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Two-dimensional superconductor in a tilted magnetic field:
States with finite Cooper-pair momentum

U. Klein®
Johannes Kepler Universitd.inz, Institut fu Theoretische Physik, A-4040 Linz, Austria
(Received 25 November 2003; published 27 April 2004

Varying the angled between applied field and the conducting planes of a layered superconductor in a small
interval close to the plane-parallel field direction, a large number of superconducting states with unusual
properties may be produced. For these states, the pair breaking effect of the magnetic field affects both the
orbital and the spin degree of freedom. This leads to pair wave functions with finite momentum, which are
labeled by Landau quantum numbers.8<<«. The stable order-parameter structure and magnetic-field dis-
tribution for these states is found by minimizing the quasiclassical free energyHpedncluding nonlinear
terms. One finds states with coexisting linelike and pointlike order-parameter zeros and states with coexisting
vortices and antivortices. The magnetic response may be diamagnetic or paramagnetic depending on the
position within the unit cell. The structure of the Fulde-Ferrell-Larkin-OvchinnikeLO) states a##=0 is
reconsidered. The transitiam— of the paramagnetic vortex states to the FFLO limit is analyzed and the
physical reason for the occupation of higher Landau levels is pointed out.
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I. INTRODUCTION valuen=0 determines théorbital) upper critical field of the
familiar vortex state, both in the framework of Ginzburg-
In this paper a theoretical study of a two-dimensional,Landau(GL) and microscopic theories of superconductivity.
clean-limit superconductor in a tilted magnetic field is pre-With decreasingd, highern segments of the critical-field
sented. Such systems exist in nature; several classes of lagurve appear close to the plane-parallel orientation. #or
ered superconductors of high purity with conducting planes—0 one find§ n—« and agreement with the FFLO upper
of atomic thickness and nearly perfect decoupling of adjacritical field. Thus, in this purely paramagnetic limit, the
cent planes have been investigated in recent years. Theseable state belowl ., must be the FFLO state.
include, among many others, the intercalated transition-metal Paramagnetically limited superconductivity differs in fun-
dichalcogenide TaS(pyridine), the organic superconductor damental aspects, such as Meissner effect and spin polariza-
k-(BEDT-TTF),Cu(NCS), and the magnetic-field-induced tion, from the behavior of the usual, orbitally limited super-
superconductok-(BETS),FeCl,. conducting state. In the FFLO state pairing takes place
Depending on the anglé between applied field and con- petween electrons with momentum and spin valués (
ducting planes the nature of the pair-breaking mechanism 9/2,1) and (-K+q/2,]). This leads to Cooper pairs with

!|m|t|ng the superconducting ;tate can be c_ontlnuously.varﬁnite momentunv.q and a spatially inhomogeneous super-
ied. For large# the usual orbital pair-breaking mechanism . ) - —
onducting order parameter given Byr)=Aqyexp(qr) (or

dominates and the equilibrium state is the ordinary vorte ) K !
q y y linear combinations of such terms with the same absolute

lattice. With decreasing, in a small interval close to the - ) o ;
parallel direction, spin pair breaking becomes of a magnitud&@lue 0fq). The pair breaking is entirely due to the Zeeman
pling between the magnetic momantof the electrons

comparable to the orbital effect and both mechanisms mugt®! 4
be taken into account. For the plane-parallel field direction@nd the external magnetic fieldl. The general rule for bulk
6=0, the orbital effect vanishes completely and the supersuperconducting states that gradient terms in the free energy
conducting state is solely limited by paramagnetic pairmust only be taken into account if a nontrivial vector poten-
breaking. The superconducting state expected in this limit i§ial is present breaks down for the FFLO state.
the Fulde-Ferrell-Larkin-Ovchinniko¥FFLO) state™? The At T=0, the Cooper-pair momentum of the FFLO state is
tilted-field arrangement, which allows to control externally approximately given byiq=|pg; —pg |, where|pg; — pg||
the relative strength of both pair-breaking mechanisms, has uHy2m/Eg is the difference in Fermi momentum be-
first been investigated by Bulaevskii. tween spin-up and spin-down electrons. With increasing
The upper critical fieldH.,, where a second-order phase the FFLO wave numbeq decreases and vanishes at the tri-
transition between the normal-conducting and the supercorsritical point T,;=0.56T.. The FFLO state is only stable
ducting state takes place, has been calculated for arbitrafpr T<Ty;, where its upper critical fielt ¢, o exceeds the
angled and temperatur&=0 by Bulaevskit This treatment Pauli limiting fieldH of the homogeneous superconducting
was generalized to arbitrary by Shimahara and Raingr. state>® At T=0, uHp=A,/+/2, whereA, is the supercon-
The field H., has a cusplike shape, considered both as aucting gap aff =0. The second-order phase transition line
function of 6 or T, with different pieces of the curve belong- Hgg o(T) depends on the shape of the Fermi surface. In this
ing to different values of the Landau quantum numbén paper we use a cylindrical Fermi surface appropriate for a
=0,1,...). In theorbital pair-breaking regime, for largg two-dimensional(2D) geometry. The corresponding critical
one finds as expectet=0. As is well known, this lowest field” is given by uHrr o=Ao at T=0.
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Between the ordinary vortex state with=0 and the quenceof the Zeeman effect, concerns the center-of-mass
FFLO state witm—c0 a countable infinite number of uncon- motion of the Cooper pairs, and can be descri@dwill be
ventional superconducting states, characterized by Landadiscussed shortjyby means of the quasiclassical theory of

guantum numbers=1,2, ... ,exist. The transition from the superconductivity.
vortex state to the first of these, the=1 state, occurs at an Restricting ourselves to the vicinity of the upper critical
angle 6, given approximately by field H,, we may use an expansion of the free energy in
powers of the order parametar, keeping only a finite num-
orb ber of terms. An analogous gradient expansion, which would
. HcZ kBTc : . . : T
sing,~ ~—7, (1) lead to a relatively simple GL-like theory with a finite num-
P Mug ber of spatial derivatives ok, does, unfortunately, not exist

for the present problem. Such an expansion may be per-

whereH" andH, are the “pure” orbital and paramagnetic formed for =0, in the purely paramagnetic limit, near the
upper critical fields, respectively. Sin¢¢p>H2£b, the ex- tricritical point Ty, where the order-parameter gradient is
perimental upper critical field for a three-dimensional samplesmall because the characteristic length of the FFLO state
is given byH%P . Because); <1 (generallyd; will be of the  diverges afT,,; . However, for finiteH, a small characteris-
order of magnitude ofl°), the perpendicular component tic length for order-parameter variations does not exist in the
H, =H sing for all of these states with>0 will be much relevant range of temperatures, and the spatial variatidn of
smaller than the parallel compone#t)=H cosé. Thus, must be taken into account exactly. One might still hope that
these states will have some properties in common with th@ GL theory with a finite number of derivatives, although not
FFLO state, namely, strong paramagnetic pair breaking, accurate, will be useful to predict thyalitative behavior of
spatially inhomogeneous order parameter, and Cooper paitse superconducting states nddg, correctly; bearing in
with finite velocity of the center-of-mass coordinate. Despitemind, for example, the results of standard GL for type-II
this similarity with regard to general features, the order-superconductivity. However, for the mixed orbital paramag-
parameter structure for the>0 states may be completely netic pair-breaking phenomena under discussion, there is not
different, even for large, from the FFLO state. The reason even a single point on the temperature scale where a GL
is that a finite perpendicular componétit , no matter how theory with a finite number of derivatives is valid. Such a
small, implies a new and rather stringent topological contheory is only valid neail . where no FFLO state exists, or
straint on the equilibrium structure, namely, the flux quanti-nearTy,; in the “vicinity” of the paramagnetic limit, i.e., for
zation condition. The subject of the present paper is the deextremely largen. The latter region is inaccessible both from
tailed investigation of the structure of these-0 states, anumerical and a experimental point of view. In this context,
which might be referred to either as FFLO precursor states dt should also be noted that the final equilibrium structures do
as paramagnetic vortex states, in the vicinity of the uppenot show any continuity with regard ta
critical field H,. A theoretical treatment of these FFLO pre-  Fortunately, the present problem does not require solving
cursor states, reporting several essential results and an oulbe full set of Gorkov’s equations because the simpler set of
line of the calculation, has been published previofisinis  quasiclassical equations may be used instead, as pointed out
papef will be referred to as KRS in what follows. In the by Bulaevskii® The large parallel componetht; of the ap-
present paper many results are reported and the treatmentghed magnetic field, acting only on the spins of the elec-
extended with regard to several points, including finite val-trons, is exactly taken into account by the Zeeman term.
ues ofk, the purely paramagnetic lim#=0, and the tran- Thus, with regard to this component no question, as to the
sition n— o, validity of the quasiclassical approximation, arises. The mag-

It should be pointed out that the physical origin of the nitude of the perpendicular componert , on the other
Landau-level quantization effects for Cooper pairs, considhand, must obey the usual quasiclassical condittan
ered in the present paper, is very different from the Landauw<kgT, wherew.=eH, /mc, or siné(eiH/mg<kgT. Insert-
guantization effects for single-electron states discussed in iag the highest possible fieltl=Hp in the latter relation,
large number of publications by Tesanovic and co-worRers,one finds that the quasiclassical approximation holds indeed
Rajagopal and co-worket8 Norman and co-workerS,and  for not too low temperatured,/T.>kgT¢/Ef, in the inter-
others. The latter are mainly concerned with the relative-esting range of tilt angleg< 6,, where the new paramag-
coordinate degree of freedom of the two bound electrongetic vortex states appear.
constituting a Cooper pair and lead to measurable conse- In most papers on paramagnetic pair breaking and the
guences only outside the range of validity of the quasiclasFFLO state the influence of orbital pair breaking is com-
sical approximation, at very low temperaturel  pletely neglected. This means that the GL parametemds
<(kgT)?/Eg and/or high fields. In addition, a mechanism is to infinity and that all spatial variations of the magnetic field
required to suppress the Zeeman effect, which is neglected itan be neglected. For three-dimensional superconductors this
the theoretical treatment and is not compatible with the preapproximation implies that the orbital critical field is much
dicted phenomena. The question whether the most dramatfdgher than the paramagnetic Pauli-limiting field. This is im-
consequencés (reentrant superconductivitof this type of  possible to achievé for BCS-like superconductors, because
Landau quantization effects will be observable, has been thie superconducting coherence length cannot be smaller than
subject of a controversial discussibht* In contrast, the an atomic distance. It seems unlikely even for unconven-
present Landau-level quantization mechanism isoase- tional materials® where many-body effects may lead to a
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strong renormalization of the input parameters. For themagnetic moment=%|e|/(2mc) of the electron. Also, for
present two-dimensiondRD) situation, the suppression of each group separate normalization conditiongf+)
the orbital pair-breaking effect is entirely due to geometrical+f(+)f(+_):1 and 9(2_)+ f(_)f(ﬁr): 1, respectively, exist.
reasons, and no restriction on the valuexofs required in  Therefore, it is convenient to introduce Green’s functifins
order to reach the purely paramagnetic limit at parallel fieldsf+ g, defined by

Thus, keeping all terms in the quasiclassical free energy re-

lated to spatial variations of the magnetic field will allow us f(F,E,wS):f(_)(F,E’w) ,
to study type-Il superconductors with arbitrary or even
type-l material. Largee¢ superconductors show, however, f+(;’|2,ws): fzr+)(F,|Z,w),

still a practical advantage because of their larger critical
angle 0, [see Eq(1)]. PN -
This paper is organized as follows. In Sec. Il Eilenberg- 9(r.k,w9)=9g(-)(r.k,),

er's quasiclassical equations generalized with regard to @hich are functions of the spatial variabie the quasiparti-

