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Two-dimensional superconductor in a tilted magnetic field:
States with finite Cooper-pair momentum

U. Klein*

Johannes Kepler Universita¨t Linz, Institut für Theoretische Physik, A-4040 Linz, Austria
~Received 25 November 2003; published 27 April 2004!

Varying the angleu between applied field and the conducting planes of a layered superconductor in a small
interval close to the plane-parallel field direction, a large number of superconducting states with unusual
properties may be produced. For these states, the pair breaking effect of the magnetic field affects both the
orbital and the spin degree of freedom. This leads to pair wave functions with finite momentum, which are
labeled by Landau quantum numbers 0,n,`. The stable order-parameter structure and magnetic-field dis-
tribution for these states is found by minimizing the quasiclassical free energy nearHc2 including nonlinear
terms. One finds states with coexisting linelike and pointlike order-parameter zeros and states with coexisting
vortices and antivortices. The magnetic response may be diamagnetic or paramagnetic depending on the
position within the unit cell. The structure of the Fulde-Ferrell-Larkin-Ovchinnikov~FFLO! states atu50 is
reconsidered. The transitionn→` of the paramagnetic vortex states to the FFLO limit is analyzed and the
physical reason for the occupation of higher Landau levels is pointed out.
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I. INTRODUCTION

In this paper a theoretical study of a two-dimension
clean-limit superconductor in a tilted magnetic field is p
sented. Such systems exist in nature; several classes o
ered superconductors of high purity with conducting plan
of atomic thickness and nearly perfect decoupling of ad
cent planes have been investigated in recent years. T
include, among many others, the intercalated transition-m
dichalcogenide TaS2-(pyridine), the organic superconducto
k-(BEDT-TTF)2Cu(NCS)2, and the magnetic-field-induce
superconductorl-(BETS)2FeCl4.

Depending on the angleu between applied field and con
ducting planes the nature of the pair-breaking mechan
limiting the superconducting state can be continuously v
ied. For largeu the usual orbital pair-breaking mechanis
dominates and the equilibrium state is the ordinary vor
lattice. With decreasingu, in a small interval close to the
parallel direction, spin pair breaking becomes of a magnit
comparable to the orbital effect and both mechanisms m
be taken into account. For the plane-parallel field directi
u50, the orbital effect vanishes completely and the sup
conducting state is solely limited by paramagnetic p
breaking. The superconducting state expected in this lim
the Fulde-Ferrell-Larkin-Ovchinnikov~FFLO! state.1,2 The
tilted-field arrangement, which allows to control externa
the relative strength of both pair-breaking mechanisms,
first been investigated by Bulaevskii.3

The upper critical fieldHc2, where a second-order phas
transition between the normal-conducting and the superc
ducting state takes place, has been calculated for arbit
angleu and temperatureT50 by Bulaevskii.3 This treatment
was generalized to arbitraryT by Shimahara and Rainer4

The field Hc2 has a cusplike shape, considered both a
function ofu or T, with different pieces of the curve belong
ing to different values of the Landau quantum numbern (n
50,1, . . . ). In theorbital pair-breaking regime, for largeu,
one finds as expectedn50. As is well known, this lowest
0163-1829/2004/69~13!/134518~23!/$22.50 69 1345
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valuen50 determines the~orbital! upper critical field of the
familiar vortex state, both in the framework of Ginzbur
Landau~GL! and microscopic theories of superconductivi
With decreasingu, higher-n segments of the critical-field
curve appear close to the plane-parallel orientation. Fou
→0 one finds4 n→` and agreement with the FFLO uppe
critical field. Thus, in this purely paramagnetic limit, th
stable state belowHc2 must be the FFLO state.

Paramagnetically limited superconductivity differs in fu
damental aspects, such as Meissner effect and spin pola
tion, from the behavior of the usual, orbitally limited supe
conducting state. In the FFLO state pairing takes pla
between electrons with momentum and spin valueskW

1qW /2,↑) and (2kW1qW /2,↓). This leads to Cooper pairs with
finite momentum\qW and a spatially inhomogeneous supe
conducting order parameter given byD(rW)5D0exp(ıqWrW) ~or
by linear combinations of such terms with the same abso
value ofqW ). The pair breaking is entirely due to the Zeem
coupling between the magnetic momentm of the electrons
and the external magnetic fieldHW . The general rule for bulk
superconducting states that gradient terms in the free en
must only be taken into account if a nontrivial vector pote
tial is present breaks down for the FFLO state.

At T50, the Cooper-pair momentum of the FFLO state
approximately given by\q5upF↑2pF↓u, whereupF↑2pF↓u
5mHA2m/EF is the difference in Fermi momentum be
tween spin-up and spin-down electrons. With increasingT
the FFLO wave numberq decreases and vanishes at the
critical point Ttri 50.56Tc . The FFLO state is only stable
for T,Ttri , where its upper critical fieldHFFLO exceeds the
Pauli limiting fieldHP of the homogeneous superconducti
state.5,6 At T50, mHP5D0 /A2, whereD0 is the supercon-
ducting gap atT50. The second-order phase transition li
HFFLO(T) depends on the shape of the Fermi surface. In
paper we use a cylindrical Fermi surface appropriate fo
two-dimensional~2D! geometry. The corresponding critica
field7 is given bymHFFLO5D0 at T50.
©2004 The American Physical Society18-1
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Between the ordinary vortex state withn50 and the
FFLO state withn→` a countable infinite number of uncon
ventional superconducting states, characterized by Lan
quantum numbersn51,2, . . . ,exist. The transition from the
vortex state to the first of these, then51 state, occurs at an
angleu1 given approximately by

sinu1'
Hc2

orb

HP
'

kBTc

mvF
2

, ~1!

whereHc2
orb andHp are the ‘‘pure’’ orbital and paramagneti

upper critical fields, respectively. SinceHp@Hc2
orb , the ex-

perimental upper critical field for a three-dimensional sam
is given byHc2

orb . Becauseu1!1 ~generallyu1 will be of the
order of magnitude of1°), the perpendicular componen
H'5H sinu for all of these states withn.0 will be much
smaller than the parallel componentH i5H cosu. Thus,
these states will have some properties in common with
FFLO state, namely, strong paramagnetic pair breaking
spatially inhomogeneous order parameter, and Cooper p
with finite velocity of the center-of-mass coordinate. Desp
this similarity with regard to general features, the ord
parameter structure for then.0 states may be completel
different, even for largen, from the FFLO state. The reaso
is that a finite perpendicular componentH' , no matter how
small, implies a new and rather stringent topological co
straint on the equilibrium structure, namely, the flux quan
zation condition. The subject of the present paper is the
tailed investigation of the structure of thesen.0 states,
which might be referred to either as FFLO precursor state
as paramagnetic vortex states, in the vicinity of the up
critical field Hc2. A theoretical treatment of these FFLO pr
cursor states, reporting several essential results and an
line of the calculation, has been published previously.8 This
paper8 will be referred to as KRS in what follows. In th
present paper many results are reported and the treatme
extended with regard to several points, including finite v
ues ofk, the purely paramagnetic limitu50, and the tran-
sition n→`.

It should be pointed out that the physical origin of t
Landau-level quantization effects for Cooper pairs, cons
ered in the present paper, is very different from the Land
quantization effects for single-electron states discussed
large number of publications by Tesanovic and co-worke9

Rajagopal and co-workers,10 Norman and co-workers,11 and
others. The latter are mainly concerned with the relati
coordinate degree of freedom of the two bound electr
constituting a Cooper pair and lead to measurable co
quences only outside the range of validity of the quasic
sical approximation, at very low temperatureT
,(kBTc)

2/EF and/or high fields. In addition, a mechanism
required to suppress the Zeeman effect, which is neglecte
the theoretical treatment and is not compatible with the p
dicted phenomena. The question whether the most dram
consequences12 ~reentrant superconductivity! of this type of
Landau quantization effects will be observable, has been
subject of a controversial discussion.13,14 In contrast, the
present Landau-level quantization mechanism is aconse-
13451
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quenceof the Zeeman effect, concerns the center-of-m
motion of the Cooper pairs, and can be described~as will be
discussed shortly! by means of the quasiclassical theory
superconductivity.

Restricting ourselves to the vicinity of the upper critic
field Hc2 we may use an expansion of the free energy
powers of the order parameterD, keeping only a finite num-
ber of terms. An analogous gradient expansion, which wo
lead to a relatively simple GL-like theory with a finite num
ber of spatial derivatives ofD, does, unfortunately, not exis
for the present problem. Such an expansion may be
formed foru50, in the purely paramagnetic limit, near th
tricritical point Ttri , where the order-parameter gradient
small because the characteristic lengthq21 of the FFLO state
diverges atTtri . However, for finiteH' a small characteris-
tic length for order-parameter variations does not exist in
relevant range of temperatures, and the spatial variation oD
must be taken into account exactly. One might still hope t
a GL theory with a finite number of derivatives, although n
accurate, will be useful to predict thequalitativebehavior of
the superconducting states nearHc2 correctly; bearing in
mind, for example, the results of standard GL for type
superconductivity. However, for the mixed orbital parama
netic pair-breaking phenomena under discussion, there is
even a single point on the temperature scale where a
theory with a finite number of derivatives is valid. Such
theory is only valid nearTc where no FFLO state exists, o
nearTtri in the ‘‘vicinity’’ of the paramagnetic limit, i.e., for
extremely largen. The latter region is inaccessible both fro
a numerical and a experimental point of view. In this conte
it should also be noted that the final equilibrium structures
not show any continuity with regard ton.

Fortunately, the present problem does not require solv
the full set of Gorkov’s equations because the simpler se
quasiclassical equations may be used instead, as pointe
by Bulaevskii.3 The large parallel componentH i of the ap-
plied magnetic field, acting only on the spins of the ele
trons, is exactly taken into account by the Zeeman te
Thus, with regard to this component no question, as to
validity of the quasiclassical approximation, arises. The m
nitude of the perpendicular componentH' , on the other
hand, must obey the usual quasiclassical condition\vc
,kBT, wherevc5eH' /mc, or sinu(e\H/mc),kBT. Insert-
ing the highest possible fieldH5HP in the latter relation,
one finds that the quasiclassical approximation holds ind
for not too low temperatures,T/Tc.kBTC /EF , in the inter-
esting range of tilt anglesu,u1, where the new paramag
netic vortex states appear.

In most papers on paramagnetic pair breaking and
FFLO state the influence of orbital pair breaking is co
pletely neglected. This means that the GL parameterk tends
to infinity and that all spatial variations of the magnetic fie
can be neglected. For three-dimensional superconductors
approximation implies that the orbital critical field is muc
higher than the paramagnetic Pauli-limiting field. This is im
possible to achieve15 for BCS-like superconductors, becau
the superconducting coherence length cannot be smaller
an atomic distance. It seems unlikely even for unconv
tional materials16 where many-body effects may lead to
8-2
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TWO-DIMENSIONAL SUPERCONDUCTOR IN A TILTED . . . PHYSICAL REVIEW B69, 134518 ~2004!
strong renormalization of the input parameters. For
present two-dimensional~2D! situation, the suppression o
the orbital pair-breaking effect is entirely due to geometri
reasons, and no restriction on the value ofk is required in
order to reach the purely paramagnetic limit at parallel fiel
Thus, keeping all terms in the quasiclassical free energy
lated to spatial variations of the magnetic field will allow
to study type-II superconductors with arbitraryk or even
type-I material. Large-k superconductors show, howeve
still a practical advantage because of their larger criti
angleu1 @see Eq.~1!#.

This paper is organized as follows. In Sec. II Eilenbe
er’s quasiclassical equations generalized with regard t
Zeeman coupling term, as well as the corresponding fr
energy functional, are reported. The expansion of the
energy near the upper critical field, for a general 2D qua
periodic state, is treated in Sec. III. Two limiting cases of t
analytical results, the GL limit and the structure of the or
nary vortex lattice, are reported in appendixes. The num
cal results for the paramagnetic vortex states, at finite
pendicular field, are reported and discussed in Sec. IV.
structure of the FFLO state, for the special case of vanish
perpendicular field, is reconsidered in the present quasic
sical framework in Sec. V. The nontrivial transitionu→0 ~or
n→`) to the purely paramagnetic limit is analyzed in Se
VI. An explanation for the increase inn, in terms of the finite
momentum of the Cooper pairs in the paramagnetic vo
states, is also reported in this section. The results are s
marized in Sec. VII.

