordl\7vherea and b are some parameters. In turns out, however,
nation numberg of the vertices of the Delaunay triangula-

tion. To facilitate comparison with the second type of ran—ijat Eq.(3), albeit being a good effective description for a

dom graphs to be introduced below, we here restric arge variety of cell systems including the case of Poissonian

ourselves to the latter aspect of variable coordination numz > o°! “Delaunay triangulations, is merely a leading-order
: P : and not an exact property of these systéfns.
bers, i.e., we do not take any effects from variable lengths or
areas into account. Thus, the distributiBfiq) of coordina-
tion numbers is the only random variable involved. Addition-
ally, to eliminate surface effects, the generators are randomly An ensemble of planar triangulations with properties very
placed on the surface of a sphere instead of a patch of thdifferent from those of the Poissonian Vorosidelaunay lat-
plane. Thus, the resulting random graphs are triangulationices is given by the so-called dynamical triangulations
of spherical topology. model, which has been used as a constructive approach to
From the Euler relations, the average coordination numeliscrete Euclidean quantum gravity in two dimensidhs.
ber is a topological invariant for a fixed number of trianglesThis ensemble of combinatorial triangulations is defined as
in two dimensions, given B that of all gluings of equilateral triangles to closed surfaces

B. Dynamical triangulations

144208-2



HARRIS-LUCK CRITERION FOR RANDOM LATTICES PHYSICAL REVIEW B9, 144208 (2004

0.301 : : N
»— Delaunay triangulations

+—o dynamical triangulations

e

)

G
T

<

[\

=]
T

(b)

=]

—_

=}
I

g

©

S
T

FIG. 3. Comparison of the degree distributioRéq) of Pois-
sonian Delaunay triangulations and dynamical triangulations in the
limit of an infinite number of triangles. The results are taken from
Refs. 49,50.

as N—x, whereas Eq.(1) still holds. Also, the Aboav-
FIG. 2. (@ The link flip move on two adjacent triangles of a Weaire law(3) correctly describes the leading-order behavior

dynamical triangulatior{dashed lines The solid lines denote the of the n_eare_st-nelghbor Correl_at'dﬁs' .
corresponding dual, three-valem® graphs. (b) Example of a ~Considering more geometric properties of the graphs, the
spherical dynamical triangulation embedded into three-dimensiondifférences between both ensembles become even more pro-
space. Note that the requirement of equilaterality of the triangles ilounced. Especially, the quantum gravity graphs of the dy-
only approximately fulfilled for the embedding shown, since therenamical triangulations model can be shown to be highly frac-
is no generic exact embedding algorithm for performing it. tal, being self-similarly composed of “baby universes”
branching off from the main surface, i.e., macroscopical sub-
of a given topology(such as, e.g., that of a spherehere all  graphs attached to the main body by only a few lifkEhis
gluings are counted with equal probability. A dynamical wayfractal structure leads to an exceptionally large internal
of generating such graphs is the repeated application of sddausdorff dimension ofl,=4 as compared to the topologi-
called link flip moves which rewire a given netwdikee Fig. cal dimension of twd®®’ whereas for the Poissonian
2(a)]. It is known that this procedure converges to a limiting VoronorDelaunay triangulations the Hausdorff dimension
distribution with specific properties described below. Sinceremains at the trivial value of the topological dimension. The
this flip dynamics introduces large temporal correlations bedifferences between the two graph ensembles are also very
tween subsequent random triangulations, we do not actuallgtrikingly seen in the distribution$(q) of coordination
use it to generate the graph instances needed below, but inumbers as depicted in Fig. 3. WhiR(q) is peaked ag
stead revert to a recursive insertion technique known to yield=6 for the Delaunay triangulations, it drops monotonically
the same graph distribution, but independent graph realizastarting fromq= 3 for the case of dynamical triangulations,
tions in each step! In this construction, no edge length dif- and large coordination numbers are much more probable for
ferences are involved and, again, the randomness is soletiie latter lattice type. It can be shown that for large coordi-
encoded in the degree distributi®t{q) of the vertices. Al- nation numbers the distributionP(q) falls off as
though these objects are entirely defined in terms of theiexp(—oqinq) with o~2 for Poissonian random latticé$,
intrinsic connectivity properties, an embedding of an ex-whereas for dynamical triangulations it declines much slower
ample dynamical triangulation into three-dimensional spacgroportional to exp{ oq) with o=1In (4/3)~0.3 (Ref. 50.
is shown for illustration purposes in Fig(l8. Technically,
the geometrical duals of these triangulations are given by the
ensemble of planar, “fat(i.e., orientable ¢3 Feynman dia- IIl. THE RELEVANCE CRITERION
grams without tadpoles and self-energy insertions. The sta- Tyying to decide for which kind of models disorder of the
tistics of these objects can be explicitly treated by means ofandom-bond type constitutes a relevant perturbation, Harris

matrix models}”**leading to exact solutions for the coordi- g,ggested the following line of reasoning. For a system of
nation number distributiof?(q) and many other properties yncorrelated random bonds, the fluctuationg(J) of the