Zeeman cou_pllng term, as well as the corre_spondlng freeéIe wave numberk, and the complex variableog= o
energy functional, are reported. The expansion of the free

energy near the upper critical field, for a general 2D quasi-"'#B- The 2D variable denotes positions in the conduct-
periodic state, is treated in Sec. IIl. Two limiting cases of thelN9 (X,¥) plane. The real variable takes the values of the
analytical results, the GL limit and the structure of the ordi-Matsubara frequencies; = (2| +1)7kgT; the Matsubara in-
nary vortex lattice, are reported in appendixes. The numerid®x! will not always be written do"‘i” explicitly. The second
cal results for the paramagnetic vortex states, at finite peldroup of Green's functions ), f_), g+, may be ex-
pendicular field, are reported and discussed in Sec. IV. Theressed by similar relations in terms bff ", g if w; is
structure of the FFLO state, for the special case of vanishingeplaced bywy .
perpendicular field, is reconsidered in the present quasiclas- Using the Green’s function§ f*, g, the quasiclassical
sical framework in Sec. V. The nontrivial transitigh-0 (or ~ equations with Zeeman coupling become formally similar to
n—) to the purely paramagnetic limit is analyzed in Sec.the quasiclassical equations without spin terms. The nonlin-
VI. An explanation for the increase im in terms of the finite ~ €ar transport equations férf " are given by
momentum of the Cooper pairs in the paramagnetic vortex el e L.
states, is also reported in this section. The results are sum-  [2wsthve(K)d]f(r,K,ws) =2A(r)g(r K, ws),
marized in Sec. VII. L o o
[20s—hve(K) a7 1 7(r K, 05) =2A%(r)g(r k,05), (2)
II. QUASICLASSICAL EQUATIONS WITH ZEEMAN

TERM where the Green'’s functiog is given by the normalization

condition
We need a weak-coupling, clean-limit version of the qua- .. .. - o
siclassical theory/*®which contains all terms related to the g(r.k,og) =[1—f(r ko) f(r ko]~ 3

coupling of the electron’s spins to an external magnetic field - e . . o
A general quasiclassical theory which covers Zeeman couHere’UF(k) denotes the Fermi velocity anfl is the gauge-

pling has been published by Alexanderal® The 4x4  invariant derivative defined by, =V, —1(2e/Ac)A. The or-
Green’s function matrix appearing in this work may be con-der parameteA and the vector potentigh must be deter-
siderably simplified for the present situation. Since we ne-mined self-consistently.

glect spin-orbit coupling, the direction of the magnetic in- The self-consistency equation faris given by

ductionB in spin space may be chosen independently from N
- = . . i b1 -
the direction ofB in ordinary space; we adopt the usual (zkaTE —+In(T/TC))A(r)
choice of B being parallel to the direction in spin space. =0 @
Then, only six essential Green’s functions remain, which are Np
denoted by =mkgTD>, O d2K'[f(r K w5 +f(r K 0], (4
=0

foy=f+f foy=f—f
) B 0) ¥ whereNp is the cutoff index for the Matsubara sums. The

f(t):f+_ fa, f(++):f++f3+' self-consistency equation fak is the Maxwell's equation
9H=0+0s (=9~ Us. WX (B(D)+4mM (1)
Here,f, 7, g denote the Green’s functions in the absence of _167729|<BTNF Q[ dk - K3l K
Zeeman coupling, antl;, f5 , g5 are the additional Green’s N C =t A vr(k)Jg(r k', wg),
function components in the direction of spin space. The
three equations for the right grouf_), f(ﬁ), g(-), are (5
decoupled from the three equations for the left grayp,, whereNg is the normal-state density of states at the Fermi

f(+_), g¢+) and differ only by a negative sign in front of the level. The right-hand sidérhs) of Eq. (5) is the familiar
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(orbital) London screening current while the magnetizationand vanishes at the Pauli critical fiettl, . For higherT the
M is a consequence of the magnetic moments of the ele&elf-consistency equation for the gap must be solved numeri-

trons and is given by cally, yielding agreement with previous resuftd.Let us in-
vestigate the magnetic response in this purely paramagnetic
o R Np d’k’ B limit. It is neglected in most theoretical treatments, but is of
M(r)=2,u2NFB(r)—477kBTNF,uE 4—Jg§. particular interest if the influence of finite values of the GL
1=0 7 ©) parameterx is to be taken into account. To obtain the mag-

netization due to the spins, the coupled self-consistency
The first term on the rhs of E@6) is the normal-state spin equationg4) and(5) have to be solved. Using dimensionless
polarization. The second term is a spin polarization due tguantities defined in Appendix A the gap equation takes the

quasiparticles in the superconducting state. form
The following symmetry relations hold for solutions of
Egs.(2—(5), o 1 2
o o Int—tz > >+cC.C|—— =0,
g* (r,—kw$)=9(r kwy), =0 [\ VIA[*+ (w+11B) @ 0
fH(r K wg)=f*(r,—K w), while Maxwell's equation reduces to
g(F!_EI_wS):_g(FilzywS)! ND w+ 1| B
B—H=2| up—2t>, e St Y
H(F,— K, — 0 = F(F K09, « o VA (ot 1uB)

.. . Note that the orbital screening currdite rhs of Eq(5)] is
f7(r,—k,—wg)=f"(r,k ), (7)  completely absent for the plane-parallel field direction. At
which have been extensively used in the calculations deT=O the rhs of Eq_.(ll) va_nlshe§ exactly. This means that
. ) . the normal-state spin polarizatiffirst term on the rhs of Eq.
scribed in the next sections.

, ) ) (11)] is exactly canceled by the spin polarization due to the
. The quasiclassical equatlo(@), (4), and (5)_may be de superconducting quasiparticl¢second term on the rhs of
rived as Euler-Lagrange equations of the Gibbs free-energ : - o
, SO g. (11)]. The numerical solution shows that the quasiparti-
functional G, which is given by o o X
cle polarization decreases with increasih@nd vanishes at

1 B2 B =y A=0, where the magnetic behavior of the normal-
G= _f d%{__#ZNFgZ__JF Ne| 7keT D — conducting state is recovered.
Fp 8m 4 157 | o] In the rest of this paper dimensionless quantities as intro-
o duced by Eilenberger will be used. These quantities are listed
+IN(T/Ty) | |A]2— 7kgTN 2 ff d_2k| (F Koy in Appendix A. Any exception will be mentioned explicitly.
¢ BY R &~ Qo > TS In the next sections the stable order-parameter structure of

a 2D superconductor in the vicinity of the phase boundary
®) will be investigated. The phase boundafy,(T) itself is
The area of the sample is denotedfyyand thek-dependent ~ given by the highest solution of the equation
quantity | is given by

© 1-—e “DS
> O=Int+t| ds——F——
- w 1 hvug. f
I(F K, =Af+A*f+ g—m)[?(a)s TFa,)f o sinhst
X[1—cod uHs)e His™L (H s%2)], (12
1 hue -
+f_* wg— TF(?:‘ ) fﬁ. where the integen=0,1,2 ... is Landau’s quantum num-

ber, wp is the Debye frequency, ant, is a Laguerre
olynomiaf* of ordern. A typical phase boundary is shown
n Fig. 1. Each piece of the nonmonototig, curve is char-
Acterized by a single value af An infinite number of eigen-

An important reference state for the present problem i
the purely paramagnetically limited homogeneous superco

ducting state, which is realized for our 2D superconductor 'stateSqﬁn,k exists, belonging all to the same, highly degener-

the magnetic field is exactly parallel to the conducting ; -
. . . Yate eigenvalue. For the present gauge, these are given b
planes. In this case, the vector potential and the gradlene% 9 P gaug 9 y

terms in the transport equations may be omittedT AtO the

_ n
free-energy difference between the superconducting and b, k(F):A( 1) e'kxg— (HL/2)ly— (KH )12
normal-conducting states may be derived analytically. It is ' !
given by K
Gy~ Gp=Ne(u2H2 - A32), © X Hen| VR |y H_D 13
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3 T ' and the angle between them. The free energy will be mini-
12001 4 . ; .
N, mized with respect to these unit-cell parameters.
1150 \/\ |
\
11.00- \W ( . A. Order parameter
10.50 \ Let the unit vectora of our elementary cell be parallel to
£ 000k \ i thex axis,a=ae, . The angle betweea and the second unit
. 3 . . . .
0501 \ i vectorb is denoted byr. To construct a quasiperiodic order
’ \ parameter neaH.,, exactly the same method as used by
9.00 L\\\O 7 Abrikosov?® for the casen=0, may be applied. The result is
8501 \ i given by the following linear combination of a subset of the
. basis functiong13):
L | L L | L | L |
8.00 040 080 120 160 200

m= -+

. b
® [deg] A(N=AC, D ex —tm_m(m+1)cosa
m=—o

FIG. 1. Phase boundary of the superconducting state-ét1

for tilt angles® between 0.1 and 2.0 using a value=0.04 for the 2 )
dimensionless magnetic moment of the electron. The numbers Xex;{|?mx>hn(y—mbsma), (16)
0,1,2 ... arelLandau quantum numbers characterizing the indi-
vidual pieces of the curve. where
. . . . n
wherek is a real number and Hjés a Hermite polynomiat h(2)= (=1) e ®.27%he (\2B. 2).
of ordern. The functions(13) are orthogonal and normal- I
zed, This order paramet&t?8is not invariant under translations
(bnk>Dm1) = Snmd(k—1), (14  r—r'=r+na+mb but acquires phase factors for each el-
) ) ) ) ) ementary translation, which are uniquely defined within a
if the amplitudeA in Eq. (13) is chosen according to fixed gauge. Surrounding a unit cell in counterclockwise di-
va rection, these phase changes add up to a total factor of
1 H, expi2m, i.e., each unit cell carries a single flux quantdr.
A= R_o wLi) ' (15) We shall use this assumptign of a single flux quantum per

unit cell, which is written af3, absina=2 in the present
wherelL, is the size of the system ix direction andR, is  units, throughout this paper. Preliminary calculatfSrshow
defined in Appendix A. The gap, for the portion of thig,  that states with two flux quanta per unit cell have higher free
curve characterized by, is a linear combination of akp, , energy and can be excluded. Also, a preference for multi-
belonging to thisn. The harmonic-oscillator eigenfunctions quanta vortices seems unlikely in the present situation, where
(13) are extensively used in the theory of the quantum®4all the single flux quantum state is stable at la@ewhile the
effect and many other topics in the quantum theory of atotal flux decreases to zero @s—0.

charged particle in a magnetic field. The order parametef(l6) describes a flux-line lattice
where the Cooper-pair states belong to arbitrary Landau
IIl. FREE-ENERGY EXPANSION NEAR THE UPPER quantum numbersn,. erending on the tiltlangl(-D. As is
CRITICAL FIELD well known, the pairing states for the ordinary vortex state

belong to the lowest Landau levet= 0. The present shift to

We assume that the transition between the supercondudtigher Landau levels is, of course, related to the large para-
ing and normal-conducting states at the upper critical fieldnagnetic pair-breaking fieldl| as will be discussed in more
H, will be of second order for arbitrary tilt anglé. Then, detail in Sec. VI.
the order parametek, or more precisely its amplitude, The coefficientC,, in Eq. (16) may be expressed by the
may be used as a small parameter for expanding the fregpatial average of the square of the order parameter, using
energyG in the vicinity of H.,. We keep terms up to fourth the relation
order ine and all orders in order-parameter derivatives and
determine the energetically most favorable order-parameter o 1 )
structure neaH,. Similar calculations for the ordinary vor- (105 = |:_|Cn| m:ZM/Z 1, (17)
tex lattice, corresponding to the case of large of the P
present arrangement, have been performed by EiIenBérgerwherer is the area of the sample. The spatial average over
and by Rammer and PesthNo special assumptions on the the unit-cell ared .= absin« is defined in Appendix A. For
order-parameter structure, such as the number of zeros pkater use, when performing the limé@—0 in Sec. VI, we
unit cell, will be made. We only assume that the order pa-assumed in Eq(17) that the area of the superconducting
rameter is quasiperiodic on a 2D lattice, with an arbitraryplane is finite and that the number of unit cells in one direc-
unit cell, characterized by the length of the two basis vectorsion is M. At the end of the following calculatiorG,, will be