II. QUASICLASSICAL EQUATIONS WITH ZEEMAN
TERM

We need a weak-coupling, clean-limit version of the qu
siclassical theory,17,18 which contains all terms related to th
coupling of the electron’s spins to an external magnetic fie
A general quasiclassical theory which covers Zeeman c
pling has been published by Alexanderet al.19 The 434
Green’s function matrix appearing in this work may be co
siderably simplified for the present situation. Since we
glect spin-orbit coupling, the direction of the magnetic i
ductionBW in spin space may be chosen independently fr
the direction ofBW in ordinary space; we adopt the usu
choice ofBW being parallel to thez direction in spin space
Then, only six essential Green’s functions remain, which
denoted by

f (1)5 f 1 f 3 , f (2)5 f 2 f 3 ,

f (2)
1 5 f 12 f 3

1 , f (1)
1 5 f 11 f 3

1 ,

g(1)5g1g3 , g(2)5g2g3 .

Here,f, f 1, g denote the Green’s functions in the absence
Zeeman coupling, andf 3 , f 3

1 , g3 are the additional Green’
function components in thez direction of spin space. The
three equations for the right group,f (2) , f (1)

1 , g(2) , are
decoupled from the three equations for the left group,f (1) ,
f (2)

1 , g(1) , and differ only by a negative sign in front of th
13451
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magnetic momentm8\ueu/(2mc) of the electron. Also, for
each group separate normalization conditions,g(1)

2

1 f (1) f (2)
1 51 and g(2)

2 1 f (2) f (1)
1 51, respectively, exist.

Therefore, it is convenient to introduce Green’s functionsf,
f 1, g, defined by

f ~rW,kW ,vs!5 f (2)~rW,kW ,v! ,

f 1~rW,kW ,vs!5 f (1)
1 ~rW,kW ,v!,

g~rW,kW ,vs!5g(2)~rW,kW ,v!,

which are functions of the spatial variablerW, the quasiparti-
cle wave numberkW , and the complex variablevs5v

1ımB. The 2D variablerW denotes positions in the conduc
ing (x,y) plane. The real variablev takes the values of the
Matsubara frequenciesv l5(2l 11)pkBT; the Matsubara in-
dex l will not always be written down explicitly. The secon
group of Green’s functionsf (1) , f (2)

1 , g(1) may be ex-
pressed by similar relations in terms off, f 1, g if vs is
replaced byvs* .

Using the Green’s functionsf, f 1, g, the quasiclassica
equations with Zeeman coupling become formally similar
the quasiclassical equations without spin terms. The non
ear transport equations forf, f 1 are given by

@2vs1\vW F~kW !]W r # f ~rW,kW ,vs!52D~rW !g~rW,kW ,vs!,

@2vs2\vW F~kW !]W r* # f 1~rW,kW ,vs!52D* ~rW !g~rW,kW ,vs!, ~2!

where the Green’s functiong is given by the normalization
condition

g~rW,kW ,vs!5@12 f ~rW,kW ,vs! f 1~rW,kW ,vs!#
1/2. ~3!

Here,vW F(kW ) denotes the Fermi velocity and]W r is the gauge-
invariant derivative defined by]W r5¹Wr2ı(2e/\c)AW . The or-
der parameterD and the vector potentialAW must be deter-
mined self-consistently.

The self-consistency equation forD is given by

S 2pkBT(
l 50

ND 1

v l
1 ln~T/Tc!DD~rW !

5pkBT(
l 50

ND R d2k8@ f ~rW,kW8,vs!1 f ~rW,kW8,vs* !#, ~4!

whereND is the cutoff index for the Matsubara sums. Th
self-consistency equation forAW is the Maxwell’s equation

¹Wr3~BW ~rW !14pMW ~rW !!

5
16p2ekBTNF

c (
l 50

ND R d2k8

4p
vW F~kW8!Ig~rW,kW8,vs!,

~5!

whereNF is the normal-state density of states at the Fe
level. The right-hand side~rhs! of Eq. ~5! is the familiar
8-3
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U. KLEIN PHYSICAL REVIEW B 69, 134518 ~2004!
~orbital! London screening current while the magnetizati
MW is a consequence of the magnetic moments of the e
trons and is given by

MW ~rW !52m2NFBW ~rW !24pkBTNFm(
l 50

ND R d2k8

4p
Ig

BW

B
.

~6!

The first term on the rhs of Eq.~6! is the normal-state spin
polarization. The second term is a spin polarization due
quasiparticles in the superconducting state.

The following symmetry relations hold for solutions o
Eqs.~2!–~5!,

g* ~rW,2kW ,vs* !5g~rW,kW ,vs!,

f 1~rW,kW ,vs!5 f * ~rW,2kW ,vs* !,

g~rW,2kW ,2vs!52g~rW,kW ,vs!,

f ~rW,2kW ,2vs!5 f ~rW,kW ,vs!,

f 1~rW,2kW ,2vs!5 f 1~rW,kW ,vs!, ~7!

which have been extensively used in the calculations
scribed in the next sections.

The quasiclassical equations~2!, ~4!, and~5! may be de-
rived as Euler-Lagrange equations of the Gibbs free-ene
functionalG, which is given by

G5
1

Fp
E d3r F BW 2

8p
2m2NFBW 22

BW HW

4p
1NFS pkBT (

l 52`

1`
1

uv l u

1 ln~T/Tc!D uDu22pkBTNF (
l 52`

1` R d2k

4p
I ~rW,kW ,vs!G .

~8!

The area of the sample is denoted byFp and thek-dependent
quantity I is given by

I ~rW,kW ,vs!5D f 11D* f 1S g2
v l

uv l u
D F1

f
S vs1

\vW F

2
]W r D f

1
1

f 1
S vs2

\vW F

2
]W r* D f 1G .

An important reference state for the present problem
the purely paramagnetically limited homogeneous superc
ducting state, which is realized for our 2D superconducto
the magnetic field is exactly parallel to the conducti
planes. In this case, the vector potential and the grad
terms in the transport equations may be omitted. AtT50 the
free-energy difference between the superconducting
normal-conducting states may be derived analytically. I
given by

Gs2Gn5NF~m2H22D0
2/2!, ~9!
13451
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and vanishes at the Pauli critical fieldHP . For higherT the
self-consistency equation for the gap must be solved num
cally, yielding agreement with previous results.20,7 Let us in-
vestigate the magnetic response in this purely paramagn
limit. It is neglected in most theoretical treatments, but is
particular interest if the influence of finite values of the G
parameterk is to be taken into account. To obtain the ma
netization due to the spins, the coupled self-consiste
equations~4! and~5! have to be solved. Using dimensionle
quantities defined in Appendix A the gap equation takes
form

ln t2t(
l 50

ND F S 1

AuDu21~v l1ımB!2
1c.c.D 2

2

v l
G50,

~10!

while Maxwell’s equation reduces to

B2H5
m

k̃2 S mB22t(
l 50

ND

I
v l1ımB

AuDu21~v l1ımB!2D . ~11!

Note that the orbital screening current@the rhs of Eq.~5!# is
completely absent for the plane-parallel field direction.
T50 the rhs of Eq.~11! vanishes exactly. This means th
the normal-state spin polarization@first term on the rhs of Eq.
~11!# is exactly canceled by the spin polarization due to
superconducting quasiparticles@second term on the rhs o
Eq. ~11!#. The numerical solution shows that the quasipa
cle polarization decreases with increasingT and vanishes a
D50, where the magnetic behavior of the norma
conducting state is recovered.

In the rest of this paper dimensionless quantities as in
duced by Eilenberger will be used. These quantities are lis
in Appendix A. Any exception will be mentioned explicitly

In the next sections the stable order-parameter structur
a 2D superconductor in the vicinity of the phase bound
will be investigated. The phase boundaryHc2(T) itself is
given by the highest solution of the equation4

05 ln t1tE
0

`

ds
12e2vDs

sinhst

3@12cos~mHs!e2H's2/4Ln~H's2/2!#, ~12!

where the integern50,1,2, . . . is Landau’s quantum num
ber, vD is the Debye frequency, andLn is a Laguerre
polynomial21 of ordern. A typical phase boundary is show
in Fig. 1. Each piece of the nonmonotonicHc2 curve is char-
acterized by a single value ofn. An infinite number of eigen-
statesfn,k exists, belonging all to the same, highly degen
ate eigenvaluen. For the present gauge, these are given

fn,k~rW !5A
~21!n

An!
eıkxe2(H'/2)[y2(k/H')] 2

3HenSA2H'Fy2
k

H'
G D , ~13!
8-4



l-

s
ll
f

u
el

fr

n
et
-

ge
e
p

pa
r
o

ini-

o
t
r

by
s
he

s
el-

a
di-
r of

per

ree
lti-
ere

dau

te

ara-

e
sing

ver

g
c-

be
di

TWO-DIMENSIONAL SUPERCONDUCTOR IN A TILTED . . . PHYSICAL REVIEW B69, 134518 ~2004!
wherek is a real number and Hen is a Hermite polynomial21

of order n. The functions~13! are orthogonal and norma
ized,

~fn,k ,fm,l !5dn,md~k2 l !, ~14!

if the amplitudeA in Eq. ~13! is chosen according to

A5
1

R0
S H'

pLx
2D 1/4

, ~15!

whereLx is the size of the system inx direction andR0 is
defined in Appendix A. The gap, for the portion of theHc2
curve characterized byn, is a linear combination of allfn,k
belonging to thisn. The harmonic-oscillator eigenfunction
~13! are extensively used in the theory of the quantum Ha22

effect and many other topics in the quantum theory o
charged particle in a magnetic field.

III. FREE-ENERGY EXPANSION NEAR THE UPPER
CRITICAL FIELD

We assume that the transition between the supercond
ing and normal-conducting states at the upper critical fi
Hc2 will be of second order for arbitrary tilt angleu. Then,
the order parameterD, or more precisely its amplitudee,
may be used as a small parameter for expanding the
energyG in the vicinity of Hc2. We keep terms up to fourth
order ine and all orders in order-parameter derivatives a
determine the energetically most favorable order-param
structure nearHc2. Similar calculations for the ordinary vor
tex lattice, corresponding to the case of largeQ of the
present arrangement, have been performed by Eilenber23

and by Rammer and Pesch.24 No special assumptions on th
order-parameter structure, such as the number of zeros
unit cell, will be made. We only assume that the order
rameter is quasiperiodic on a 2D lattice, with an arbitra
unit cell, characterized by the length of the two basis vect

FIG. 1. Phase boundary of the superconducting state att50.1
for tilt anglesQ between 0.1 and 2.0 using a valuem50.04 for the
dimensionless magnetic moment of the electron. The num
0,1,2, . . . are Landau quantum numbers characterizing the in
vidual pieces of the curve.
13451
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and the angle between them. The free energy will be m
mized with respect to these unit-cell parameters.

A. Order parameter

Let the unit vectoraW of our elementary cell be parallel t
thex axis,aW 5aeW x . The angle betweenaW and the second uni
vectorbW is denoted bya. To construct a quasiperiodic orde
parameter nearHc2, exactly the same method as used
Abrikosov,25 for the casen50, may be applied. The result i
given by the following linear combination of a subset of t
basis functions~13!:

Dn~rW !5ACn (
m52`

m51`

expS 2ıp
b

a
m~m11!cosa D

3expS ı
2p

a
mxDhn~y2mbsina!, ~16!

where

hn~z!5
~21!n

An!
e2(B̄'/2)z2

Hen~A2B̄'z!.

This order parameter8,11,26is not invariant under translation
rW→rW85rW1naW 1mbW but acquires phase factors for each
ementary translation, which are uniquely defined within
fixed gauge. Surrounding a unit cell in counterclockwise
rection, these phase changes add up to a total facto
expı2p, i.e., each unit cell carries a single flux quantumF0.
We shall use this assumption of a single flux quantum
unit cell, which is written asB̄'ab sina52p in the present
units, throughout this paper. Preliminary calculations27 show
that states with two flux quanta per unit cell have higher f
energy and can be excluded. Also, a preference for mu
quanta vortices seems unlikely in the present situation, wh
the single flux quantum state is stable at largeQ, while the
total flux decreases to zero asQ→0.

The order parameter~16! describes a flux-line lattice
where the Cooper-pair states belong to arbitrary Lan
quantum numbersn, depending on the tilt angleQ. As is
well known, the pairing states for the ordinary vortex sta
belong to the lowest Landau leveln50. The present shift to
higher Landau levels is, of course, related to the large p
magnetic pair-breaking fieldH i as will be discussed in more
detail in Sec. VI.

