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Instability of vortex array and transitions to turbulence in rotating helium i
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We consider superfluid helium inside a container which rotates at constant angular velocity and investigate
numerically the stability of the array of quantized vortices in the presence of an imposed axial counterflow.
This problem was studied experimentally by Swanebal., who reported evidence of instabilities at increas-
ing axial flow but were not able to explain their nature. We find that Kelvin waves on individual vortices
become unstable and grow in amplitude, until the amplitude of the waves becomes large enough that vortex
reconnections take place and the vortex array is destabilized. We find that the eventual nonlinear saturation of
the instability consists of a turbulent tangle of quantized vortices which is strongly polarized. The computed
results compare well with the experiments. We suggest a theoretical explanation for the second instability
which was observed at higher values of the axial flow and conclude by making an analogy between the
alignment of vortices in the presence of rotation and the alignment of dipole moments in the presence of an
applied magnetic field.
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I. INTRODUCTION ing frame. In recent years there has been a growing interest
in the vortex dynamics under rotation. For example, Finne
The work described in this article is concerned with theet al. used nuclear magnetic resonance to studyRiphase
stability of a superfluid vortex array. It is well knowfthat  of rotating superfluid®He and observed a sharp velocity-
if helium Il is rotated at constant angular velocify, an  independent transition at a critical temperature between two
array of superfluid vortex lines is created. The vortices areegimes'®> Regular behavior occurred at high temperatures,
aligned along the axis of rotation and form an array withwhile turbulence occurred at low temperatures. They also

areal density given by found that the experimental results were consistent with the
numerical vortex dynamics simulation that was carried out

2Q) by the method described in this paper. Although the formu-

LR:T’ 1) lation of the vortex dynamics under rotation was presented

briefly in our previous papéf.it is necessary to describe it in

wherexk=h/m=9.97x 104 cn¥/s is the quantum of circu- detail in this paper.
lation, h is Plank’s constant, anoch the mass of one helium The paper is organized in the following way. In Sec. Il we
atom. Equatior(1) is valid provided thaf) exceeds a small describe the rotating counterflow configuration, which is rel-
critical value® Rotation frequencies of the order of 1 Hz are evant to both theory and experiment. In Sec. lll we summa-
easily achieved in a laboratory, and correspond to real derrize experimental results obtained by Swanson, Barenghi,
sities of the order of cm 2. and Donnellyt’ They discovered that the DG mechanism can

It is also well known that a superfluid vortex line becomesdestabilize the superfluid vortex array and revealed the exis-
unstable in the presence of normal fluid in the direction partence of two different superfluid turbulent states which ap-
allel to the axis of the vortex. This instability, hereafter re- pear if the driving axial flow exceeds the critical velocities
ferred to as the Donnelly-Glabersd®G) instability, was V¢, and V,, respectively. Until now, the actual physical
first observed experimentally by Cheegal® and then ex- nature of these two states has been a mystery, and it is the
plained by Glabersort al® Physically, the DG instability ~aim of our work to shed light into this problem. In Sec. IV
takes the form of Kelvin wave@elical displacements of the we set up the formulation of vortex dynamics in the rotating
vortex core which grow exponentially with time. frame which generalizes the previous approach of Schivarz

In this paper we use an imposed axial flow to trigger theand which we use in our numerical calculations. Sec. V is
DG instability and study the transition from order to disorderdevoted to the first critical velocity/;, which agrees with
in an array of quantized vortex lines. It is useful to remarkthe values predicted by the DG instability. What happens
here that since the growth of Kelvin waves takes place at thbeyondV.; cannot be predicted by linear stability theory and
expense of normal fluid's energy, understanding the DG inmust be determined by direct nonlinear computation, which
stability is also relevafitto the balance of energy between is what we do in Sec. VI. In Sec. VII we analyze the numeri-
normal fluid and superfluid in helium Il turbulence, a prob- cal results and argue that this regifg;<V,s<V,, is a
lem which is attracting current experimerdtd and state of polarized turbulence. In Sec. VIl we speculate that
theoretical'~* attention. the second critical velocity/,, marks the onset of an unpo-

Another important meaning of this paper is to develop thdarized turbulent state. In Sec. IX we show an analogy be-
formulation of three-dimensional vortex dynamics in a rotat-tween counterflow turbulence in the presence of an applied
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heat current The intensity of the turbulence is measured by
the vortex line densitylength of vortex line per unit volume
g 2 which is experimentally determined by monitoring the extra

attenuation of second sound. One finds thatMge>V, the
vortex line density has the form

LH:'}’aVﬁs’ 3

whereyy, is a temperature-dependent coeffictiémindV, is
a small critical velocity which depends on the temperature
and on the size and geometry of the chartfel.

Let us consider now the case in which the heat flux is
applied in the rotating frame(Y#0). We have now two
| effects which compete with each other: rotation, which fa-
' vors the creation of an ordered array of vortices aligned
! along the direction of the axis of rotation, and counterflow,
! V which favors the creation of a disordered tangle. Swanson
v n et all” were the first to address the problem of whether the

. vortex array is stable or not at given values(fandV,g,

Q and, if the array is unstable, of whether the vortex line den-
sity L is the sum of Eqs(1) and(3) or not. Their experimen-
i VA VA VA VAVA VA NS tal results are described in the following section.