0,38 H H ~ . . . . .
of the modef’*® Compared to the Poissonian VOrénol ayerage coupling in patches of the lattice decline with the
Delaunay model, fluctuations are much more pronounced fofnear patch sizeR according to the central limit theorem,
these graphs, and it can be shown that the variance of coog s,

dination numbers approacti&s*

wo=2112 (4 or(J)~R™92, )
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whered denotes the spatial dimension of the system. Sincelefining the wandering exponeat of the considered graph
disorder of the random-bond type couples to the local energgype. The Hausdorff dimensiadh, enters here to account for
density, local fluctuations of the coupling induce such fluc-the cases of fractal graphs. In E§), the averageé- ) are to
tuations of the effective local transition temperature, whichbe understood as the ensemble averages of the considered
decline identically with increasing patch size. Approachingclass of graphs of a given total size. While fer=1/2 the

the critical pointt=(T—T.)/T.=0, the fluctuations in a usual 1{(B(R)) behavior of uncorrelated random variables

correlation volume scale as is recovered, for random lattices with long-range correlations
of the coordination numbers one expeats 1/2, leading to
oi(J)~ ¢ V22, (6) a slowed-down decay of fluctuations. Near criticality, the

fluctuation o,(J) of the average coordination number in a
where the power-law divergende~t~" of the correlation correlation volume induces a local shift of the transition tem-
length was used. For the critical behavior of the pure systemperature proportional tf|%”(~) 4,12 For the regular criti-
to persist, these fluctuations should die out as the reduceshl behavior to persist, these fluctuations should die out as
temperature is linearly tuned to the critical potst O, i.e.,  the critical pointt=0 is approached. This is the case when
one should haverd/2>1 or, with appeal to hyper-scaling, does not exceed the threshold value
a<0. In the converse cage>0 an altered universal behav-
ior might be expected. Later on, Chayesal "' showed ot _1ma
that under quite general conditions the specific-heat exponent @™ dyv 2—a’
of the disordered system, ays, should be negative. This
seemed plausible, sinee was believed to coincide with the
crossover or stability exponent of the respective
renormalization-group fixed point:>® Later on, however, it
was claimed that in some cases the stability exponent might 1-20
differ from «, such that even for positive the regular criti- ag= ;
cal behavior would prevaf® Several examples of such be- 1-o
havior, and even the opposite case of disorder being a rejt js obvious that forw= 1/2 the Harris criterion is recovered.
evant perturbation albeita<<0, have been explicitly It is easily seen that the case of algebraically decaying
constructed for the case of hierarchical latti€e€® Thus,  correlations discussed in Ref. 31 is included in B as a
the general validity of the relevance criterion implied by special case. Specifically, for the case of connectivity disor-
Harris’ argument has recently been the object of some deder considered here, an isotropic power-law correlation

©)

provided that hyperscaling is in effect. Conversely, for fluc-
tuations satisfyingw>w. a new type of critical behavior
could occur. Rewriting Eq(9) as

(10

bate, see, e.g., Refs. 66—-68. would be given by
As soon as the assumption of uncorrelated disorder de-
grees of freedom is relaxed, Harris’ reasoning is no longer Gqq(i,))=(5q;6q;)~dist(i,j) 2, (11

applicable as it stands. For a random-bond model with long- — o

range correlations of the bond variables, Weinrib andWheredq;=q;—q denotes the coordination number defect at
Halperir?® performed a renormalization group calculation, vertexi and the distance dist() is defined as the unique
which was later on refinedf. They find that, if the disorder number of links in the shortest path of links connecting the
degrees of freedom are correlated algebraically with a decafyvo verticesi andj. Then, the fluctuation of the meajyr
exponent a<d, disorder is irrelevant if a<2—2d/a, over a spherical patcR of radiusR is given by

whereas in the opposite case, the system flows towards a

new, long-range correlated disorder fixed point. For more 5 — a?(89) 1

general disorder degrees of freedom and types of correlations o (6qr) = TRan + R2dh iijEE b (60;60;)
including the ensembles of random graphs considered here,

this argument can be adapted in the spirit of Luck’s reason- ~constx R~ %+ constx R™2 (12

ing for the case of aperiodic structut®as follows. Consider
a patchP of spherical shape with radil® and a volume of
B(R) vertice$® on a given realization of a triangulation. The
average coordination number i

asR— . For short-range correlatiorss=dy, the leading be-
havior is that of Eq(5), such that the Harris criterion stays in
effect. For long-range correlatioas<d,,, on the other hand,
the leading term is proportional & 2. Comparing to Eq.
(8), we arrive at the following expression:

B 1
IR=55 ;P qi, 7 w=1-a/2d,, (13)

_ _ such that from Eq(10) we arrive ate,=2—2d,/a, in agree-
fluctuates around its expected vallig=q [cf. Eq. (1)]. AS  ment with the direct observation in Ref. 31.

the size of the patch is increaseéRh~, these fluctuations  Since for systems with sufficiently long-range correlations
decay as of the disorder degrees of freedam>1/2, such correlated
disorder ismore relevant than uncorrelated randomness in
or(D=(I(R)—Jg| Iy~ (B(R)) (1= @)~ R~ (1~ @) the sense that a change of universality class can already be

(8) expected for some range okgativevalues ofa, cf. Eq.
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(10). If, on the other hand, correlations decay exponentially, ' ' ' ' ' ' '
the thresholda.=0 of the Harris criterion should stay in «— Delaunay triangulations
effect. +— dynamical triangulations

IV. CORRELATORS AND WANDERING EXPONENTS

In view of the discussion presented in Sec. lll, two 5@ sk

complementary approaches towards a numerical determing»”
tion of the wandering exponeut present themselves, either

a direct evaluation of the scaling of the fluctuations defined

in Eqg. (8) or an analysis of the correlation functi@y(i,j)

of the disorder degrees of freedom defined in Edl) to 0
infer an estimate ofo via Eq. (13). Both of these methods

will be applied for the cases of Poissonian Vorénol 0o 2 = 4 6 8 10
Delaunay as well as dynamical triangulations. For both graph R

ensembles, a quenched average has to be taken over a num-_ -, Comparison of the connected correlatiy(R) of the
ber of graph realizations of the considered ensemble. For this ~ "~ = ) NS _
purpose, we generate lattices of spherical topology and Cor?_oordmanon number def_ecl%q=_qifq o.f Poissonian Delaunay -
sider the triangulations of varying coordination numbers asangulatlons and dynamical triangulations of shie- 125000 tri-

the basic objects and refer to their geometric duals as th{%ngles' The connecting I'n'.es are only drawn to gu'd_e the eye. The
“dual” lattices. wo short horizontal lines indicate the exact resuli=10.5 (cf.

Ref. 54 and the valueG,4(1)~—1.2295 for the dynamical trian-
gulations discussed in Appendix A, both valid in the lirNit-oo.

A. Analysis of correlation functions

For the numerical determination of the correlatorVverticesiqis merely included to improve the statistical accu-
Gqq(i,j) a decomposition of the graphs into spherical shellsacy in practical applications. On the other hand, one could
around a given vertex is performed. This is done by firstalso average on the level of the fraction,
picking a vertex of the triangulation at random and a subse- .
guent slicing of the graph into shells of equal geodesic link 9 ° (R)
distance around that vertex. For that given choice of initial Gyo(R) = ?j - (17)
vertexig, two fundamental observables can be measured, the 9n(R)

volumes of the decomposition shells, .
It turns out that, at least for the quantum gravity graphs,
i these two ways of performing the average yield strikingly
guR= > 1, (14 different results, even in the thermodynamic liffitThe
dist(l.1o) =R main motivation for using Eq(16) is that an expression of
which, if properly averaged over, give the correlator of thethe form(g'd? ¢(R)>, if integrated over all distanceR, still

unit operator, and, yields some kind of susceptibility of the associated operator
¢. Otherwise, however, correlators defined according to Eq.

g'qoq(R): ' 2 39,80 (15) (16) behave rather pathologically. Deﬁmﬂo(rl?), on the”
dist(i,79) =R other hand, corresponds to the natural probabilistic definition

: . . of the average correlation of a given quantity at distaRce
the average_ of Wh.ICh gives the ‘i’”ﬁ'atoi[, of ). In view and is thus the unique “correct” definition in the given con-
of Eq. (7) it is obvious thaB(R) =Z,_gy;(r). In the con- 1oyt and will be used throughout. Note that in this case the
text of the dynamical triangulations approach to quantumyyerage has to be performed carefully, since the maximum
gravity, there has been some debate on how to properly d@near separatiofR,,5, 0f two points on the graph is not uni-
fine (connectedl correlators on an ensemble of randomyersal, but depends on the graph realization as well as on the
graphs, see, e.g., Ref. 70. The uncertainty concerns the ordghosen initial vertex.
of taking the averages over a single graph and the graph Figyre 4 shows an overview of the short-distance behav-
ensemble, which has not been explicitly specified in@@).  jor of the correlatoiG44(R) defined according to E¢17) for
The two possibilities are given by averaging the expressionpgjssonian Delaunay as well as for dynamical triangulations
of Egs.(14) and(15) individually, i.e., as measured by averaging over 100 graph realizations
i sampled with one different starting vertex per 1000 graph
Guy(R)= <gqq( R)) (16) vertices each. The statistical errors here and in the following
aq <9i101(R)> ’ were determined via jackknifingee, e.g., Refs. 71,y®@ver
the 100 different graph realizations. Obviousi@qq(0)
where the averagé ) denotes a combined average over the=u,, corresponding to the values cited above in Sec. II.
starting vertices, and the graph realizations under consid-Note that the negative correlation at distanBesO reflects
eration, which is obviously equivalent to the ensemble averthe fact, expressed in the Aboav-Weaire @) that a vertex
age of the graphs. The additional average over the startingith coordination numbeg>6 tends to have neighbors with
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g<6 and vice versa. The correlation for nearest-neighbor 10g w | | |
points for the case of dynamical triangulations can be calcu- : % simuilation