The coefficientCn in Eq. ~16! may be expressed by th
spatial average of the square of the order parameter, u
the relation

^uDnu2&5
1

Fp
uCnu2 (

m52M /2

1M /2

1, ~17!

whereFp is the area of the sample. The spatial average o
the unit-cell areaFc5ab sina is defined in Appendix A. For
later use, when performing the limitQ→0 in Sec. VI, we
assumed in Eq.~17! that the area of the superconductin
plane is finite and that the number of unit cells in one dire
tion is M. At the end of the following calculation,Cn will be

rs
-
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fixed according to the requirement^uDnu2&51 and an infini-
tesimal amplitudee will be attached in front of each powe
of Dn .

A useful quantity is the square of the order-parame
modulus, which may be written in the form

ucnu2~rW !5(
l , j

~cn
2! l , je

ıQW l , j r
W
. ~18!

The Fourier coefficients (cn
2) l , j are given by

~cn
2! l , j5~21! l j e2ıp l (b/a)cosae2xl , j /2Ln~xl , j !, ~19!

wherexl , j is defined by Eq.~B4!. The order parametercn is
proportional toDn but with an amplitude chosen accordin
to ^ucnu2&51. It is instructive to compare Eq.~18! with the
local magnetic field reported later in Sec. III E.

B. General aspects of the expansion

A fourth-order expansion ofG requires first- and third-
order contributions in the Green’s functionsf, f 1. We use the
notation

f 5 f (1)1 f (3), f 15 f 1(1)1 f 1(3), ~20!

where f (1) and f (3) are the contributions of ordere1 ande3,
respectively. A consistent treatment of the magnetic-fi
terms28,29 requires a separation ofBW andAW according to

BW ~rW !5BW̄ 1BW 1~rW !, AW ~rW !5AW̄ ~rW !1AW 1~rW !, ~21!

whereBW̄ is the spatially constant magnetic induction,BW 1(rW)

is therW-dependent deviation fromBW̄ andAW̄ (rW), andAW 1(rW) are
the corresponding vector potentials. An evaluation of
magnetic-field terms inG requires the leading order i
BW 1(rW), which is e2: BW 1'BW 1

(2) . The spatially constant quan

tity Hc22B̄, whereB̄5uBW̄ u, is small of ordere2. The whole
expansion ine will be done keepingB̄ fixed; at the end of
the calculation, the Gibbs free energyG will be minimized
with respect to the order-parameter amplitudee and the in-
duction B̄. The calculation can be seen as an extension
Abrikosov’s classical work25 to arbitrary temperatures below
Tc .

Let us choose the coordinate system in such a way
the magnetic field lies in the (y,z) plane. Then, the induction
BW (rW) ~and the external fieldHW ) may be split according to

BW ~rW !5Bi~rW !eW y1B'~rW !eW z , ~22!

in perpendicular and parallel componentsB' , Bi . The cor-
responding vector potentials are denoted byAW' , AW i . In order
to fix the gauge we may employ here essentially the sa
method as used before in numerical calculations on the
tex lattice without Zeeman coupling.29,30 The gauge condi-
tions which fixAW 1 are given by28
13451
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]AW 1

]rW
50, E d2rAW 150, AW 1 periodic. ~23!

The vector potentialAW̄ describing the average valueBW̄ of the
induction is chosen according to

AW̄ ~rW !5~B̄iz2B̄'y!eW x . ~24!

The first term in Eq.~24! can be omitted in the gauge
invariant derivatives of Eq.~2! since noz dependence exist
in our 2D system. Thus, the orbital pair-breaking contrib
tion in the transport equations consists of the sum of
second term}B̄' in Eq. ~24! and therW-dependent partAW 1

~only the perpendicular component ofAW 1 is relevant here!.
The ~large! parallel componentB̄i , on the other hand, enter
the spin pair-breaking term, which is proportional toB(rW)
5@Bi

2(rW)1B'
2 (rW)#1/2. Equations~23! and~24! fix the gauge,

i.e., allow a unique determination ofAW in terms ofBW . While
uDu2 andBW are periodic, i.e., invariant under translations b
tween equivalent points in the 2D structure,D andAW are only
quasiperiodic, i.e., they differ by phase factors and a cha
in gauge, respectively. The phase factors are fixed withi
given gauge and may be calculated using Eq.~24!.

As a first step in the expansion ofG, the Green’s function
g is eliminated in favor off, f 1 by means of the relation

g512
f f 1

2
2

f 2~ f 1!2

8
1 . . . ,

which is valid for smallD. Second, the gradient terms inG
may be eliminated with the help of the transport equatio
~2!. Then, the~dimensionless! Gibbs free energy takes th
form

G5
1

Fp
E d3r Xk̃2~BW 2HW !22m2BW 21S ln t12(

l 50

`
1

2l 11D
3uDu22

t

2 (
l 50

` FD f 11D* f̄ 1
1

4
@D f ~ f 1!21D* f 2f 1#

1c.c.G C, ~25!

where the bar denotes a Fermi-surface average as defin
Appendix A. In divergent Matsubara sums, like the one
Eq. ~25!, the upper, infinite limit ofl has been replaced by
finite cutoff using the standard method.

Inserting the expansions~20! and ~21! in the free energy
~25! and collecting terms of the same order ine, G takes the
form

G5Ḡ1G(2)1G(4), ~26!

where the termsḠ, G(2), and G(4) denote the free energ
contributions of ordere0, e2, ande4, respectively. The term
Ḡ is given by

Ḡ5k̃2~BW̄ 2HW !22m2BW̄ 2. ~27!
8-6
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We will first simplify the quantitiesG(2) andG(4) and then
calculate the minimum ofG with respect to the amplitudee
and the inductionB̄.

C. Second-order contribution

The second-order contribution to the Gibbs free energ
given by

G(2)5
1

AE d3r F S ln t12(
l 50

`
1

2l 11D uDu22
t

2 (
l 50

`

~D f 1(1)

1D* f (1)1c.c.!G . ~28!

To calculate the lowest-order Green’s function only contrib
tions of order e0, namely the spatially constant partB̄

5(B̄i
21B̄'

2 )1/2 of the induction and the lowest-order vect

potential AW̄ , have to be taken into account in Eq.~2!. The
resulting equation forf (1) is given by

@v l1ımB̄1 k̂]W r
(0)# f ~1!5D, ~29!

where ]W r
(0)5(]/]rW)1ıB̄'yeW x . To proceed, we use well

known methods31 and solve first the eigenvalue problem
the operatork̂]W r

(0) . The solution is given by

k̂]W r
(0)f k̂,pW~rW !5Ek̂,rW f k̂,pW~rW !, ~30!

with the eigenvaluesEk̂,rW5ı k̂pW and the eigenfunctions

f k̂,pW~rW !5expF ı
B̄'

2
~xk̂x1yk̂y!~xk̂y2yk̂x!2ıB̄'

xy

2
1ıpW rWG .

~31!

Using the completeness of this continuous set of eigenfu
tions the differential operator on the left-hand side~lhs! of
Eq. ~29! may be inverted andf (1) be represented in the form

f (1)5E d2p

4p2E d2r 1

f k̂,pW~rW ! f k̂,pW
* ~rW1!

v l1ımB̄1ı k̂pW
D~rW1!. ~32!

Representing the denominator in Eq.~32! by means of the
identity

1

r
5E

0

`

dse2sr ~33!

as an additional integral, both thepW integration and therW1
integration may be performed analytically and the solution
Eq. ~29! takes the form

f (1)~ k̂,vs ,rW !5E
0

`

due2uvsexpF ı
B̄

2
~22uyk̂x

1u2k̂xk̂y!GD* ~rW2uk̂!. ~34!
13451
is

-

c-

f

The first-order solution forf 1 is given by f 1(1)( k̂,vs ,rW)
5 f (1)* (2 k̂,vs* ,rW).

The evaluation of the remaining integrals may be grea
simplified by introducing the gap correlation functio
V(rW1 ,rW2). In the present gauge it is defined by

V~rW1 ,rW2!5D~rW1!D* ~rW2!expF ı
B̄'

2
~x12x2!~y11y2!G .

~35!

Of particular importance are the Fourier coefficientsVl , j (rW),
where rW5rW12rW2. The precise definition and calculation o
Vl , j (rW) is reported in Appendix B.

All terms in Eq.~28! containing first-order Green’s func
tions may be expressed as integrals over a gap correla
function. The first of these takes the form

D f 1(1)5E
0

`

due2uvsV* ~rW1uk̂,rW !, ~36!

while the corresponding expression forD* f (1) may be de-
rived from Eq.~36! with the help of the symmetry relation
~7!. To proceed, center-of-mass coordinates are introdu
and a Fourier expansion ofVCM(RW ,rW) with regard to the
variableRW is performed, using the result~B3! from Appendix
B. The remaining summations and integrations may be p
formed analytically.21 Collecting all terms one obtains th
final result for the second-order contribution

G(2)5^uDu2&F ln t1tE
0

`

ds
12e2vDs

sinhst
@12cos~mB̄s!

3e2B̄'s2/4Ln~B̄'s2/2!#G . ~37!

While the order parameter expansion, Eq.~16!, which en-
tered the calculation ofG(2), depends on the lattice param
etersa,b,a, this dependence is absent in the final result, E
~37!. The quantityG(2), characterizing the appearance of t
superconducting instability, and not the detailed structure
low it, does only depend on the eigenvaluen. The relation
G(2)50 agrees with the linearized gap equation~12! used to
calculateHc2.

The technique used here to calculateG(2) will be gener-
alized in the following section to evaluate the fourth-ord
contribution to the free energy.

D. Fourth-order contribution

The free-energy contribution of ordere4 may be split,
according to

G(4)5GN
(4)1GM

(4) , ~38!

in a nonmagnetic partGN
(4) and a magnetic partGM

(4) . In GN
(4)

the spatially constant inductionBW̄ and the corresponding vec

tor potentialAW̄ (rW) are used. The termGM
(4) collects all terms

of ordere4 where deviationsBW 1(rW)'e2 @or the correspond-
8-7
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U. KLEIN PHYSICAL REVIEW B 69, 134518 ~2004!
ing vector potentialAW 1(rW)] from the average inductionBW̄ are
taken into account; fork→`, it becomes negligibly small.

The nonmagnetic partGN
(4) is given by

GN
(4)5Ga

(4)1Gb
(4) . ~39!

The termGa
(4) may be calculated using the solutionsf (1),

f 1(1) of ordere1, already obtained in Sec. III C,

Ga
(4)52K t

8 (
l 50

ND

@D* f (1)2f 1(1)1D f (1)f 1(1)21c.c.#L .

~40!

The termGb
(4) requires the nonmagnetic partsf N

(3) , f N
1(3) of

the third-order Green’s functionsf (3), f 1(3),

Gb
(4)52K t

2 (
l 50

ND

@D* f N
(3)1D f N

1(3)1c.c.#L . ~41!

The magnetic partGM
(4) is given by

GM
(4)5Gc

(4)1Gd
(4) . ~42!

The termGc
(4) is purely magnetic in origin, while the term

Gd
(4) contains the magnetic partsf M

(3) , f M
1(3) of the third-

order Green’s functions,

Gc
(4)5^~ k̃22m2!BW 1

2&, ~43!

Gd
(4)52K t

2 (
l 50

ND

[D* f M
(3)1D f M

1(3)1c.c.]L . ~44!

In a next step, the termsBW 1 and f (3)5 f N
(3)1 f M

(3) of order
e2 and e3, respectively, must be calculated. The sa
method used in Sec. III C to calculatef (1), by inverting the
differential operator on the lhs of Eq.~29!, may be used here
to obtainf (3). Using an operator notation for brevity, the su
of f N

(3) and f M
(3) may be written as

f (3)5@v l1ımB̄1 k̂]W r
(0)#21D, ~45!

D52
1

2
D f (1)f 1(1)2P f (1). ~46!

The first and second term in Eq.~46! gives f N
(3) and f M

(3) ,
respectively. The termP is of ordere2 and is given by

P5ı
m

B̄
BW̄ BW 1

(2)2ı k̂AW 1
(2) . ~47!