It is important to remark that, in principle, one can also
study the stability of a vortex array in the presence of a mass
flow rather than of a heat current. Similarly, one can study

rotation and a system of spins in contact with a heat bath irtlhe effects of rotation upon the turbulence of helium II cre-

the presence of an applied magnetic field. Finally Sec. Xated by towing a grid or rotating a propeller_rather than upon
. counterflow turbulence. The reason for which we have cho-
draws the conclusions.

sen to restrict our investigation to the case of a heat current is
twofold: first, the experimental data of Swanseinal’ are
Il. ROTATING COUNTERFLOW available; second, at least at small heat curréniise turbu-

In order to study the stability of the rotating superfluid lent superfluid tangle is homogeneous and almost i_sotropic
vortex array, we consider the configuration which is schend we do not have to worry about large-scale motion and
matically shown in Fig. 1. A channel, which is closed at one€ddies of the normal fluid.
end and open to the helium bath at the other end, is placed on
a table which can be rotated at an assigned angular velocity IIl. THE EXPERIMENT
(). At the closed end of the channel a resistor dissipates a )

The rotating counterflow apparatus of Swanssiral

known heat fluxQ. . ;
First let us consider what happens in the absence of rotzf—onS'Sted of a 40 cm long vertical channel ok 1 cnt

tion (1=0). Since only the normal fluid carries entropy, squ-atre cd@5§ siczon.kAt the Elostefcljéasl Zh,O\(;Vn IndFlgl. )ta
o . resistor dissipated a known hea and induced relative
tshee'l%g g r;l—tijvn’ v;/herfT Isthtgetoa,:gls ggurfzittergfpﬁerﬁgfﬁhe motion V, ¢ of the two fluid components. The vortex line
tr|1oe < erfluidp)g:anspii ‘;‘;]ﬂ the normal-%lluid densit p\/SVe densityL was measured by pairs of second sound transducers
P Y, anphn : Y- located along the channel. The entire apparatus was set up on
call V, andVg, respectively, the normal-fluid and the super-

fluid velocity fields in the direction along the channel, aver-2 rotating cryostat, so that it was possible to create vortex
y 9 ' lines by either rotation or counterflow, or by any combination

aged over the channel’s cross section. The total mass ﬂl%(f them. The vortex line density was calculated from a mea-
u

?ShVSijn\l/tp IS 2€T0 k;et;lause olne .fnd (if\t/he_t\:/hannﬁl_ 'i glose rement of the attenuation of second sound resonances and
e resulting counterflow velocity,s=V,—Vs, which is its calibration against the known density in rotatfén.

induced along the channel is therefore proportional to the The experiment was performed &t 1.65 K. In the pres-

applied heat flux: ] ence of both rotation and counterflow three distinct flow
Q states were observed, as shown in Figs. 2 and 3, respectively,
Vis= pST (2) " at high and low rotations. The three states are separated by
two critical counterflow velocitie¥/; andV, (see Fig. 2
It is known from experiment$®® and numerical The results of the experiment can be summarized at increas-
simulationg® that, if Q (henceV, ) exceeds a critical value, ing values ofV,¢ as follows.
a turbulent tangle of quantized vortex lines is created. The (1) State \(<V,s<V, 1. In the first region of Fig. 2 at the
tangle is homogeneous and isotroftieglecting a small de- left of V., the vortex line density is independent of the small
gree of anisotropy induced by the direction of the imposedralues ofV, s involved and agrees with Eql). This region

FIG. 1. Schematic rotating counterflow apparatus.

|l7
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* 0.2Hz Rotation (Hz)
2000 < FIG. 4. Excess vortex line density with rotatibn- L, vs rota-
. X * 0Hz tion at values oW, up to the highest values, as observed by Swan-
sonet al. The number near each curve is the valu&/pfin the unit
X of cm?/s. The line labeled 0 is what one would expect if heat and

0 .
0 0.05 0.1 0.15 02 rotation-induced vortices were independent.
Vns2 (cm?/s%)
axial flow is so strong that Kelvin waves of infinitesimal
FIG. 2. Vortex line density. observed by Swansagt al. in the amplitude become unstable and grow.
presence of a counterflow heat currdfit at various rotation rates (3) State \(;<V,<<V., Because of the lack of direct
atT=185kK. The. solid I'n.e.s represent Swansnral.s_flts o the g0 visualization in helium I, the nature of the flow past the
two observed critical velocitie¥.; andV.,. The experimental un- instability (V,>V,,) was a mystery to Swansa al 17
certainties are about 1/3 of the symbol size. This data set shows tHe y s~ vl y ) y ’ S
(4) Transition V,,s=V,,. The existence of a second criti-

highest rotation rates to put in evidence the cuvgsandV,. ! o
cal velocity V., was unexpected. The nature of the transition

clearly corresponds to an ordered vortex array, and the couft Vns= Vez Was not clear to Swanset al. _
terflow currentV, is not strong enough to destabilize it. (5 State Vis>Vco What kind of flow exists in the third