lated in the thermodynamic limit by a series expansion of the i == fit without corrections
results found in Ref. 54, yieldinG q4(1)~ — 1.2295, cf. Ap- 1 — fit with corrections .
pendix A. This result is in reasonable agreement with the ; °

value found numerically for the example Nf=125000 tri- & I °

angles presented in Fig. &q4(1)~—1.34. The remaining 2 0.1F
difference gives a first indication of the presence of large®@
finite-size corrections for the case of the highly fractal quan- I
tum gravity graphs. Going beyorid=1, a short glance at 0.01E
Fig. 4 reveals that the correlations are much more long- :
ranged for the case of the quantum gravity graphs than fol I
the VoronotDelaunay random lattices. In fact, for the De- 0.0014 ! |

| |
launay triangulations we find that for the graph sizes up to 5 10 20 30

N=500000 triangles considered, coordination numbers of R

vertices at distanceg®= 10 apart are effectively uncorrelated  FIG. 5. Decay of the correlator G,44(R) of the coordination
up to the precision of our calculations. Due to this smallnessumbers of dynamical triangulations with=500 000 triangles in a
of correlations it is not possible to determine their exactdouble logarithmic plot. The lines show fits of the functional form
functional form from the accuracy of our measurements(18) to the data, where either the correction term was omitid (
However, a simple exponential decay can be fitted reasorE 0, thick dashed lineor included withB andb as free parameters
ably well to the behavior found. Additional checks in support(sond line). The ranges of the lines indicate the range of data points
of this picture will be presented below in this section and inincluded in the fits.
Sec. IVB.

For the case of the quantum gravity graphs, we determine a=1.91976). (19
th‘? asymptotic b’?ha"'or Of the correlatﬁt?)_ by fitting a Due to the cross-correlations &,,(R) for different dis-
suitably parametrized function to the numerical data. For th(? qa

aloebraic decav expected for this araoh tvoe. we make th ancesR, the errors estimated by standard fit routines are
ar?satz Y €xp graph type, Biased; thus, instead, the errors were estimated by jackknif-

ing over the whole fitting procedure. As a check of whether
the used number of replicas in the disorder average is suffi-
cient, we also performed the same analysis with subsets of
N . _ ._the 100 realizations. Apart from the effect of rather sudden
for R=1, taking into account an additional effective scaling; s of the fits into different, nearby minima, which always
correction with exponerti. From the d|scu53|on_|n Appendix tend to occur with nonlinear fitting procedures, we find all
B we e>_<pectb=dh=4 to be a reasonable _ch0|ce as long aseq it completely consistent with each other within statisti-
no additional, more relevant, nonanalytic corrections are.al errors. Thus e.g., for the unrestricted fit of the fd8)
present’® Note that, since this “correction” terR” is more o fing (Using the same rangeR, . —R.., as beforg a

singular than the leading terR™2, this form is merely an —2.032(115) using onlv 50 araphs aad 1.885(216) usin
effective description for a finite graph and distances smalbm}', 10 (grap)hs. gonlysbgrap -885(216) g

compared to the linear extent of the graph. Figure 5 depicts A different way to determine the decay exponenis

the behavior of the correlator of coordination numbers forbased on a direct application of the finite-size scalif§9

the case of quantum gravity graphs as well as'fits .o.f the forrTP)ehavior of the correlator. From FSS arguments it is known
(18) to the data. We expect the range of applicability of they, 5 yhe value of the correlator at a distariRe(N) scaled
form (18) to be limited at both sides: for very small distances“nearly with the size of the system behaves as

R, discretization effects are observed, whereas for large dis-

tances finite-size effects modify the expected behavior, i.e., Gqd R*(N)]~N~2dn (20)
higher-order terms neglected in E(L8). To account for _ - _
these limitations, sampled points from both sides of Rhe cf. Appendix B. The position of the reference poirRS

