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Harris-Luck criterion for random lattices
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The Harris-Luck criterion judges the relevance of~potentially! spatially correlated, quenched disorder in-
duced by, e.g., random bonds, randomly diluted sites, or a quasiperiodicity of the lattice, for altering the critical
behavior of a coupled matter system. We investigate the applicability of this type of criterion to the case of spin
variables coupled torandom lattices. Their aptitude to alter critical behavior depends on the degree of spatial
correlations present, which is quantified by awandering exponent. We consider the cases of Poissonian random
graphs resulting from the Voronoı¨-Delaunay construction and of planar, ‘‘fat’’f3 Feynman diagrams and
precisely determine their wandering exponents. The resulting predictions are compared to various exact and
numerical results for the Potts model coupled to these quenched ensembles of random graphs.

DOI: 10.1103/PhysRevB.69.144208 PACS number~s!: 75.10.Hk, 75.40.Mg, 75.50.Lk
ca
th
ica
he
s
l r
w
ou
id
a

ia
o

o
e

s
ce
en
in
on
t

,

te
e

gh
te
no
f

ing
op

e
m

f
-
ns
st
m

e.
ab-
er

n-
se

.
of

an
dis-
rs

on-
al
ris’
an
de-
nd-

r of

rdi-
nd
-
ses.
-

n
la-
geo-

by

la-
and

red in
n

tri-
ite-
dom
I. INTRODUCTION

The concept of quenched disorder coupling to the lo
energy density has evolved to be the main framework for
modeling of the types of randomness found in real phys
systems.1,2 In the presence of frustration this includes t
vast field of spin glasses, which in the past decades ha
tracted an enormous amount of analytical and numerica
search, see, e.g., Refs. 2–5. Here, we will be concerned
the simpler case of models with purely ferromagnetic c
plings. The first investigations of this problem have cons
ered defects distributed in the system completely
random,6,7 realized in lattice models, e.g., as random var
tion of the coupling strengths or random deletion of bonds
lattice sites.8–10

The relevance of this random-bond or dilution type
disorder for the universal behavior of spin systems has b
the subject of much research.8,11–17 For the case of model
undergoing a continuous phase transition on regular latti
Harris8 argued that for models with a specific-heat expon
a,0 the fluctuations in the local transition temperature
duced by the disorder degrees of freedom are not str
enough to alter universal features of the model such as
critical exponents. Albeit not originally claimed by Harris8

for the converse case of a positive specific-heat exponenta a
significant change of the system’s behavior was expec
The precise effect of such a relevant perturbation has b
the subject of some debate.1,8 While it was originally be-
lieved that the transition temperature fluctuations mi
smoothen out the phase transition so far as to comple
destroy it, it was later on realized that this, in fact, does
happen and, instead, the system experiences a crossover
the pure fixed point to a new, disorder fixed point, result
in a new set of critical exponents and further universal pr
erties such as amplitude ratios.9,13,14,18–20This scenario has
been especially thoroughly analyzed for the case of thq
52,3,4 Potts models in two dimensions, where results fro
perturbative methods13–15 agree well with the outcome o
numerical simulation studies.10,21–23From this general obser
vation of a smoothening effect of disorder on phase tra
tions, one might expect that for systems exhibiting a fir
order transition in the regular case, disorder of the rando
0163-1829/2004/69~14!/144208~12!/$22.50 69 1442
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bond type might soften the transition to a continuous on17

For the case of two dimensions it could be rigorously est
lished that even an infinitesimally small amount of disord
suffices to indeed induce this behavior.24–27 In three dimen-
sions, sufficiently strong disorder coupling to the local e
ergy density is numerically found to soften first-order pha
transitions to second-order ones, see, e.g., Refs. 28–30

Obviously, for many physical systems the assumption
an uncorrelated, isotropic distribution of defects is not
adequate description. Instead, due to various reasons the
tribution of defects is spatially correlated. This effect occu
isotropically due to long-range interactions between the n
magnetic ions or in the form of line or higher-dimension
defects.31–35 In these cases, the reasoning leading to Har
relevance criterion is no longer directly applicable, but c
be generalized accordingly. For the case of algebraically
caying correlations one finds a relevance threshold depe
ing on the dimension of the defects as well as the powe
the decay of the correlations.31,32 For a different model, not
covered by the random-bond paradigm, namely the coo
nation number nonperiodicity found in quasicrystals a
other aperiodic structures, Luck16 formulated a relevance cri
terion that includes the situations discussed as special ca
There, the ‘‘break-even point’’ for the relevance of random
ness in terms of the specific-heat exponenta is shifted from
its uncorrelated valueac50 to somewhere in the regio
2`,ac<1, depending on the strength of spatial corre
tions of the disorder degrees of freedom measured by a
metrical fluctuation orwandering exponent. A structure con-
ceptually related to these aperiodic models is given
different varieties ofrandom graphssuch as Poissonian
Voronoı̈-Delaunay triangulations36,37 or the planar, combina-
torial triangulations encountered in the dynamical triangu
tions approach to quantum gravity resp. the dual planar
orientablef3 Feynman diagrams.38 Although spin models on
quenched ensembles of these graphs have been conside
numerical simulation studies,39–46 no connection has bee
made as yet with the predictions of Luck16 for general sys-
tems with connectivity disorder. In particular, the geome
cal fluctuation exponents appearing in this relevance cr
rion have not been determined for the case of these ran
graphs.
©2004 The American Physical Society08-1
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The rest of this paper is organized as follows. In Sec
we introduce the ensembles of graphs to be conside
elaborate on their generation in a computer experiment
review some of their known properties. Section III is devot
to a presentation of a version of the Harris-Luck relevan
criterion suitable to be applied to the case of random gra
considered here and a discussion of its connection with
vious results. In Sec. IV we introduce different methods
precisely determine the wandering exponent for both gr
types and present the results obtained. Finally, Sec. V c
tains our conclusions.

