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Instability of vortex array and transitions to turbulence in rotating helium II
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We consider superfluid helium inside a container which rotates at constant angular velocity and investigate
numerically the stability of the array of quantized vortices in the presence of an imposed axial counterflow.
This problem was studied experimentally by Swansonet al., who reported evidence of instabilities at increas-
ing axial flow but were not able to explain their nature. We find that Kelvin waves on individual vortices
become unstable and grow in amplitude, until the amplitude of the waves becomes large enough that vortex
reconnections take place and the vortex array is destabilized. We find that the eventual nonlinear saturation of
the instability consists of a turbulent tangle of quantized vortices which is strongly polarized. The computed
results compare well with the experiments. We suggest a theoretical explanation for the second instability
which was observed at higher values of the axial flow and conclude by making an analogy between the
alignment of vortices in the presence of rotation and the alignment of dipole moments in the presence of an
applied magnetic field.
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I. INTRODUCTION

The work described in this article is concerned with t
stability of a superfluid vortex array. It is well known1,2 that
if helium II is rotated at constant angular velocityV, an
array of superfluid vortex lines is created. The vortices
aligned along the axis of rotation and form an array w
areal density given by

LR5
2V

k
, ~1!

wherek5h/m59.9731024 cm2/s is the quantum of circu
lation, h is Plank’s constant, andm the mass of one helium
atom. Equation~1! is valid provided thatV exceeds a smal
critical value.3 Rotation frequencies of the order of 1 Hz a
easily achieved in a laboratory, and correspond to real d
sities of the order of 103 cm22.

It is also well known that a superfluid vortex line becom
unstable in the presence of normal fluid in the direction p
allel to the axis of the vortex. This instability, hereafter r
ferred to as the Donnelly-Glaberson~DG! instability, was
first observed experimentally by Chenget al.4 and then ex-
plained by Glabersonet al.5 Physically, the DG instability
takes the form of Kelvin waves~helical displacements of th
vortex core! which grow exponentially with time.

In this paper we use an imposed axial flow to trigger
DG instability and study the transition from order to disord
in an array of quantized vortex lines. It is useful to rema
here that since the growth of Kelvin waves takes place at
expense of normal fluid’s energy, understanding the DG
stability is also relevant6 to the balance of energy betwee
normal fluid and superfluid in helium II turbulence, a pro
lem which is attracting current experimental7–10 and
theoretical11–14 attention.

Another important meaning of this paper is to develop
formulation of three-dimensional vortex dynamics in a rot
0163-1829/2004/69~13!/134515~12!/$22.50 69 1345
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ing frame. In recent years there has been a growing inte
in the vortex dynamics under rotation. For example, Fin
et al. used nuclear magnetic resonance to study theB phase
of rotating superfluid3He and observed a sharp velocit
independent transition at a critical temperature between
regimes.15 Regular behavior occurred at high temperatur
while turbulence occurred at low temperatures. They a
found that the experimental results were consistent with
numerical vortex dynamics simulation that was carried
by the method described in this paper. Although the form
lation of the vortex dynamics under rotation was presen
briefly in our previous paper,16 it is necessary to describe it i
detail in this paper.

The paper is organized in the following way. In Sec. II w
describe the rotating counterflow configuration, which is r
evant to both theory and experiment. In Sec. III we summ
rize experimental results obtained by Swanson, Baren
and Donnelly.17 They discovered that the DG mechanism c
destabilize the superfluid vortex array and revealed the e
tence of two different superfluid turbulent states which a
pear if the driving axial flow exceeds the critical velocitie
Vc1 and Vc2, respectively. Until now, the actual physica
nature of these two states has been a mystery, and it is
aim of our work to shed light into this problem. In Sec. I
we set up the formulation of vortex dynamics in the rotati
frame which generalizes the previous approach of Schwa18

and which we use in our numerical calculations. Sec. V
devoted to the first critical velocityVc1, which agrees with
the values predicted by the DG instability. What happe
beyondVc1 cannot be predicted by linear stability theory a
must be determined by direct nonlinear computation, wh
is what we do in Sec. VI. In Sec. VII we analyze the nume
cal results and argue that this regimeVc1,Vns,Vc2 is a
state of polarized turbulence. In Sec. VIII we speculate t
the second critical velocityVc2 marks the onset of an unpo
larized turbulent state. In Sec. IX we show an analogy
tween counterflow turbulence in the presence of an app
©2004 The American Physical Society15-1
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rotation and a system of spins in contact with a heat bat
the presence of an applied magnetic field. Finally Sec
draws the conclusions.

II. ROTATING COUNTERFLOW

In order to study the stability of the rotating superflu
vortex array, we consider the configuration which is sc
matically shown in Fig. 1. A channel, which is closed at o
end and open to the helium bath at the other end, is place
a table which can be rotated at an assigned angular velo
V. At the closed end of the channel a resistor dissipate
known heat fluxQ̇.