Gy(R)=AR 31+BR"), (18

range are successively dropped from the fit while monitoringshould be selected well within the scaling region of the con-
the goodness-of-fit parametesg resp. Q.”* We find re-  sidered graph size. Here, we take the largest used graph size
stricted fits with the correction exponefiixed at valuedr ~ as a reference and choose
=4 or, alternatively,b=3, to match the data reasonably 1

. . . . h
well. A full four-parameter fit with variable exponebtyields "
the intermediate valubé=3.15(57), in total indicating the R (N)=15(5X105) ' (22)
presence of higher-order resp. nonanalytic corrections. The
fit results are compiled in Table I. Since we consider thewhered,=4. Obviously, the resulting distanc& (N) will
correction term of Eq(18) as an effective description, we in general be fractional numbers, for which no data are di-
take the fit with a variable value of the correction exportent rectly available. Since the accessilbiteear graph sizedi/h
as the most reliable and quote as our best estimate of there rather small, this discretization effect is quite pro-
decay exponent from this method nounced. To circumvent this problem, we take a fit of the
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TABLE I. Results of fits of the functional forr(iL8) to the correlatoG44(R) for dynamical triangulations
with N=500 000 triangles and with various restrictions.

Restriction A a B b Riin—Rmax Q

B=0 —2.11(45) 1.854105 0 7-17 0.981
b=3 —2.37(29) 1.9382) 5.6(19)x 10 ° 3 4-37 0.999
b=4 —2.04(21) 1.84(75) 1.27(40)< 10°© 4 4-37 0.994
None —2.30(24) 1.91076) 3.1(67)x10°° 3.1557) 4-37 0.999

functional form (18) to the correlator with the correction ing this scaling plot, we assumext=2, in agreement with
term included as a suitable interpolation of the data used tthe results found so far and further evidence to be presented
estimate the value 06,4 R*(N)]. As an estimate of the below. The quality of the collapse does not change visibly on
statistical error, we take the error computed for the closesslightly changing the value of the exponemto one of the
integer distance. Figure 6 shows the resulting scaling plovaluesa=1.919 ora=2.09 found before. The extension of
and a fit of the functional forni20) to the data. We find the the scaling window in reduced distanBéN“h can be very
data not precise enough to resolve any corrections to theicely read off from Fig. 7 to be

expected scaling form. The fit, including a series of graph

sizes ranging fronN= 1000 toN=500 000, yields an esti-

mate for the decay exponent of

0.1=

1= 35 =08, (23)

a=2.0913), (22

with quality Q=0.53. For completeness, we have also pe;\gelding, e.g., ER=7 for N=20000 and 3=R=<16 for N

Io_rmedl t?e sami analysis IO(; th(:hcase of l;andom ID elaun f 500 000, in perfect agreement with the observations from
rianguiations. AS —expected, € resuling values Ol girect analysis of the correlator.

! . )
Sqq{f (N)] do not S?OW ticﬂﬂg accolrdtl_ng to EC{ZO?[, e, EXtending the analogy between the magnetic correlation
acking up our conjecture that the correlations are not al9&qnction in a critical spin system and the correlator consid-

braic in this case. :
" o ered here, one notes that the decay expoaelgfined above
Exploiting the FSS form(B2) of the correlator, it is also is related to the conventional critical exponents &y 2

possible to rescale the data such as to model the unlversgldh_ 7. A convenient and very precise method of deter-

FSS functionW introduced in Eq.(B2). Thus, plotting  mining 7 is to consider the scaling of the integrated correla-
Gqq(R)N¥n as a function of the reduced distanR&N"  tjon function corresponding to the susceptibility instead of
should, within the scaling region, produce data lying on aanalyzing the correlation function directly. The associated
single master curve, irrespective of the lattice volushen-  ¢ritical exponenty/ then allows one to infer via the scal-

der consideration. Such a scaling plot is shown in Fig. 7ing relation y=2— y/v. Unfortunately, however, it follows

where a nice scaling collapse of the data for an intermediatgom the relatior(1) that the average coordination number on
range of reduced distancB§N"n is observed. For produc- 4 closed triangulation is a fixed number, depending only on

—
: 1000¢
o g oz
Z o 100F o E
‘%0 1 2 P, ]
A & Gt

Q0 O%“ + N=20000 . Ny
{ T 10 | © N=40000 “*Egﬁo"‘u;c o
E | = N=80000 e
> N=125000 1
N=250000 *d
Y, | T O SR SRS - [ N=500000 -
' 10° 10* 10° 10° L —— '0|1 : N

N ’ 1/4 '