II. RANDOM GRAPHS

In the following we present construction techniques a
properties of two different kinds of two-dimensional top
logical graphs whose randomness is solely encoded in
degree distribution of their vertices, resulting in a topologi
connectivity disorder. In contrast to the generic rand
graphs discussed in the context of scale-free networks, sm
world models, etc.,47,48 the ensembles of random structur
considered here arenot fully determined by their degree o
coordination number distributions, but additionally exhibit
well-defined topology and long-range correlations of th
disorder degrees of freedom.

A. Poissonian Voronoı¨-Delaunay triangulations

Irregular cell structures or froths appear in a large vari
of natural systems, such as foams or biological tissues.37 The
common inverse problem of constructing such a connecti
or cell structure from a given irregular arrangement of ve
ces~so-called generators! is solved by the Voronoı¨-Delaunay
construction.36 In two dimensions, the Voronoı¨ cell of a
given generator is a convex polygon around it, enclosing
part of its neighborhood which is closer to it than to a
other generator, cf. Fig. 1. This is in complete analogy w
the notion of a Wigner-Seitz elementary cell in crystallog
phy. This construction results in the three-valent Voron¨
graph and the dual Delaunay triangulation. If the genera
are located completely at random, as is the case in the
ample of Fig. 1, the resulting graph is known as Poisson
Voronoı̈-Delaunay triangulation.36

These lattices are randomly disordered in several resp
edge lengths, cell volumes, etc. vary, as well as the coo
nation numbersq of the vertices of the Delaunay triangula
tion. To facilitate comparison with the second type of ra
dom graphs to be introduced below, we here rest
ourselves to the latter aspect of variable coordination nu
bers, i.e., we do not take any effects from variable length
areas into account. Thus, the distributionP(q) of coordina-
tion numbers is the only random variable involved. Additio
ally, to eliminate surface effects, the generators are rando
placed on the surface of a sphere instead of a patch of
plane. Thus, the resulting random graphs are triangulat
of spherical topology.

From the Euler relations, the average coordination nu
ber is a topological invariant for a fixed number of triangl
in two dimensions, given by38
14420
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qi56
N

N14
, ~1!

for any closed spherical triangulation, whereN denotes the
number of triangles. In the limit of infinite triangulations
N→`, one thus obviously haŝq̄&5^qi&56. The second
moment ofq is not exactly known, but is numerically foun
to be36,49

m2[^qi
2&2^qi&

2'1.781, ~2!

as N→`. It turns out that the random variablesqi are not
independently distributed, but are reflecting a spatial co
lation of the disorder degrees of freedom in addition to
trivial correlation induced by the constraint~1!. The form of
these correlations for nearest-neighbor vertices is commo
described by the Aboav-Weaire law,36 which states that the
total expected number of edges of the neighbors of aq-sided
cell, qm(q), should vary linearly withq,

qm~q!5~62a!q1b, ~3!

wherea and b are some parameters. In turns out, howev
that Eq.~3!, albeit being a good effective description for
large variety of cell systems including the case of Poisson
Voronoı̈ -Delaunay triangulations, is merely a leading-ord
and not an exact property of these systems.37

B. Dynamical triangulations

An ensemble of planar triangulations with properties ve
different from those of the Poissonian Voronoı¨-Delaunay lat-
tices is given by the so-called dynamical triangulatio
model, which has been used as a constructive approac
discrete Euclidean quantum gravity in two dimensions38

This ensemble of combinatorial triangulations is defined
that of all gluings of equilateral triangles to closed surfac

FIG. 1. Patch of a Poissonian Voronoı¨-Delaunay triangulation of
the plane. The spherical, shaded dots denote the randomly dis
uted generators. The solid lines enclosing these generators d
convex polygonal areas whose points are closer to the origin tha
any other generator. They form the network of Voronoı¨ cells, which
results in a three-valent graph whose vertices are depicted by
dark boxes. Its geometrical dual, consisting of the generators
the connecting dashed lines, is the Delaunay triangulation.
8-2
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of a given topology~such as, e.g., that of a sphere!, where all
gluings are counted with equal probability. A dynamical w
of generating such graphs is the repeated application of
called link flip moves which rewire a given network@see Fig.
2~a!#. It is known that this procedure converges to a limiti
distribution with specific properties described below. Sin
this flip dynamics introduces large temporal correlations
tween subsequent random triangulations, we do not actu
use it to generate the graph instances needed below, bu
stead revert to a recursive insertion technique known to y
the same graph distribution, but independent graph rea
tions in each step.51 In this construction, no edge length di
ferences are involved and, again, the randomness is s
encoded in the degree distributionP(q) of the vertices. Al-
though these objects are entirely defined in terms of th
intrinsic connectivity properties, an embedding of an e
ample dynamical triangulation into three-dimensional sp
is shown for illustration purposes in Fig. 2~b!. Technically,
the geometrical duals of these triangulations are given by
ensemble of planar, ‘‘fat’’~i.e., orientable! f3 Feynman dia-
grams without tadpoles and self-energy insertions. The
tistics of these objects can be explicitly treated by mean
matrix models,52,53 leading to exact solutions for the coord
nation number distributionP(q) and many other propertie
of the model.50,38 Compared to the Poissonian Vorono¨-
Delaunay model, fluctuations are much more pronounced
these graphs, and it can be shown that the variance of c
dination numbers approaches50,54

m2521/2 ~4!