Note that if2#0 thenV,=0. region (Vs> Vo) Was a mystery too.
(2) Transition at \f,e=V,;. Swansoret al” noticed that (6) Ml_ssmg vortex line densitySwansoret al. found that
the values of the first critical velocity,; are consistent with ~the rotation added fewer than the expedtee- 2€)/ « vortex

the DG instability. This means that &,.=V.;=Vpg the lines to those made by the counterflow currert,
=y4V2,. This means that the observed vortex line density

in the presence of heat flow and rotation was less than the

2500

x OHz expected valué g+ Ly . The effect is particularly evident at
[| o .0073 Hz g high values oV, as shown in Fig. 4, where the excess line
2000 | o 05Hz o 1 density with rotationL — L, is shown versug) at different
I s 0 values ofV s up to the highest value which was applied.
& 1500 g ]
E [ X
L i o § IV. VORTEX DYNAMICS IN A ROTATING FRAME
=~ 1000 | o 9 1 _ _
I o © ° The vortex filament model is very useful to study the
Loo © ¢ o motion of superfluid*He because the vortex core radiag
500 - o ° ] ~10 8 cm is microscopic, hence much smaller than any
0° x flow scales of interest. Moreover, unlike what happens in
0 ot x X, , , classical fluid dynamics, the circulationx=9.97
0 0.05 0.1 0.15 02 X 10 * cné/s is fixed by quantum constraint, which simpli-

fies the model even further.
Helmholtz's theorem for a perfect fluid states that a vortex

FIG. 3. Vortex line density. observed by Swansoet al. This ~ MOVeS with self-induced velocity prod_uced by the shape of
data set shows the smallest counterflow velocities at the smalleghe vortex itself. Therefore the velocity of a vortex fila-

rotation rates to show that the critical velocity far=0 disappears ment at the poins in the absence of mutual friction is gov-
in the presence of rotation. erned by the Biot-Savart law and can be express&t as

V_2 (em’s?)
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ok 20400k (s Xds . 1 s XR , ,
50—4773 xXg'In oa yp EErE . S“’t_477f [3 R [(2-8)(r-R)—(Q-R)(r-s')]
' X Q
. : . + [IR?(r-s")=3(r-R) (R-8')]

Here the vortex filament is represented by the parametric IR|®
equation s=s(¢,t). The first term means the localized-
induction velocity, where the symbols, and|_ are the s'Xr , , QXr
lengths of the two line elements which are adjacent to a B EE [IRI*(2-s)=3(Q-R)(R-s")]~ EE
given point after discretization of the filament, and the prime
denotes differentiation of with respect to the arclength s - (QXr)
The second term represents the nonlocal field by carrying out EEr— ' dr, (7)
the integral along the rest of the filament on whighrefers R

to a point. o _ _ . with R=r—s. The second effect is the superflow induced by
If the temperature is finite, the normal-fluid fraction is the rotating vessel. For a perfect fluid we know the analytical

nonzero and its effects must be taken into account. The nokp|ytion of the velocity inside a cube of sigerotating with
mal fluid induces a mutual friction force which drags the angular velocity)= 725

vortex core of a superfluid vortex filament for which the
velocity of pointsis given by o

80 (=1)" D (2n+1)7
L . , vCbe_? n=0 (2n+1)? 2°%¢ 2
s=5tas' X(vps—S)—a's X[ X (vps— )], (B) ) .

SO s s X[sinhY cosX—coshXsinY] 8
wherea and «’ are known temperature-dependent friction 80 5 (-1 D (2n+1)mr
coefficients andy is calculated from Eq(4). More details of Veuby= "% 5 5%e
the numerical method and of how it is implemented are de- 7% 1=0 (2n+1)? 2 2
scribed in Ref. 23. X [coshY sinX —sinhX cosY], 9

In order to make progress in our problem, we need to
generalize this vortex dynamics approach to a rotatingvith X=(2n+1)wx/D andY=(2n+1)x7Y/D. In a rotat-

frame”. The natural way to perform the calculation in @ ro- jng frame these terms are added to the velogjtyithout the
tating frame would require to consider a cylindrical con- ntual friction. so Eq(4) is replaced by

tainer. We do not follow this approach for two reasons. First,

our formulation is implemented using the full Biot-Savart . 21,1 ) K (7 (s—r)Xds .

law, not the localized-induction approximation often used in sy=-—s'Xx¢’ In( 7 ) = T3 tSa

the literature. This would require to place image vortices €7 ag 4w Etali

beyond the solid boundary to impose the condition of no to (10)
cub-

flow across it. This has been done in Cartedieubic) ge-

ometry, but it is difficult to implement in cylindrical geom-  gome important quantities useful for characterizing the

i ; 17
etry. Second, the original experiment by Swansgnal: rotating tangle will be introduced. The vortex line density is
was carried out in a rotating channel with a square cross

section. 1

In a rotating vessel the equation of motion of vortices is L= Kf d¢, (11
modified by two effects. The first is the force acting upon the
vortex due to the rotation. According to the Helmholtz’s where the integral is made along all vortices in the sample
theorem, the generalized force acting upon the vortex is bakvolume A. The polarization of the tangle may be measured
anced by the Magnus force: by the quantity

1 ~
s (-3 | des @2 12
psk(S' X g) = 5 (6) LA

as a function of time.