+M/2
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fixed according to the requiremeit ;|2)=1 and an infini- IA

tesimal amplitudes will be attached in front of each power &—fzo, f erA*lzo, 5\1 periodic. (23
of A,. r
A useful quantity is the square of the order-parameter = - =
modulus, which may be written in the form The vector potential describing the average valleof the
induction is chosen according to
lnl*(F) =25 (i . (18) A(r)=(Bjz—B,y)é. (24)
_ N ) _ The first term in EQq.(24) can be omitted in the gauge-
The Fourier coefficientsiy), ; are given by invariant derivatives of Eq.2) since noz dependence exists

_ in our 2D system. Thus, the orbital pair-breaking contribu-
(7)1 j=(—1)lle I m®lajcosag= 2 (% ), (19)  tion in the transport equations consists of the sum of the

B, in Eq. (24 her- A
wherex, ; is defined by Eq(B4). The order paramete,, is second term<B, in Eq. (24) and ther-dependent parh,

proportional toA,, but with an amplitude chosen according (only the perpendicular component Aj is relevant herg
to (|¢,|2)=1. Itis instructive to compare Eq18) with the ~ The(large parallel componenB), on the other hand, enters

local magnetic field reported later in Sec. Il E. the spin pair-breaking term, which is proportional B¢r)
=[Bf(r)+B(r)]*% Equations(23) and(24) fix the gauge,
B. General aspects of the expansion i.e., allow a unique determination &f in terms ofB. While

A fourth-order expansion o6 requires first- and third- |A|? andB are periodic, i.e., invariant under translations be-
order contributions in the Green’s functioh$ . We use the tween equivalent points in the 2D structuAeandA are only
notation quasiperiodic, i.e., they differ by phase factors and a change

in gauge, respectively. The phase factors are fixed within a
f=fM+fC) fr=f+104 70 (200  given gauge and may be calculated using @4).
As a first step in the expansion & the Green’s function
wheref andf(® are the contributions of order" and ¢, is eliminated in favor of, f* by means of the relation
respectively. A consistent treatment of the magnetic-fieldg

- = v f20842
term£®2°requires a separation & andA according to fir ()

g= 1— T — 3 + ...,

B(r)=B+By(r), A(r=A(r)+Ar), (21)  which is valid for smallA. Second, the gradient terms @
may be eliminated with the help of the transport equations
(2). Then, the(dimensionlessGibbs free energy takes the
form

whereB is the spatially constant magnetic inductid,(r)

is theF—dependent deviation frof andA(F), and,&l(F) are
the corresponding vector potentials. An evaluation of the
magnetic-field terms inG requires the leading order in

By(r), which is €?: By~B{*). The spatially constant quan-

oo

1
Int+2|:2O 111

1 ~ e - -
G= —f dsr(KZ(B—H)z—,uzBZ+
Fp
_ _ = t
tity H.,— B, whereB=|B|, is small of ordere?. The whole X |A|2— > >
expansion ine will be done keepind fixed; at the end of =0

the calculation, the Gibbs free ener@will be minimized
with respect to the order-parameter amplitudand the in- +c.c.

duction B. The calculation can be seen as an extension of
Abrikosov’s classical work to arbitrary temperatures below where the bar denotes a Fermi-surface average as defined in
Te. Appendix A. In divergent Matsubara sums, like the one in
Let us choose the coordinate system in such a way thdtd. (25), the upper, infinite limit of has been replaced by a

the magnetic field lies in they(z) plane. Then, the induction finite cutoff using the standard method.
B(r) (and the external fielti) may be split according to Inserting the expansion@0) and(21) in the free energy

(25) and collecting terms of the same ordereinG takes the
form

1
Af*+A*f+Z[Af(f*)2+A*f2f+]

), (25

B(r)=By(r)e,+B, (e, (22)

. . =G+G@D4+c® 2
in perpendicular and parallel componests, B;. The cor- G=G+G G 26

responding vector potentials are denotedipy A, . In order ~ where the termss, G*), andG™ denote the free energy
to fix the gauge we may employ here essentially the sameontributions of ordee®, €%, ande?, respectively. The term
method as used before in numerical calculations on the voi is given by
tex lattice without Zeeman couplirf§=° The gauge condi-

tions which fix,&l are given bg® G=%*B- |:|)2—,U«2

N

B2. (27
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We will first simplify the quantitiesc®) andG'®) and then  The first-order solution forf* is given by f+ (K, wg,r)

calculate the minimum o with respect to the amplitude =% (—k, 0* )
. . 1YYs "
and the inductiorB. The evaluation of the remaining integrals may be greatly
simplified by introducing the gap correlation function
C. Second-order contribution V(ry,r,). In the present gauge it is defined by
The second-order contribution to the Gibbs free energy is _
given by - - e B,
V(ry,ra) =A(r) A% (ra)exp 1 o= (X1 =X2) (Y1 +y2) |-

t o (35
Al2= 5 2 (AfFD
20

1
Int+2|§0 111

G(2)=l f d3r
A Of particular importance are the Fourier coeﬁicieb(tg(F),
- wherer=r,—r,. The precise definition and calculation of
+A*fD+ c.c.)} (28) v, ;(r) is reported in Appendix B.
All terms in Eg.(28) containing first-order Green’s func-
To calculate the lowest-order Green’s function only contribu-fions may be expressed as integrals over a gap correlation
tions of order €, namely the spatially constant paE function. The first of these takes the form

= (Bf+B2)* of the induction and the lowest-order vector oc L
L _ . Af”l):f due UesV* (r +uk,r), (36)
potential A, have to be taken into account in E@). The 0

. . (1) . .
resulting equation fof " is given by while the corresponding expression far f*) may be de-

rived from Eq.(36) with the help of the symmetry relations
(7). To proceed, center-of-mass coordinates are introduced

where 550):(‘9/&F)+|§iyéx- To proceed, we use well- and a F9urier expansion of“M(R,r) with regard to the

known method¥ and solve first the eigenvalue problem of variableR is performed, using the resui3) from Appendix

the operato&é(o). The solution is given by B. The remaining summations and integrations may be per-
' formed analyticall! Collecting all terms one obtains the

final result for the second-order contribution

[ +1uB+kd DV =A, (29)

ka5 =Eicrficp(r), (30)
ke » 1-g oS _
with the eigenvalueg; ;=1kp and the eigenfunctions G@=(|A|?) Int+tf ds— o [1—cod uBs)
0
By o
fip(r)=ex |7(xkx+yky)(xky—ykx)—|Bi?+|pr . x @ Bis M'—n(BLSZ/Z)]}- (37)
(31)

) i , ) While the order parameter expansion, Ef6), which en-
Using the completeness of this continuous set of eigenfunGyeq the calculation o6, depends on the lattice param-

tions the differential operato(rl)on the left-hand sidles) of o015 1 o) this dependence is absent in the final result, Eq.
Eqg. (29 may be inverted anfl'*’ be represented in the form (37). The quantityG(®, characterizing the appearance of the
superconducting instability, and not the detailed structure be-

f(l)_f dz_pf P fip(DfE (1) A sy oW it, does only depend on the eigenvalneThe relation

) a2 r1w|+ B+ 1kp (r). (32 G@=0 agrees with the linearized gap equatiag) used to
calculateH .,.

Representing the denominator in E§2) by means of the The technique used here to calcul@€’ will be gener-

identity alized in the following section to evaluate the fourth-order

contribution to the free energy.

1 ©
—_—— ST
r Jo dse (33 D. Fourth-order contribution

N ] . ) . The free-energy contribution of orde* may be split,
as an additional integral, both theintegration and the;  according to

integration may be performed analytically and the solution of

Eq. (29) takes the form GW=cP+6W, (39)
e B ) in a nonmagnetic pa{;’ and a magnetic pa6;’ . In G
f(l)(k,ws,r) - fo due“‘”sexp{ : E( —2uyk the spatiallyﬁonstant inducticﬁl?and the corresponding vec-
tor potentiaIA(F) are used. The terrﬁf\j,") collects all terms
+ UZRXRy)}A*(F— uk). (34  of order e* where deviation8,(r)~ € [or the correspond-
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ing vector potential;(r)] from the average inductioB are

taken into account; fok—oe, it becomes negligibly small.

The nonmagnetic pafs}’ is given by

GP=GM+GcW. (39

The termG{" may be calculated using the solutioh’,
f*() of order €', already obtained in Sec. Il C,

Np
G{¥= —<é > [A* D24 AfDfF D24 c.c.]> :
=0
(40)

The termG{" requires the nonmagnetic paft§’, f,;* of
the third-order Green’s functioni$®, f*(3),

Np

t
G(4):_ _
b 2 =0

2[A*1‘§,3>+Af;<3>+c.c.]>. (41)

The magnetic parG|; is given by

GiP=cW+c{. (42)

The termG(c“) is purely magnetic in origin, while the term

G{" contains the magnetic parf§y’, f,,® of the third-

order Green'’s functions,
G=((k*~ u*)BY), (43)

t
G{M=- > 2 [A*fP+AfE®+ce]). (49
i=

In a next step, the termB8, and f® =@+ () of order
€ and €,
method used in Sec. Ill C to calculat€”, by inverting the

differential operator on the lhs of E(R9), may be used here

to obtainf(®). Using an operator notation for brevity, the sum

of f() and () may be written as

f®=[w+1uB+kd®] 1D, (45)

Dz—%Af(Df*(“—Pf(D. (46)
The first and second term in E¢6) gives f() and f{3),
respectively. The terr® is of ordere? and is given by

50) 1 RAP). (47

The magnetic contribution8;=B{* and A{®) must be de-
termined by solving Maxwell’s equatloQS) Expanding Eg.
(5) one obtains two decoupled equations,

2 —
J7 R . >
1- = |By=—17B|, (49)
K

respectively, must be calculated The same,

PHYSICAL REVIEW B 69, 134518 (2004

V. X =8, (49)

2 _
1—5—)%“,0&
K2

for the parallel and perpendicular componeﬁ'@ and Iﬁu

of B,. The quantities;®, 3, which are both of ordee?, are
given by

t 2u 2 . 2t —
=== 200, f== % kg (50
k> =0 K- 1=0

The Green’s functiorg in Eqg. (50) may be replaced by
— fMf*W2 under thek integral. Thus,z°, 3 may be cal-
culated by using the first-order solutiofid’, f () as given
by Eq.(34). The solution of Eqs48) and(49) is obtained by
expanding the unknown variabl&”, E?u and the param-

etersz?, B which are all invariant under lattice translations,
in Fourier series; the corresponding Fourier coefficients are

denoted by By m=(B1)ime, (B1)im=(B1)ime:,
and (no),,m, [Z’Lm. The explicit solutions will be reported at
the end of this section.