FIG. 2. ~a! The link flip move on two adjacent triangles of
dynamical triangulation~dashed lines!. The solid lines denote the
corresponding dual, three-valentf3 graphs. ~b! Example of a
spherical dynamical triangulation embedded into three-dimensi
space. Note that the requirement of equilaterality of the triangle
only approximately fulfilled for the embedding shown, since the
is no generic exact embedding algorithm for performing it.
14420
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as N→`, whereas Eq.~1! still holds. Also, the Aboav-
Weaire law~3! correctly describes the leading-order behav
of the nearest-neighbor correlations.54

Considering more geometric properties of the graphs,
differences between both ensembles become even more
nounced. Especially, the quantum gravity graphs of the
namical triangulations model can be shown to be highly fr
tal, being self-similarly composed of ‘‘baby universes
branching off from the main surface, i.e., macroscopical s
graphs attached to the main body by only a few links.55 This
fractal structure leads to an exceptionally large inter
Hausdorff dimension ofdh54 as compared to the topolog
cal dimension of two,56,57 whereas for the Poissonia
Voronoı̈-Delaunay triangulations the Hausdorff dimensi
remains at the trivial value of the topological dimension. T
differences between the two graph ensembles are also
strikingly seen in the distributionsP(q) of coordination
numbers as depicted in Fig. 3. WhileP(q) is peaked atq
56 for the Delaunay triangulations, it drops monotonica
starting fromq53 for the case of dynamical triangulation
and large coordination numbers are much more probable
the latter lattice type. It can be shown that for large coor
nation numbers the distributionP(q) falls off as
exp(2sq ln q) with s'2 for Poissonian random lattices,49

whereas for dynamical triangulations it declines much slow
proportional to exp(2sq) with s5 ln (4/3)'0.3 ~Ref. 50!.

III. THE RELEVANCE CRITERION

Trying to decide for which kind of models disorder of th
random-bond type constitutes a relevant perturbation, Ha8

suggested the following line of reasoning. For a system
uncorrelated random bonds, the fluctuationssR(J) of the
average couplingJ in patches of the lattice decline with th
linear patch sizeR according to the central limit theorem
that is,

sR~J!;R2d/2, ~5!

al
is

FIG. 3. Comparison of the degree distributionsP(q) of Pois-
sonian Delaunay triangulations and dynamical triangulations in
limit of an infinite number of triangles. The results are taken fro
Refs. 49,50.
8-3
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WOLFHARD JANKE AND MARTIN WEIGEL PHYSICAL REVIEW B 69, 144208 ~2004!
whered denotes the spatial dimension of the system. Si
disorder of the random-bond type couples to the local ene
density, local fluctuations of the coupling induce such flu
tuations of the effective local transition temperature, wh
decline identically with increasing patch size. Approachi
the critical point t[(T2Tc)/Tc50 , the fluctuations in a
correlation volume scale as

sj~J!;j2d/2;tnd/2, ~6!

where the power-law divergencej;t2n of the correlation
length was used. For the critical behavior of the pure sys
to persist, these fluctuations should die out as the redu
temperature is linearly tuned to the critical pointt50, i.e.,
one should havend/2.1 or, with appeal to hyper-scaling
a,0. In the converse casea.0 an altered universal behav
ior might be expected. Later on, Chayeset al.11,12 showed
that under quite general conditions the specific-heat expo
of the disordered system,adis, should be negative. Thi
seemed plausible, sincea was believed to coincide with th
crossover or stability exponent of the respect
renormalization-group fixed point.58,59 Later on, however, it
was claimed that in some cases the stability exponent m
differ from a, such that even for positivea the regular criti-
cal behavior would prevail.60 Several examples of such be
havior, and even the opposite case of disorder being a
evant perturbation albeita,0, have been explicitly
constructed for the case of hierarchical lattices.61–65 Thus,
the general validity of the relevance criterion implied
Harris’ argument has recently been the object of some
bate, see, e.g., Refs. 66–68.

As soon as the assumption of uncorrelated disorder
grees of freedom is relaxed, Harris’ reasoning is no lon
applicable as it stands. For a random-bond model with lo
range correlations of the bond variables, Weinrib a
Halperin31 performed a renormalization group calculatio
which was later on refined.32 They find that, if the disorder
degrees of freedom are correlated algebraically with a de
exponent a,d, disorder is irrelevant if a,222d/a,
whereas in the opposite case, the system flows towar
new, long-range correlated disorder fixed point. For m
general disorder degrees of freedom and types of correlat
including the ensembles of random graphs considered h
this argument can be adapted in the spirit of Luck’s reas
ing for the case of aperiodic structures16 as follows. Consider
a patchP of spherical shape with radiusR and a volume of
B(R) vertices69 on a given realization of a triangulation. Th
average coordination number inP,

J~R![
1

B~R! (
i PP

qi , ~7!

fluctuates around its expected valueJ05q̄ @cf. Eq. ~1!#. As
the size of the patch is increased,R→`, these fluctuations
decay as

sR~J![^uJ~R!2J0u&/J0;^B~R!&2(12v);R2dh(12v),
~8!
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defining the wandering exponentv of the considered graph
type. The Hausdorff dimensiondh enters here to account fo
the cases of fractal graphs. In Eq.~8!, the averageŝ•& are to
be understood as the ensemble averages of the consid
class of graphs of a given total size. While forv51/2 the
usual 1/A^B(R)& behavior of uncorrelated random variabl
is recovered, for random lattices with long-range correlatio
of the coordination numbers one expectsv.1/2, leading to
a slowed-down decay of fluctuations. Near criticality, t
fluctuation sj(J) of the average coordination number in
correlation volume induces a local shift of the transition te
perature proportional toutudhn(12v)m2

1/2. For the regular criti-
cal behavior to persist, these fluctuations should die ou
the critical pointt50 is approached. This is the case whenv
does not exceed the threshold value

vc512
1

dhn
5

12a

22a
, ~9!

provided that hyperscaling is in effect. Conversely, for flu
tuations satisfyingv.vc a new type of critical behavior
could occur. Rewriting Eq.~9! as

ac5
122v

12v
, ~10!

it is obvious that forv51/2 the Harris criterion is recovered
It is easily seen that the case of algebraically decay

correlations discussed in Ref. 31 is included in Eq.~10! as a
special case. Specifically, for the case of connectivity dis
der considered here, an isotropic power-law correlat
would be given by

Gqq~ i , j ![^dqidqj&;dist~ i , j !2a, ~11!

wheredqi5qi2q̄ denotes the coordination number defect
vertex i and the distance dist(i , j ) is defined as the unique
number of links in the shortest path of links connecting t
two verticesi and j. Then, the fluctuation of the meandqR
over a spherical patchP of radiusR is given by

s2~dqR!5
s2~dq!