First let us consider what happens in the absence of r
tion (V50). Since only the normal fluid carries entrop
thenQ̇5rTSVn , whereT is the absolute temperature,S the
specific entropy,r5rs1rn the total density of helium II,rs
the superfluid density, andrn the normal-fluid density. We
call Vn andVs , respectively, the normal-fluid and the supe
fluid velocity fields in the direction along the channel, av
aged over the channel’s cross section. The total mass
rsVs1rnVn is zero because one end of the channel is clos
The resulting counterflow velocityVns5Vn2Vs , which is
induced along the channel is therefore proportional to
applied heat flux:

Vns5
Q̇

rsST
. ~2!

It is known from experiments19,20 and numerical
simulations18 that, if Q̇ ~henceVns) exceeds a critical value
a turbulent tangle of quantized vortex lines is created. T
tangle is homogeneous and isotropic~neglecting a small de
gree of anisotropy induced by the direction of the impos

FIG. 1. Schematic rotating counterflow apparatus.
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heat current!. The intensity of the turbulence is measured
the vortex line density~length of vortex line per unit volume!
which is experimentally determined by monitoring the ex
attenuation of second sound. One finds that, forVns.V0, the
vortex line density has the form

LH5gH
2 Vns

2 , ~3!

wheregH is a temperature-dependent coefficient19 andV0 is
a small critical velocity which depends on the temperat
and on the size and geometry of the channel.19

Let us consider now the case in which the heat flux
applied in the rotating frame (VÞ0). We have now two
effects which compete with each other: rotation, which
vors the creation of an ordered array of vortices align
along the direction of the axis of rotation, and counterflo
which favors the creation of a disordered tangle. Swan
et al.17 were the first to address the problem of whether
vortex array is stable or not at given values ofV andVns ,
and, if the array is unstable, of whether the vortex line d
sity L is the sum of Eqs.~1! and~3! or not. Their experimen-
tal results are described in the following section.

It is important to remark that, in principle, one can al
study the stability of a vortex array in the presence of a m
flow rather than of a heat current. Similarly, one can stu
the effects of rotation upon the turbulence of helium II cr
ated by towing a grid or rotating a propeller rather than up
counterflow turbulence. The reason for which we have c
sen to restrict our investigation to the case of a heat curre
twofold: first, the experimental data of Swansonet al.17 are
available; second, at least at small heat currents,21 the turbu-
lent superfluid tangle is homogeneous and almost isotro
and we do not have to worry about large-scale motion a
eddies of the normal fluid.

III. THE EXPERIMENT

The rotating counterflow apparatus of Swansonet al.17

consisted of a 40 cm long vertical channel of 131 cm2

square cross section. At the closed end~as shown in Fig. 1! a
resistor dissipated a known heat fluxQ̇ and induced relative
motion Vns of the two fluid components. The vortex lin
densityL was measured by pairs of second sound transdu
located along the channel. The entire apparatus was set u
a rotating cryostat, so that it was possible to create vor
lines by either rotation or counterflow, or by any combinati
of them. The vortex line density was calculated from a m
surement of the attenuation of second sound resonances
its calibration against the known density in rotation.22

The experiment was performed atT51.65 K. In the pres-
ence of both rotation and counterflow three distinct flo
states were observed, as shown in Figs. 2 and 3, respecti
at high and low rotations. The three states are separate
two critical counterflow velocitiesVc1 andVc2 ~see Fig. 2!.
The results of the experiment can be summarized at incr
ing values ofVns as follows.

~1! State V0,Vns,Vc1. In the first region of Fig. 2 at the
left of Vc1 the vortex line density is independent of the sm
values ofVns involved and agrees with Eq.~1!. This region
5-2
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clearly corresponds to an ordered vortex array, and the co
terflow currentVns is not strong enough to destabilize
Note that ifVÞ0 thenV050.

~2! Transition at Vns5Vc1. Swansonet al.17 noticed that
the values of the first critical velocityVc1 are consistent with
the DG instability. This means that atVns5Vc15VDG the

FIG. 2. Vortex line densityL observed by Swansonet al. in the
presence of a counterflow heat currentVns at various rotation rates
at T51.65 K. The solid lines represent Swansonet al.’s fits to the
two observed critical velocitiesVc1 andVc2. The experimental un-
certainties are about 1/3 of the symbol size. This data set show
highest rotation rates to put in evidence the curvesVc1 andVc2.

FIG. 3. Vortex line densityL observed by Swansonet al. This
data set shows the smallest counterflow velocities at the sma
rotation rates to show that the critical velocity forV50 disappears
in the presence of rotation.
13451
n-

axial flow is so strong that Kelvin waves of infinitesim
amplitude become unstable and grow.

~3! State Vc1,Vns,Vc2. Because of the lack of direc
flow visualization in helium II, the nature of the flow past th
instability (Vns.Vc1) was a mystery to Swansonet al.17

~4! Transition Vns5Vc2. The existence of a second crit
cal velocityVc2 was unexpected. The nature of the transiti
at Vns5Vc2 was not clear to Swansonet al.

~5! State Vns.Vc2. What kind of flow exists in the third
region (Vns.Vc2) was a mystery too.