The magnetic contributionsBW 15BW 1
(2) and AW 1

(2) must be de-
termined by solving Maxwell’s equation~5!. Expanding Eq.
~5! one obtains two decoupled equations,

S 12
m2

k̃2 D BW 1i52h0BW̄ i , ~48!
13451
e

¹Wr3F S 12
m2

k̃2 D BW 1'1h0BW̄'G5bW , ~49!

for the parallel and perpendicular componentsBW 1i and BW 1'

of BW 1. The quantitiesh0, bW , which are both of ordere2, are
given by

h05
t

B̄

2m

k̃2 (
l 50

ND

Ig, bW 5
2t

k̃2 (
l 50

ND

k̂Ig. ~50!

The Green’s functiong in Eq. ~50! may be replaced by
2 f (1)f 1(1)/2 under thek̂ integral. Thus,h0, bW may be cal-
culated by using the first-order solutionsf (1), f 1(1) as given
by Eq.~34!. The solution of Eqs.~48! and~49! is obtained by
expanding the unknown variablesBW 1i , BW 1' and the param-
etersh0, bW , which are all invariant under lattice translation
in Fourier series; the corresponding Fourier coefficients
denoted by (BW 1i) l ,m5(B1i) l ,meW y , (BW 1') l ,m5(B1') l ,meW z ,
and (h0) l ,m , bW l ,m . The explicit solutions will be reported a
the end of this section.

Given the second-order contributionBW 1, the first term
Gc

(4) of f M
(3) @see Eq.~43!# can be evaluated. To calculate th

second termGd
(4) one needs, in addition, the correction ter

AW 1 @see Eqs.~45!–~47!#. Writing AW 15AW 1i1AW 1' , the Fourier
coefficients ofAW 1i , AW 1' may be expressed29 in terms of the
Fourier coefficients of the induction,

~AW 1i! l ,m5
ı

QW l ,m
2

Ql ,m,x~B1i! l ,meW z ,

~AW 1'! l ,m5
ı

QW l ,m
2 ~B1'! l ,m~Ql ,m,yeW x2Ql ,m,xeW y!, ~51!

using the gauge conditions defined by Eq.~23!. The quanti-
tiesQl ,m,x , Ql ,m,y in Eq. ~51! are thex andy components of
the reciprocal lattice vectorQW l ,m defined in Appendix B.

Each one of the four terms of ordere4 in Eqs. ~39! and
~42! may be represented as a multiple integral and Matsub
sum over the product oftwo gap correlation functions. Wha
remains to be done is to perform analytically as many in
grations as possible. The details of the calculation will
reported here for the first termGa

(4) , defined by Eq.~40!; the
evaluation of the other three terms is similar.

Using the first-order Green’s functions~34! and the defi-
nition of the gap correlation function~35!, the termGa

(4)

takes the form

Ga
(4)52K t

8 (
l 50

ND F E
0

`

dsE
0

`

ds1E
0

`

ds2 e2vs(s1s11s2)

3V~rW2s1k̂,rW1s2k̂!@V~rW2sk̂,rW !1V~rW,rW1sk̂!#

1c.c.G L . ~52!

ExpandingV in a Fourier series, the spatial average in E
~52! may be performed andGa

(4) takes the form
8-8
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Ga
(4)52

t

2 (
l 50

ND 1

2pE0

2p

dw(
l ,m

E
0

`

dsE
0

`

ds1E
0

`

ds2e2v l (s1s11s2)Vl ,m~2~s11s2!k̂!

3Vl ,m* ~sk̂!cosS QW l ,m

s

2
k̂D •FcosS QW l ,m

2s11s2

2
k̂D cos@mB̄~s1s11s2!#

1sinS QW l ,m

2s11s2

2
k̂D sin@mB̄~s1s11s2!#G ,

whereVl ,m is given by Eq.~B3! and the symmetry relations~7! have been used to rearrange the integrand. We introd
center-of-mass coordinatestS5s11s2 , tR5s12s2 in the s1 ,s2 plane. Replacings1 ,s2 by the new variables, the integratio
over tR may be performed and the double integral overs and tS becomes a product of two independent, one-dimensio
integrals. Performing this step,Ga

(4) takes the form

Ga
(4)52t(

l 50

ND 1

2pE0

2p

dw(
l ,m

1

QW l ,mk̂
E

0

`

dse2v l scosS s

2
QW l ,mk̂D •Vl ,m* ~sk̂!E

0

`

dtSe2v l tS

3sinS tS

2
QW l ,mk̂D •Vl ,m~2tSk̂!@cos~mB̄s!cos~mB̄tS!2sin~mB̄s!sin~mB̄tS!#. ~53!
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An attempt to simplify Eq.~53! further, by performing one of
the remaining integrations analytically, was not success
At this point it seems already feasible to calculate the
maining integrals overs,w and the sums over Matsubara a
Fourier indices numerically. However, we prefer to proce
and calculate the remaining integrals by means of
asymptotic approximation.

Let us consider for definiteness the integral overs in Eq.
~53!. The integrand has its maximum ats50. We analyze
the behavior of the various factors in the integrand as a fu
tion of s, and neglect thes dependence of the slowest varyin
factors. The characteristic lengths ins space of the factors
exp(2vls), cos(sQW l,mk̂), Vl ,m(sk̂) and cos(mB̄s) are given by
t15@(2l 11)t#21, t25(B̄'urW2 l ,mu)21, t35(nB̄')21/2, and
t45(mB̄)21, whererW lm5 laW 1mbW . We consider a range o
inductionsB̄&BP , where the Pauli critical fieldBP is ~in the
present system of units! given by mBP80.4. As a conse-
quence,t4*2. Choosing a typical numberm50.1 for the
dimensionless magnetic moment, our induction varies in
rangeB̄&4. The characteristic lengthst2 and t3 both de-
pend on the Landau quantum numbern; recall thatB̄' de-
pends onn as shown in Fig. 1. Let us consider first the ca
n51. Then, B̄'>B̄ sinQ1 with sinQ1'm/p according to
Eq. ~1! and the definition ofm in Appendix A. As a conse-
quence,t3 is of the same magnitude ast4 for n51. The
magnitude oft2>7/urW l ,mu varies strongly depending on th
Fourier indicesl ,m. For not too large Fourier indices an
nearly allv l , t1 will be the smallest of the four characte
istic lengths. This is, however, only true for not too lo
temperaturest. For large Fourier indices, which should b
taken into account in the present situation, the behavio
the integrand will be dominated by the term cos(sQW l,mk̂) be-
cause its characteristic lengtht2 becomes small for large
l ,m. Thus, the latter term as well as the Matsubara te
13451
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exp(2vls) has to be kept, while the termsVl ,m(sk̂) and
cos(mB̄s) show the slowest variation ins and may be re-
placed by their values ats50. This conclusion remains tru
for arbitraryn. This may be seen by using the relationnB̄'

>b which will be derived in Sec. VI.
Using this asymptotic approximation both the integ

overs and the Fermi-surface average may be performed a
lytically and one arrives at the result

Ga
(4)52

t

4 (
l 50

ND

(
l ,m

Vl ,m* ~sk̂!us50Vl ,m~2tSk̂!u ts50

3

2v l
21

1

4
uQW l ,mu2

v l
2S v l

21
1

4
uQW l ,mu2D 3/2.

The second nonmagnetic termGb
(4) @see Eq.~41!#, which

is evaluated with the same method, is given byGb
(4)

522Ga
(4) .

In order to calculate the fourth-order terms of magne
origin, Gc

(4) andGd
(4) , the Fourier coefficients of the quant

tiesh0, bW @see Eq.~50!# have to be evaluated first. This ma
be done using a method similar to the one outlined above
Ga

(4) . A noticeable difference is that thes dependence of the
slowest varying factors~the ones with characteristic length
t3 andt4) cannot be completely neglected in the course
the asymptotic approximation, but must be taken into
count to linear order ins. In a second step, Maxwell’s equa
tion has to be solved to obtain the magnetic-field correct
BW 1. Given the latter, the free energyGc

(4) may be calculated.
The termGd

(4) contains an additionals integral which may be
performed by means of an asymptotic approximation of
above type. The relationGd

(4)522Gc
(4) was again found to
8-9
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be true, in analogy to the nonmagnetic case~the same rela-
tion has been found in microscopic calculations24 of the or-
dinary vortex lattice nearHc2).

Collecting all fourth-order terms and attaching the fac
e4 one obtains the final result

G(4)5e4S t

4 (
l ,m

f 1
2~xl ,m!Sl ,m

(1)2
t2

k̃22m2 ( 8
l ,m

@B̄i
2m4f 1

2~xl ,m!

3~Sl ,m
(1) !21„B̄'m2f 1~xl ,m!Sl ,m

(1)2g1~xl ,m!Sl ,m
(2)

…

2# D ,

~54!

where the prime at the second summation sign indicates
the term l 50, m50 is to be excluded from the sum. Th
functions f 1 , g1 depend explicitly on the Landau quantu
numbern and are given by

f 1~x!5e2x/2Ln~x!, ~55!

g1~x!5e2x/2F1

2
Ln~x!1~12dn,0!Ln21

1 ~x!G , ~56!

whereLn
1 is a Laguerre polynomial.21 The Matsubara sum

are given by

Sl ,m
(1)5(

l 50

ND 2v l
21

1

4
uQW l ,mu2

v l
2S v l

21
1

4
uQW l ,mu2D 3/2, ~57!

Sl ,m
(2)5(

l 50

ND 1

v l
2S v l

21
1

4
uQW l ,mu2D 1/2. ~58!

The square of the reciprocal-lattice vector is convenien
written in the form uQW l ,mu252B̄'xl ,m/2, wherexl ,m is de-
fined by Eq.~B4!. Introducing a magnetic lengthL defined
by

B̄'5
2p

ab sina
5

2

L2
, ~59!

these parameters which depend ona, b, a, are given by

xl ,m5
p2

sin2a
S L

aD 2

l 21S a

L D 2

m222p lm
cosa

sina
. ~60!

E. Local induction

The componentsB1' and B1i of the spatially varying
magnetic fieldBW 1 are given by Fourier series of the form

B1D~rW !5( 8
l ,m

~B1D! l ,meıQW l ,mrW, ~61!

whereD5',i . The Fourier coefficients are given by
13451
r

at

y

~B1i! l ,m52
t^uDnu2&

k̃22m2
B̄im

2

3~21! lme2ıp l (b/a)cosa f 1~xl ,m!Sl ,m
(1) , ~62!

~B1'! l ,m52
t^uDnu2&

k̃22m2
~21! lme2ıp l (b/a)cosa

3@B̄'m2f 1~xl ,m!Sl ,m
(1)2g1~xl ,m!Sl ,m

(2)#. ~63!

The parallel component~62! is proportional tom2 and is
entirely due to the spin pair-breaking effect. The perpendi
lar component~63! is the sum of am2-dependent term and
second term not~explicitly! dependent onm. The terms de-
pendent onm2 have the same form for both componen
~recall that the direction ofB in spin space is arbitrary! and
are proportional to the relevant component of the mac
scopic induction. The second term in Eq.~63!, which is of
opposite sign, may only forn50 be considered as a cons
quence of orbital pair breaking; forn.0 this second term
depends also~since a positiven is necessarily due to a finite
m) on the spin pair-breaking effect. The GL limit of the loc
induction is discussed in Appendix C.

The validity of the asymptotic approximation used in t
derivation of Eqs.~54! and~61! is not restricted to lown, but
sufficiently high temperatures, sayt.0.1, should be used
Clearly, if different states withvery smallfree-energy differ-
ences are found, no conclusion as to the relative stability
these states can be drawn.

F. Extremal conditions

In thermodynamic equilibrium, the values ofe, B̄' , B̄i
and the lattice parametersa, b, a have to be chosen in suc
a way that the free energy becomes minimal. To find
equilibrium values ofe, B̄' , B̄i the extremal conditions

]G

]e
50,

]G

]B̄i
50,

]G

]B̄'

50, ~64!

have to be solved nearHc2. The question for the optimala,
b, a will be addressed in the following section.

Inserting the superconducting solution fore in the free
energy yields

G5Ḡ2
1

4

~Ḡ(2)!2

Ḡ(4)
, ~65!

where the coefficientsḠ, Ḡ2, and Ḡ4 are defined byG
5Ḡ1e2Ḡ(2)1e4Ḡ(4). Equation~65! shows, that the stable
lattice structure~see Sec. IV! is determined by the require
ment of minimalḠ4.

To find the two-component macroscopic magnetizat
relation between inductionB̄' ,B̄i and external fieldH' ,H i ,
the above extremal conditions must be solved forB̄' , B̄i .
This cannot be done for arbitrary fields but requires an
propriate expansion of the coefficients for smallB̄'
8-10
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2B̄c2,' , B̄i2B̄c2,i . A lengthy but straightforward calcula
tion, generalizing Abrikosovs classical work25 to the present
situation, leads to the result

B̄'5a''H'1a'iH i1b' ,

B̄i5a'iH'1a iiH i1b i . ~66!