Rdh
1

1

R2dh
(

iÞ j PP
^dqidqj&

;const3R2dh1const3R2a ~12!

asR→`. For short-range correlationsa>dh the leading be-
havior is that of Eq.~5!, such that the Harris criterion stays i
effect. For long-range correlationsa,dh , on the other hand
the leading term is proportional toR2a. Comparing to Eq.
~8!, we arrive at the following expression:

v512a/2dh , ~13!

such that from Eq.~10! we arrive atac5222dh/a, in agree-
ment with the direct observation in Ref. 31.

Since for systems with sufficiently long-range correlatio
of the disorder degrees of freedomv.1/2, such correlated
disorder ismore relevant than uncorrelated randomness
the sense that a change of universality class can alread
expected for some range ofnegativevalues ofa, cf. Eq.
8-4
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~10!. If, on the other hand, correlations decay exponentia
the thresholdac50 of the Harris criterion should stay i
effect.

IV. CORRELATORS AND WANDERING EXPONENTS

In view of the discussion presented in Sec. III, tw
complementary approaches towards a numerical determ
tion of the wandering exponentv present themselves, eithe
a direct evaluation of the scaling of the fluctuations defin
in Eq. ~8! or an analysis of the correlation functionGqq( i , j )
of the disorder degrees of freedom defined in Eq.~11! to
infer an estimate ofv via Eq. ~13!. Both of these methods
will be applied for the cases of Poissonian Voron¨-
Delaunay as well as dynamical triangulations. For both gr
ensembles, a quenched average has to be taken over a
ber of graph realizations of the considered ensemble. For
purpose, we generate lattices of spherical topology and c
sider the triangulations of varying coordination numbers
the basic objects and refer to their geometric duals as
‘‘dual’’ lattices.

A. Analysis of correlation functions

For the numerical determination of the correlat
Gqq( i , j ) a decomposition of the graphs into spherical she
around a given vertex is performed. This is done by fi
picking a vertex of the triangulation at random and a sub
quent slicing of the graph into shells of equal geodesic l
distance around that vertex. For that given choice of ini
vertexi 0, two fundamental observables can be measured
volumes of the decomposition shells,

g11
i 0 ~R!5 (

dist(i ,i 0)5R
1, ~14!

which, if properly averaged over, give the correlator of t
unit operator, and,

gqq
i 0 ~R!5 (

dist(i ,i 0)5R
dqi 0

dqi , ~15!

the average of which gives the correlator of Eq.~11!. In view
of Eq. ~7! it is obvious thatB(R)5( r 50

R g11
i 0 (r ). In the con-

text of the dynamical triangulations approach to quant
gravity, there has been some debate on how to properly
fine ~connected! correlators on an ensemble of rando
graphs, see, e.g., Ref. 70. The uncertainty concerns the o
of taking the averages over a single graph and the gr
ensemble, which has not been explicitly specified in Eq.~11!.
The two possibilities are given by averaging the expressi
of Eqs.~14! and ~15! individually, i.e.,

Gqq~R!5
^gqq

i 0 ~R!&

^g11
i 0 ~R!&

, ~16!

where the averagê•& denotes a combined average over t
starting verticesi 0 and the graph realizations under cons
eration, which is obviously equivalent to the ensemble av
age of the graphs. The additional average over the star
14420
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verticesi 0 is merely included to improve the statistical acc
racy in practical applications. On the other hand, one co
also average on the level of the fraction,

Gqq~R!5K gqq
i 0 ~R!

g11
i 0 ~R!

L . ~17!

It turns out that, at least for the quantum gravity grap
these two ways of performing the average yield striking
different results, even in the thermodynamic limit.70 The
main motivation for using Eq.~16! is that an expression o
the form ^gff

i 0 (R)&, if integrated over all distancesR, still
yields some kind of susceptibility of the associated opera
f. Otherwise, however, correlators defined according to
~16! behave rather pathologically. Definition~17!, on the
other hand, corresponds to the natural probabilistic definit
of the average correlation of a given quantity at distanceR,
and is thus the unique ‘‘correct’’ definition in the given co
text and will be used throughout. Note that in this case
average has to be performed carefully, since the maxim
linear separationRmax of two points on the graph is not uni
versal, but depends on the graph realization as well as on
chosen initial vertex.

Figure 4 shows an overview of the short-distance beh
ior of the correlatorGqq(R) defined according to Eq.~17! for
Poissonian Delaunay as well as for dynamical triangulati
as measured by averaging over 100 graph realizat
sampled with one different starting vertex per 1000 gra
vertices each. The statistical errors here and in the follow
were determined via jackknifing~see, e.g., Refs. 71,72! over
the 100 different graph realizations. Obviously,Gqq(0)
5m2, corresponding to the values cited above in Sec.
Note that the negative correlation at distancesR.0 reflects
the fact, expressed in the Aboav-Weaire law~3!, that a vertex
with coordination numberq.6 tends to have neighbors wit