., . _ The actual numerical technique used to perform the simu-
where F'=F—Q-M is the free energy of a system in a |5ion has been already describi€Here it is enough to say

frame rotating around a fixed axis vyith the angular velocityiha: a vortex filament is represented by a single string of
Q and the angular momentum. Taklng the vector product points at a distancA ¢ apart. When two vortices approach
of Eq. (6) with s, we obtain the Ve|OCit$0. The first termF within A¢, they are assumed to reconn&tihe computa-
due to the kinetic energy of vortices gives Biot-Savart lawtional sample is taken to be a cube of s2e=1.0 cm. We
and the second terrf2- M leads to the velocitys,, of the  adopt periodic boundary conditions along the rotating axis
vortex caused by the rotation: and rigid boundary conditions at the side walls. All calcula-
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tions are made under the fully Biot-Savart law, placing image
vortices beyond the solid boundaries. The space resolution is
A¢=1.83x10 2 cm and the time resolution iat=4.0
%102 s. All results presented in this paper refer to calcula-
tions made in the rotating frame at the temperattre
=1.6 K. The uniform counterflow . is applied along the

axis.

V. THE FIRST CRITICAL VELOCITY

Swansoret all’ found that the first critical velocity/;
was proportional t€)*? this functional dependence and the
actual numerical values were consistent with interpreting the
transition atv,,s= V., as the DG instability of Kelvin waves.
Glabersonet al® considered an array of quantized vortices
(which they modeled as a continuliinside a container ro-
tating at an angular velocit§2. They found that, in the ab-
sence of friction, the dispersion relation of a Kelvin wave of
wave numbek is (

=20+ vk?, (13 (© (d)
where w is the angular frequency of the Kelvin wave,is
given by
LW 14
V_E n a_o ) (14

whereb~L "2 s the average distance between vortices.
Glabersoret al® showed that the dispersion lai#3) has
a critical velocity

(e) U]

— — 12
Vo= (0/K)min=2(20v) (19 FIG. 5. Numerical simulations of the Donnelly-Glaberson insta-
at the critical wave number bility at 0=9.97x102 s * and T=1.6 K. Snapshots of Kelvin
wave whose amplitude grows exponentially with time driven by the
20 following counterflow velocitiesV,s: (8 V,s=0.008 cm/s, (b)
b=\ (16)  v,=0.015 cm/s,(c) V,s=0.03 cm/s,(d) V,s=0.05 cm/s,(€) Vs

=0.06 cm/s,(f) V,,s=0.08 cm/s.

If the axial flow Vs exceedsVpg for some value ok,
then Kelvin waves with that wave numbkrwhich are al- driving parameter. Therefore the linear stability theory of
ways present at very small amplitude due to thermal excitaGlaberson cannot answer the question of what is the new
tions and mechanical vibrationbecome unstable and grow solution which grows beyond the DG instability &,
exponentially in time. Physically, the phase velocity of the=V;: to determine this new solution we must solve the
modek is equal to the axial flow, so energy is fed into the governing nonlinear equations of motion, which is what we
Kelvin wave by the normal flow. do in the following section.

Figure 5 illustrates the DG instability. The computations
were performed in a periodic box of size 1 cm in a reference
frame rotating with angular velocitf)=9.97x10 3 s %,
for which Vp¢=0.010 cm/s. Figure(®) confirms that when
V,s=0.008 cm/sV;; the vortex lines remain stable. Figure  Because of the computational cost of the Biot-Savart law,
5(b) shows that, atv,,;=0.015 cm/5V,;, Kelvin waves it is not practically possible to compute vortex tangle with
become unstable and grow, as predicted. Figur@es-f5  densities which are as highL=0(10*) cm 2] as those
show that Kelvin waves of larger wave number become unachieved in the experiment. Nevertheless, numerical simula-
stable at higher counterflow velocity. tions performed at smaller, computationally realistic values

Linear stability theor§’ can only predict two quantities: of L are sufficient to shed light into the physical processes
the first is the critical value of the driving paramet®fy in -~ involved. Some results which we describe have been already
our casgat which a given statéhe vortex array in our case presented in preliminary forif together with more recent
becomes unstable because infinitesimal perturbations grosomputer simulations, the picture which emerges and which
rather than decay; the second is the exponential growth owe present here gives a good understanding of the experi-
decay rate of these perturbations for a given value of thenental findings of Swansoat al,!” at least as far as the

VI. THE REGION ABOVE THE FIRST
CRITICAL VELOCITY
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FIG. 6. Numerical simulation of rotating turbulence @t FIG. 7. Numerical simulation of rotating turbulence &t
=1.6 K, 2=9.97x103 s, andV,,=0.08 cm/s. Computed vor- =1.6 K, 2=4.98<10 2 s™!, andV,,=0.08 cm/s. Computed vor-
tex tangle at the following timega) t=0 s,(b) t=16 s,(c) t=28 s, tex tangle at the following times(a) t=0 s, (b) t=12s, (c) t
(d) t=36 s,(e) t=80 s,(f) t=600 s. =20s,(d)t=28s,(e) t=40 s, (f) t=160 s.