~6! Missing vortex line density. Swansonet al. found that
the rotation added fewer than the expectedLR52V/k vortex
lines to those made by the counterflow current,LH

5gH
2 Vns

2 . This means that the observed vortex line dens
in the presence of heat flow and rotation was less than
expected valueLR1LH . The effect is particularly evident a
high values ofVns as shown in Fig. 4, where the excess li
density with rotationL2LH is shown versusV at different
values ofVns up to the highest value which was applied.

IV. VORTEX DYNAMICS IN A ROTATING FRAME

The vortex filament model is very useful to study th
motion of superfluid4He because the vortex core radiusa0
;1028 cm is microscopic, hence much smaller than a
flow scales of interest. Moreover, unlike what happens
classical fluid dynamics, the circulationk59.97
31024 cm2/s is fixed by quantum constraint, which simpl
fies the model even further.

Helmholtz’s theorem for a perfect fluid states that a vor
moves with self-induced velocity produced by the shape
the vortex itself. Therefore the velocityṡ0 of a vortex fila-
ment at the points in the absence of mutual friction is gov
erned by the Biot-Savart law and can be expressed as18

he

st

FIG. 4. Excess vortex line density with rotationL2LH vs rota-
tion at values ofVns up to the highest values, as observed by Sw
sonet al.The number near each curve is the value ofVns

2 in the unit
of cm2/s. The line labeled 0 is what one would expect if heat a
rotation-induced vortices were independent.
5-3
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ṡ05
k

4p
s83s9 lnS 2~ l 1l 2!1/2

e1/4a0
D 1

k

4pE 8 ~s12r!3ds1

us12ru3
.

~4!

Here the vortex filament is represented by the parame
equation s5s(j,t). The first term means the localized
induction velocity, where the symbolsl 1 and l 2 are the
lengths of the two line elements which are adjacent to
given point after discretization of the filament, and the prim
denotes differentiation ofs with respect to the arclengthj.
The second term represents the nonlocal field by carrying
the integral along the rest of the filament on whichs1 refers
to a point.

If the temperature is finite, the normal-fluid fraction
nonzero and its effects must be taken into account. The
mal fluid induces a mutual friction force which drags t
vortex core of a superfluid vortex filament for which th
velocity of points is given by

ṡ5 ṡ01as83~vns2 ṡ0!2a8s83@s83~vns2 ṡ0!#, ~5!

wherea and a8 are known temperature-dependent fricti
coefficients andṡ0 is calculated from Eq.~4!. More details of
the numerical method and of how it is implemented are
scribed in Ref. 23.

In order to make progress in our problem, we need
generalize this vortex dynamics approach to a rotat
frame24. The natural way to perform the calculation in a r
tating frame would require to consider a cylindrical co
tainer. We do not follow this approach for two reasons. Fi
our formulation is implemented using the full Biot-Sava
law, not the localized-induction approximation often used
the literature. This would require to place image vortic
beyond the solid boundary to impose the condition of
flow across it. This has been done in Cartesian~cubic! ge-
ometry, but it is difficult to implement in cylindrical geom
etry. Second, the original experiment by Swansonet al.17

was carried out in a rotating channel with a square cr
section.

In a rotating vessel the equation of motion of vortices
modified by two effects. The first is the force acting upon t
vortex due to the rotation. According to the Helmholtz
theorem, the generalized force acting upon the vortex is
anced by the Magnus force:

rsk~s83 ṡ0!5
dF8

ds
, ~6!

where F85F2V•M is the free energy of a system in
frame rotating around a fixed axis with the angular veloc
V and the angular momentumM. Taking the vector produc
of Eq. ~6! with s8, we obtain the velocityṡ0. The first termF
due to the kinetic energy of vortices gives Biot-Savart l
and the second termV•M leads to the velocityṡrot of the
vortex caused by the rotation:
13451
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ṡrot5
1

4pE H 3
s83R

uRu5
@~V•s8!~r•R!2~V•R!~r•s8!#

1
s83V

uRu5
@ uRu2~r•s8!23~r•R! ~R•s8!#

2
s83r

uRu5
@ uRu2~V•s8!23~V•R!~R•s8!#2

V3r

uRu3

1
s8•~V3r!

uRu3
s8J dr, ~7!

with R5r2s. The second effect is the superflow induced
the rotating vessel. For a perfect fluid we know the analyti
solution of the velocity inside a cube of sizeD rotating with
the angular velocityV5V ẑ:25

vcub,x5
8V

p2 (
n50

`
~21!n

~2n11!2

D

2
sech

~2n11!p

2

3@sinhY cosX2coshXsinY# ~8!

vcub,y5
8V

p2 (
n50

`
~21!n

~2n11!2

D

2
sech

~2n11!p

2

3@coshY sinX2sinhX cosY#, ~9!

with X5(2n11)px/D and Y5(2n11)pY/D. In a rotat-
ing frame these terms are added to the velocityṡ0 without the
mutual friction, so Eq.~4! is replaced by

ṡ05
k

4p
s83s9 lnS 2~ l 1l 2!1/2

e1/4a0
D 1

k

4pE 8 ~s12r!3ds1

us12ru3
1 ṡrot

1vcub. ~10!