FIG. 4. Comparison of the connected correlatorGqq(R) of the

coordination number defectsdq5qi2q̄ of Poissonian Delaunay tri-
angulations and dynamical triangulations of sizeN5125 000 tri-
angles. The connecting lines are only drawn to guide the eye.
two short horizontal lines indicate the exact resultm2510.5 ~cf.
Ref. 54! and the valueGqq(1)'21.2295 for the dynamical trian-
gulations discussed in Appendix A, both valid in the limitN→`.
8-5
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WOLFHARD JANKE AND MARTIN WEIGEL PHYSICAL REVIEW B 69, 144208 ~2004!
q,6 and vice versa. The correlation for nearest-neigh
points for the case of dynamical triangulations can be ca
lated in the thermodynamic limit by a series expansion of
results found in Ref. 54, yieldingGqq(1)'21.2295, cf. Ap-
pendix A. This result is in reasonable agreement with
value found numerically for the example ofN5125 000 tri-
angles presented in Fig. 4,Gqq(1)'21.34. The remaining
difference gives a first indication of the presence of la
finite-size corrections for the case of the highly fractal qu
tum gravity graphs. Going beyondR51, a short glance a
Fig. 4 reveals that the correlations are much more lo
ranged for the case of the quantum gravity graphs than
the Voronoı¨-Delaunay random lattices. In fact, for the D
launay triangulations we find that for the graph sizes up
N5500 000 triangles considered, coordination numbers
vertices at distancesR*10 apart are effectively uncorrelate
up to the precision of our calculations. Due to this smalln
of correlations it is not possible to determine their ex
functional form from the accuracy of our measuremen
However, a simple exponential decay can be fitted reas
ably well to the behavior found. Additional checks in supp
of this picture will be presented below in this section and
Sec. IV B.

For the case of the quantum gravity graphs, we determ
the asymptotic behavior of the correlator~17! by fitting a
suitably parametrized function to the numerical data. For
algebraic decay expected for this graph type, we make
ansatz,

Gqq~R!5AR2a~11BRb!, ~18!

for R>1, taking into account an additional effective scali
correction with exponentb. From the discussion in Appendi
B we expectb5dh54 to be a reasonable choice as long
no additional, more relevant, nonanalytic corrections
present.73 Note that, since this ‘‘correction’’ termRb is more
singular than the leading termR2a, this form is merely an
effective description for a finite graph and distances sm
compared to the linear extent of the graph. Figure 5 dep
the behavior of the correlator of coordination numbers
the case of quantum gravity graphs as well as fits of the fo
~18! to the data. We expect the range of applicability of t
form ~18! to be limited at both sides: for very small distanc
R, discretization effects are observed, whereas for large
tances finite-size effects modify the expected behavior,
higher-order terms neglected in Eq.~18!. To account for
these limitations, sampled points from both sides of theR
range are successively dropped from the fit while monitor
the goodness-of-fit parametersx2 resp. Q.74 We find re-
stricted fits with the correction exponentb fixed at valuesb
54 or, alternatively,b53, to match the data reasonab
well. A full four-parameter fit with variable exponentb yields
the intermediate valueb53.15(57), in total indicating the
presence of higher-order resp. nonanalytic corrections.
fit results are compiled in Table I. Since we consider
correction term of Eq.~18! as an effective description, w
take the fit with a variable value of the correction exponenb
as the most reliable and quote as our best estimate of
decay exponent from this method
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a51.919~76!. ~19!

Due to the cross-correlations ofGqq(R) for different dis-
tancesR, the errors estimated by standard fit routines
biased; thus, instead, the errors were estimated by jackk
ing over the whole fitting procedure. As a check of wheth
the used number of replicas in the disorder average is s
cient, we also performed the same analysis with subset
the 100 realizations. Apart from the effect of rather sudd
jumps of the fits into different, nearby minima, which alwa
tend to occur with nonlinear fitting procedures, we find
results completely consistent with each other within stati
cal errors. Thus, e.g., for the unrestricted fit of the form~18!
we find ~using the same rangesRmin–Rmax as before! a
52.032(115) using only 50 graphs anda51.885(216) using
only 10 graphs.

A different way to determine the decay exponenta is
based on a direct application of the finite-size scaling~FSS!
behavior of the correlator. From FSS arguments it is kno
that the value of the correlator at a distanceR* (N) scaled
linearly with the size of the system behaves as

Gqq@R* ~N!#;N2a/dh, ~20!

cf. Appendix B. The position of the reference pointsR*
should be selected well within the scaling region of the co
sidered graph size. Here, we take the largest used graph
as a reference and choose

R* ~N!515S N

53105D 1/dh

, ~21!

wheredh54. Obviously, the resulting distancesR* (N) will
in general be fractional numbers, for which no data are
rectly available. Since the accessiblelinear graph sizesN1/dh

are rather small, this discretization effect is quite pr
nounced. To circumvent this problem, we take a fit of t

FIG. 5. Decay of the correlator2Gqq(R) of the coordination
numbers of dynamical triangulations withN5500 000 triangles in a
double logarithmic plot. The lines show fits of the functional for
~18! to the data, where either the correction term was omittedB
50, thick dashed line! or included withB andb as free parameters
~solid line!. The ranges of the lines indicate the range of data po
included in the fits.
8-6
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TABLE I. Results of fits of the functional form~18! to the correlatorGqq(R) for dynamical triangulations
with N5500 000 triangles and with various restrictions.

Restriction A a B b Rmin–Rmax Q

B50 22.11(45) 1.854~105! 0 7–17 0.981
b53 22.37(29) 1.938~92! 5.6(19)31025 3 4–37 0.999
b54 22.04(21) 1.841~75! 1.27(40)31026 4 4–37 0.994
None 22.30(24) 1.919~76! 3.1(67)31025 3.15~57! 4–37 0.999
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functional form ~18! to the correlator with the correctio
term included as a suitable interpolation of the data use
estimate the value ofGqq@R* (N)#. As an estimate of the
statistical error, we take the error computed for the clos
integer distance. Figure 6 shows the resulting scaling
and a fit of the functional form~20! to the data. We find the
data not precise enough to resolve any corrections to
expected scaling form. The fit, including a series of gra
sizes ranging fromN51000 toN5500 000, yields an esti
mate for the decay exponent of

a52.09~13!, ~22!

with quality Q50.53. For completeness, we have also p
formed the same analysis for the case of random Delau
triangulations. As expected, the resulting values
Gqq@R* (N)# do not show scaling according to Eq.~20!,
backing up our conjecture that the correlations are not a
braic in this case.