Given the second-order contributid®,, the first term
G of 13 [see Eq(43)] can be evaluated. To calculate the
second ternG{") one needs, in addition, the correction term

A, [see Eqs(45)—(47)]. Writing A;=Ay+A,, , the Fourier
coefficients ofA;;, A,, may be expressédin terms of the
Fourier coefficients of the induction,

N | -
(AlH)I,mz(j_le,m,x(BlH)I,meZa

I,m

(AL)im (51)

Q| m(BlL)I m(QI myex QI mxey)

using the gauge conditions defined by E2@). The quanti-
tiesQy mx» Qi,my iN EQ. (51) are thex andy components of

the reciprocal lattice vecto’.D| m defined in Appendix B.

Each one of the four terms of ordef in Egs.(39) and
(42) may be represented as a multiple integral and Matsubara
sum over the product dfvo gap correlation functions. What
remains to be done is to perform analytically as many inte-
grations as possible. The details of the calculation will be
reported here for the first ter@(*), defined by Eq(40); the
evaluation of the other three terms is similar.

Using the first-order Green’s functiort84) and the defi-
nition of the gap correlation functiof35), the term Gg“)

takes the form
fwdewdsljwdSZ e wg(Sst+S1+8y)
0 0 0

¢ No
H__ [ _
Ga <8 20

X V(r —s;k,r+s,K) [ V(r—skr)+V(r,r +sk]

+cC.C.

> : (52

ExpandingV in a Fourier series, the spatial average in Eq.
(52) may be performed anG(a4) takes the form
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t Noo1 ron

GLY=~ 2 2m)o d(P% 0 dsfo dslfo dszeiw'(ﬁsﬁsz)vl,m(_(51+32)R)

* ~ - EA - _Sl“l‘SZA N
X V[ n(skjco Q|,m2k - co Q|,m—2 k]cog uB(s+s;+5,)]

+sin

’

> —Sl+32,\ . —_—
Ql,mTk SiMuB(s+s;+s;)]

whereV, ., is given by Eq.(B3) and the symmetry relationg) have been used to rearrange the integrand. We introduce
center-of-mass coordinatés=s;+s,, tg=S;—S, in the s;,s, plane. Replacing, ,s, by the new variables, the integration
over tgr may be performed and the double integral oseandtg becomes a product of two independent, one-dimensional
integrals. Performing this ste{") takes the form

Np

G- 3 - 217d(p2 Ldese“"lscos(i(ﬁ R) ¥ (sk)fwdt e~ ils
2 =02m)o " Tfm Q) nkJo 2hme ] Thm o °

X sin

ts. - n — — _ _
§Q|,mk) V) m( —tek)[ cos BS)cOS uBts) — Sin uBS)sin uBtg) . (53

An attempt to simplify Eq(53) further, by performing one of  exp(—w;s) has to be kept, while the termﬁﬁhm(si() and

the remaining integrations analytically, was not successfulcos(ugs) show the slowest variation is and may be re-
At _thjs ppint it seems already feasible to calculate the re'placed by their values at=0. This conclusion remains true
maining integrals oves, ¢ and the sums over Matsubara and or arbitraryn. This may be seen by using the relatioB
Fourier indices numerically. However, we prefer to proceedf ' +

d calculate th 2 int s b ‘ = B which will be derived in Sec. VI.
and cajculate t € remaining integrais by means ot an Using this asymptotic approximation both the integral
asymptotic approximation.

X o ) . overs and the Fermi-surface average may be performed ana-
Let us consider for definiteness the integral osén Eq.

- : - lytically and one arrives at the result
(53). The integrand has its maximum st 0. We analyze
the behavior of the various factors in the integrand as a func- t No
tion of s, and neglect the dependence of the slowest varying GW=——> > V¥ (sK)|s—oV m(—tsK)|¢ —o
factors. The characteristic lengths srspace of the factors 4= tm ' °

exp(— w;9), cos6Q k), V| m(sk) and cos@Bs) are given by

1 .
1m3 < 2 2
n=[(2+ )], 7=(B.[r-yu) " 7= (nBL) "2 and 201+ 71Quml
7,=(uB) ™!, wherer,,=la+mb. We consider a range of X 1 M-
inductionsB=B;, where the Pauli critical fiel& is (in the w|2(w|2+ Z|Q|,m|2>

present system of unitgiven by uBp=0.4. As a conse-

quence,7,=2. Choosing a typical numbgz=0.1 for the  The second nonmagnetic ter@{" [see Eq.(41)], which
dimensionless magnetic moment, our induction varies in thgs evaluated with the same method, is given B
rangeB=<4. The characteristic lengths, and 73 both de- =-2GW.

pend on the Landau quantum numirerrecall that§l de- In order to calculate the fourth-order terms of magnetic
pends om as shown in Fig. 1. Let us consider first the caseorigin, G andG{", the Fourier coefficients of the quanti-
n=1. Then, B, =Bsin®; with sin®,~u/7 according to ties 7%, B [see Eq(50)] have to be evaluated first. This may
Eqg. (1) and the definition ofu in Appendix A. As a conse- be done using a method similar to the one outlined above for
quence,r; is of the same magnitude as for n=1. The G{¥. A noticeable difference is that tfeedependence of the
magnitude ofr,=7/| F|’m| varies strongly depending on the slowest varying factorgthe ones with characteristic lengths
Fourier indicesl,m. For not too large Fourier indices and 73 and ;) cannot be completely neglected in the course of
nearly allw,, 7, will be the smallest of the four character- the asymptotic approximation, but must be taken into ac-
istic lengths. This is, however, only true for not too low count to linear order irs. In a second step, Maxwell's equa-
temperatures. For large Fourier indices, which should be tion has to be solved to obtain the magnetic-field correction
taken into account in the present situation, the behavior 0f§1. Given the latter, the free ener@/c“) may be calculated.
the integrand will be dominated by the term @§(k) be-  The termG{" contains an additionalintegral which may be
cause its characteristic lengtty becomes small for large performed by means of an asymptotic approximation of the
I,m. Thus, the latter term as well as the Matsubara termabove type. The relatio&{’=—2G{* was again found to
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be true, in analogy to the nonmagnetic cée same rela-
tion has been found in microscopic calculatithsf the or-
dinary vortex lattice neak ).

Collecting all fourth-order terms and attaching the facto
€* one obtains the final result

t t2 '
GW=e'| 23 f2x mS- Z—MZ [Bf 1 *f50x) m)

I,m K

910X, m ST |,
(54)

X (S BLu?a(x SR

where the prime at the second summation sign indicates th

the terml=0, m=0 is to be excluded from the sum. The
functionsf,, g, depend explicitly on the Landau quantum
numbern and are given by

fa(x)=e 2L (x), (55)

gi(x)=e"? (56)

’

1
SLa00+ (1= 8,07 1(%)

whereL} is a Laguerre polynomidf: The Matsubara sums
are given by

1 .
Np 2("Iz_"z|r|Q|,m|2

Sl(,ln)qzlgo 1. s (57
of o+ 310l
ND 1
sA=> (58)

|=0 2
W)

) 1 R 172
wj +Z|Ql,m|2)

The square of the reciprocal-lattice vector is convenientl

written in the form|6|’m|2=2§lx|'m/2, wherex, ., is de-
fined by Eq.(B4). Introducing a magnetic length defined
by

2 2
“absina | 2’

L

(59
these parameters which dependarm, «, are given by

a)z

L

2

T 2

L
12+

a

2 a
m°—2x7lm——.
sina

(60)

X\ m

' :Sinza

E. Local induction

The component$,;, and By of the spatially varying
magnetic fieldél are given by Fourier series of the form

B1a(N)=2" (Bya)| m€'A, (61
whereA=_1,||. The Fourier coefficients are given by

13451
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S
(BlH)I,m: - TMZB”M
r X (— 1)Ime—|w|(b/a)c05afl(xlvm) SI(,ln)w (62)
2
(Bu)| m— t<|An| > (— ]_)lmeflwl(b/a)com

KZ_,LLZ

X[B 21X m) ST = 91(X1 ) Sl (63)

The parallel component62) is proportional tou? and is
entirely due to the spin pair-breaking effect. The perpendicu-
{Iﬁr component63) is the sum of gu2-dependent term and a
Second term notexplicitly) dependent om. The terms de-
pendent onu? have the same form for both components
(recall that the direction oB in spin space is arbitrajyand

are proportional to the relevant component of the macro-
scopic induction. The second term in E§3), which is of
opposite sign, may only fon=0 be considered as a conse-
quence of orbital pair breaking; far>0 this second term
depends als¢since a positiven is necessarily due to a finite
) on the spin pair-breaking effect. The GL limit of the local
induction is discussed in Appendix C.

The validity of the asymptotic approximation used in the
derivation of Eqs(54) and(61) is not restricted to lown, but
sufficiently high temperatures, say-0.1, should be used.
Clearly, if different states witlvery smallfree-energy differ-
ences are found, no conclusion as to the relative stability of
these states can be drawn.

F. Extremal conditions

In thermodynamic equilibrium, the values ef B, , EH
and the lattice parametess b, « have to be chosen in such
a way that the free energy becomes minimal. To find the

yequilibrium values ofe, B, , B the extremal conditions

JG B
Jde ' (9§”

aG

G

— =0, 64
B (64)

have to be solved ne#t.,. The question for the optima,
b, a will be addressed in the following section.

Inserting the superconducting solution ferin the free
energy yields

1 (6(2))2
R

(65

where the coefficientsS, G?, and G* are defined byG
=G+ €°G?+ *G¥. Equation(65) shows, that the stable
lattice structure(see Sec. 1Y is determined by the require-

ment of minimalG*.
To find the two-component macroscopic magnetization

relation between inductioB, ,B; and external fieldd, ,H,

the above extremal conditions must be solvedgggr, B
This cannot be done for arbitrary fields but requires an ap-

propriate expansion of the coefficients for smadl,
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—By, , B|—Bgy. A lengthy but straightforward calcula-

tion, generalizing Abrikosovs classical wérko the present
situation, leads to the result

BL:aLLHL"'aLHH”""BLv

By=a H, +ayH+ ). (66)

The coefficients in this linear relation are given by
a,, =2k 2(k?— u?) - AjlldetM,
a,|=2k%A), IdetM,
a=2k*[2(k?— u?) — A, JidetM,
B =—2(k?— u?) (A Bey, + Ay, Beyy)/detM,

B= —2(k?— u?)(ABeyy+ A Bey, )/ detM,
where
detM =2(k?— u?)[2(k*— u?) - A=A, ].

The parameters, . ..
structure with the help of the relations

1 [0G®)?
Aj=— — 6
261 8 ©7
1 [aG@\?
T 26"\ 4B,
1 9G® 4G
Al (69)

2G¥ 4B, B,

where the derivatives 06® have to be evaluated &

=B, and the relatio\/A, =AfL may be shown to be true.
Equation (66) constitutes the macroscopic relation be-
tween induction and external field for a 2D superconductorl
in a tilted magnetic field. It is, of course, strongly anisotropic
and shows a coupling between the parallel and perpendicul

field components. FoH;=0, u=0, andt=1, Eq. (66)
should reduce to Abrikosov's GL solutittt? for the mag-

may be calculated for a given lattice

PHYSICAL REVIEW B59, 134518 (2004

IV. RESULTS FOR FINITE PERPENDICULAR FIELD

In this section we determine the stable order-parameter
structures for the paramagnetic vortex states wink4 in
the vicinity of H.,. The numerical procedure to find the
stable states is essentially the same as in KE8st, the
upper critical fieldB., and the corresponding quantum num-
bern have to be found for given temperaturand tilt angle
O by solving the linearized gap equatigd?). In a second
step, the stable lattice structure, which minimizes the fourth-

order termG*®=G®/¢* [see Eq.(54)], has to be deter-
mined. Because of the flux quantization condition the mini-
mum with respect to onlywo parameters, which may be
chosen asa/L and «, must be found. In contrast to the
ordinary vortex lattice, where it is usually sufficient to cal-
culate only a few lattices of high symmetfyiangular, qua-
dratic to find the stable state, the present situation is char-
acterized by a large number of local minima of Eg§4),
corresponding to a large number of possible lattices of rather
irregular shape. Therefore, a graphical method was used to
determine the stable state; the free-energy surface

G"(a/L,a) was plotted for the wholea/L,) plane and
the global minimum was determined by inspection. Basi-

cally, two material parameterg, andx, and two externally
controlled parameters,and ®, enter the theory. Numerical
calculations have been performed for a single valuewof
=0.1, two different reduced temperatures 0.2 and 0.5, four
different values 0.1, 1.0, 10, 100 of Eilenberger’s parameter

«, and several values @ corresponding to different Lan-
dau quantum numbers Some of the resulting order param-
eter and magnetic-field structures in the ramge4 will be
reported here. These low-pairing states are, of course, the
most important ones from an experimental point of view.