The coefficients in this linear relation are given by

a''52k̃2@2~ k̃22m2!2Ai#/detM ,

a'i52k̃2Ai' /detM ,

a ii52k̃2@2~ k̃22m2!2A'#/detM ,

b'522~ k̃22m2!~A'Bc2,'1Ai'Bc2,i!/detM ,

b i522~ k̃22m2!~AiBc2,i1Ai'Bc2,'!/detM ,

where

detM52~ k̃22m2!@2~ k̃22m2!2Ai2A'#.

The parametersAi , . . . may be calculated for a given lattic
structure with the help of the relations

Ai5
1

2Ḡ(4) S ]Ḡ(2)

]B̄i
D 2

, ~67!

A'5
1

2Ḡ(4) S ]Ḡ(2)

]B̄'

D 2

, ~68!

Ai'5
1

2Ḡ(4)

]Ḡ(2)

]B̄i

]Ḡ(2)

]B̄'

, ~69!

where the derivatives ofḠ(2) have to be evaluated atB̄
5Bc2 and the relationAiA'5Ai'

2 may be shown to be true
Equation ~66! constitutes the macroscopic relation b

tween induction and external field for a 2D superconduc
in a tilted magnetic field. It is, of course, strongly anisotrop
and shows a coupling between the parallel and perpendic
field components. ForH i50, m⇒0, and t⇒1, Eq. ~66!
should reduce to Abrikosov’s GL solution25,32 for the mag-
netization of a triangular vortex lattice. This is indeed t
case as shown in Appendix C.

For H i50, m⇒0, Eq.~66! describes the ordinary vorte
lattice ~near Hc2) for arbitrary temperatures. A numerica
comparison with corresponding results by Eilenberger23 and
Rammer and Pesch24 has not been undertaken because a
ferent ~spherical! Fermi surface has been used in the
works. However, the limitH i50, m⇒0 of the present
theory will be checked in Appendix D by calculating th
critical value ofk separating type-II from type-I supercon
ductivity.
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IV. RESULTS FOR FINITE PERPENDICULAR FIELD

In this section we determine the stable order-param
structures for the paramagnetic vortex states with 1<n<4 in
the vicinity of Hc2. The numerical procedure to find th
stable states is essentially the same as in KRS.8 First, the
upper critical fieldBc2 and the corresponding quantum num
ber n have to be found for given temperaturet and tilt angle
Q by solving the linearized gap equation~37!. In a second
step, the stable lattice structure, which minimizes the fou
order termḠ(4)5G(4)/e4 @see Eq.~54!#, has to be deter-
mined. Because of the flux quantization condition the mi
mum with respect to onlytwo parameters, which may b
chosen asa/L and a, must be found. In contrast to th
ordinary vortex lattice, where it is usually sufficient to ca
culate only a few lattices of high symmetry~triangular, qua-
dratic! to find the stable state, the present situation is ch
acterized by a large number of local minima of Eq.~54!,
corresponding to a large number of possible lattices of ra
irregular shape. Therefore, a graphical method was use
determine the stable state; the free-energy surf
Ḡ(4)(a/L,a) was plotted for the whole (a/L,a) plane and
the global minimum was determined by inspection. Ba
cally, two material parameters,m and k̃, and two externally
controlled parameters,t andQ, enter the theory. Numerica
calculations have been performed for a single value ofm
50.1, two different reduced temperatures 0.2 and 0.5, f
different values 0.1, 1.0, 10, 100 of Eilenberger’s parame
k̃, and several values ofQ corresponding to different Lan
dau quantum numbersn. Some of the resulting order param
eter and magnetic-field structures in the rangen<4 will be
reported here. These low-n pairing states are, of course, th
most important ones from an experimental point of view.

For comparison we consider first, in Appendix D, the o
dinary vortex lattice state withn50. This illustrates the
method and may also be used to check the accuracy of
asymptotic approximation. The equilibrium state for lowk
type-II superconductors is calculated and good agreem
with previous theories is found for not too low temperatur

Considering now pairing states withn.0, the number of
order-parameter zeros per unit cell increases clearly with
creasingn. One finds8 two types of minima ofḠ(4)(a/L,a),
isolated minima and linelike minima. The first type corr
sponds to ‘‘ordinary’’ 2D lattices, the second type, charact
ized in a contour plot@see Fig. 1 of KRS8# by a line of
constanta/L with Ḡ(4)(a/L,a) nearly independent ofa,
corresponds to quasi-one-dimensional, or ‘‘FFLO-like’’ la
tices ~rows of vortices and one-dimensional FFLO-lik
minima alternating!. A convenient way to identify the type o
minimum and find its position on thea/L axis is to plot the
projection of theḠ(4)(a/L,a) surface on the (Ḡ(4),a/L)
plane. An example for this perspective, where sections of
free-energy surface at constanta show up as lines, is given
in Fig. 2 for n57. The a coordinate of a 2D minimum
cannot be read off from such a plot and requires a sec
projection on the (a/L,a) plane~such as Fig. 11 or Fig. 1 o
KRS8!. The free-energy maps for othern.0 states are in
principle similar to Fig. 2 but the different local minim
8-11
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U. KLEIN PHYSICAL REVIEW B 69, 134518 ~2004!
show more pronounced differences for smallern.
Let us start with the paramagnetic vortex state withn

51 and consider first the limit of largek. As reported in
KRS,8 a quasi-one-dimensional state is found to be stabl
this case. Figure 3 shows the spatial variation of the modu
of the order parameter. One sees rows of vortices separ
by a single, FFLO-like line of vanishing order paramet

FIG. 2. Projection of the free energyḠ(4) on theḠ(4),a/L plane.
Using this perspective the sections of the free-energy surfac
constanta are displayed as lines. In the considered range ofa/L
one finds six local minima, corresponding to two FFLO-like a
four two-dimensional lattices. The global minimum is ata/L'1.1
and corresponds to a two-dimensional lattice. Parameters chos

this plot aren57, t50.5, k̃510, m50.1, andQ50.055.

FIG. 3. ~Color online! Square of modulus of order paramet
uc1u2 as a function ofx/a, y/a in the range 0,x/a,2, 0,y/a
,3.2. This is the stable structure~unit-cell parametersa/b

50.205, a533°) for t50.2, k̃5100, u51.2° (n51, Bc2

54.141).
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The unit cell of the structure shown in Fig. 3 is given b
a/L51.0875,a533°. A shift of the vortex rows relative to
each other leads to a lattice with the samea/L and a different
a, which has nearly the same free energy~which is reason-
able, since the interaction between vortices from differ
rows is weak as a consequence of the intervening FF
domain wall!. The vortices are of the ‘‘ordinary’’ type, i.e.
the phase of the order parameter changes by12p when
surrounding the center.

It is of interest to calculate the magnetic field belonging
this order-parameter structure. We plot the parallel and p
pendicular componentsB1i(rW) and B1'(rW) of the spatial
varying partBW 1(rW) of the magnetic field as given by Eqs
~61!–~63!, omitting a common factort^uDnu2&/(k̃22m2).
The field B1i(rW), which is entirely due to the spin pair
breaking mechanism, is shown in Fig. 4. Due to its param
netic nature, the fieldB1i(rW) is expelled from regions of
small c(rW). This behavior is exactly opposite to the usu
orbital response, which implies an enhancement of the ind
tion in regions of smallucu(rW). As a consequence, the spati
variation of B1i is very similar to that ofucu2, shown in
Fig. 3.

The perpendicular fieldB1'(rW), shown in Fig. 5, consists
of a spin term proportional tom2, and a second term which
does not depend@see Eq.~63!# explicitly on m. The term
proportional tom2 is negligibly small and the total field is
essentially given by the second term. Near the vortices
field B1'(rW) behaves in the familiar, orbital way, i.e., it i
largest at the points of vanishingc and decreases with in
creasing distance from the vortex centers. However, at

at

in

FIG. 4. ~Color online! Parallel componentB1i as a function of
x/a, y/a in the range 0,x/a,2, 0,y/a,3.2. This plot has been
produced using the same input parameters as in Fig. 3.
8-12
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TWO-DIMENSIONAL SUPERCONDUCTOR IN A TILTED . . . PHYSICAL REVIEW B69, 134518 ~2004!
FFLO-like lines of vanishing order parameter, where no
pological singularity occurs,B1' has aminimum, i.e., shows
paramagnetic behavior. Thus, the magnetic response ofn
51 superconductor may either lead to a local suppressio
to an enhancement of the magnetic field in regions of sm
order parameter. This is in contrast to the purely orbital
sponse of an50 superconductor, where the magnetic field
always enhanced. This unconventional behavior is form
due to the second term ing1 @see Eq.~56!#. The fieldB1i is
much smaller thanB1' and the total fieldB1 for n51 is
consequently dominated by the perpendicular compon
B1' , which is a consequence of the combined action of b
pair-breaking mechanisms.

The quasi-one-dimensional order-parameter struc
shown in Fig. 3 seems to be representative for the pai
state withn51; no other stable state has been found fok̃

510 andt50.5. At k̃51, 0.1 the free-energy surface has
minimum at all, which means that a transition to type-I s
perconductivity occurs at some value ofk̃ between 1 and 10

Extrapolating then51 result to highern, one would ex-
pect the following structure for the pairing state with Land
quantum numbern: rows of vortices separated byn lines of
vanishing order parameter. Such a structure would appro
the ~linelike! FFLO state in the limitn⇒`. However, this
simple picture is not realized, at least in the important ran
of low n. It holds generally for oddn, but for evenn two-
dimensionalstructures are preferred. In the latter case, o
hasn11 isolated order-parameter zeros per unit cell, w
associated phase changes of a multiple of 2p. Such a situa-
tion leads necessarily to the presence of one or m
antivortices—vortices with a topological phase change
22p around the center—for states with evenn, since the
total phase change around the unit cell must remain12p.

FIG. 5. ~Color online! Perpendicular componentB1' as a func-
tion of x/a, y/a in the range 0,x/a,2, 0,y/a,3.2. The same
input parameters as in Fig. 3 have been used.
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Recently, various proposals to create stable antivortices h
been published; see, e.g., Moshkalkov and co-workers.33 In
the present context, it is clearly the strong paramagnetic
breaking, which is responsible for the stability of the antivo
tices. Among the~even-n) antivortex states, the one withn
52 is most easily accessible from an experimental poin
view and very stable under variations oft andk. Its proper-
ties will be discussed in detail in a separate publication;34 a
preliminary account has been published already.35

For n53 free-energy minima for spatially varying state
exist in the whole considered range 0.1<k<100 of the GL
parameter. Thus, increased spin pair breaking stabilizes in
mogeneous equilibrium structures and shifts the ph
boundary between type-II and type-I superconductivity
lower values ofk. In the high-k region ~for k>10) the
stable state of an53 superconductor is of the quasi-on
dimensional type~at lowerk a 2D state of nearly the sam
free energy has been found, which will not be discuss
here!. The fieldsucu2, B1i look similar to then51 case~see
Figs. 3 and 4! except that the vortex rows are now separa
by threeFFLO-like lines of vanishing order parameter. Th
vortices in neighboring rows are already completely dec
pled for n53; a translation of neighboring rows relative
each other changes the anglea between the unit-cell basi
vectors but does not lead to any change~within eight digits!
of the free energy. The perpendicular inductionB1' is again
dominated by the second term in Eq.~63! and looks similar
to then51 case~see Fig. 5!; in contrast to the spin part thi
field does not reflect the detailed order-parameter struc
but has only a single broad minimum at the position of t
three FFLO lines.

FIG. 6. ~Color online! Square of modulus of order paramet
uc4u2 as a function ofx/a, y/a in the range 0,x/a,1.4, 20.2
,y/a,0.62. This is the stable structure~unit-cell parametersa/b

50.6735, a570.125°) for t50.5, k̃510, u50.1° (n54, Bc2

53.486).
8-13
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U. KLEIN PHYSICAL REVIEW B 69, 134518 ~2004!
For an54 superconductor att50.5 the equilibrium state
is of the quasi-one-dimensional type fork<1, and of the 2D
type for k>10. Figure 6 shows the 2D order-parame
structure for a superconductor withk510. There are five
zeros ofc per unit cell, one of them of an elongated sha
The nature of these topologically singular points may
clarified by plotting either the phase35 or the local magnetic
field. The parallel componentB1i(rW) of the field BW 1(rW) is
again~compare Figs. 3 and 4! similar in shape to the orde
parameterucu2 and need not be displayed here. The perp
dicular fieldB1' is shown in Fig. 7. Three of the five orde
parameter zeros displayed in Fig. 6 belong to ‘‘ordinar
vortices, with local-field enhancement and diamagne
screening current~two of the three maxima ofB1' are pro-
nounced, while the third, the one corresponding to the e
gated zero ofc, is rather flat!. The remaining two order-
parameter zeros belong to antivortices with opposite sign
the ‘‘screening currents’’~which are now paramagnetic i
nature! and with minima ofB1' at the points of vanishingc.