Exploiting the FSS form~B2! of the correlator, it is also
possible to rescale the data such as to model the unive
FSS function Ŵ introduced in Eq.~B2!. Thus, plotting
Gqq(R)Na/dh as a function of the reduced distanceR/N1/dh

should, within the scaling region, produce data lying on
single master curve, irrespective of the lattice volumeN un-
der consideration. Such a scaling plot is shown in Fig.
where a nice scaling collapse of the data for an intermed
range of reduced distancesR/N1/dh is observed. For produc

FIG. 6. Finite-size scaling of the coordination number correla
2Gqq@R* (N)# at distancesR* (N) according to Eq.~21! for dy-
namical triangulations of sizes ranging fromN51000 to N
5500 000 in a log-log plot. The solid line shows a fit of the fun
tional form ~20! to the data.
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ing this scaling plot, we assumeda52, in agreement with
the results found so far and further evidence to be prese
below. The quality of the collapse does not change visibly
slightly changing the value of the exponenta to one of the
valuesa51.919 ora52.09 found before. The extension o
the scaling window in reduced distanceR/N1/dh can be very
nicely read off from Fig. 7 to be

0.1&
R

N1/dh
&0.6, ~23!

yielding, e.g., 1<R<7 for N520 000 and 3<R<16 for N
5500 000, in perfect agreement with the observations fr
the direct analysis of the correlator.

Extending the analogy between the magnetic correla
function in a critical spin system and the correlator cons
ered here, one notes that the decay exponenta defined above
is related to the conventional critical exponents bya52
2dh2h. A convenient and very precise method of det
mining h is to consider the scaling of the integrated corre
tion function corresponding to the susceptibility instead
analyzing the correlation function directly. The associa
critical exponentg/n then allows one to inferh via the scal-
ing relationh522g/n. Unfortunately, however, it follows
from the relation~1! that the average coordination number
a closed triangulation is a fixed number, depending only

r
FIG. 7. Scaling collapse on the universal scaling functionŴ

defined in Eq.~B2! of the coordination number correlatorGqq(R)
for dynamical triangulations of sizesN520 000 toN5500 000 tri-
angles. The vertical lines indicate the extent of the scaling wind
8-7
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WOLFHARD JANKE AND MARTIN WEIGEL PHYSICAL REVIEW B 69, 144208 ~2004!
the number of trianglesN. Thus the corresponding suscep
bility always vanishes identically, such that the method o
lined above cannot be applied here.

B. Averaged fluctuations

Instead of an analysis of the correlator of coordinat
numbers, the wandering exponentv can be directly esti-
mated by considering the scaling of the averaged fluctuat
of coordination numbers and recurring to relation~8!. This
approach has the advantage of giving a numerical result
for the case of correlations decaying other than algebraic
as we saw for the Poissonian Voronoı¨-Delaunay random lat-
tices. We define the average fluctuationJ(R) as indicated in
Eq. ~7! with the average performed on the level of the fra
tion, in complete analogy with the definition~17! of the cor-
relator. As before, the quenched average is performed
one starting vertex per 1000 vertices of the graph as we
over 100 different graph realizations for each graph s
Figure 8 shows the resulting decay ofsR(J) against the in-
verse averaged integrated shell volume 1/^B(R)&. The
smaller number of data points for the case of dynamical
angulations results from the smaller effective linear ext
;N1/dh due to their large fractal dimension. The relation
the two data sets nicely illustrates the much stronger co
lations present in the dynamical triangulations model. Fr
Eq. ~8!, we expect a linear decline of the curve in a logari
mic presentation, the slope being given by 12v. On the
other hand, corrections to the conjectured scaling beha
for very small distancesR due to discretization effects a
well as for large distances comparable to the effective lin
extent of the lattices have to be taken into account. In Fig
the scaling window of algebraic behavior according to E
~8! is nicely visible. The dramatic, exponential drop of t
fluctuations as 1/^B(R)& approaches75 1/(21N/2) is an ef-

FIG. 8. Decay of the averaged fluctuationsR(J) of coordination
numbers against the inverse averaged integrated shell vo
1/̂ B(R)& according to Eqs.~7! and~8! for dynamical triangulations
~upper points! and Poissonian Delaunay triangulations~lower
points!. For both ensembles lattices withN5500 000 triangles have
been used. The solid lines show fits of the functional form~8! to the
data.
14420
t-

ns

so
ly,

-

er
s
.

i-
t

f
e-

-

or

r
8
.

fect of the topological constraint~1!, as a consequence o
which the fluctuationsR(J) vanishes identically at the maxi
mum observed distanceR5Rmax. To obtain reliable esti-
mates for the wandering exponentv from a fit of the func-
tional form ~8! to the data, we again successively drop poi
from either side of the interval of distancesR while monitor-
ing the goodness-of-fit parametersx2 resp.Q.74 Note that, as
before, due to the cross correlations between the value
sR(J) for neighboring distancesR, we have to resort to jack
knifing over the whole fitting procedure to arrive at reliab
error estimates.

From the fits to the data for the maximum graph sizesN
5500 000 depicted in Fig. 8, we arrive at the following e
timates forv,

v5H 0.50096~55!, R521, . . .,41, Delaunay tr.

0.72492~86!, R55, . . .,14, dynamical tr.
~24!