R/N
FIG. 6. Finite-size scaling of the coordination number correlator

—GggR*(N)] at distancesR*(N) according to Eq(21) for dy- FIG. 7. Scaling collapse on the universal scaling functibn
namical triangulations of sizes ranging frod=1000 to N defined in Eq.(B2) of the coordination number correlat@,q(R)
=500 000 in a log-log plot. The solid line shows a fit of the func- for dynamical triangulations of sizé¢=20 000 toN =500 000 tri-
tional form (20) to the data. angles. The vertical lines indicate the extent of the scaling window.
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FIG. 8. Decay of the averaged fluctuatiog(J) of coordination FIG. 9. Finite-size scaling of the estimates of the wandering

numbers against the inverse averaged integrated shell volurxponentw(N) from fits of the functional form(8) to the data for

1/ B(R)) according to Eqs(7) and(8) for dynamical triangulations ~ dynamical triangulations of sizeéd= 1000 up toN=500 000 tri-

(upper points and Poissonian Delaunay triangulatioftewer ~ angles. The line shows a fit of the for{@5) to the data.

points. For both ensembles lattices with=500 000 triangles have

been used. The solid lines show fits of the functional fé8jrto the  fect of the topological constrairtl), as a consequence of

data. which the fluctuationrg(J) vanishes identically at the maxi-
mum observed distancR=R,,,,. To obtain reliable esti-

the number of triangle!. Thus the corresponding suscepti- mates for the wandering exponeatfrom a fit of the func-

bility always vanishes identically, such that the method outtional form(8) to the data, we again successively drop points
lined above cannot be applied here. from either side of the interval of distancBRswvhile monitor-

ing the goodness-of-fit parameter resp.Q.”* Note that, as
before, due to the cross correlations between the values of
B. Averaged fluctuations og(J) for neighboring distanceR, we have to resort to jack-
Instead of an analysis of the correlator of coordinationknifing over the whole fitting procedure to arrive at reliable
numbers, the wandering exponedt can be directly esti- ©rror estimates. _ _
mated by considering the scaling of the averaged fluctuations From the fits to the data for the maximum graph sikes
of coordination numbers and recurring to relati@. This ~ =500000 depicted in Fig. 8, we arrive at the following es-
approach has the advantage of giving a numerical result alggnates forw,
for the case of correlations decaying other than algebraically,

as we saw for the Poissonian Vorosidelaunay random lat- 0.5009655), R=21,...,41, Delaunay tr.
tices. We define the average fluctuatig(R) as indicated in W= 0.7249286), R=5,...,14, dynamicaltr.
Eq. (7) with the average performed on the level of the frac- (24)

tion, in complete analogy with the definitidd7) of the cor-

relator. As before, the quenched average is performed ovétrom the experience with the analysis of the correlator pre-
one starting vertex per 1000 vertices of the graph as well asented above in Sec. IV A, we expect rather pronounced
over 100 different graph realizations for each graph sizefinite-size effects still to be present at least for the case of the
Figure 8 shows the resulting decay ®§(J) against the in- dynamical triangulations, such that the quoted statistical er-
verse averaged integrated shell volumgBIR)). The ror certainly does not account for all of the deviation from
smaller number of data points for the case of dynamical trithe asymptotic result. Note that the result for Delaunay tri-
angulations results from the smaller effective linear extenangulations is perfectly consistent with a wandering expo-
~N%¥h due to their large fractal dimension. The relation of nent w=1/2 resulting from either power-law correlations
the two data sets nicely illustrates the much stronger correaith an exponena>2, which, however, did not show up in
lations present in the dynamical triangulations model. Fronthe analysis of the correlator presented above, or an expo-
Eq. (8), we expect a linear decline of the curve in a logarith-nential decline of correlations in agreement with the ob-
mic presentation, the slope being given by . On the served nonscaling of the correlator. To account for the sus-
other hand, corrections to the conjectured scaling behavigrected additional finite-size corrections present in the
for very small distance® due to discretization effects as estimate(24) for dynamical triangulations, an additional FSS
well as for large distances comparable to the effective lineaanalysis is conducted by performing the analysis described
extent of the lattices have to be taken into account. In Fig. &bove for the series of different graph sizes under consider-
the scaling window of algebraic behavior according to Eq.ation, ranging fromN= 1000 toN=500000. The resulting

(8) is nicely visible. The dramatic, exponential drop of the FSS plot is depicted in Fig. 9. We expect a scaling approach
fluctuations as 1B(R)) approachés 1/(2+N/2) is an ef-  of the following form:
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TABLE II. Decay exponent resp. wandering exponeat re-  sonian VoronoDelaunay random lattices and dynamical
lated by Eq.(13) for the ensemble of regular dynamical triangula- triangulations resp. planar, “fat$® Feynman diagrams. Fol-
tions as estimated by various scaling methods. In each row, thgyying Luck’s extension of Harris’ original argument to the
directly measured value is printed in bold face. case of systems with aperiodicity, a relevance criterion is
formulated for the case of random graphs with connectivity