transition atV,,=V.; and the flow in the regiov.<V,;  6(b)]. When the amplitude of the Kelvin waves becomes of
<V, are concerned. the order of the average vortex separation, reconnections
The time sequence contained in Fig. 6 illustrates the evotake place[Fig. 6(c)] starting from timet=31.456 s. The
lution of a vortex array at a relatively small angular velocity, resulting vortex loops disturb the initial vortex array, leading
0=9.97x10 s !, in the presence of the counterflow to an apparently random vortex tangjeig. 6(d)]. After the
V,s=0.08 cm/s. Figure @) shows the initiaN=8 parallel initial exponential growthiwhich is predicted by the theory
vortex lines att=0. This initial vortex configuration corre- of the DG instability, nonlinear effectgvortex interactions
sponds to a vortex line density which is somewhat less thaand vortex reconnectiondbecome important and nonlinear
the equilibrium value given by Edq1). This is not a problem saturation takes place.
because Eq(1) only refers to an infinite system. Equation  Figure 7 shows a similar time sequence at the same coun-
(1) can be applied to the experiment of Swansaral. be-  terflow velocity V,s=0.8 cm/s but at higher rotation rate,
cause their values df are large. In our numerical simula- Q=4.98<10"2 s™1. In this case we hav =33 initial par-
tion the rotation rate) (hencel) is small; we thus expect allel vortices[Fig. 7(a)]. At t=12 s[Fig. 7(b)] it is still N
that the geometryflow in a square containgand the pres- =33. Then the amplitude of the Kelvin waves becomes so
ence of the walls are import&fitso Eq.(1) is only an ap- large that, starting dt=21.336 gearlier than in the previous
proximation. The best way to proceed is thus to let a givercalculation, as expectgdlots of reconnections take place
vortex configuration to relax into a local free-energy mini- and N increases; for example, we hal=83 att=160 s
mum by direct time stepping, so that it becomes steady in thEFig. 7(f)].
rotating frame of reference. The vortices have been seeded It is instructive to compare these results with ordinary
with small random perturbations to make the simulationcounterflow in the absence of rotation. Figure 8 shows a
more realistic. The absence of these perturbations wouldortex tangle obtained fof2=0 andV,;=0.08 cm/s. The
make the phase of the Kelvin waves synchronize on all vordynamics starts fronN=6 vortex rings. It has been known
tices to delay reconnections. As the evolution proceeds, pesince the early work of Schwafzthat the resulting tangle
turbations with high wave numbers are damped by frictiondoes not depend on the initial condition. In this particular
whereas perturbations which are linearly DG unstable grovsimulation the vortices develop to a turbulent tangle.
exponentially, hence Kelvin waves become visiljleg. Figure 9 shows that in all three cagemall rotation, large
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FIG. 8. Numerical simulation of counterflow turbulence Tat
=1.6 K in the absence of rotation()=0) for V,s=0.08 cm/s.
Computed vortex tangle at the following times) t=0 s, (b) t
=120 s,(c) t=360 s,(d) t=520 s,(e) t=680 s, (f) t=1160 s.

rotation, no rotationthe vortices, after an initial transient,

saturate to a statistically steady, turbulent state, which is 0 500 1000

characterized by a certain average valuéoln the case of

. o o t (sec)

Q+0 [Figs. 9a) and 9b)], it is apparent that the initial

growth is exponential, which confirms the occurrence of a FIG. 9. Vortex line densityL vs timet at T=1.6 K andV,,¢

linear instability. =0.08 cm/s for(@) 0=9.97x10°s7%, (b) 0=4.98x1072 571,
() Q=0s1

VII. POLARIZED TURBULENCE
, ) . small rotation in Fig. 1() there is a small but finite polar-
. Lc_)okmg carefully_ at the saturated tangle at higher rotation; ion (s,)~0.15, whereas at higher rotation the polariza-
in Fig. 7(f) we notice that there are more loops oriented.. o E ) . L .
. X . - tion is significant (s,)~0.45)—in fact it is even visible
vertically than horizontally. The effect is not visible at lower _ - 2l
with the naked eye in Fig.(D).

rotation in Fig. &f) and at zero rotation in Fig.(B. The Figure 11 shows the quantitg.)L as a function of time.

degree of pqlarlzatlon of the tangle is rgpresente«jsléy of It is apparent that this quantity, which represents the average
Eq. (10). This quantity captures the difference between a =~ . """ S . . .