From the experience with the analysis of the correlator p
sented above in Sec. IV A, we expect rather pronoun
finite-size effects still to be present at least for the case of
dynamical triangulations, such that the quoted statistical
ror certainly does not account for all of the deviation fro
the asymptotic result. Note that the result for Delaunay
angulations is perfectly consistent with a wandering ex
nent v51/2 resulting from either power-law correlation
with an exponenta.2, which, however, did not show up in
the analysis of the correlator presented above, or an ex
nential decline of correlations in agreement with the o
served nonscaling of the correlator. To account for the s
pected additional finite-size corrections present in
estimate~24! for dynamical triangulations, an additional FS
analysis is conducted by performing the analysis descri
above for the series of different graph sizes under consi
ation, ranging fromN51000 toN5500 000. The resulting
FSS plot is depicted in Fig. 9. We expect a scaling appro
of the following form:

e
FIG. 9. Finite-size scaling of the estimates of the wander

exponentv(N) from fits of the functional form~8! to the data for
dynamical triangulations of sizesN51000 up toN5500 000 tri-
angles. The line shows a fit of the form~25! to the data.
8-8
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v~N!5v`1AN2u, ~25!

with ana priori unknown correction exponentu. A fit of this
form to the data yields,

v`50.7473~98!,

A520.73~37!,

u50.264~70!,

Q50.28. ~26!

Note that the correction exponent is close to 1/dh51/4,
which would correspond to an analytic scaling correctio
Fixing u51/4, we find the very similar resultv`

50.7493(23). For the Poissonian Voronoı¨-Delaunay triangu-
lations, on the other hand, we find only pretty small var
tions of the estimatesv(N) with the graph size, which are
about of the same size as the statistical fluctuations. E
cially, for the largest two or three graph sizes, there is
visible drift between the estimates, such that we can sa
take the result~24! for N5500 000 triangles as our fina
estimate for the wandering exponent there.

Finally, we also checked for the influence of the numb
of disorder replicas on the results for the wandering expon
from the averaged fluctuations. For the Delaunay triangu
tions of sizeN5500 000, using 50 resp. 10 instead of 1
realizations yields estimates ofv50.50046(73) resp.v
50.49818(469), in very good agreement with the result
the full number of replicas. In the case of the dynami
triangulations graphs, reducing the number of replicas to
resp. 10 and performing the fits~25! with the correction ex-
ponentu fixed at 1/4, we arrive atv50.7481(31) resp.v
50.7590(72). With an unconstrained correction exponenu,
we find the data with only 10 replica not precise enough
reliably apply the nonlinear fit procedure. In Table II w
collect the final results for the decay exponenta resp. the
wandering exponentv for the case of dynamical triangula
tions from the various methods applied, using Eq.~13! with
dh54 to computev from the directly estimated decay ex
ponenta or vice versa.

V. CONCLUSIONS

We have considered the applicability of a relevance cr
rion of the Harris-Luck type to the problem of coupling la
tice models of statistical mechanics to the ensembles of P

TABLE II. Decay exponenta resp. wandering exponentv re-
lated by Eq.~13! for the ensemble of regular dynamical triangul
tions as estimated by various scaling methods. In each row,
directly measured value is printed in bold face.

Method a v

Equation~18! 1.919„76… 0.7601~95!

Equation~20! 2.09„13… 0.739~16!

Equation~25! 2.021~78! 0.7473„98…
Average 1.987~76! 0.7516~95!
14420
.

-

e-
o
ly

r
nt
-

r
l
0

o

-

is-

sonian Voronoı¨-Delaunay random lattices and dynamic
triangulations resp. planar, ‘‘fat’’f3 Feynman diagrams. Fol
lowing Luck’s extension of Harris’ original argument to th
case of systems with aperiodicity, a relevance criterion
formulated for the case of random graphs with connectiv
disorder, i.e., a random distribution of coordination numbe
Depending on a characteristic of the spatial correlations
the disorder degrees of freedom termed the wandering e
nentv, the threshold of relevance for a model with specifi
heat exponenta predicted by the relevance criterion
shifted from Harris’ valueac50 to somewhere in the inter
val 2`,ac<1, depending on the value ofv.

To determine the values of the wandering exponent for
considered ensembles of random graphs, we have empl
a detailed series of scaling studies. First, we directly con
ered the behavior of the connected two-point correlat
function of the coordination numbers of the vertices of t
triangulations. For the Poissonian random lattices we find
correlations to decay very rapidly, and our analysis indica
that this decline is faster than any power of the distance.
dynamical triangulations, on the other hand, we find mu
stronger correlations, exhibiting a power-law decay with
the scaling window. Due to the large fractal dimension
these lattices, however, we find quite strong corrections
the leading scaling behavior to be present. Taking the cor
tion terms carefully into account, we are able to determ
the decay exponenta consistently with different methods
namely a direct analysis of the correlator, a finite-size sca
study of the correlation function at fixed distances, and
scaling collapse of the data on a universal scaling functi
Via Eq. ~13! this yields then an estimate for the wanderi
exponentv. In addition to this analysis of the correlator, w
investigate the scaling of the averaged fluctuations in sph
cal patches of increasing size, an expression which dire
occurs in the definition of the wandering exponent. For
Voronoı̈-Delaunay random lattices we find an estimate
the wandering exponent consistent with a value ofv51/2 to
high precision, which is in turn in agreement with the co
jecture of correlations decaying faster than any power of
distance. Thus from Eq.~10!, for Delaunay triangulations the
presented relevance criterion reduces to the Harris crite
ac50, such that disorder of this type should be relevant
any model with positive specific-heat exponent. For dyna
cal triangulations, on the other hand, a combination of
analyses presented allows us to conjecture76 that the cor-
relator decays with an exponenta52, leading to a value of
the wandering exponent ofv53/4. In view of the relevance
criterion ~10!, this leads to a relevance threshold as small
ac522. As a consequence, the class of dynamical trian
lations graphs should be a relevant perturbation for
known ordered models of statistical mechanics.