Some important quantities useful for characterizing
rotating tangle will be introduced. The vortex line density

L5
1

LE dj, ~11!

where the integral is made along all vortices in the sam
volumeL. The polarization of the tangle may be measur
by the quantity

^sz8&5
1

LLE djs8~j!• ẑ, ~12!

as a function of time.
The actual numerical technique used to perform the sim

lation has been already described.23 Here it is enough to say
that a vortex filament is represented by a single string
points at a distanceDj apart. When two vortices approac
within Dj, they are assumed to reconnect.26 The computa-
tional sample is taken to be a cube of sizeD51.0 cm. We
adopt periodic boundary conditions along the rotating a
and rigid boundary conditions at the side walls. All calcu
5-4
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tions are made under the fully Biot-Savart law, placing ima
vortices beyond the solid boundaries. The space resolutio
Dj51.8331022 cm and the time resolution isDt54.0
31023 s. All results presented in this paper refer to calcu
tions made in the rotating frame at the temperatureT
51.6 K. The uniform counterflowvns is applied along thez
axis.

V. THE FIRST CRITICAL VELOCITY

Swansonet al.17 found that the first critical velocityVc1
was proportional toV1/2; this functional dependence and th
actual numerical values were consistent with interpreting
transition atVns5Vc1 as the DG instability of Kelvin waves
Glabersonet al.5 considered an array of quantized vortic
~which they modeled as a continuum! inside a container ro-
tating at an angular velocityV. They found that, in the ab
sence of friction, the dispersion relation of a Kelvin wave
wave numberk is

v52V1nk2, ~13!

wherev is the angular frequency of the Kelvin wave,n is
given by

n5
k

4p
lnS b

a0
D , ~14!

whereb'L21/2 is the average distance between vortices
Glabersonet al.5 showed that the dispersion law~13! has

a critical velocity

VDG5~v/k!min52~2Vn!1/2 ~15!

at the critical wave number

kDG5A2V

n
. ~16!

If the axial flow Vns exceedsVDG for some value ofk,
then Kelvin waves with that wave numberk ~which are al-
ways present at very small amplitude due to thermal exc
tions and mechanical vibrations! become unstable and gro
exponentially in time. Physically, the phase velocity of t
modek is equal to the axial flow, so energy is fed into th
Kelvin wave by the normal flow.

Figure 5 illustrates the DG instability. The computatio
were performed in a periodic box of size 1 cm in a referen
frame rotating with angular velocityV59.9731023 s21,
for which VDG50.010 cm/s. Figure 5~a! confirms that when
Vns50.008 cm/s,Vcrit the vortex lines remain stable. Figur
5~b! shows that, atVns50.015 cm/s.Vcrit , Kelvin waves
become unstable and grow, as predicted. Figures 5~c–f!
show that Kelvin waves of larger wave number become
stable at higher counterflow velocity.

Linear stability theory27 can only predict two quantities
the first is the critical value of the driving parameter (VDG in
our case! at which a given state~the vortex array in our case!
becomes unstable because infinitesimal perturbations g
rather than decay; the second is the exponential growth
decay rate of these perturbations for a given value of
13451
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driving parameter. Therefore the linear stability theory
Glaberson5 cannot answer the question of what is the n
solution which grows beyond the DG instability atVns
5Vc1: to determine this new solution we must solve t
governing nonlinear equations of motion, which is what w
do in the following section.

VI. THE REGION ABOVE THE FIRST
CRITICAL VELOCITY

Because of the computational cost of the Biot-Savart la
it is not practically possible to compute vortex tangle w
densities which are as high@L5O(104) cm22# as those
achieved in the experiment. Nevertheless, numerical sim
tions performed at smaller, computationally realistic valu
of L are sufficient to shed light into the physical process
involved. Some results which we describe have been alre
presented in preliminary form;16 together with more recen
computer simulations, the picture which emerges and wh
we present here gives a good understanding of the exp
mental findings of Swansonet al.,17 at least as far as the

FIG. 5. Numerical simulations of the Donnelly-Glaberson ins
bility at V59.9731023 s21 and T51.6 K. Snapshots of Kelvin
wave whose amplitude grows exponentially with time driven by
following counterflow velocitiesVns : ~a! Vns50.008 cm/s, ~b!
Vns50.015 cm/s,~c! Vns50.03 cm/s,~d! Vns50.05 cm/s,~e! Vns

50.06 cm/s,~f! Vns50.08 cm/s.
5-5
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transition atVns5Vc1 and the flow in the regionVc1,Vns
,Vc2 are concerned.