. ) . . vorticity in the direction of rotation, remains approximately
vortex array(for which (s,)=1 because all lines are aligned

in the + 7z directi d d tox t sor which constant during the time evolution. This means that(the-
in the +2 direction and a random vortex tangléor whic ordered tangle has approximately the same “rotation” as the

(s;)=0 because there is an equal amount of vorticity in theitia| (ordered vortex lattice. This effect answers directly
+z and —z directiong. Figure 10 shows hows;) changes ihe simple question raised by Swansaral, as to whyL g

with time in the three casdsmall rotation, large rotation, no gng Ly do not simply add together.

rotation considered. The quantities of interest are the values Figure 12 shows the calculated dependence of the vortex
of (s;) at large times in the saturated regimes. In the absendghe densityL on the counterflow velocity/,,s at different

of rotation[Fig. 10c)] (s;) is negligible but not exactly zero rotation rateq). The figure shows a dependence.ain V,
({s;)~0.01), certainly because the driving counterflow iswhich is similar to Fig. 3. The only difference is that the
along thez direction. This small anisotropy of the counter- scale of the axes in the paper by Swanebal. is bigger—in
flow tangle has been already reported in the literattivt  this particular figure they report vortex line densities as high
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FIG. 10. Tangle's polarizatiofs,) vs timet at T=1.6 K and
V,s=0.08 cm/s for (@ 0=9.97x10°%s ! (b)) 0=4.98
x107?s% (c) Q=0 st I )
_3 ......... | I | I
as L~2500 cni 2, whereas our calculations are limited to 0 500 1000
L~80 cm 2. Despite the lack of overlap between the ex- t (see)

perimental and numerical ranges, there is clear qualitative

similarity between the figures. It is apparent that the critical FIG. 11. Product(s,)L vs time t at T=1.6 K and Vs
velocity beyond which increases with/,, is much reduced = 0:08 cm/s for(@ 2=9.97x 10 3sh, (b) 0=4.98x10%s !,
by the presence of rotation, which is consistent with the ex{0 @=0s".

periment.

Figure 13 shows the calculated polarizati¢si) as a place beyond the DG instability in the regiovic, <V,
function of counterflow velocityV, at different rotation <V, and which was observed by Swansstral!’ is a state
rates(). It is apparent that the polarization decreases withof polarized turbulence
the counterflow velocity and increases with the rotation, It is known®that the dynamics of superfluid turbulence is
which shows the competition between order induced by rodetermined by two main effects—mutual friction and vortex
tation and disorder induced by flow. reconnection—thus it is interesting to analyze their roles in

We conclude that the nonlinear saturated state which takgsolarized turbulence. First we consider the friction. Follow-
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FIG. 12. Vortex line densit vs V3  at T=1.6 K for Q=0
(write circle), Q=9.97x10"3s ! (black circle, ©=2.99
Xx1072 571 (triangle, and2=4.98x 10 2 s~! (squar¢. The dot-
ted lines are guides to the eye. The error bars should be estimated

from the fluctuations around the statistical steady state which are |G, 14. Vortex segment in the presence of rotation.
about 10%.

X

ing Ref. 12, we use the following idealized model of the significant and explains the observed polarization. If the vor-

action of friction: consider a straight vortex segment in the!€X iS not straight, there is also the competing effect of the

presence of normal-fluid rotation as in Fig. 14. Using SIOheri_self-induced motion in the direction of the binormal that is
cal coordinates 1(6,¢), we haves =(1,0,0) and v, induced by the local curvature. The isolated vortex segment

=(0,00r sing). Since there is no self-induced velocity model predicts also that, if we continue the calculation but

from Eq. (5) we find that the components of the velocity of set the counterflow velocity equal to zero, the recovery of the

the segments= (dr/dt,rd6/dt,r sinadg/dt), are given by %olzagzgeg( Ifgﬁ'g es,tf‘ Iiﬁiss pclgfreesvg\)/gz dirrlce) ig%lg ?g{\)/\./eF%ra de
dr/dt=0, d6/dt= — a€) sinf, andd¢/dt=a’' (). The solu- . :

tion of these equations is tharemains constanip= ¢’ Ot the n_umerical simulation of the vortex tangle in the same
N q situation to find the time scale_600 S, W_hlch agrees with the
o an above simple estimation; the difference is clearly due to vor-
_ _1 —aOt tex interaction and reconnections.
6=2tan tan(6o/2)(e 1 7 Second we consider vortex reconnections. Reconnections
where ¢, and 4, are the initial angles. Note th&—0 for  tend to randomize the geometry of the vortex configuration.
t—oo. In conclusion the vortex segment is advected in the=or example, consider the first vortex reconnection. The
azimuthal direction by the normal fluid and rotates upwardevent creates vortex cusps which form large amplitude
aligning itself with the direction of rotation of the vessel. The Kelvin waves®" Since these waves extend in the direction
azimuthal motion is small becausé is typically smaller ~perpendicular to the plane that contained the initial vortices,

than @, whereas the motion in the meridional directiéris  the probability of another reconnection with neighboring
vortices increases. The vortex reconnection féteimber of

vortex reconnections per unit time per unit volurhas been

the subject of recent investigatiofis®2 it is found that the
reconnection rate obeys the scaling lawL 52 Is that still

true in the case of polarized turbulence? Table | shows that at
increasing rotating rate€) the ratio f/L%? decreases. Al-
though we do not have enough data to determine what
should be the exact scaling bfvith respect ta. as a func-

tion of (), the result suggests that, as the tangle becomes
more polarized, there is less vortex length in g plane,
hence there are less vortex reconnections.