For comparison we consider first, in Appendix D, the or-
dinary vortex lattice state witm=0. This illustrates the
method and may also be used to check the accuracy of our
asymptotic approximation. The equilibrium state for law-
type-1l superconductors is calculated and good agreement
with previous theories is found for not too low temperatures.

Considering now pairing states with>0, the number of
order-parameter zeros per unit cell increases clearly with in-

creasingn. One find§ two types of minima of6*)(a/L, ),
solated minima and linelike minima. The first type corre-
sponds to “ordinary” 2D lattices, the second type, character-

é&ed in a contour plofsee Fig. 1 of KR by a line of

constanta/L with G*)(a/L,a) nearly independent ofr,
corresponds to quasi-one-dimensional, or “FFLO-like” lat-

netization of a triangular vortex lattice. This is indeed thetices (rows of vortices and one-dimensional FFLO-like

case as shown in Appendix C.

minima alternatingy A convenient way to identify the type of

ForH;=0, u=0, Eq.(66) describes the ordinary vortex minimum and find its position on th&/L axis is to plot the

lattice (near H,) for arbitrary temperatures. A numerical projection of theG*)(a/L,a) surface on the G a/L)
comparison with corresponding results by Eilenbétand  plane. An example for this perspective, where sections of the
Rammer and Pesthhas not been undertaken because a diffree-energy surface at constantshow up as lines, is given
ferent (spherical Fermi surface has been used in thesein Fig. 2 for n=7. The « coordinate of a 2D minimum
works. However, the limitH =0, u=0 of the present cannot be read off from such a plot and requires a second
theory will be checked in Appendix D by calculating the projection on thed/L,«) plane(such as Fig. 11 or Fig. 1 of
critical value of k separating type-Il from type-l supercon- KRS®). The free-energy maps for other-0 states are in
ductivity. principle similar to Fig. 2 but the different local minima
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FIG. 2. Projection of the free ener@* on theG™, a/L plane.

Using this perspective the sections of the free-energy surface at

constanta are displayed as lines. In the considered range/af
one finds six local minima, corresponding to two FFLO-like and
four two-dimensional lattices. The global minimum isedt ~1.1

and corresponds to a two-dimensional lattice. Parameters chosen in

this plot aren=7, t=0.5, k=10, ©=0.1, and® =0.055.

show more pronounced differences for smaiier
Let us start with the paramagnetic vortex state with
=1 and consider first the limit of large. As reported in

PHYSICAL REVIEW B 69, 134518 (2004
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FIG. 4. (Color onling Parallel componenB, as a function of
x/a, yla in the range &x/a<2, 0<y/a<3.2. This plot has been
produced using the same input parameters as in Fig. 3.

KRS& a quasi-one-dimensional state is found to be stable in
this case. Figure 3 shows the spatial variation of the moduluFhe unit cell of the structure shown in Fig. 3 is given by
of the order parameter. One sees rows of vortices separatedl =1.0875, «=33°. A shift of the vortex rows relative to

by a single, FFLO-like line of vanishing order parameter.

FIG. 3. (Color onling Square of modulus of order parameter
|41]? as a function ofx/a, y/a in the range &x/a<2, 0<yl/a
<3.2. This is the stable structuréunit-cell parametersa/b
=0.205, «=33°) for t=0.2, k=100, #=1.2° (n=1, B,
=4.141).

each other leads to a lattice with the saaie and a different

a, which has nearly the same free enefgich is reason-
able, since the interaction between vortices from different
rows is weak as a consequence of the intervening FFLO
domain wal). The vortices are of the “ordinary” type, i.e.,
the phase of the order parameter changesH®m when
surrounding the center.

It is of interest to calculate the magnetic field belonging to
this order-parameter structure. We plot the parallel and per-
pendicular component§1‘|(F) and BM(F) of the spatial
varying partB;(r) of the magnetic field as given by Egs.
(61)—(63), omitting a common factot(|A,|?)/(k?— u?).

The field BlH(F), which is entirely due to the spin pair-
breaking mechanism, is shown in Fig. 4. Due to its paramag-
netic nature, the fieIcBl“(F) is expelledfrom regions of
small ¢(F). This behavior is exactly opposite to the usual
orbital response, which implies an enhancement of the induc-
tion in regions of smal|¢|(F). As a consequence, the spatial
variation of By is very similar to that of/|?, shown in
Fig. 3.

The perpendicular fielﬁsli(F), shown in Fig. 5, consists
of a spin term proportional te?, and a second term which
does not depenfisee Eq.(63)] explicitly on . The term
proportional tou? is negligibly small and the total field is
essentially given by the second term. Near the vortices the
field Bll(F) behaves in the familiar, orbital way, i.e., it is
largest at the points of vanishing and decreases with in-
creasing distance from the vortex centers. However, at the
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FIG. 5. (Color onling Perpendicular componeY;, as a func-
tion of x/a, y/a in the range &x/a<2, 0<y/a<3.2. The same
input parameters as in Fig. 3 have been used.

FIG. 6. (Color onlineg Square of modulus of order parameter
| 4% as a function ofx/a, y/a in the range &x/a<1.4, —0.2
<yla<0.62. This is the stable structuftenit-cell parametera/b
FFLO-like lines of vanishing order parameter, where no t0-=0.6735, «=70.125°) fort=0.5, k=10, §=0.1° (n=4, B,
pological singularity occurd,, has aminimum i.e., shows =3.486).
paramagnetic behavior. Thus, the magnetic responsenof a

— 1 superconductor may either lead to a local suppression [Eecently, various proposals to create stable antivortices have
[

to an enhancement of the magnetic field in regions of smal een published; S€e, €.9., Moshkalkov and CO'WO%h.S' .
order parameter. This is in contrast to the purely orbital re—the present context, it is clearly the strong paramagnetic pair

sponse of a=0 superconductor, where the magnetic field iSt.)reaking, which is responsibl.e for the stability of the antivor—
always enhanced. This unconventional behavior is formall Ices. Among thg(evenn) a_mtwortex states, the one W'".‘
due to the second term iy [see Eq(56)]. The fieldBy is =2 is most easily accessible from an experimental point of

much smaller tharB,, and the total fieldB; for n=1 is view and very stable under variationstodind . Its proper-

consequently dominated by the perpendicular componerﬂes will be discussed in detail in a separate publicatfba;

B1, , which is a consequence of the combined action of botfPreliminary account has b?e.” published.alreﬁdy._
pair-breaking mechanisms. For n=3 free-energy minima for spatially varying states

The quasi-one-dimensional order-parameter structyr§Xist in the whole considered range €.2<100 of the GL

shown in Fig. 3 seems to be representative for the pairin arameter. Thus,_mcrgased Spin pair breaklng stabilizes inho-
. ~ ogeneous equilibrium structures and shifts the phase

state withn=1; no~other stable state has been found £or boundary between type-Il and type-l superconductivity to
=10 andt=0.5. Atk=1, 0.1 the free-energy surface has nojower values of«. In the high«x region (for k=10) the
minimum at a”, which means that a transition to type—l SU-stable state of an=3 Superconductor is of the quasi_one_
perconductivity occurs at some valuesobetween 1 and 10.  dimensional typeat lower x a 2D state of nearly the same

Extrapolating then=1 result to highen, one would ex- free energy has been found, which will not be discussed
pect the following structure for the pairing state with Landauherg. The fields| |2, By look similar to then=1 case(see
guantum numben: rows of vortices separated bylines of  Figs. 3 and #except that the vortex rows are now separated
vanishing order parameter. Such a structure would approadby three FFLO-like lines of vanishing order parameter. The
the (linelike) FFLO state in the limitn=0. However, this vortices in neighboring rows are already completely decou-
simple picture is not realized, at least in the important rangeled for n=3; a translation of neighboring rows relative to
of low n. It holds generally for odah, but for evenn two-  each other changes the angtebetween the unit-cell basis
dimensionalstructures are preferred. In the latter case, onevectors but does not lead to any chartgéthin eight digit9
hasn+1 isolated order-parameter zeros per unit cell, withof the free energy. The perpendicular induct®n is again
associated phase changes of a multiple of Buch a situa- dominated by the second term in E3) and looks similar
tion leads necessarily to the presence of one or moré then=1 case(see Fig. J; in contrast to the spin part this
antivortices—vortices with a topological phase change of field does not reflect the detailed order-parameter structure
— 2 around the center—for states with evensince the but has only a single broad minimum at the position of the
total phase change around the unit cell must remagr. three FFLO lines.
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=0 for a spherical Fermi surface. They predicted a one-
dimensional periodic order-parameter structure of the form

A(F)~cosdf), which will be referred to as LO state. Later,
various analytical investigations of the stable states in the
vicinity of T,; and nearT=0 have been performefi;*’
many other references may be found in a recent review
article3® A careful search for the state of lowest free energy,
comparing several possible lattices in the whole temperature
range, has been reported by Shimatarde found that be-
low t=0.24 various 2D periodic states have lower free en-

ergy than the one-dimensional cﬁé(state. Shimahara uses
the same cylindrical Fermi surface as we do and his results
do therefore apply to the present problem. Nevertheless, we
reconsider in this section the problem of the determination of
the FFLO structure, in order to have a complete description
of all states in a tilted field in a single theoreti¢gLiasiclas-
sical) framework.

The results derived in Sec. Ill cannot be used to perform
the limit n— and determine the stable state in the purely
paramagnetic limit. However, the general formalism may be
applied in a straightforward way to the simpler case of van-
. ) ishing vector potential. In order to be able to compare with
FIG. 7. (Color onling Perpendicular componeBy, as a func-  previously published results we neglect in this section the

tion of x/a, y/a in the range 8<x/a<1.4, —0.2<y/a<0.62. The ossibility of spatial variations d& and restrict ourselves to
same input parameters as in Fig. 6 have been used. Fhe hllglf: y Iimitp lal variat : ursetv
« .