Method a @ disorder, i.e., a random distribution of coordination numbers.
Equation(18) 1.91976) 0.760195) Depending on a characteristic of the spatial correlations of
Equation(20) 2.0913) 0.73916) the disorder degrees of freedom termed the wandering expo-
Equation(25) 2.02178) 0.747398) nentw, the threshold of relevance for a model with specific-
Average 1.98776) 0.751695) heat exponentr predicted by the relevance criterion is

shifted from Harris’ valuex,=0 to somewhere in the inter-
val —o<a.<1, depending on the value aof.
w(N)=w,+AN"?, (25) To determine the values of the wandering exponent for the
. o ) i . considered ensembles of random graphs, we have employed
with ana priori unknown correction exponerit Afitof this 3 detailed series of scaling studies. First, we directly consid-
form to the data yields, ered the behavior of the connected two-point correlation
function of the coordination numbers of the vertices of the
. =0.747398), triangulations. For the Poissonian random lattices we find the
correlations to decay very rapidly, and our analysis indicates

A=-0.7337), that this decline is faster than any power of the distance. For

6=0.26470) dynamical triangulations, on the other hand, we find much
e ' stronger correlations, exhibiting a power-law decay within
0-0.28. 26) the scaling window. Due to the large fractal dimension of

these lattices, however, we find quite strong corrections to

Note that the correction exponent is close tal,  1/4, the leading scaling behavior to be present. Taking the correc-
which would correspond to an analytic scaling correction.tion terms carefully into account, we are able to determine
Fixing 6=1/4, we find the very similar resultw., the decay exponera consistently with different methods,
=0.7493(23). For the Poissonian Voroidelaunay triangu- hamely a direct analysis of the correlator, a finite-size scaling
lations, on the other hand, we find only pretty small varia-study of the correlation function at fixed distances, and a
tions of the estimates(N) with the graph size, which are scaling collapse of the data on a universal scaling function.
about of the same size as the statistical fluctuations. Esp&da Eq. (13) this yields then an estimate for the wandering
Cia”y, for the |argest two or three graph sizes, there is néEXponentw. In addition to this analysis of the correlator, we
visible drift between the estimates, such that we can safeljnvestigate the scaling of the averaged fluctuations in spheri-

take the result24) for N=500000 triangles as our final Cal patches of increasing size, an expression which directly
estimate for the wandering exponent there. occurs in the definition of the wandering exponent. For the

Fina”y, we also checked for the influence of the numberVOFOﬂO"I-Delaunay random lattices we find an estimate for

of disorder replicas on the results for the wandering exponerthe wandering exponent consistent with a valueef1/2 to
from the averaged fluctuations. For the Delaunay triangulahigh precision, which is in turn in agreement with the con-
tions of sizeN=500000, using 50 resp. 10 instead of 100j€cture of correlations decaying faster than any power of the
realizations yields estimates ab=0.50046(73) respw  distance. Thus from Eq10), for Delaunay triangulations the
=0.49818(469), in very good agreement with the result foPresented relevance criterion reduces to the Harris criterion
the full number of replicas. In the case of the dynamical®c=0, such that disorder of this type should be relevant for
triangulations graphs, reducing the number of replicas to 5@NY m0d9| W'Fh positive specific-heat exponent. For dynami-
resp. 10 and performing the fitg5) with the correction ex- cal triangulations, on the other hand, a combination of the
ponenté fixed at 1/4, we arrive abr=0.7481(31) respo  analyses presen_ted allows us to conjet_fﬁjtbat the cor-
=0.7590(72). With an unconstrained correction exporent relator decays with an exponeat=2, leading to a value of
we find the data with only 10 replica not precise enough tdhe wandering exponent of=3/4. In view of the relevance
reliably apply the nonlinear fit procedure. In Table Il we criterion (10), this leads to a relevance threshold as small as
collect the final results for the decay exponentesp. the —@c=—2. As a consequence, the class of dynamical triangu-
wandering exponent for the case of dynamical triangula- lations graphs should be a relevant perturbation for all
tions from the various methods applied, using Exp) with known ordered models of statistical mechanics.

d,=4 to computew from the directly estimated decay ex- T_herg has been a number of numerical and analytical in-
ponenta or vice versa. vestigations of the effect of disorder from the classes of

graphs considered here on the two-dimensional Potts model.
For the case of a quenched ensemble of dynamical triangu-
lations, a series of Monte Carlo simulations of tpe 2,3,

We have considered the applicability of a relevance crite4 Potts model witha=0,1/3,2/3, respectively, showed a
rion of the Harris-Luck type to the problem of coupling lat- change of their critical exponents, indicating a shift to new
tice models of statistical mechanics to the ensembles of Poistiversality classe¥**’” Additionally, it appears that the