Results forn.4 will not be reported here. Many interes
ing and complex structures may be produced for largen.
However, the number of different states with similar fr
energies increases with increasingn. As a consequence, th
approximate nature of our analytical calculation does not
low an identification of the stable state for largen. At the
same time, an experimental verification of these largn
states seems difficult since a very precise definition of the
angleu would be required.

V. STRUCTURE OF THE FFLO STATE

The stable state in the purely paramagnetic limitn→`
has been determined first by Larkin and Ovchinnikov2 at T

FIG. 7. ~Color online! Perpendicular componentB1' as a func-
tion of x/a, y/a in the range 0,x/a,1.4, 20.2,y/a,0.62. The
same input parameters as in Fig. 6 have been used.
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50 for a spherical Fermi surface. They predicted a o
dimensional periodic order-parameter structure of the fo
D(rW)'cos(qWrW), which will be referred to as LO state. Late
various analytical investigations of the stable states in
vicinity of Ttri and nearT50 have been performed;36,37

many other references may be found in a recent rev
article.38 A careful search for the state of lowest free ener
comparing several possible lattices in the whole tempera
range, has been reported by Shimahara.39 He found that be-
low t50.24 various 2D periodic states have lower free e
ergy than the one-dimensional cos(qWrW) state. Shimahara use
the same cylindrical Fermi surface as we do and his res
do therefore apply to the present problem. Nevertheless
reconsider in this section the problem of the determination
the FFLO structure, in order to have a complete descript
of all states in a tilted field in a single theoretical~quasiclas-
sical! framework.

The results derived in Sec. III cannot be used to perfo
the limit n→` and determine the stable state in the pur
paramagnetic limit. However, the general formalism may
applied in a straightforward way to the simpler case of va
ishing vector potential. In order to be able to compare w
previously published results we neglect in this section
possibility of spatial variations ofBW and restrict ourselves to
the high-k limit.

The space of basis functions, which has to be used
expand all variables nearHFFLO(T), is now given by the
infinite set exp(ıqWrW) with a fixed value ofuqW u. Usually, one
assumes that the order parameterD fulfills some further sym-
metry ~or simplicity! requirements, which then leads to
strong decrease of the number of unknown coefficients. F
lowing this convention, we restrict ourselves to two- a
one-dimensional periodic structures. ForQ.0, the order pa-
rameter is not periodic but changes its phase by certain
tors under translations between equivalent lattice poi
These phase factors are proportional to the perpendicula
duction @cf. Eq. ~35!# and vanish forQ→0. Thus, the as-
sumption of a periodic order parameter forQ50 is reason-
able~though not stringent!. It implies, that all allowed wave
vectors in the expansion ofD must be vectors of a reciproca
lattice.

A further slight simplification stems from the behavior
the quasiclassical equations under the transformationrW⇒
2rW, kW⇒2kW , which implies that the order parameter must
either even or odd under a space inversionrW⇒2rW. Thus, the
order parameter may be written as an infinite sum,

D~rW !5(
m

DmeıQW mrW, ~70!

with coefficients defined by

Dm5uDu(
i 51

I

ci~dm,ni
6dm,2ni

!. ~71!

Here, a shorthand notationm is used for the two integers
characterizing a 2D reciprocal-lattice vectorQW m @cf. the Fou-
rier expansion at the beginning of Appendix B#. The vectors
8-14
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TWO-DIMENSIONAL SUPERCONDUCTOR IN A TILTED . . . PHYSICAL REVIEW B69, 134518 ~2004!
actually entering the expansion are distinguished by an in
i, their total number isI, and the two integers characterizin
QW ni

are denoted byni . The complex numbersci are the

expansion coefficients; one may setc151 since only the
relative weight is important. It turns out that the two sol
tions distinguished in Eq.~71! by a sign are essentiall
equivalent, and only one of them, say the even one, nee
considered. Thus, the order parameter becomes a linear
bination of cosine functions.

All reciprocal-lattice vectors used in Eq.~70! must be of
the same length. Denoting this length byq(T), the condition
uQW mu5q(T) takes the form

S l

ã
D 2

1

sin2ap

1S j

b̃
D 2

1

sin2ap

22
l j

ãb̃

cosap

sin2ap

51, ~72!

where the two integersl, j have been used here to represe
the double indexm. The dimensionless quantitiesã, b̃ are
defined byã5q(T)ap/2p, b̃5q(T)bp/2p, whereap , bp ,
ap denote the lattice parameters in the paramagnetic limi
I reciprocal-lattice vectors exist, the lattice parametersap ,
bp , ap , fulfill I relations like Eq.~72! with I pairs of inte-
gersl 1 , j 1 , . . . ,l I , j I .

Using Eq.~70! the free-energy expansion nearHFFLO(T),
including terms of fourth order in the small amplitudeuDu,
may be performed by means of methods similar to Sec.
The result for the purely paramagnetic free energyGp takes
the form

Gp5Ḡp1Gp
(2)1Gp

(4) , ~73!

whereḠp52m2H2, andGp
(2) andGp

(4) are contributions of
order uDu2 and uDu4, respectively.

The second-order term is given by

Gp
(2)5uDu2(

i 51

I

uci u2Ā, ~74!

with the i-independent coefficientĀ defined by

Ā52S ln t1tE
0

`

ds
12e2vDs

sinhst
@12cos~mB̄s!J0~sq!# D .

The conditionĀ50 determines the upper critical field;
may also be derived from Eq.~37!, performing the limitn
→`.

The fourth-order term is given by

Gp
(4)5uDu4F(

i 51

I

uci u4Āi1(
iÞk

I

uci u2ucku2B̄i ,k

1(
iÞk

I

@~ci* !2~ck!
21c.c.#C̄i ,kG , ~75!

Gp
(4) depends on the lattice structure via the coefficientsĀi ,

B̄i ,k , andC̄i ,k , which are defined by
13451
x

be
m-

t

If

I.

Āi5
t

2 (
l 50

ND E
0

2pdw

2p
@Pni ,ni ,ni

~ k̂!12Pni ,2ni ,2ni
~ k̂!#,

B̄i ,k5
t

2 (
l 50

ND E
0

2pdw

2p
2@Pni ,nk ,nk

~ k̂!1Pni ,2nk ,2nk
~ k̂!#,

C̄i ,k5
t

2 (
l 50

ND E
0

2pdw

2p
P2nk ,2ni ,nk

~ k̂!,

where

Pn1 ,n2 ,n3
~ k̂!5

1

Nn1

2 Nn2

2 Nn3

2
1

1

Nn1

1 Nn2

1 Nn3

1
,

Nn
65v l1ı@6mB̄1QW nk̂#.

In contrast to Eq.~54! no approximations have been used
deriving Eq.~75!.

Using Eq.~72! all possible 2D lattices and wave vecto
may be calculated numerically. The stable lattice
HFFLO(T) is then determined from the condition of lowe
Gp

(4) , taking also the LO state into consideration. It turns o
that it is energetically favorable atHFFLO(T) if all eigen-
functions in the order parameter expansion~70! have equal
weight, i.e.,ci51 for all i.

The result of the numerical search for the lowest fr
energy of periodic structures, characterized by maximal th
pairs of reciprocal wave vectors, is displayed in Fig. 8. T
highest curve at a given temperature corresponds to
stable lattice. For 0.22,t,0.56 the one-dimensional LO

FIG. 8. The fourth-order termGp
(4) ~minimized with respect to

uDu) divided by2Ā2 @see Eq.~74!# at HFFLO(T) for three different
periodic structures as a function of reduced temperaturet5T/Tc .
The part of the hexagonal curve which is lower than the LO stat
not visible, since the coefficientsci are determined automatically t

yield the highest possible solution for2Gp
(4)/Ā2.
8-15
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U. KLEIN PHYSICAL REVIEW B 69, 134518 ~2004!
state is realized. Fort,0.22 2D periodic structures appea
namely the square state for 0.05,t,0.22, and the hexagona
state fort,0.05~we use here the notation of Shimahara39 for
the 2D states!. Besides the fact that the triangular state39 is
absent, because it is neither even nor odd, the present re
agree quantitatively with those of Shimahara,39 obtained
within a different, but equivalent, formalism. Thus, mo
complicated 2D periodic structures than those found alre
in Ref. 39 do not exist in the considered range of tempe
tures; the assumption of equal weight for different wave v
tors @ci51 for all i in Eq. ~71!# has also been confirmed fo
these states.

The temperature regionbelow t50.01 has been investi
gated recently by Mora and Combescot.37 They found a se-
ries of states characterized by an even~total! number 2N
58,10, . . . of different wave vectors, all entering the orde
parameter expansion with equal weight, and withN increas-
ing with decreasing temperature. Merging these results w
the present ones, one obtains a very simple description o
of the FFLO states at the phase boundary, namely an infi
number of states, each one being a linear combination oN
51,2, . . . cosine functions of equal weight and withN dif-
ferent, but equally spaced, wave vectors.

Of course, it is also of interest to investigate the possi
equilibrium structures in the regionbelow the critical field.
As a first step in this direction, preliminary calculations
0.95HFFLO and 0.90HFFLO have been performed, using th
fourth-order expansion~73!, which is not valid near first-
order transition lines. The result is surprising and show
revival of the LO state in the low-temperature region.

In Fig. 9 the terms2Gp
(4)/Ā2, for the three states dis

played in Fig. 8, are plotted as a function of temperat
below the transition line, at 0.9HFFLO . The hexagonal state
~not visible! does not exist any more. The usual square s

FIG. 9. The term2Gp
(4)/Ā2 for the LO state and the square sta

at 0.90HFFLO(T), as a function of reduced temperatureT/Tc . The
hexagonal curve is lower than the LO state and is not displaye
this figure.
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~characterized byci51) is only stable in a very small tem
perature interval 0.061,t,0.075. The LO state is now
stable in a much larger interval 0.075,t,0.56, as compared
to Fig. 8. It is also stable in a small temperature region be
t50.061. But att'0.017 the factor2Gp

(4)/Ā2 for the LO
state has a singularity and jumps from1` to 2`. This
implies that the fourth-order term~for the LO state! changes
sign and that a first-order transition occurs somewhere in
vicinity of this singularity; higher-order terms in the fre
energy would be required for a quantitative treatment. B
tween this singularity att'0.017 and the lowest considere
temperaturet50.01 the stable state is again characterized
a square unit cell. However, the order parameter in this te
perature range, 0.01,t,0.017, is given by a linear combi
nation of plane-wave states@see Eqs.~70! and ~71!# with a
real coefficientc151 and animaginary coefficient c25ı.
The usual order-parameter structure for the square lat
which is characterized by two real weight factors of equ
magnitude (c15c251), is not equivalent to this case an
has higher free energy.

The results belowHFFLO(T) indicate that the 2D state
are only stable in a tiny interval near the phase boundary,
that the one-dimensional LO state reappears inside the su
conducting state. The square state—the one with the sma
N (N52)—has the largest stability region, as one would a
expect from the free-energy balance shown in Fig. 8.
shall come back to the question of the stability of the 2
states in Sec. VI, considering it from a different point
view. In this context it seems worth mentioning that terms
to eighth order with respect to the order parameter mus
taken into account, in order to describe the FFLO phase t
sition of a three-dimensionalsuperconductor in the frame
work of GL theory.40 The structure found below the singula
point of the LO state~see Fig. 9! raises the question, whethe
still other order-parameter structures, different from tho
found at the transition line, will appear neart50 deep in the
superconducting state. The present fourth-order expansio
not really appropriate to answer this question.