For an=4 superconductor at=0.5 the equilibrium state The space of basis functions, which has to be used to
expand all variables nedtlgr o(T), is now given by the

is of the quasi-one-dimensional type fex1, and of the 2D  ~"F° — . ' -

type for k=10. Figure 6 shows the 2D order-parameterinfinite set expir) with a fixed value ofig|. Usually, one
structure for a superconductor with=10. There are five @assumes that the order parameXefulfills some further sym-
zeros ofy per unit cell, one of them of an elongated shapeMetry (or simplicity) requirements, which then leads to a
The nature of these topologically singular points may beStrong decrease of the number of unknown coefficients. Fol-
clarified by plotting either the phaSeor the local magnetic 10wing this convention, we restrict ourselves to two- and
field. The parallel componerBlH(F) of the field By(r) is one-dimensional periodic structures. Fdr-0, the order pa-

again(compare Figs. 3 and)4&imilar in shape to the order rameter is not periodic but changes its phase by certain fac-

parametet |2 and need not be displayed here. The perpenzors under translations between equivalent lattice points.

dicular fieldB,, is shown in Fig. 7. Three of the five order- These phase factors are proportional to the perpendicular in-

parameter zeros displayed in Fig. 6 belong to “ordinary”duc'[ion [cf. Eq. (35)] and vanish for®—0. Thus, the as-

vortices, with local-field enhancement and diamagneticSumptlon of a periodic order parameter far=0 is reason-

screening currenttwo of the three maxima oB,, are pro- able(thqugh not stringem It implies, that all aIIowed_wave
nounced, while the third, the one corresponding to the elon\—/(aCtorS in the expansion d&f must be vectors of a reciprocal

| L lattice.

gated zero ofy, is rather flat The remaining two order- . L .
parameter zeros belong to antivortices with opposite sign of Afurthgr S"th 3|mp||f|(.:at|on stems from the behaylor of
the “screening currents’(which are now paramagnetic in thg guasiclassical equations under the transformatien

naturg and with minima oB,, at the points of vanishing. —r, k= —K, which implies that the order parameter must be

Results fom>4 will not be reported here. Many interest- either even or odd under a space inversien—r. Thus, the

ing and complex structures may be produced for larger order parameter may be written as an infinite sum,
However, the number of different states with similar free

energies increases with increasingAs a consequence, the
approximate nature of our analytical calculation does not al-
low an identification of the stable state for largeAt the ) o _
same time, an experimental verification of these large- With coefficients defined by
states seems difficult since a very precise definition of the tilt |

angle 6 would be required. Am=|A|241 Ci mn, = S —n)- (71)

V. STRUCTURE OF THE FFLO STATE

o,
wh
N
Saans,

D w.‘.’""l”l’&

A(N)=> Ape'Qnr, (70)

Here, a shorthand notatiom is used for the two integers

The stable state in the purely paramagnetic limit oo characterizing a 2D reciprocal-lattice vecf@,l;] [cf. the Fou-
has been determined first by Larkin and OvchinnfkatT  rier expansion at the beginning of Appendi}. Bhe vectors
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actually entering the expansion are distinguished by an inde»
i, their total number is, and the two integers characterizing - [ 1

Qni are denoted byn;. The complex numbers; are the 0.50 - I % _
expansion coefficients; one may set=1 since only the L i '::. |
relative weight is important. It turns out that the two solu- 040 - f ¢ square |

tions distinguished in Eq(71) by a sign are essentially
equivalent, and only one of them, say the even one, need b -
considered. Thus, the order parameter becomes a linear congy, o3 1
bination of cosine functions. %.; |

All reciprocal-lattice vectors used in EGZ0) must be of [
the same length. Denoting this length &T), the condition 0.20 [~

|Qml=0a(T) takes the form

5 o _ 0.10 [ .

I 1 N j 1 2~Ij COSap_l 72 | |

al sirfe, \b) sirfe, absirfe, 000 | | | | | | E

where the two integerk j have been used here to represent 000 005 010 015 020 025 030
the double indexm. The dimensionless quantities b are T,

defined bya=q(T)ay/2m, b=q(T)by/27, wherea,, by, @ _

a, denote the lattice parameters in the paramagnetic limit. If FIG. 8. The fourth-order tern®;" (minimized with respect to
| reciprocal-lattice vectors exist, the lattice parametgys ~ |A[) divided by —A? [see Eq(74)] atHer o(T) for three different
by, ap, fulfill | relations like Eq(72) with | pairs of inte- periodic structures as a function of reduced temperattee/ T, .

gersly i, ..l The part of the hexagonal curve which is lower than the LO state is
Using Eq.(70) the free-energy expansion nédge, o(T) not visible, since the coefficients are determined automatically to
including terms of fourth order in the small amplitufle|, ~ vield the highest possible solution ferG{"/A%.
may be performed by means of methods similar to Sec. Ill. \
The result for the purely paramagnetic free eneBgytakes — t & [2rde N N
the form A:Z:Zo Jo 7L P (K +2Pg o 0 (K],
-c (2) (4)
GP_GD+Gp +Gp y (73) o t ND de(P R R
i,kzi “ o EZ[ F)ni ,nk,nk(k)+ Pni ,7nk,fnk(k)]1

whereG,=—u?H?, andG? andG" are contributions of
order|A|? and|A|*, respectively.

N
The second-order term is given by — t 2nde N
| Ci k=5 240 . Epfnk,fni,nk(k)a
GP=|AI2Y, [cil?A, (74 where
=1
with the i-independent coefficieri defined by P oo n (k)= !
1720773

+ )
N, NoNq. No N Ngo

_ © ]1—e “DS _
A=2 Int+tf ds————[1—coguBs)Jy(sq)]|.
0

sinhst

N> =w,+1[ = uB+Q.k].

The conditionA=0 determines the upper critical field; it N contrast to Eq(54) no approximations have been used in

may also be derived from Eq37), performing the limitn ~ deriving Eq.(795). _ _
oo, Using Eq.(72) all possible 2D lattices and wave vectors

The fourth-order term is given by may be calculated numerically. The stable lattice at
Heeo(T) is then determined from the condition of lowest
| | . Gé‘”, taking also the LO state into consideration. It turns out
Gé4):|A|4[E lcil*Ai+ >, |cil?led?Bi that it is energetically favorable airq o(T) if all eigen-
=1 ik functions in the order parameter expansi@0) have equal
[ weight, i.e.,c;=1 for all i.
+> [(Ci*)z(Ck)erC-C-]Ei el (75) The result of the numerical search for the lowest free
i#k ’ energy of periodic structures, characterized by maximal three
@) ) ) - pairs of reciprocal wave vectors, is displayed in Fig. 8. The
G, depends on the lattice structure via the coefficiets  highest curve at a given temperature corresponds to the
B; x, andC; x, which are defined by stable lattice. For 0.22t<0.56 the one-dimensional LO
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o060 F ' ' i (characterized bg;=1) is only stable in a very small tem-
perature interval 0.064t<0.075. The LO state is now
stable in a much larger interval 0.02%<0.56, as compared

0.50 = 7 to Fig. 8. Itis also stable in a small temperature region below

square t=0.061. But att~0.017 the factor- G{"/A? for the LO

0.40 - T state has a singularity and jumps frotne to —o. This
implies that the fourth-order teriffior the LO statg changes

% o030 i sign and that a first-order transition occurs somewhere in the
g vicinity of this singularity; higher-order terms in the free
9 energy would be required for a quantitative treatment. Be-

0.20 |- LO 7 tween this singularity at~0.017 and the lowest considered
temperature=0.01 the stable state is again characterized by

0.10 - . a square unit cell. However, the order parameter in this tem-

mﬂ@"%ﬂ, perature range, 0.81t<<0.017, is given by a linear combi-
nation of plane-wave stat¢see Eqs(70) and (71)] with a
0.00 = I real coefficientc;=1 and animaginary coefficientc,=1.

. ' : : : : The usual order-parameter structure for the square lattice,
0.00 005 0.10 0.5 020 025 which is characterized by two real weight factors of equal
T/T, magnitude ¢;=c,=1), is not equivalent to this case and
o has higher free energy.
FIG. 9. The term-G{"/A? for the LO state and the square state  The results belowH ¢ o(T) indicate that the 2D states
at 0.9M ¢ o(T), as a function of reduced temperatdi€l .. The  are only stable in a tiny interval near the phase boundary, and
hexagonal curve is lower than the LO state and is not displayed ithat the one-dimensional LO state reappears inside the super-
this figure. conducting state. The square state—the one with the smallest
N (N=2)—has the largest stability region, as one would also
' expect from the free-energy balance shown in Fig. 8. We
shall come back to the question of the stability of the 2D
states in Sec. VI, considering it from a different point of
iew. In this context it seems worth mentioning that terms up
o i ) X Bseighth order with respect to the order parameter must be
agree quantitatively with those of Shm_ahé?aobtamed taken into account, in order to describe the FFLO phase tran-
within a different, but equivalent, formalism. Thus, more gjinn of a three-dimensionabuperconductor in the frame-
complicated 2D periodic structures than those found already, .k of GL theory"® The structure found below the singular

in Ref. 39 do not exist in the considered range of temperapiny of the LO statdsee Fig. Yraises the question, whether
tures; the assumption of equal weight for different wave veCyyj other order-parameter structures, different from those
tors[c;=1 for all i in Eq. (71)] has also been confirmed for ¢, at the transition line, will appear nea#0 deep in the

these states. _ 3 _ . superconducting state. The present fourth-order expansion is
The temperature regiobelow t=0.01 has been investi- really appropriate to answer this question.
gated recently by Mora and CombesgbThey found a se-

ries of states characterized by an euvérstal) number 2\
=8,10 ... of different wave vectors, all entering the order-
parameter expansion with equal weight, and witincreas-
ing with decreasing temperature. Merging these results with The limit n—« of the series of paramagnetic vortex
the present ones, one obtains a very simple description of adfates, discussed in Sec. 1V, is now well known; for 622
of the FFLO states at the phase boundary, namely an infinite:0.56 the one-dimensional LO state is realized, while 2D
number of states, each one being a linear combinatidd of states of square or hexagonal type, predicted by Shimahara,
=1,2,... cosine functions of equal weight and withdif-  appear at lowert. The region of still smallert, below t
ferent, but equally spaced, wave vectors. =0.01, which has been studied by Mora and Combe¥cot,
Of course, it is also of interest to investigate the possibleyill not be considered here. The way this limit is ap-
equilibrium structures in the regidmelowthe critical field. proached, is, however, unknown. Thus, we address ourselves
As a first step in this direction, preliminary calculations atin this section to the question dfow the one- or two-
0.9%Her o and 0.9B(F o have been performed, using the dimensional unit cell of the FFLO state develops from the
fourth-order expansior73), which is not valid near first- unit cell of the paramagnetic vortex states if the Landau-level
order transition lines. The result is surprising and shows andex n tends to infinity.
revival of the LO state in the low-temperature region. This limiting process is very interesting, because a vast
In Fig. 9 the terms— G*)/A2, for the three states dis- number of different states with different symmetry is passed
played in Fig. 8, are plotted as a function of temperaturghrough in a small interval of tilt angleg. The unit cell of
belowthe transition line, at 0Mgg . The hexagonal state the finite-n states is subject to the condition that it carries
(not visible does not exist any more. The usual square statexactly a single quantum of flux of the perpendicular field

state is realized. Far<0.22 2D periodic structures appear
namely the square state for 0:06<0.22, and the hexagonal
state fort<0.05(we use here the notation of Shimah&far
the 2D states Besides the fact that the triangular statis
absent, because it is neither even nor odd, the present res

VI. TRANSITION TO THE PURELY PARAMAGNETIC
REGIME
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FWBM=a, (80)

vectors must approach infinite length—i.e., the dimension of

the macroscopic sample—in this limit. Thus, the>oo lim-
iting process describes a transition from a microscdpic
mesoscopiclength scale to a macroscopic length scale.

The transition to the FFLO state has previously been in-

vestigated by Shimahara and Rathér the linear regime.
They found the important relation

g= lim y4eB, n/hc,

n—o

(76)

whereq is the absolute value of the FFLO wave vedfoere
we changed to ordinary unjtsEquation(76) has been de-
rived by identifying the asymptotic form of the Hermite
polynomialé* with the form of the LO order parameter. It
implies that a relation

_ficq?

Bi%ﬁ’ B de

(77

holds at largen. The validity of Eq.(76) may also be
checked numerically by comparing the numbg@sand q,

[with ®,=hc/2e andB, defined by Eq(77)] the areaF (™
of the unit cell for pairing in Landau levelis approximately
given by

FW=73¢2n. (81)

Thus, the unit-cell area diverges with the first powernof
The behavior of the magnetic length which is defined by
the relationB, = (®y/ )L "2, is given byl =m£yn'.