of
0 0.002  0.004  0.006

TABLE |. Vortex reconnections.
v“s2 (cm? s%)

Q (rad/s) L(cm™?) f(s tem9) f/L52 (cré/s)
FIG. 13. Tangle’s polarizatiofs,) vs V2, at T=1.6 K for Q
=9.97x10 3 s (circle), 0=2.99x10 2 s ! (triangle, and O 0 43.3 5.41 4.%1074
=4.98<10 2 s ! (squarg. The dotted lines are guides to the eye. 9.97x 102 48.7 7.20 4.%x10°4
The error bars, again estimated from the fluctuations, are about,98x 102 74.0 16.17 3.410°%

20%.
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VIIIl. THE SECOND CRITICAL VELOCITY and e=¢(t), we find thatde/dt=a(kV,s— v'k?) e hence
e(t)=¢€(0)expeEt) where the growth rate isr=a(kV,s
—v'k?). Given V,, the largest growth rate occurs fér
=V,s/(2v') and takess=aV3J(4v'), for which we con-
clude that

The experiment of Swansoet al. shows that, at higher
velocities Vs, the dependence of the observed vortex line
densityL onV, ¢ abruptly changes at a second critical veloc-
ity V., (see Fig. 2, indicating the onset of a different state.
Unfortunately we cannot explore numerically this region of

parameter space at high values\gf, relevant to the experi- Tl:iz 4v _ (20)

ment, due to the larger vortex line densities involved. To o aVi

explain the experiment we propose a qualitative theory for

the second critical velocity: we argue that féfs>V,, the To estimater, we approximate the vortex loops as vortex

vortex tangle undergoes so many reconnections that it baings of radius approximately determined by the average vor-

comes unpolarized. tex spacingd~L ~ 2. The characteristic lifetime of a ring of
We picture the polarized vortex tangle as consisting of arfadiusR in the presence of friction 8

ordered vortex array plus a number of perturbing vortex )

loops. Letr; be the characteristic time scale of the growing - :ZPSWR 21)

Kelvin waves, which are induced on the vortex array by the 2 L,

DG instability. Let 7, be the typical lifetime of the vortex where £,=In[(8Ria)—1/2] and y is a known friction

loops, which is determined by the friction with the normal 09 : oy -1 .
fluid and by the relative orientation with respect to the coun-coefﬂC'em' Setting R=0=L and using Eq(18), we

terflow. If 7,<<7; then, although vortex loops are continually conclude that the polarized tangle is unstable if
created, they do not overcome the vortex array and the total 2

) i X e L<C,Vi.. (22
configuration retains an amount of polarization. 7f> 7,
then the vortex loops do not have enough time to shrinkvhere
significantly before more loops are introduced by vortex re- )
connections induced by growing Kelvin waves. This means Coe amps
that randomness is introduced by vortex reconnections at a 2 24T L1 Ly
rate which is faster than the rate at which loops disappear bE .
friction. In conclusion, we expect that if,>, the vortex ~Eduation(22) has the same dependencelobn Vs as that
configuration will be randonfunpolarized. observed experimentally. AfT=1.65K we hav& p,

: ; Lot » =0.1168 g/cm, y=1.3x10 ° g/cms, «=0.11. Sincea
According to this qualitative “cartoon,” the order of mag- e Y s, : 0
nitude of the critical velocity., is given by the condition ~~10 °cm and the slowly varying logarithm terms are

~L,~L,~10, we conclude thatC,~5x10*cm 4,
TI=T5. (18)  which is of the same order of magnitude of the valDg
=16x10* cm *<* found by Swansoret all’ Given the
First we estimater; using a simple model. For the sake of very idealized model used, the agreement is remarkable.
simplicity we assume an isolated vortex line of helical shape

(23

S= (6 cos¢,esin d),Z), Whereq§= kz— wt and e<1, hencez IX. ANALOGY WITH PARAMAGNETISM
~¢ is the arclength. The tangent unit vectorsis=ds/dé
~dg/dz=(—kesingkecosp,1), and s'=(—k?ecosdg, Figure 4 shows that if the counterflow channel is rotated,
—k2esin$,0). Using the local induction approximation, the the increase of vortex line density observed by Swanson
self-induced velocity of the line at the poists given by et al.is alwayslessthan what would be necessary to achieve
the valuel ¢,p= L+ Lg, which one wouldnaively) expect
vi=v's' X9, (19)  if the two effects of heat flow and rotation combined together

i independently. Figure 4 shows that the amount of vortex line
where v'=xL,/(4m) and the slowly varying terml;  gensity which is missing increases wifh.. How to explain
=In[1/(kap) ] is assumed constant. Neglecting higher-orderrig 47 |t is apparent from the previous discussions that the
terms ine we havev;=v'k"e(sing,—cos¢,0).  gpplication of the counterflow,,. tends to increase the dis-
~ Inthe absence of friction the equation of motion is simply grder of the vortex configuration by creating instability and
s=ds/dt=v;, hence, assuming thatis constant, we find vortex reconnections which randomize the orientation of the
that the Kelvin wave oscillates with angular frequensy vortices. To the contrary, the application of the rotati@n
=v'k? This result differs from Glaberson’s equatiéh3)  tends to order the vortex configuration by the polarization
because we perturbed a single-vortex line rather than a comechanism arising from the friction fordesee Eq.(14)].
tinuum of vorticity 2) described by the Hall-Vinen equa- This observation suggests the following analogy between our
tions in the rotating framéhence the presence of a different problem (thermal counterflow in the presence of rotajion
upper cutoff which makes’ different from v and the con- and the problem of a system of spins in a heat bath in the
tribution 2Q) t0 w). presence of an applied magnetic field.