V. CONCLUSIONS
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first-order transitions of the Potts models with-4 get soft- 1 36

ened to second-order ones as the model is coupled to a Pin=3 17 Q> (A1)

quenched ensemble of dynamical triangulatith&or the

case of percolation, corresponding to tipe>1 limit of the  where

Potts model, for which due to its noninteracting character

guenched and annealed averages coincide, an exact solution Z_E

can be obtained by use of matrix model meth63his 4

solution as well as numerical simulations for this moQel,

which hasa=—2/3, also yield changed critical exponents, Then, the distance-1 correlator can be expressed as

in agreement with the relevance threshold obtained here. For 36

thg case Ef Poissonian random Iatt|ce_s, simulations of the qu(l)ZE P.(6—1)(6—n)= —(1-125+2),

Ising or q=2 Potts model, corresponding to the marginal In VA

casea=0, yielded unchanged Onsager values for the critical (A3)

exponents® 180 similar results were obtained for

percolatiorf! both results being in agreement with the rel-

evance threshold,=0. On the other hand, for thg=3,4 Qin.

Potts models withw>0, Poissonian random lattices should

be a relevant perturbation. However, an exploratory Monte QX,y)=>, QnxX'y", (A4)

Carlo stud§® as well as preliminary results from a high- Ln

precision series of Monte Carlo simulations of the autfors

for the three-states Potts model dot show any change of

universal behavior, in contradiction with the relevance 1 Q(x,y)—Q(0y) Qi
P(y)= fo dx = n

6

| w

Qin- (A2)

>

whereS=%, ,Q,/I. Integrating the generating function of

one arrives at

threshold proposed here. It remains an open question to be

answered, e.g., by further high-precision analyses ofgthe

=3 case as well as the largerg=4 Potts and Baxter-Wi

models, whether these findings are merely the effect of a 7-36 fldyp(y)_P(o) _

crossover to new universal behavior occurring only for ex- 0

tremely large lattice sizes or whether there is possibly some o o
physical reason for an argument of the Harris-Luck type not' € first integral can be performed exactly, yieldiy
being applicable to the case of spin models coupled to Pois= P(1)=1/6. The double integral in the second line of Eq.
sonian random lattices. For this purpose, a careful analysis ¢f\2) could not be evaluated in closed form. Instead, the se-

the counterexamples found in Refs. 61—68 might be instructi€S expansion 0Q(x,y) used in Ref. 54, performed up to
tive. orders|<50 andn=100 (and additionally exploiting the

symmetry propertyQ,,=Q,) Yields Z~0.966 97. Hence,
we arrive at

X I,n I

y 36% T (A5)
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scaling exponent of the two-point correlator of coordination
APPENDIX A: NEAREST-NEIGHBOR CORRELATIONS numbers and the correction terms taken into account. We
FOR QUANTUM GRAVITY GRAPHS consider making a real-space renormalization transformation

This appendix is devoted to a short derivation of the resulf¥ith @ rescaling factob (see, e.g., Refs. 1,85B6After n
for the coordination number correlator at distance oneliterations of the rescaling, the two-point correlation function
Gqq(1), for the ensemble of quantum gravity graphs men-Of some operatogy under consideration can be written as
tioned in Sec. IV A. Godrehe et al®* consider topological
correlations in the thermodynamic limit of the ensemble of
(regulay dynamical triangulations via a generating-function
technique. This allows them to compute the probability dis-
tribution Q),, of finding an edge connecting a vertex with wherex, denotes the scaling dimension of the operator
coordination numbef with a vertex with coordination num- andy, the temperature-related renormalization-group eigen-
bern by means of a series expansion. This quantity is relatedtalue. Stopping the scale transformation at an iteration such
to the probability of finding ar vertex in the neighborhood thatN~1b"%=K, i.e.,b"=(KN)¥h=(N/Ny) ¥, we arrive
of ann vertex, which is of interest here, as follows: at

G| Rit = | =b 201G, st < b (B1
dP !tlﬁ - X)) Elt 1N 1 ( )
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1 R\ ™% R\Yt 1/ R\%%
e calmigl(g] RS RS e

. whereF is another scaling function. Hence, at criticality one
introducing a universal scaling functiohl. Therefore, ifRis  has
scaled linearly withNYh, e.g.,R* =N¥n/2, the correlation

N —2X¢/dh’\

Gyg N,

RO~ |-
17N_

W -
(N/Ng)*dn

: 1 R\ 2¢.[1/R\%
function scales as Gy R;O’N =& E N\ =
0 0
1 —2X d
x| ~ N~ 2%g/dn R d L 1 h,
G¢¢<R ’O’N) N : (B3) N(R_o) [F(O)-I—N R F'O)

Now, instead of doing FSS, consider the finite-size (BS)
“field” as a scaling correction and stop the rescaling atwhich should be a reasonable approximation as lon@ as
R/b"=K, <NYdn,
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