Equation(81) is not sufficient to determine the shape of
the unit cell in the limit of largen. However, a simple pos-
sibility to produce a one-dimensional periodic LO structure
for n—o is a divergence of one of the unit-cell lengths, say
b, of the formb~n, while the second length remains con-
stant, i.e.a~n°. The numerical results for the states referred
to in Sec. IV as “FFLO-like,” or quasi-one-dimensional
states show a behavior

(82

which are both obtained from the upper critical-field equa-yhich is in agreement with this possibility. The numerical

tion.

value of the constany is close to /2, which corresponds

_ Relation(77) may be derived from basic physical proper- 15 3 —5 ¢, and to the lattice constant/q of the LO state.
ties of the present system. The energy spectrum for planafy ;s the LO state may be identified as the limiting case of

Cooper pairs in a perpendicular magnetic fi@d is the
same as for electrons and is given by

E —fieo| nt - eB 78
n=hw|Nn 5 m_c (78

w=

Considering now the energy spectrum of Cooper pairs fo
B, =0, one has to distinguish two cases. First, in the com
mon situation without a large spin pair-breaking field, all

Cooper pairs occupy the lowest possible endggy0, which
is the kinetic energp?/4m taken at the Cooper pair momen-

tum p=0. Second, if a large spin pair-breaking field paralle
to the conducting plane exists, the energy value to be occ

pied by the Cooper pairs, shifts to a finite vap@4m, since
the Cooper pairs acquire a finite momentyndue to the

Fermi-level shift discussed in Sec. I. Thus, in the latter cas

which is of interest here, the Landau lev€R8) must obey
the condition

(79

for B, —0. If pis replaced by the wave numbg+ p/#, Eq.
(77) becomes equivalent to E¢r9). The limiting behavior
expressed by Eq.76) or Eq.(77) is therefore a direct con-

the quasi-one-dimensional states of Sec. IV for langéhe
distance of the FFLO lines is essentially independeni,of
while the periodicity lengthb sina in the direction perpen-
dicular to the lines tends to infinitflike b sina=nm/q) for
n—oo. The one-dimensional FFLO unit cell issabstructure
;hat develops inside the diverging unit cell of the paramag-
netic vortex states.

To complete the description of the transition to the LO
state, the above lattice structure may be used in(E§). to
perform the limitn—oc of the order-parameter expansion

IA“' We consider a 2D sample @&hite areaF,, which con-
L}g;\insNaNb “small” unit cells of sizeF.=absina. The total

area is given byF,=LLysina with L,=N,a and L,
=Nyb. For differentn the size and shape &, may change
while F, remains, of course, unchanged. Adopting the above
model for the behavior of the unit cell as a functionnpfve
have n-independent numbensl, and a, while b=b(™" in-
creases linearly withh andN,= NE,”) decreases consequently

according to

. Lb o ZLbSina E
Cpm mlEy N

N

b (83

Thus, a largest possible Landau numhern, exists, which
() _

sequence of Landau’s result for the energy eigenvalues of @orresponds th("?=L,, (or N,"”=1) and is given by

charged particle in a magnetic field.
Combining Eq.(77) with analytical results aT=0, the
limiting behavior of the unit cell ag—~ may be under-

stood. Expressing the FFLO wave number in terms of the

BCS coherence lengtlt, by means of the relatiorg

2Lpsina
nc=2—.
7 &o

This cutoff n. agrees exactly, in the present model, with the

(84)

=(2/w)§51, and using the flux quantization condition in the number ofn=1 unit cells fitting into a lengthi_,. As an

form

additional consequence of the finite area of the sample, only
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a finite number of terms occur in the sum ovem Eq. (16).
This number is fixed by the condition that the “center posi-
tions” y,,=mbsina=mmxL%a lie inside the sampl& This
leads to the condition

aLpsina aLpsina
— S—=m< > (85
2L 2L

y/a

which is in the limitn=n. only fulfilled for m=0. Using the
asymptotic expansich of the Laguerre polynomidl,,, for
large and evem=2j, and taking into account only the term
with m=0 in the sum of Eq(16), the order parameter takes
the form

(86)

\/8—1').

AZJ%ACZJDJCO%Ty

The amplitudeA [see Eq.15)] is, in the present system of
(ordinary units, given by

x/a

) FIG. 10. (Color onling Contour plot of the square of the order-
2B, 1a parameter modulus for Landau quantum numfer28 and a unit
cell with parametersai=b, a=m/2.

The coeffilc/:;entczj is, in the limitn—n,, simply given by  only the behaviom~n*? for largen. The latter is a conse-
Cyj=(Fp)"“ [see Eq(17)], and the coefficienD; takes the  guence of the flux quantization condition and the shape of

form the unit cell.
o Of course, the relation=7N? cannot be fulfilled exactly
_ 2!(j—1)! for finite numbersn, N (for a sample of finite extension
J_(—l)i\/m' since is an irrational number. The proper meaning of this

relation is that the sequence of states with quantum numbers

While these factorsA, Dj, Cy; diverge forn—, if the  n=int(7N?), N=1,2, ... represents a sequence of approxi-
sample dimensions approach infinity, all singularities cancemations(of increased qualityto the square state. Thus, the
if nis replaced by the cutoffi., and one obtains the ex- square state is the limit of a sequence defined on asresjl
pected resultA, =cosqy, for the one-dimensional periodic subset of the set of integer numbers.
order-parameter structure in the purely paramagnetic limit.  This explains why no systematic development of the

The transition to théwo-dimensiona(square and hexago- square state with increasinghas been observed in the nu-
nal) periodic states found by Shimah#tas more involved merical calculations. The largest quantum number in the con-
than the transition to the LO state. Let us restrict to thesidered ranger(<40), which fulfills the above condition is
square state, which is the simplest of all 2D states, and is also= 28 (corresponding t?&N=3). The order-parameter modu-
most stable from a thermodynamic point of view. lus forn=28 is shown in Fig. 10. It reveals, in fact, a certain

For the square state, which is a linear combination of twasimilarity to the structure of the square sté# least more
LO states with orthogonal wave vectors, one would expect aimilarity than any other state in the considered rangae
divergent behavior aboth unit-cell basis vectors of the type arrangement of isolated order parameter zeros in Fig. 10
a~n'2 a=b~n%2 Consequently, choosing a square unitshows a tendency towards the formation of linelike zeros.
cell in the (exac) order-parameter expansion, EG8), one  Clearly, an extremely high and an extremely sharp defini-
would expect to find a substructure which becomes increadion of the tilt angle would be required to produce a really
ingly similar, with increasing, to the structure of Shimaha- good approximation to the square state. The final conclusion
ra’'s square statdinelike order-parameter zeros, in the form of the present analysis for the square state, that extreme re-
of two sets of orthogonal straight lines and cir¢lédumeri-  quirements with regard to the definition of the tilt angle must
cal calculations, performed in the range 40 are, however, be fulfilled in order to produce it, will probably hold for all
not in agreement with this expectation. other 2D states as well.

On the other hand, the mathematical limit of the order The above analysis of the formation of the FFLO g&ite
parametef18) yields, in fact, a 2D state with the periodicity as limit(s) of the paramagnetic vortex states for-c has
of the FFLO wave vector and square symmetry, as shown ibeen based on relatidi@9). In addition, relation79) allows
Appendix E for a simplified model. The explanation for this for an intuitive understanding of the unusual phenomenon of
apparent contradiction is provided by the retétation(E8) Cooper pairing at highen, encountered in the present con-
of Appendix B that the quantum numberfor a square state figuration. The choice=0 for the ordinary vortex state—in
must obey the condition=7N?, whereN is an integer. This the absence of paramagnetic pair breaking—corresponds to
is a general result, which has been derived using essentialthe lowest energy the system can achievepfer0. For suf-
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ficient largeH; and decreasingi, , the Landau-level spac- may be interpreted as upper and lower critical fields of the
ing becomes smaller than the kinetic energy and the systefFLO state*® On top of that, varying the direction of the
has to perform a quantum jump from the=0 to then=1  applied field, a series of phase transitions has been
pairing state, in order to fulfill the requirement of given en- observed® which might be related to the paramagnetic vor-
ergy as close as possible within the available range of distex states studied in the present paper. Of course, the heavy-
crete stateginsertingn=1 in Eq.(79) determines the angle fermion material CeColn differs considerably from the
0, as given by Eq(1)]. For the same reason, a series ofsimple superconducting material, with isotropic gap and cy-
successive transitions to superconducting states of increasitigdrical Fermi surface, studied here. However, some general
n takes place with further decreasihty , until the FFLO features of the present theory, such as coexisting vortices and
state is finally reached &, =0. The FFLO state fom  antivortices or coexisting linelike and pointlike order-
— o0 may obviously be considered as the continuum limit, orparameter zeros, can be expected to remain valid. To obtain
quasiclassical limit, of this series of Cooper-pair statesthe most direct evidence for all of these unconventional
which starts with the ordinary vortex staterat 0. states, including the FFLO limit, other experiments, such as
measurements of the local density of states by means of a

scanning tunneling microscope would be useful.
VII. CONCLUSION

The paramagnetic vortex states studied here, appear in a ACKNOWLEDGMENTS
small interval of tilt angles close to the parallel orientation. A ) ) )
common feature of all of these states is a finite momentum of | would like to thank D. Rainer, Bayreuth, and H. Shima-
the superconducting pair wave function, which is due to thé'@r&, and Hiroshima for useful discussions and helpful com-
large parallel component of the applied magnetic field. Inments during the initial phase of this work.
these new superconducting states the Cooper pairs occupy
guantized Landau levels with nonzero quantum numbers APPENDIX A: SYSTEM OF UNITS AND NOTATION
The numbem increases with decreasing tilt angle and tends ) . . L .
to infinity for the parallel orientation, where the FFLO state 'In this appendix we use primes to distinguish Eilenberg-
is realized. The unusual occupation of higher Landau level§''S dimensionless quantities, which will be used in Secs.
may be understood in terms of the finite momentum of thd!l—V: from ordinary ones. The primes will be omitted in
Cooper pairs. Secs. llI-V.

The end points of the infinite series of Cooper-pair wave 1emperaturet="T/T.
states occupying different are the ordinary vortex state at  Length:r’=r/Rg, Ry=hve/2mkgT,=0.88%, & is the
n=0 and the FFLO state at=o. The dominant pair- BCS coherence length.
breaking mechanism in the vortex state is the orbital effect, Fermi velocity:or=vr/vE.
while Cooper pairs can only by broken by means of the spin  Wave numberk’ =kR,.
effect in the FFLO state. The equilibrium structure of the Matsubara frequenciess = |/ mkgTo= (2l + 1)t.
new states, which occupy the levelsc@ <, is very differ- Order parameterA’ =A/7kgT,.
ent from Fhe structure of the FFLO stéde despite the fact Magnetic field:A’ = A/H,, whereHo=7c/2e Re.
that the difference in tilt angles and phase boundaries may be e
small. Generally speaking, the equilibrium structures of the Vector potentlaI'A :,A/AO' Whererzﬁc/22eF\’0.
new states reflect the presenceboth pair-breaking mecha- Magnetic momentu' = pu/po=mkgTc/mug , wherewy
nisms; the fact that the local magnetic response may be dia- = 7KeTc/Ho. Note that the dimensionless magnetic
magnetic or paramagnetic depending on the position in the Momentu’ agrees with the quasiclassical parameter
unit cell may be understood in terms of this competition. A Gibbs free energyG’ = G/[ (mksTo)*NeR3].
second unusual property, also closely related to the simulta- Eilenberger’s parameter is related to the GL parameter
neous presence of both pair-breaking mechanisms, is the co- ., of a clean superconductor according to the relakon
existence of vortices and antivortices in a single unit cell. =[7/18(3)) "2k, =0.6837%,.