The time sequence contained in Fig. 6 illustrates the e
lution of a vortex array at a relatively small angular veloci
V59.9731023 s21, in the presence of the counterflo
Vns50.08 cm/s. Figure 6~a! shows the initialN58 parallel
vortex lines att50. This initial vortex configuration corre
sponds to a vortex line density which is somewhat less t
the equilibrium value given by Eq.~1!. This is not a problem
because Eq.~1! only refers to an infinite system. Equatio
~1! can be applied to the experiment of Swansonet al. be-
cause their values ofV are large. In our numerical simula
tion the rotation rateV ~henceL) is small; we thus expec
that the geometry~flow in a square container! and the pres-
ence of the walls are important28 so Eq.~1! is only an ap-
proximation. The best way to proceed is thus to let a giv
vortex configuration to relax into a local free-energy min
mum by direct time stepping, so that it becomes steady in
rotating frame of reference. The vortices have been see
with small random perturbations to make the simulat
more realistic. The absence of these perturbations wo
make the phase of the Kelvin waves synchronize on all v
tices to delay reconnections. As the evolution proceeds,
turbations with high wave numbers are damped by fricti
whereas perturbations which are linearly DG unstable g
exponentially, hence Kelvin waves become visible@Fig.

FIG. 6. Numerical simulation of rotating turbulence atT
51.6 K, V59.9731023 s21, andVns50.08 cm/s. Computed vor
tex tangle at the following times:~a! t50 s,~b! t516 s,~c! t528 s,
~d! t536 s,~e! t580 s,~f! t5600 s.
13451
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6~b!#. When the amplitude of the Kelvin waves becomes
the order of the average vortex separation, reconnect
take place@Fig. 6~c!# starting from timet531.456 s. The
resulting vortex loops disturb the initial vortex array, leadi
to an apparently random vortex tangle@Fig. 6~d!#. After the
initial exponential growth~which is predicted by the theory
of the DG instability!, nonlinear effects~vortex interactions
and vortex reconnections! become important and nonlinea
saturation takes place.

Figure 7 shows a similar time sequence at the same co
terflow velocity Vns50.8 cm/s but at higher rotation rate
V54.9831022 s21. In this case we haveN533 initial par-
allel vortices@Fig. 7~a!#. At t512 s @Fig. 7~b!# it is still N
533. Then the amplitude of the Kelvin waves becomes
large that, starting att521.336 s~earlier than in the previous
calculation, as expected!, lots of reconnections take plac
and N increases; for example, we haveN583 at t5160 s
@Fig. 7~f!#.

It is instructive to compare these results with ordina
counterflow in the absence of rotation. Figure 8 shows
vortex tangle obtained forV50 and Vns50.08 cm/s. The
dynamics starts fromN56 vortex rings. It has been know
since the early work of Schwarz18 that the resulting tangle
does not depend on the initial condition. In this particu
simulation the vortices develop to a turbulent tangle.

Figure 9 shows that in all three cases~small rotation, large

FIG. 7. Numerical simulation of rotating turbulence atT
51.6 K, V54.9831022 s21, andVns50.08 cm/s. Computed vor
tex tangle at the following times:~a! t50 s, ~b! t512 s, ~c! t
520 s, ~d! t528 s, ~e! t540 s, ~f! t5160 s.
5-6
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rotation, no rotation! the vortices, after an initial transien
saturate to a statistically steady, turbulent state, which
characterized by a certain average value ofL. In the case of
VÞ0 @Figs. 9~a! and 9~b!#, it is apparent that the initia
growth is exponential, which confirms the occurrence o
linear instability.

VII. POLARIZED TURBULENCE

Looking carefully at the saturated tangle at higher rotat
in Fig. 7~f! we notice that there are more loops orient
vertically than horizontally. The effect is not visible at low
rotation in Fig. 6~f! and at zero rotation in Fig. 8~f!. The
degree of polarization of the tangle is represented by^sz8& of
Eq. ~10!. This quantity captures the difference between
vortex array~for which ^sz8&51 because all lines are aligne
in the 1z direction! and a random vortex tangle~for which
^sz8&50 because there is an equal amount of vorticity in
1z and2z directions!. Figure 10 shows hoŵsz8& changes
with time in the three cases~small rotation, large rotation, no
rotation! considered. The quantities of interest are the val
of ^sz8& at large times in the saturated regimes. In the abse
of rotation@Fig. 10~c!# ^sz8& is negligible but not exactly zero
(^sz8&'0.01), certainly because the driving counterflow
along thez direction. This small anisotropy of the counte
flow tangle has been already reported in the literature.30 At

FIG. 8. Numerical simulation of counterflow turbulence atT
51.6 K in the absence of rotation (V50) for Vns50.08 cm/s.
Computed vortex tangle at the following times:~a! t50 s, ~b! t
5120 s, ~c! t5360 s, ~d! t5520 s, ~e! t5680 s, ~f! t51160 s.
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small rotation in Fig. 10~a! there is a small but finite polar
ization ^sz8&'0.15, whereas at higher rotation the polariz
tion is significant (̂sz8&'0.45)—in fact it is even visible
with the naked eye in Fig. 7~f!.