In the presence of friction, neglecting the small mutual ConsiderN spins of dipole momeng, which are con-
friction coefficienta’ for simplicity, the equation of motion tained in a heat bath of volumé and temperaturd and
is dg/dt=v;+ as'X(v,s—v;). Assuming v,s=(0,0V,y) which are free to take any orientation in space. If we apply
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1 . . of rotation. The fact thab<<1 suggests that the quantity 1
—b can be interpreted as the effective fraction of closed
08 L ] vortex loops, because any vortex line ending on itself cannot
produce a net rotatiofrotation is due to the net number of
06 vortex lines through a given cross section
*
- ——langevin
04 A ° 0.1gHz R X. CONCLUSIONS
: 8:% Eﬁ In conclusion, we have studied the stability of a superfluid
0.2 A 06Hz | 4 vortex array in the presence of an applied counterflow, giving
x 0.8Hz : . .
answers to some questions which were first asked by the
0 L pioneering experiment of Swanse all’ After investigat-
0 5 10 15 20 ing the DG instability,V.;, we have determined the exis-
QF tence of a state of superfluid turbulen@eolarized turbu-

lence which is characterized by two statistically steady-state
properties, the vortex line density, and the degree of polar-
ization. Although our computed range of vortex line densities
does not overlap with the much higher values obtained in the
an external magnetic field, the resulting magnetization per €xperiment, we find the same qualitative dependence of vor-
unit volume is tex line density versus counterflow velocity at different rota-
tions. We have also made some qualitative progress to un-
derstand what happens a¥,=V.. Although more
quantitatively results are still needed to make direct contact
with the experiment, the scenario which we proposed is the
following: at small enough velocity <V, the axial flow
1 cannot destabilize the ordered vortex array configuration; at
f(x)=coth(x) — X (25 V.=V the DG instability disrupts the vortex array; in the
region V<V, <V, we have a state of turbulence which
is the Langevin function of argument kg is Boltzmann's  retains some order in the form of polarization; finally, at
constant, and ;=N u/V. V,s= V¢, there are enough vortex reconnections to destroy
Pursuing the analogy, we can think of the vortex tangle agny polarization.
a collection of “vortex segments.” The segments are free 10 Fyrther work with more computing power will hopefully
assume any orientation in space, tend to be aligned by th@yestigate other aspects of the problem, particularly what
applied rotatiorf2, and tend to be randomized by the appliedappens at high counterflow velocities and line densities. We
counterflowV,s. Hence, in analogy with the system of Spins, 5154 hope that our work will stimulate more experiments on
we expect that the fractional alignment of the tangle is givenpis prohlem. On the theoretical side, further work will be

FIG. 15. Plot ofL* =(L ey L)/(bLy) vs Q*=alg/Ly . The
solid line is the Langevin curvé(alLg/L}).

mH
MZMsatf kB_T ) (24)

where

by the Langevin function necessary to develop a better understanding of the tangle’s
dynamics in terms of vortex line density as well as other
a (2Q/k) —£(Q¥) (26) measures, such as the anisotrdpwhich describe other de-
(Y& V2) ’ grees of freedom.
] ) - It is somewhat surprising that so little is known about the
where the dimensionless quantiti&s andL* are destabilization of a rotational vortex array by an imposed
counterflow. For example, it should be possible to observe
*=ai=a 29 27 the polarization of turbulence by using simultaneous mea-
Ly K?’avﬁs’ surements of second sound attenuation along and across the
rotation axis.
Lexpr— L Finally, our work should be of interest to other investiga-
L* = oL, (28)  tions of vortex arrays and how they can be destabilized in

other systems, ranging frortHe (Ref. 15 to atomic Bose-
anda andb are fitting parameters. Figure 15 confirms thenEinstein condensatés.lt is also worth noticing that this
the data of Fig. 4, when plotted in terms Off andL*, study has revealed the crossover of the dimensionality of
almost collapse onto a single curve. The quarltityrepre- vortex systems. If one considers the three regimes in Fig. 2
sents the relative deviation from the expected line densitypne notices that, at a fixed value g, increasing the ro-
that is to sayL* measures the polarizatidfractional align- tation rate makes the vortices polarized, changing the dy-
men) of the tangle. The fitting parameters which we havenamics from three dimensional to two dimensional. This re-
used are=11 andb=0.23, whereag,;=98.2 s/cmi is ob-  duction of the dimensionality of turbulence has been
tained from the measured vortex line density in the absencebserved in classical fluid mechanits.
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