There has been a number of numerical and analytical
vestigations of the effect of disorder from the classes
graphs considered here on the two-dimensional Potts mo
For the case of a quenched ensemble of dynamical trian
lations, a series of Monte Carlo simulations of theq52,3,
4 Potts model witha50,1/3,2/3, respectively, showed
change of their critical exponents, indicating a shift to ne
universality classes.44,45,77 Additionally, it appears that the

he
8-9
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WOLFHARD JANKE AND MARTIN WEIGEL PHYSICAL REVIEW B 69, 144208 ~2004!
first-order transitions of the Potts models withq.4 get soft-
ened to second-order ones as the model is coupled
quenched ensemble of dynamical triangulations.44 For the
case of percolation, corresponding to theq→1 limit of the
Potts model, for which due to its noninteracting charac
quenched and annealed averages coincide, an exact so
can be obtained by use of matrix model methods.78 This
solution as well as numerical simulations for this mode79

which hasa522/3, also yield changed critical exponen
in agreement with the relevance threshold obtained here.
the case of Poissonian random lattices, simulations of
Ising or q52 Potts model, corresponding to the margin
casea50, yielded unchanged Onsager values for the criti
exponents;39–41,80 similar results were obtained fo
percolation,81 both results being in agreement with the re
evance thresholdac50. On the other hand, for theq53,4
Potts models witha.0, Poissonian random lattices shou
be a relevant perturbation. However, an exploratory Mo
Carlo study82 as well as preliminary results from a high
precision series of Monte Carlo simulations of the author83

for the three-states Potts model donot show any change o
universal behavior, in contradiction with the relevan
threshold proposed here. It remains an open question t
answered, e.g., by further high-precision analyses of thq
53 case as well as the larger-a q54 Potts and Baxter-Wu84

models, whether these findings are merely the effect o
crossover to new universal behavior occurring only for e
tremely large lattice sizes or whether there is possibly so
physical reason for an argument of the Harris-Luck type
being applicable to the case of spin models coupled to P
sonian random lattices. For this purpose, a careful analys
the counterexamples found in Refs. 61–68 might be instr
tive.
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APPENDIX A: NEAREST-NEIGHBOR CORRELATIONS
FOR QUANTUM GRAVITY GRAPHS

This appendix is devoted to a short derivation of the res
for the coordination number correlator at distance o
Gqq(1), for the ensemble of quantum gravity graphs me
tioned in Sec. IV A. Godre`che et al.54 consider topological
correlations in the thermodynamic limit of the ensemble
~regular! dynamical triangulations via a generating-functi
technique. This allows them to compute the probability d
tribution Qln of finding an edge connecting a vertex wi
coordination numberl with a vertex with coordination num
bern by means of a series expansion. This quantity is rela
to the probability of finding anl vertex in the neighborhood
of an n vertex, which is of interest here, as follows:
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Pln5
1

Z

36

ln
Qln , ~A1!

where

Z5(
l ,n

36

ln
Qln . ~A2!

Then, the distance-1 correlator can be expressed as

Gqq~1!5(
l ,n

Pln~62 l !~62n!5
36

Z
~1212S1Z!,

~A3!

whereS5( l ,nQln / l . Integrating the generating function o
Qln ,

Q~x,y!5(
l ,n

Qlnxlyn, ~A4!

one arrives at

P~y!5E
0

1

dx
Q~x,y!2Q~0,y!

x
5(

l ,n

Qln

l
yn,

Z536 E
0

1

dy
P~y!2P~0!

y
536(

l ,n

Qln

ln
. ~A5!

The first integral can be performed exactly, yieldingS
5P(1)51/6. The double integral in the second line of E
~A5! could not be evaluated in closed form. Instead, the
ries expansion ofQ(x,y) used in Ref. 54, performed up t
orders l<50 and n<100 ~and additionally exploiting the
symmetry propertyQln5Qnl) yields Z'0.966 97. Hence,
we arrive at

Gqq~1!536
Z21

Z
'21.2295. ~A6!

APPENDIX B: FINITE-SIZE SCALING OF THE
CORRELATOR

In this appendix we give a short justification of the finit
size scaling~FSS! method used in Sec. IV A to determine th
scaling exponent of the two-point correlator of coordinati
numbers and the correction terms taken into account.
consider making a real-space renormalization transforma
with a rescaling factorb ~see, e.g., Refs. 1,85,86!. After n
iterations of the rescaling, the two-point correlation functi
of some operatorf under consideration can be written as

GffS R;t,
1

ND5b22xfnGffF R

bn
;tbnyt,

1

N
bndhG , ~B1!

wherexf denotes the scaling dimension of the operatorf
and yt the temperature-related renormalization-group eig
value. Stopping the scale transformation at an iteration s
thatN21bndh[K, i.e.,bn5(KN)1/dh[(N/N0)1/dh, we arrive
at
8-10
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GffS R;0,
1

ND5S N

N0
D 22xf /dh

ŴF R

~N/N0!1/dh
G , ~B2!

introducing a universal scaling functionŴ. Therefore, ifR is
scaled linearly withN1/dh, e.g.,R* 5N1/dh/2, the correlation
function scales as

GffS R* ;0,
1

ND;N22xf /dh. ~B3!

Now, instead of doing FSS, consider the finite-s
‘‘field’’ as a scaling correction and stop the rescaling
R/bn5K,
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52E. Brézin, C. Itzykson, G. Parisi, and J.-B. Zuber, Commu

Math. Phys.59, 35 ~1978!.
53M.L. Mehta, Random Matrices, 2nd ed~Academic, San Diego,

1996!.
8-11



tt.

. A

b
h

ys

in

hat
ystem
cal
his

of

ns
ra-

sta,

ur.

a

WOLFHARD JANKE AND MARTIN WEIGEL PHYSICAL REVIEW B 69, 144208 ~2004!
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