Figure 11 shows the quantitŷsz8&L as a function of time.
It is apparent that this quantity, which represents the aver
vorticity in the direction of rotation, remains approximate
constant during the time evolution. This means that the~dis-
ordered! tangle has approximately the same ‘‘rotation’’ as t
initial ~ordered! vortex lattice. This effect answers directl
the simple question raised by Swansonet al., as to whyLR
andLH do not simply add together.

Figure 12 shows the calculated dependence of the vo
line densityL on the counterflow velocityVns at different
rotation ratesV. The figure shows a dependence ofL on Vns
which is similar to Fig. 3. The only difference is that th
scale of the axes in the paper by Swansonet al. is bigger—in
this particular figure they report vortex line densities as h

FIG. 9. Vortex line densityL vs time t at T51.6 K andVns

50.08 cm/s for~a! V59.9731023 s21, ~b! V54.9831022 s21,
~c! V50 s21.
5-7
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TSUBOTA, BARENGHI, ARAKI, AND MITANI PHYSICAL REVIEW B 69, 134515 ~2004!
as L'2500 cm22, whereas our calculations are limited
L'80 cm22. Despite the lack of overlap between the e
perimental and numerical ranges, there is clear qualita
similarity between the figures. It is apparent that the criti
velocity beyond whichL increases withVns is much reduced
by the presence of rotation, which is consistent with the
periment.

Figure 13 shows the calculated polarization^sz8& as a
function of counterflow velocityVns at different rotation
ratesV. It is apparent that the polarization decreases w
the counterflow velocity and increases with the rotatio
which shows the competition between order induced by
tation and disorder induced by flow.

We conclude that the nonlinear saturated state which ta

FIG. 10. Tangle’s polarization̂sz8& vs time t at T51.6 K and
Vns50.08 cm/s for ~a! V59.9731023 s21, ~b! V54.98
31022 s21, ~c! V50 s21.
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place beyond the DG instability in the regionVc1,Vns
,Vc2 and which was observed by Swansonet al.17 is a state
of polarized turbulence.

It is known18 that the dynamics of superfluid turbulence
determined by two main effects—mutual friction and vort
reconnection—thus it is interesting to analyze their roles
polarized turbulence. First we consider the friction. Follo

FIG. 11. Product ^sz8&L vs time t at T51.6 K and Vns

50.08 cm/s for~a! V59.9731023 s21, ~b! V54.9831022 s21,
~c! V50 s21.
5-8
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ing Ref. 12, we use the following idealized model of t
action of friction: consider a straight vortex segment in t
presence of normal-fluid rotation as in Fig. 14. Using sph
cal coordinates (r ,u,f), we have s85(1,0,0) and vns
5(0,0,Vr sinu). Since there is no self-induced velocit
from Eq. ~5! we find that the components of the velocity
the segment,ṡ5(dr/dt,rdu/dt,r sinudf/dt), are given by
dr/dt50, du/dt52aV sinu, anddf/dt5a8V. The solu-
tion of these equations is thatr remains constant,f5a8Vt
1f0 and

u52 tan21@ tan~u0/2!~e2aVt!#, ~17!

wheref0 and u0 are the initial angles. Note thatu→0 for
t→`. In conclusion the vortex segment is advected in
azimuthal direction by the normal fluid and rotates upwa
aligning itself with the direction of rotation of the vessel. Th
azimuthal motion is small becausea8 is typically smaller
thana, whereas the motion in the meridional directionu is

FIG. 12. Vortex line densityL vs Vns
2 at T51.6 K for V50

~write circle!, V59.9731023 s21 ~black circle!, V52.99
31022 s21 ~triangle!, andV54.9831022 s21 ~square!. The dot-
ted lines are guides to the eye. The error bars should be estim
from the fluctuations around the statistical steady state which
about 10%.

FIG. 13. Tangle’s polarization̂sz8& vs Vns
2 at T51.6 K for V

59.9731023 s21 ~circle!, V52.9931022 s21 ~triangle!, and V
54.9831022 s21 ~square!. The dotted lines are guides to the ey
The error bars, again estimated from the fluctuations, are a
20%.
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significant and explains the observed polarization. If the v
tex is not straight, there is also the competing effect of
self-induced motion in the direction of the binormal that
induced by the local curvature. The isolated vortex segm
model predicts also that, if we continue the calculation b
set the counterflow velocity equal to zero, the recovery of
polarized lattice takes place with time scale 1/(aV). For
V59.9731023 s21 this corresponds to 1000 s. We mad
the numerical simulation of the vortex tangle in the sa
situation to find the time scale 600 s, which agrees with
above simple estimation; the difference is clearly due to v
tex interaction and reconnections.

Second we consider vortex reconnections. Reconnect
tend to randomize the geometry of the vortex configurati
For example, consider the first vortex reconnection. T
event creates vortex cusps which form large amplitu
Kelvin waves.31 Since these waves extend in the directi
perpendicular to the plane that contained the initial vortic
the probability of another reconnection with neighbori
vortices increases. The vortex reconnection ratef ~number of
vortex reconnections per unit time per unit volume! has been
the subject of recent investigations:23,32 it is found that the
reconnection rate obeys the scaling lawf ;L5/2. Is that still
true in the case of polarized turbulence? Table I shows tha
increasing rotating ratesV the ratio f /L5/2 decreases. Al-
though we do not have enough data to determine w
should be the exact scaling off with respect toL as a func-
tion of V, the result suggests that, as the tangle beco
more polarized, there is less vortex length in thex-y plane,
hence there are less vortex reconnections.

ted
re

ut

FIG. 14. Vortex segment in the presence of rotation.