The FFLO stqte has been predlcFed in 1964 anq a Iqrge The symboIR denotes a dimensionless, 2D unit vector.
number of experimental and theoretical works dealing with ) A o
this effect have been published since then. A definite experi! "€ Fermi-surface average okedependent quantitg(k) is
mental verification has not been achieved by now. Howevergdenoted bya. For our cylindrical Fermi surface this average
recent experiments in the organic superconductofs simply an integral from O to 2 over the azimuth angle.
k-(BEDT-TTF),Cu(NCS), and other layered materiéts**
revealed remarkable agreenf@ff“’with theory, both with — 1 o 1w .
regard to the angular and the temperature dependence of the a=,— ¢ dkalk)=5— o dealk(e)].
upper critical field. In these phase boundary experiments,
identification of the FFLO precursor states, studied in the
present paper, seems possible if the tilt angle is defined with
high precision. Very recently, by means of heat capacity and 1
magnetization measurements, two transition lines have been (@)= — d?ra(r),
found in the heavy-fermion superconductor CeGoirhich F

Finally, the symboka), defined by

cJ unitcell
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denotes a spatial average of a quandify) over a unit cell vV, ].(F):(_1)'1’<|An|2>e—Ivrn(b/a)cowe—(i/4)0ﬁ,-
of areaF.. ' _
B,
XLo| 5-Gf; ], (B3)
APPENDIX B: GAP CORRELATION FUNCTION 2
It is convenient to express the gap correlation function, B
defined by Eq.(35) in terms of center-of-mass coordinates 7LG,ZJ Fe =24+ XQ .y =Y QX
R=(r{+r,)/2, r=r,—r, using the notationvV°M(R,r)
=V(ry,r,). The function VCM(R,r) is invariant under = [(b), (a|,
center-of-mass translatioi®=R+la+jb and may conse- Xi=gnalla/l tlp)i 2l cosal. (B4)
guently be expanded in a Fourier series, using reciprocal-
lattice vectorsQ; ;=1Q,+jQy, 1,j=0,+1,2,..., with The usefulness of the gap correlation function for pair-
basis vectors wave states with arbitrany is essentially based on the trans-
lational invariance of the observable quantitig$ and B.
1 0
é _277 (3 2 1 APPENDIX C: THE GINZBURG-LANDAU LIMIT
1= 1N2T T :
" lana b Sina Let us first consider the upper critical fightf), which is

o determined byG®?=0, for u=0, n=0 (H;=0), andt
The Fourier coefficients ofV“M(R,r) are denoted by —1. Solving this equation in this limit, one finds, using
V, j(r). The Fourier transform 0¥, ;(r) with respect ta is ordinary units,
denoted byv{?(p). ®
Using the behavior of the gap(r) under lattice transla- HSZL:1.222—02(1—'[). (C1
tionsr=r+r,;, wherer, ;=la+jb, the important relation 2méh
Equation(C1) differs from the usual GL result by a factor of
s ,—(F) = g' i+ (blajcosalyy ) (4 FJ. D (B1)  3/2. This discrepancy is due to our use of a cylindrical Fermi
' ' ’ surface, instead of a spherical one, and can be eliminated by
may be proven. This relation, first reported by Delféu, replacing the GL parametarby 3« /2 (the quantities used
shows that all Fourier coefficients are known \ffyq is in Eilenberger units are derived assuming a spherical Fermi
known. A similar relation holds for the Fourier transform surface.
V(p)_ The magnetization relatio(66) takes the following form
for H=0, =0, t—1:
Vl(g)(ﬁ):elpr]-‘_pnrl[j+(b/a)c03a]vgl?())(5)_ - H_ch
B—H=47TM=~2—. (CZ)
The functionsV, ; and V(% , which are most useful for the 2kIA —1
evaluation of the free energ)/, may be calculated by proceedrpo coefficientA, in Eq. (C2) is given by Eq.(69). The

ing along the chain fourth-order free-energy contributiai4) takes the form

G<4>— E F2(X) m) —

VEMR,N= Vo 1) =VE(p)= V(R (p)=V, (1), —y_ SV <1>Z, 20|, (ca

where an arrow denotes either calculation of a Fourier coef-
ficient or of a Fourier transform, or application of Delrieu’s whereS®M=7¢(3)/8. The first sum in Eq(C3) turns out to

relation. agree with Abrikosov’s geometrical factg, ,
Using the order-parameter expansia®) and performing
the necessary manipulations, the result\i@ is given by D fi(x| =B, (C4)
(p)(p)_ _( 1)M(|A2Ye™ p ’BLL 2 £ 52 as discussed in more detail in KESerforming again the
B, " N above replacement ok one arrives at Abrikosov’s well-

known result
xa~! Wn(b/a)COSael(FC/Zﬂ')(pXQH v PyQ ,x),

e WM

oH 2k, -1
whereQ, ; x, Qy j.y are thex andy components, respectively, Fez (2r6=1)Ba

of the reciprocal-lattice vectdﬁu . The final result forv ; Equation(C4) remains also valid fon>0. For the nonmag-
is given by netic terms in Eq.54), the Matsubara sun$}) may be
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asymptotic approximation of Sec. Il D increases with de-
creasing temperature.

APPENDIX E: THE SQUARE LIMIT FOR A MODEL
ORDER PARAMETER

80.00

The square of the order parameter modulus, (E8), for

7000 a square lattice may be written in the form

o |deg]

|¢n|2(xayva):|21 Hl,j ’

60.00

Hlvj:(_1)Ije—(w/Z)(I2+j2)Ln(7T(|2+j2))e|(27r/a)(lx+jy).
(ED)

50.00

We are interested in the limiting behavior of E&1) for n

—o, a~nY?—o. In this limit, the quantity 2r/a tends to

zero and the double sum may be approximated by a double

integral. An appropriate tool to perform such a calculation

for infinite sums in a systematic way is Poisson’s summation

formula. Using a two-dimensional version, which is derived
FIG. 11. Contour plot of the free energ¥® as a function of i exactly the same way as for single sums, &) may be

a/L and « without paramagnetic pair breaking. Parameterssare written in the form

=15, t=0.5, =0, and ®=7/2. The minimal valueG®

40.00

=0.5067 is ata/L=1.905, «=60. a2 , )
|l 2(x,y,2) = %) > > fdk)’(jdk)’,e"(mxkﬁmyky)

considered as a low-temperature correction to the GL term ey

(C4). The GL limit of the local magnetic fiel8;, [see Eq. Xh(kg, %,k ,y,a), (E2)

(63)] has also been calculated and has been found to obey the ) ) ]
correct GL relatiof? between magnetic field and square of Whereh(ky,x,ky,y,a) is a function representing, ;. The

order parameter. Here, the low-temperature corrections ai@oblem here is the factor{(1)" [see Eq(E1)], which must
contained in the Matsubara sUB) . be represented by an infinite series of step functfons.

Since we are more interested in the questialimit with
the correct periodicity and symmetry exists, than in the de-
APPENDIX D: THE LIMIT OF THE ORDINARY VORTEX tailed _functional form of this limit, we represent the factor
LATTICE (—1)" approximately by the real part of ewﬁkxky/47r, ie.,

we use the function
It is of interest to investigate the limit of E¢54) corre-

sponding to the ordinary vortex lattice. We consider a situa- h(ky,%,Ky,y,a)=H, ].||:(a/27r)k i~ (al2mk (E3)
tion without paramagnetic pair breaking, i.e., get0, 0 ' * Y
=m/2, and ask for the equilibrium structure of the vortexto represent, ;. Using this model, the absolute value of the
lattice and the critical value ok separating type-I from rhs of Eq.(E2) will be denoted byS(x,y,a) instead of
type-ll superconductivity. To compare with the usual nota-| y, |2(x,y,a). It takes the form
tion, we use here the same scalirg>2«/3 of the GL pa-
rameter as in Appendix C. Figure 11 shows the free energy a\?

Z)

Xh(ky ,x—ma,k;,y—ma,a)

> > dk;fdk;

m, my

G® as a function ofa/L, a for k=1.46 (k=1.5) att S(xy,a)=
=0.5. The flat minimum ofG*) at a/L=1.905, a=60 in-

dicates that the stable configuration is, as expected, a trian-

gular vortex lattice. No other local minimum of the free en-

ergy exists. With decreasingc this minimum changes

quickly into a maximum; belovw=1.36 the free energy has whereh(k,,x,k,,y,a) is given by
no minimum at all, which means that no spatially varying
superconducting state exists. The critical valuexef1.36 a
separating type-l from type-Il behavior at=0.5 agrees h(kaXakyyyaa):CO{Ekxky
fairly well with the result ofk=1.25 obtained by Kramgt

for the phase boundary between type-Il and type-1l/I behav-
ior. For lower temperature the agreement is worsej at
=0.2 the present theory giveg=2.5 while Kramer’'s
theory® gives k=1.7. Recall that the error induced by the In order to perform the integrations, the relation

. (B9

2
e (a2/8w)(k)2,+ k§)

a2 1(kyX+kyy)
XL, 't iyY),

2 2
2= (k)
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1 n
La(x+y)=——" 3

" V2m, 27
(=1)"2%"nt m=o m)Hzm(&)Hznzm(\&)' H”(TX>mcos{(ZnﬂLl)llzTX—(ZnJr 1)¥2\27rm, .

may be used to rewrite the Laguerre polynomial in the inte-s. ~n'2 the factor in front ofx in Eq. (E6 (E.G)
grand as a sum of products dependingkgnand k, sepa- i ||jtcefa~n L ed ?jc ?r n trr10nFlc:)LOm a. (E6) remains
rately. Then, the integration ovi;, may be performed and, ~ '"N't€ for n—e and defines the wave vecmyi.e.,

after a simple shift of the integration variable, a second N
relatiorr? (2n+1)1’27=q for n—oe. (E7)
(=2)™H (XJF_Y> H ﬂ) Equation(E7) implies a restriction on the possible quantum
2" V2 numbersn of a square FFLO state. The fact that an integer
n n numberN of wavelengths\ =2#/q must fit into a lengtha
= 2 (_1)m( m)HZm( \/;)HZn—Zm( \/y) implies the condition
m=0
may be used to calculate the sum owver Performing the n=mN* (E8)
integration ovelk, one obtains the final result in the limit a— . Condition(E8) is of a general nature and
" 3 o not a specific feature of our model. For quantum numlners
S(x,y,a)= E E e(w/az)szn(_Tf;() obeying Eq.(E8), all ('mx,my)-dependent phase'factors in
V22! my a Eq. (E6) become multiples of 2 and may be omitted. The

o> limit of S(x,y,a) for a—o obtained in this way is well
Xe_(ﬂ,/aZ);’ZHn( 27T~)(e_|(277_/a2);§ ( y ) y

Ty defined, i.e., independent of any cutoff, and is given by
- lim S(x,y,a)~|cogqx)cogqy)|. (E9)
4 ( _ l)nel(Zwla )xy) , (E5) n—oo

_ ~ A rotation of /4 transforms Eq(E9) into the more familiar
where the abbreviations=x—m,a, y=y—mya have been form*®®|cos@'x’)+cos@'y’)|. The expected correct result for
used. |4, ? is thesquareof the rhs of Eq(E9). Thus, the result of
We are interested in the limiting value of E@D5) for n our model calculation differs from the exact result. A limiting
— . The asymptotic behavior of the Hermite polynonmals state of the correct periodicity and symmetry has, however,

for largen implies been obtained.
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