VI. TRANSITION TO THE PURELY PARAMAGNETIC
REGIME

The limit n→` of the series of paramagnetic vorte
states, discussed in Sec. IV, is now well known; for 0.22,t
,0.56 the one-dimensional LO state is realized, while
states of square or hexagonal type, predicted by Shimaha39

appear at lowert. The region of still smallert, below t
50.01, which has been studied by Mora and Combesco37

will not be considered here. The way this limit is a
proached, is, however, unknown. Thus, we address ourse
in this section to the question ofhow the one- or two-
dimensional unit cell of the FFLO state develops from t
unit cell of the paramagnetic vortex states if the Landau-le
index n tends to infinity.

This limiting process is very interesting, because a v
number of different states with different symmetry is pass
through in a small interval of tilt anglesu. The unit cell of
the finite-n states is subject to the condition that it carri
exactly a single quantum of flux of the perpendicular fie

in
8-16
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B' . Since B'→0 as n→`, at least one of the unit-cel
vectors must approach infinite length—i.e., the dimension
the macroscopic sample—in this limit. Thus, then→` lim-
iting process describes a transition from a microscopic~or
mesoscopic! length scale to a macroscopic length scale.

The transition to the FFLO state has previously been
vestigated by Shimahara and Rainer4 in the linear regime.
They found the important relation

q5 lim
n→`

A4eB'n/\c, ~76!

whereq is the absolute value of the FFLO wave vector~here
we changed to ordinary units!. Equation~76! has been de-
rived by identifying the asymptotic form of the Hermit
polynomials21 with the form of the LO order parameter.
implies that a relation

B''
b

n
, b5

\cq2

4e
~77!

holds at largen. The validity of Eq. ~76! may also be
checked numerically by comparing the numbersb and q,
which are both obtained from the upper critical-field equ
tion.

Relation~77! may be derived from basic physical prope
ties of the present system. The energy spectrum for pla
Cooper pairs in a perpendicular magnetic fieldB' is the
same as for electrons and is given by

En5\vS n1
1

2D , v5
eB'

mc
. ~78!

Considering now the energy spectrum of Cooper pairs
B'50, one has to distinguish two cases. First, in the co
mon situation without a large spin pair-breaking field,
Cooper pairs occupy the lowest possible energyE50, which
is the kinetic energyp2/4m taken at the Cooper pair momen
tum p50. Second, if a large spin pair-breaking field paral
to the conducting plane exists, the energy value to be oc
pied by the Cooper pairs, shifts to a finite valuep2/4m, since
the Cooper pairs acquire a finite momentump due to the
Fermi-level shift discussed in Sec. I. Thus, in the latter ca
which is of interest here, the Landau levels~78! must obey
the condition

En5
\e

mc
B'S n1

1

2D →
B'→0

p2

4m
~79!

for B'→0. If p is replaced by the wave numberq5p/\, Eq.
~77! becomes equivalent to Eq.~79!. The limiting behavior
expressed by Eq.~76! or Eq. ~77! is therefore a direct con
sequence of Landau’s result for the energy eigenvalues
charged particle in a magnetic field.

Combining Eq.~77! with analytical results atT50, the
limiting behavior of the unit cell asn→` may be under-
stood. Expressing the FFLO wave number in terms of
BCS coherence lengthj0 by means of the relationq
5(2/p)j0

21, and using the flux quantization condition in th
form
13451
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F (n)B'
(n)5F0 ~80!

@with F05hc/2e andB' defined by Eq.~77!# the areaF (n)

of the unit cell for pairing in Landau leveln is approximately
given by

F (n)8p3j0
2n. ~81!

Thus, the unit-cell area diverges with the first power ofn.
The behavior of the magnetic lengthL, which is defined by
the relationB'5(F0 /p)L22, is given byL8pj0n1/2.

Equation~81! is not sufficient to determine the shape
the unit cell in the limit of largen. However, a simple pos
sibility to produce a one-dimensional periodic LO structu
for n→` is a divergence of one of the unit-cell lengths, s
b, of the formb'n, while the second lengtha remains con-
stant, i.e.,a'n0. The numerical results for the states referr
to in Sec. IV as ‘‘FFLO-like,’’ or quasi-one-dimensiona
states show a behavior

a

L
8

x

An
, ~82!

which is in agreement with this possibility. The numeric
value of the constantx is close to 2A2, which corresponds
to a52pj0 and to the lattice constantp/q of the LO state.
Thus, the LO state may be identified as the limiting case
the quasi-one-dimensional states of Sec. IV for largen; the
distance of the FFLO lines is essentially independent on,
while the periodicity lengthb sina in the direction perpen-
dicular to the lines tends to infinity~like b sina8np/q) for
n→`. The one-dimensional FFLO unit cell is asubstructure
that develops inside the diverging unit cell of the param
netic vortex states.

To complete the description of the transition to the L
state, the above lattice structure may be used in Eq.~16! to
perform the limit n→` of the order-parameter expansio
Dn . We consider a 2D sample offinite areaFp , which con-
tainsNaNb ‘‘small’’ unit cells of sizeFc5ab sina. The total
area is given byFp5LaLbsina with La5Naa and Lb
5Nbb. For differentn the size and shape ofFc may change
while Fp remains, of course, unchanged. Adopting the abo
model for the behavior of the unit cell as a function ofn, we
have n-independent numbersNa and a, while b5b(n) in-
creases linearly withn andNb5Nb

(n) decreases consequent
according to

Nb
(n)5

Lb

b(n)
5

2Lbsina

p2j0

1

n
. ~83!

Thus, a largest possible Landau numbern5nc exists, which
corresponds tob(nc)5Lb ~or Nb

(nc)
51) and is given by

nc5
2Lbsina

p2j0

. ~84!

This cutoff nc agrees exactly, in the present model, with t
number ofn51 unit cells fitting into a lengthLb . As an
additional consequence of the finite area of the sample, o
8-17
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a finite number of terms occur in the sum overm in Eq. ~16!.
This number is fixed by the condition that the ‘‘center po
tions’’ ym5mbsina5mpL2/a lie inside the sample.22 This
leads to the condition

2
aLbsina

2L2p
<m,

aLbsina

2L2p
, ~85!

which is in the limitn5nc only fulfilled for m50. Using the
asymptotic expansion21 of the Laguerre polynomialLn , for
large and evenn52 j , and taking into account only the term
with m50 in the sum of Eq.~16!, the order parameter take
the form

D2 j'AC2 jD jcosSA8 j

L
yD . ~86!

The amplitudeA @see Eq.~15!# is, in the present system o
~ordinary! units, given by

A5S 2B'

F0La
2D 1/4

.

The coefficientC2 j is, in the limit n→nc , simply given by
C2 j5(Fp)1/2 @see Eq.~17!#, and the coefficientD j takes the
form

D j5
2 j~ j 21!!

~21! jA2p~2 j 21!!
.

While these factors,A, D j , C2 j diverge for n→`, if the
sample dimensions approach infinity, all singularities can
if n is replaced by the cutoffnc , and one obtains the ex
pected result,Dnc

5cosqy, for the one-dimensional periodi
order-parameter structure in the purely paramagnetic lim

The transition to thetwo-dimensional~square and hexago
nal! periodic states found by Shimahara39 is more involved
than the transition to the LO state. Let us restrict to
square state, which is the simplest of all 2D states, and is
most stable from a thermodynamic point of view.

For the square state, which is a linear combination of t
LO states with orthogonal wave vectors, one would expe
divergent behavior ofbothunit-cell basis vectors of the typ
a'n1/2, a5b'n1/2. Consequently, choosing a square u
cell in the ~exact! order-parameter expansion, Eq.~18!, one
would expect to find a substructure which becomes incre
ingly similar, with increasingn, to the structure of Shimaha
ra’s square state~linelike order-parameter zeros, in the for
of two sets of orthogonal straight lines and circles!. Numeri-
cal calculations, performed in the rangen,40 are, however,
not in agreement with this expectation.

On the other hand, the mathematical limit of the ord
parameter~18! yields, in fact, a 2D state with the periodicit
of the FFLO wave vector and square symmetry, as show
Appendix E for a simplified model. The explanation for th
apparent contradiction is provided by the result@relation~E8!
of Appendix E# that the quantum numbern for a square state
must obey the conditionn5pN2, whereN is an integer. This
is a general result, which has been derived using essent
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only the behaviora'n1/2 for largen. The latter is a conse
quence of the flux quantization condition and the shape
the unit cell.

Of course, the relationn5pN2 cannot be fulfilled exactly
for finite numbersn, N ~for a sample of finite extension!
sincep is an irrational number. The proper meaning of th
relation is that the sequence of states with quantum num
n5 int(pN2), N51,2, . . . represents a sequence of appro
mations~of increased quality! to the square state. Thus, th
square state is the limit of a sequence defined on a verysmall
subset of the set of integer numbers.

This explains why no systematic development of t
square state with increasingn has been observed in the nu
merical calculations. The largest quantum number in the c
sidered range (n,40), which fulfills the above condition is
n528 ~corresponding toN53). The order-parameter modu
lus for n528 is shown in Fig. 10. It reveals, in fact, a certa
similarity to the structure of the square state~at least more
similarity than any other state in the considered range!. The
arrangement of isolated order parameter zeros in Fig.
shows a tendency towards the formation of linelike zer
Clearly, an extremely highn and an extremely sharp defin
tion of the tilt angle would be required to produce a rea
good approximation to the square state. The final conclus
of the present analysis for the square state, that extreme
quirements with regard to the definition of the tilt angle mu
be fulfilled in order to produce it, will probably hold for al
other 2D states as well.

The above analysis of the formation of the FFLO state~s!
as limit~s! of the paramagnetic vortex states forn→` has
been based on relation~79!. In addition, relation~79! allows
for an intuitive understanding of the unusual phenomenon
Cooper pairing at highern, encountered in the present co
figuration. The choicen50 for the ordinary vortex state—in
the absence of paramagnetic pair breaking—correspond
the lowest energy the system can achieve forp50. For suf-

FIG. 10. ~Color online! Contour plot of the square of the orde
parameter modulus for Landau quantum numbern528 and a unit
cell with parametersa5b, a5p/2.
8-18
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ficient largeH i and decreasingH' , the Landau-level spac
ing becomes smaller than the kinetic energy and the sys
has to perform a quantum jump from then50 to then51
pairing state, in order to fulfill the requirement of given e
ergy as close as possible within the available range of
crete states@insertingn51 in Eq. ~79! determines the angle
u1 as given by Eq.~1!#. For the same reason, a series
successive transitions to superconducting states of increa
n takes place with further decreasingH' , until the FFLO
state is finally reached atB'50. The FFLO state forn
→` may obviously be considered as the continuum limit,
quasiclassical limit, of this series of Cooper-pair stat
which starts with the ordinary vortex state atn50.

VII. CONCLUSION

The paramagnetic vortex states studied here, appear
small interval of tilt angles close to the parallel orientation
common feature of all of these states is a finite momentum
the superconducting pair wave function, which is due to
large parallel component of the applied magnetic field.
these new superconducting states the Cooper pairs oc
quantized Landau levels with nonzero quantum numbern.
The numbern increases with decreasing tilt angle and ten
to infinity for the parallel orientation, where the FFLO sta
is realized. The unusual occupation of higher Landau lev
may be understood in terms of the finite momentum of
Cooper pairs.

The end points of the infinite series of Cooper-pair wa
states occupying differentn are the ordinary vortex state a
n50 and the FFLO state atn5`. The dominant pair-
breaking mechanism in the vortex state is the orbital effe
while Cooper pairs can only by broken by means of the s
effect in the FFLO state. The equilibrium structure of t
new states, which occupy the levels 0,n,`, is very differ-
ent from the structure of the FFLO state~s!, despite the fact
that the difference in tilt angles and phase boundaries ma
small. Generally speaking, the equilibrium structures of
new states reflect the presence ofboth pair-breaking mecha
nisms; the fact that the local magnetic response may be
magnetic or paramagnetic depending on the position in
unit cell may be understood in terms of this competition
second unusual property, also closely related to the simu
neous presence of both pair-breaking mechanisms, is the
existence of vortices and antivortices in a single unit cell

The FFLO state has been predicted in 1964 and a la
number of experimental and theoretical works dealing w
this effect have been published since then. A definite exp
mental verification has not been achieved by now. Howe
recent experiments in the organic superconduc
k-(BEDT-TTF)2Cu(NCS)2 and other layered materials41–44

revealed remarkable agreement46,45,47with theory, both with
regard to the angular and the temperature dependence o
upper critical field. In these phase boundary experime
identification of the FFLO precursor states, studied in
present paper, seems possible if the tilt angle is defined
high precision. Very recently, by means of heat capacity
magnetization measurements, two transition lines have b
found in the heavy-fermion superconductor CeCoIn5 which
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may be interpreted as upper and lower critical fields of
FFLO state.48 On top of that, varying the direction of th
applied field, a series of phase transitions has b
observed,48 which might be related to the paramagnetic vo
tex states studied in the present paper. Of course, the he
fermion material CeCoIn5 differs considerably from the
simple superconducting material, with isotropic gap and
lindrical Fermi surface, studied here. However, some gen
features of the present theory, such as coexisting vortices
antivortices or coexisting linelike and pointlike orde
parameter zeros, can be expected to remain valid. To ob
the most direct evidence for all of these unconventio
states, including the FFLO limit, other experiments, such
measurements of the local density of states by means
scanning tunneling microscope would be useful.
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APPENDIX A: SYSTEM OF UNITS AND NOTATION

In this appendix we use primes to distinguish Eilenbe
er’s dimensionless quantities, which will be used in Se
III–V, from ordinary ones. The primes will be omitted i
Secs. III–V.