TABLE I. Vortex reconnections.

V (rad/s) L(cm22) f (s21 cm23) f /L5/2 (cm2/s)

0 43.3 5.41 4.431024

9.9731023 48.7 7.20 4.331024

4.9831022 74.0 16.17 3.431024
5-9
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VIII. THE SECOND CRITICAL VELOCITY

The experiment of Swansonet al. shows that, at highe
velocitiesVns , the dependence of the observed vortex l
densityL on Vns abruptly changes at a second critical velo
ity Vc2 ~see Fig. 2!, indicating the onset of a different stat
Unfortunately we cannot explore numerically this region
parameter space at high values ofVns relevant to the experi-
ment, due to the larger vortex line densities involved.
explain the experiment we propose a qualitative theory
the second critical velocity: we argue that forVns.Vc2 the
vortex tangle undergoes so many reconnections that it
comes unpolarized.

We picture the polarized vortex tangle as consisting of
ordered vortex array plus a number of perturbing vor
loops. Lett1 be the characteristic time scale of the growi
Kelvin waves, which are induced on the vortex array by
DG instability. Let t2 be the typical lifetime of the vortex
loops, which is determined by the friction with the norm
fluid and by the relative orientation with respect to the cou
terflow. If t2,t1 then, although vortex loops are continual
created, they do not overcome the vortex array and the t
configuration retains an amount of polarization. Ift2.t1
then the vortex loops do not have enough time to shr
significantly before more loops are introduced by vortex
connections induced by growing Kelvin waves. This mea
that randomness is introduced by vortex reconnections
rate which is faster than the rate at which loops disappea
friction. In conclusion, we expect that ift2.t1 the vortex
configuration will be random~unpolarized!.

According to this qualitative ‘‘cartoon,’’ the order of mag
nitude of the critical velocityVc2 is given by the condition

t15t2 . ~18!

First we estimatet1 using a simple model. For the sake
simplicity we assume an isolated vortex line of helical sha
s5(e cosf,e sinf,z), wheref5kz2vt and e!1, hencez
'j is the arclength. The tangent unit vector iss85ds/dj
'ds/dz5(2ke sinf,ke cosf,1), and s95(2k2e cosf,
2k2e sinf,0). Using the local induction approximation, th
self-induced velocity of the line at the points is given by

v i5n8s83s9, ~19!

where n85kL1 /(4p) and the slowly varying termL1
5 ln@1/(ka0)# is assumed constant. Neglecting higher-ord
terms ine we havev i5n8k2e(sinf,2cosf,0).

In the absence of friction the equation of motion is simp
ṡ5ds/dt5v i , hence, assuming thate is constant, we find
that the Kelvin wave oscillates with angular frequencyv
5n8k2. This result differs from Glaberson’s equation~13!
because we perturbed a single-vortex line rather than a
tinuum of vorticity 2V described by the Hall-Vinen equa
tions in the rotating frame~hence the presence of a differe
upper cutoff which makesn8 different fromn and the con-
tribution 2V to v).

In the presence of friction, neglecting the small mutu
friction coefficienta8 for simplicity, the equation of motion
is ds/dt5v i1as83(vns2v i). Assuming vns5(0,0,Vns)
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and e5e(t), we find thatde/dt5a(kVns2n8k2)e hence
e(t)5e(0)exp(st) where the growth rate iss5a(kVns
2n8k2). Given Vns , the largest growth rate occurs fork
5Vns /(2n8) and takess5aVns

2 /(4n8), for which we con-
clude that

t15
1

s
5

4n8

aVns
2

. ~20!

To estimatet2 we approximate the vortex loops as vorte
rings of radius approximately determined by the average v
tex spacingd'L21/2. The characteristic lifetime of a ring o
radiusR in the presence of friction is29

t25
2rspR2

gL2
, ~21!

where L25 ln@(8R/a0)21/2# and g is a known friction
coefficient.29 Setting 2R5d5L21/2 and using Eq.~18!, we
conclude that the polarized tangle is unstable if

L,C2Vns
2 , ~22!

where

C25
ap2rs

2gGL1L2
~23!

Equation~22! has the same dependence ofL on Vns as that
observed experimentally. AtT51.65 K we have29 rs
50.1168 g/cm3, g51.331025 g/cm s, a50.11. Sincea0
'1028 cm and the slowly varying logarithm terms a
'L1'L2'10, we conclude thatC2'53104 cm24 s2,
which is of the same order of magnitude of the valueC2
5163104 cm24 s2 found by Swansonet al.17 Given the
very idealized model used, the agreement is remarkable

IX. ANALOGY WITH PARAMAGNETISM

Figure 4 shows that if the counterflow channel is rotat
the increase of vortex line densityL observed by Swanson
et al. is alwayslessthan what would be necessary to achie
the valueLexpt5LH1LR , which one would~naively! expect
if the two effects of heat flow and rotation combined togeth
independently. Figure 4 shows that the amount of vortex l
density which is missing increases withVns . How to explain
Fig. 4? It is apparent from the previous discussions that
application of the counterflowVns tends to increase the dis
order of the vortex configuration by creating instability a
vortex reconnections which randomize the orientation of
vortices. To the contrary, the application of the rotationV
tends to order the vortex configuration by the polarizat
mechanism arising from the friction force@see Eq.~14!#.
This observation suggests the following analogy between
problem ~thermal counterflow in the presence of rotatio!
and the problem of a system of spins in a heat bath in
presence of an applied magnetic field.

ConsiderN spins of dipole momentm, which are con-
tained in a heat bath of volumeV and temperatureT and
which are free to take any orientation in space. If we ap
5-10
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an external magnetic fieldH, the resulting magnetization pe
unit volume is

M5Msat f S mH

kBTD , ~24!

where

f ~x!5coth~x!2
1

x
, ~25!

is the Langevin function of argumentx, kB is Boltzmann’s
constant, andMsat5N m/V.

Pursuing the analogy, we can think of the vortex tangle
a collection of ‘‘vortex segments.’’ The segments are free
assume any orientation in space, tend to be aligned by
applied rotationV, and tend to be randomized by the appli
counterflowVns . Hence, in analogy with the system of spin
we expect that the fractional alignment of the tangle is giv
by the Langevin function

f S a
~2V/k!

~gH
2 Vns

2 !
D 5 f ~V* !, ~26!

where the dimensionless quantitiesV* andL* are

V* 5a
LR

LH
5a

2V

kgH
2 Vns

2
, ~27!

L* 5
Lexpt2L

bLH
, ~28!

anda andb are fitting parameters. Figure 15 confirms th
the data of Fig. 4, when plotted in terms ofV* and L* ,
almost collapse onto a single curve. The quantityL* repre-
sents the relative deviation from the expected line dens
that is to sayL* measures the polarization~fractional align-
ment! of the tangle. The fitting parameters which we ha
used area511 andb50.23, whereasgH598.2 s/cm2 is ob-
tained from the measured vortex line density in the abse

FIG. 15. Plot ofL* 5(Lexpt2L)/(bLH) vs V* 5aLR /LH . The
solid line is the Langevin curvef (aLR /LH).
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of rotation. The fact thatb,1 suggests that the quantity
2b can be interpreted as the effective fraction of clos
vortex loops, because any vortex line ending on itself can
produce a net rotation~rotation is due to the net number o
vortex lines through a given cross section!.

X. CONCLUSIONS

In conclusion, we have studied the stability of a superflu
vortex array in the presence of an applied counterflow, giv
answers to some questions which were first asked by
pioneering experiment of Swansonet al.17 After investigat-
ing the DG instability,Vc1, we have determined the exis
tence of a state of superfluid turbulence~polarized turbu-
lence! which is characterized by two statistically steady-st
properties, the vortex line density, and the degree of po
ization. Although our computed range of vortex line densit
does not overlap with the much higher values obtained in
experiment, we find the same qualitative dependence of
tex line density versus counterflow velocity at different ro
tions. We have also made some qualitative progress to
derstand what happens atVns5Vc2. Although more
quantitatively results are still needed to make direct con
with the experiment, the scenario which we proposed is
following: at small enough velocityV,Vc1 the axial flow
cannot destabilize the ordered vortex array configuration
Vns5Vc1 the DG instability disrupts the vortex array; in th
region Vc1,Vns,Vc2 we have a state of turbulence whic
retains some order in the form of polarization; finally,
Vns5Vc2, there are enough vortex reconnections to dest
any polarization.

Further work with more computing power will hopefull
investigate other aspects of the problem, particularly w
happens at high counterflow velocities and line densities.
also hope that our work will stimulate more experiments
this problem. On the theoretical side, further work will b
necessary to develop a better understanding of the tan
dynamics in terms of vortex line density as well as oth
measures, such as the anisotropy,33 which describe other de
grees of freedom.

It is somewhat surprising that so little is known about t
destabilization of a rotational vortex array by an impos
counterflow. For example, it should be possible to obse
the polarization of turbulence by using simultaneous m
surements of second sound attenuation along and acros
rotation axis.

Finally, our work should be of interest to other investig
tions of vortex arrays and how they can be destabilized
other systems, ranging from3He ~Ref. 15! to atomic Bose-
Einstein condensates.34 It is also worth noticing that this
study has revealed the crossover of the dimensionality
vortex systems. If one considers the three regimes in Fig
one notices that, at a fixed value ofVns , increasing the ro-
tation rate makes the vortices polarized, changing the
namics from three dimensional to two dimensional. This
duction of the dimensionality of turbulence has be
observed in classical fluid mechanics.35
5-11
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