Temperature:t5T/Tc .
Length:rW85rW/R0 , R05\vF/2pkBTc50.882j0 , j0 is the
BCS coherence length.
Fermi velocity:v̂F5vW F /vF .
Wave number:k85kR0.
Matsubara frequencies:v l85v l /pkBTc5(2l 11)t.
Order parameter:D85D/pkBTc .
Magnetic field:HW 85HW /H0, whereH05\c/2eR0

2.

Vector potential:AW 85AW /A0, whereA05\c/2eR0.
Magnetic moment:m85m/m05pkBTc /mvF

2 , wherem0

5pkBTc /H0. Note that the dimensionless magne
momentm8 agrees with the quasiclassical parameter.
Gibbs free energy:G85G/@(pkBTc)

2NFR0
3#.

Eilenberger’s parameterk̃ is related to the GL paramete
k0 of a clean superconductor according to the relationk̃
5@7/18z(3))1/2k050.6837k0.
The symbolk̂ denotes a dimensionless, 2D unit vect

The Fermi-surface average of ak̂-dependent quantitya( k̂) is
denoted byā. For our cylindrical Fermi surface this averag
is simply an integral from 0 to 2p over the azimuth anglew.

ā5
1

4p R d2k̂ a~ k̂!5
1

2pE0

2p

dwa@ k̂~w!#.

Finally, the symbol̂ a&, defined by

^a&5
1

Fc
E

unit cell
d2r a~rW !,
8-19
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U. KLEIN PHYSICAL REVIEW B 69, 134518 ~2004!
denotes a spatial average of a quantitya(rW) over a unit cell
of areaFc .

APPENDIX B: GAP CORRELATION FUNCTION

It is convenient to express the gap correlation functi
defined by Eq.~35! in terms of center-of-mass coordinat
RW 5(rW11rW2)/2, rW5rW12rW2, using the notationVCM(RW ,rW)
5V(rW1 ,rW2). The function VCM(RW ,rW) is invariant under
center-of-mass translationsRW ⇒RW 1 laW 1 jbW and may conse-
quently be expanded in a Fourier series, using recipro
lattice vectorsQW l , j5 lQW 11 jQW 2 , l , j 50,61,62, . . . , with
basis vectors

QW 15
2p

a S 1

2
1

tana
D ,QW 25

2p

b S 0

1

sina
D .

The Fourier coefficients ofVCM(RW ,rW) are denoted by
Vl , j (rW). The Fourier transform ofVl , j (rW) with respect torW is
denoted byVl , j

(p)(pW ).

Using the behavior of the gapD(rW) under lattice transla-
tions rW⇒rW1rW l , j , whererW l , j5 laW 1 jbW , the important relation

V2 l , j~rW !5eıp l [ j 1(b/a)cosa]V0,0~rW1rW j ,l ! ~B1!

may be proven. This relation, first reported by Delrieu49

shows that all Fourier coefficients are known ifV0,0 is
known. A similar relation holds for the Fourier transfor
Vl , j

(p) :

Vl , j
(p)~pW !5eıpW rW j ,2 l2ıp l [ j 1(b/a)cosa]V0,0

(p)~pW !.

The functionsVl , j and Vl , j
(p) , which are most useful for the

evaluation of the free energy, may be calculated by proce
ing along the chain

VCM~RW ,rW !⇒V0,0~rW !⇒V0,0
(p)~pW !⇒Vl , j

(p)~pW !⇒Vl , j~rW !,

where an arrow denotes either calculation of a Fourier co
ficient or of a Fourier transform, or application of Delrieu
relation.

Using the order-parameter expansion~16! and performing
the necessary manipulations, the result forVl , j

(p) is given by

Vl , j
(p)~pW !5

4p

B̄'

~21!n1 l j ^uDnu2&e2pW 2/B̄'LnS 2

B̄'

pW 2D
3e2ıpn(b/a)cosaeı(FC/2p)(pxQl , j ,y2pyQl , j ,x),

~B2!

whereQl , j ,x , Ql , j ,y are thex andy components, respectively
of the reciprocal-lattice vectorQW l , j . The final result forVl , j
is given by
13451
,
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Vl , j~rW !5~21! l j ^uDnu2&e2ıpn(b/a)cosae2(B̄'/4)Gl , j
2

3LnS B̄'

2
Gl , j

2 D , ~B3!

B̄'

2
Gl , j

2 5
p

FC
rW21xQl , j ,y2yQl , j ,x1xl , j ,

xl , j5
p

sina F S b

aD l 21S a

bD j 222l j cosa G . ~B4!

The usefulness of the gap correlation function for pa
wave states with arbitraryn is essentially based on the tran
lational invariance of the observable quantitiesucu andB.

APPENDIX C: THE GINZBURG-LANDAU LIMIT

Let us first consider the upper critical fieldHc2
GL , which is

determined byḠ(2)50, for m50, n50 (H i50), and t
→1. Solving this equation in this limit, one finds, usin
ordinary units,

Hc2
GL51.222

F0

2pj0
2 ~12t !. ~C1!

Equation~C1! differs from the usual GL result by a factor o
3/2. This discrepancy is due to our use of a cylindrical Fer
surface, instead of a spherical one, and can be eliminate
replacing the GL parameterk by 3kGL/2 ~the quantities used
in Eilenberger units are derived assuming a spherical Fe
surface!.

The magnetization relation~66! takes the following form
for H i50, m50, t→1:

B̄2H54pM5
H2Hc2

2k̃2/A'21
. ~C2!

The coefficientA' in Eq. ~C2! is given by Eq.~68!. The
fourth-order free-energy contribution~54! takes the form

Ḡ(4)5
S(1)

4 F(
l ,m

f 1
2~xl ,m!2

S(1)

4k̃2 ( 8
l ,m

f 1
2~xl ,m!G , ~C3!

whereS(1)57z(3)/8. The first sum in Eq.~C3! turns out to
agree with Abrikosov’s geometrical factorbA ,

(
l ,m

f 1
2~xl ,m!5bA , ~C4!

as discussed in more detail in KRS.8 Performing again the
above replacement ofk one arrives at Abrikosov’s well-
known result

4p
]M

]H U
Hc2

5
1

~2kGL
2 21!bA

. ~C5!

Equation~C4! remains also valid forn.0. For the nonmag-
netic terms in Eq.~54!, the Matsubara sumSl ,m

(1) may be
8-20
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considered as a low-temperature correction to the GL t
~C4!. The GL limit of the local magnetic fieldB1' @see Eq.
~63!# has also been calculated and has been found to obe
correct GL relation32 between magnetic field and square
order parameter. Here, the low-temperature corrections
contained in the Matsubara sumSl ,m

(2) .

APPENDIX D: THE LIMIT OF THE ORDINARY VORTEX
LATTICE

It is of interest to investigate the limit of Eq.~54! corre-
sponding to the ordinary vortex lattice. We consider a sit
tion without paramagnetic pair breaking, i.e., setm50, Q
5p/2, and ask for the equilibrium structure of the vort
lattice and the critical value ofk separating type-I from
type-II superconductivity. To compare with the usual no
tion, we use here the same scalingk⇒2k/3 of the GL pa-
rameter as in Appendix C. Figure 11 shows the free ene
G(4) as a function ofa/L, a for k51.46 (k̃51.5) at t
50.5. The flat minimum ofG(4) at a/L51.905, a560 in-
dicates that the stable configuration is, as expected, a t
gular vortex lattice. No other local minimum of the free e
ergy exists. With decreasingk this minimum changes
quickly into a maximum; belowk81.36 the free energy ha
no minimum at all, which means that no spatially varyi
superconducting state exists. The critical value ofk81.36
separating type-I from type-II behavior att50.5 agrees
fairly well with the result ofk81.25 obtained by Kramer50

for the phase boundary between type-II and type-II/I beh
ior. For lower temperature the agreement is worse; at
50.2 the present theory givesk52.5 while Kramer’s
theory50 gives k51.7. Recall that the error induced by th

FIG. 11. Contour plot of the free energyG(4) as a function of

a/L and a without paramagnetic pair breaking. Parameters ark̃
51.5, t50.5, m50, and Q5p/2. The minimal valueG(4)

50.5067 is ata/L51.905,a560.
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asymptotic approximation of Sec. III D increases with d
creasing temperature.

APPENDIX E: THE SQUARE LIMIT FOR A MODEL
ORDER PARAMETER

The square of the order parameter modulus, Eq.~18!, for
a square lattice may be written in the form

ucnu2~x,y,a!5(
l , j

Hl , j ,

Hl , j5~21! l j e2(p/2)(l 21 j 2)Ln„p~ l 21 j 2!…eı(2p/a)( lx1 jy).
~E1!

We are interested in the limiting behavior of Eq.~E1! for n
→`, a'n1/2→`. In this limit, the quantity 2p/a tends to
zero and the double sum may be approximated by a do
integral. An appropriate tool to perform such a calculati
for infinite sums in a systematic way is Poisson’s summat
formula. Using a two-dimensional version, which is deriv
in exactly the same way as for single sums, Eq.~E1! may be
written in the form

ucnu2~x,y,a!5S a

2p D 2

(
mx

(
my

E dkx8E dky8e
2ı(mxkx81myky8)

3h~kx8 ,x,ky8 ,y,a!, ~E2!

whereh(kx ,x,ky ,y,a) is a function representingHl , j . The
problem here is the factor (21)l j @see Eq.~E1!#, which must
be represented by an infinite series of step functions.51

Since we are more interested in the questionif a limit with
the correct periodicity and symmetry exists, than in the
tailed functional form of this limit, we represent the fact
(21)l j approximately by the real part of expıa2kxky/4p, i.e.,
we use the function

h~kx ,x,ky ,y,a!5Hl , j u l 5(a/2p)kx , j 5(a/2p)ky
~E3!

to representHl , j . Using this model, the absolute value of th
rhs of Eq. ~E2! will be denoted byS(x,y,a) instead of
ucnu2(x,y,a). It takes the form

S~x,y,a!5S a

2p D 2U(
mx

(
my

E dkx8E dky8

3h~kx8 ,x2mxa,ky8 ,y2mya,a!U, ~E4!

whereh(kx ,x,ky ,y,a) is given by

h~kx ,x,ky ,y,a!5cosS a2

4p
kxkyDe2(a2/8p)(ky

2
1ky

2)

3LnS a2

4p
~ky

21ky
2! Deı(kxx1kyy).

In order to perform the integrations, the relation
8-21
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Ln~x1y!5
1

~21!n22nn!
(

m50

n S n

mDH2m~Ax!H2n22m~Ay!.

may be used to rewrite the Laguerre polynomial in the in
grand as a sum of products depending onkx and ky sepa-
rately. Then, the integration overkx may be performed21 and,
after a simple shift of the integration variable, a seco
relation52

~22!nHnS x1y

A2
D HnS x2y

A2
D

5 (
m50

n

~21!mS n

mDH2m~Ax!H2n22m~Ay!

may be used to calculate the sum overm. Performing the
integration overkx one obtains the final result

S~x,y,a!5U ın

A22nn!
(
mx

(
my

e2(p/a2) x̃2
HnSA2p

a
x̃D

3e2(p/a2) ỹ2
HnSA2p

a
ỹD ~e2ı(2p/a2) x̃ỹ

1~21!neı(2p/a2) x̃ỹ!U , ~E5!

where the abbreviationsx̃5x2mxa, ỹ5y2mya have been
used.

We are interested in the limiting value of Eq.~E5! for n
→`. The asymptotic behavior of the Hermite polynomials21

for largen implies
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