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Kink propagation and trapping in a two-dimensional curved Josephson junction
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Sine-Gordon kink propagation in a curved planar waveguide is considered. The waveguide consists of two
rectangular regions joined by a bent section of constant curvature. Transverse homogeneous and inhomoge-
neous Neumann boundary conditions are used. The latter models an energy-providing mechanism for Joseph-
son junctions of overlap type. A collective variable approach based on the kink position and the kink width
depending on the transversal coordinate is developed. The latter allows to take into account both longitudinal
and centrifugal forces which act on the nonlinear excitation moving in a region with finite curvature and to
obtain a qualitatively good agreement with the numerical simulations. The region with finite curvature acts as
a potential barrier whose height and width depend on the radius of curvature of the waveguide. The kink
transmission, reflection, and trapping are investigated. The kink may be captured when a driving force, pro-
vided by a magnetic field, is applied to the kink.
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I. INTRODUCTION

Recent advances in microstructuring technology h
made it possible to fabricate various low-dimensional s
tems with complicated geometry. Examples are photo
crystals with embedded defect structures such as microc
ties, waveguides, and waveguide bends;1 narrow construc-
tions ~quantum dots and channels! formed at semiconducto
heterostructures,2 magnetic nanodisks, dots, and rings,3,4 etc.

It is well known that the wave equation subject to Diric
let boundary conditions has bound states in straight chan
of variable width5 and in curved channels of constant cro
section.6 Spectral and transport characteristics of quant
electron channels7 and waveguides in photonic crystal8 are
essentially modified by the existence of segments with fin
curvature.

Until recently there have been a few theoretical and
merical studies of the effect of curvature on properties
nonlinear excitations. Nonlinear whispering gallery mod
for a nonlinear Maxwell equation in a microdisk were inve
tigated in Ref. 9, the excitation of whispering-gallery-ty
electromagnetic modes by a moving fluxon in an annu
Josephson junction was found in Ref. 10. The fluxon dyna
ics in exponentially tapered Josephson flux-flow oscilla
was studied in Ref. 11. Nonlinear localized modes in tw
dimensional photonic crystal waveguides were investiga
in Ref. 12. A curved chain of nonlinear oscillators was co
sidered in Ref. 13 and it was shown that the interplay
curvature and nonlinearity leads to a symmetry break
when an asymmetric stationary state becomes energeti
more favorable than a symmetric stationary state. Propa
tion of Bose-Einstein condensates in magnetic wavegu
was found quite recently in Ref. 14. Single-mode propa
tion was observed along homogeneous segments of
waveguide while geometric deformations of the microfab
cated wires lead to strong transverse excitations.
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The aim of this paper is to study the motion of fluxo
moving in a two-dimensional finite domain. Specifically w
treat a planar curved Josephson junction whose width is c
stant and is much smaller than its entire length. We cons
inhomogeneous Neumann boundary conditions on the tr
verse boundaries of the domain. Using a simple collect
variable analysis based on the fluxon position we show th
region of nonzero curvature in a waveguide induces a po
tial barrier for the wave. This is different from the case
transverse Dirichlet boundary conditions where studies
the ~linear! Schrödinger equation show the existence of
localized mode which will trap waves in the curved regio
The paper is organized as follows. Section II describes
model. In Sec. III a collective coordinate approach is dev
oped. The results of numerical simulations and their co
parison with the results of the collective coordinate appro
are discussed in Sec. IV. Finally, Sec. V contains our conc
sions.

II. MODEL AND EQUATIONS OF MOTION

We consider a two-dimensional Josephson junctionV
constructed of two straight segments joined by a bent sec
~see Fig. 1!. The fluxon dynamics can be described by t
two-dimensional sine-Gordon~SG! equation

]2f

]t2
2

]2f

]x2
2

]2f

]y2
1a

]f

]t
1sinf50, ~1!

wherea is the damping coefficient. The boundary conditio
for Eq. ~1! are obtained from the relation15,16 between the
effective magnetic fieldH and the phase differencef by
means of the relation

HW 52 ẑ3“f, ~2!
©2004 The American Physical Society06-1
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whereẑ is the unit vector normal to the junctions plane, a
have the form

nW •“fu]V5nW •~ ẑ3HW !u]V . ~3!

HerenW is the outward normal to the boundary of the juncti
region]V.

In this paperV has constant widthw ~see Fig. 2!.17 The
center curve in the bent and straight sections ofV, denoted
C, is given by rW5rW (s)[@a(s),b(s)#, where s is the arc
length of C. Note the normalizationirW 8(s)i51, where
prime denotes derivative with respect tos. The points inV
are labeled in accordance with the parametrization

rW5rW ~s!1unW ~s!, ~4!

where the coordinateu measures the signed distance fromC.
nW (s)5@2b8(s),a8(s)# denotes the unit normal toC. To sat-
isfy the normalization assumption we choosea8(s)
5cos@u(s)#, b8(s)5sin@u(s)#. The parametrization~4! im-
plies that (s,u) are orthogonal coordinates and the comp
nents of the metric tensor are

gss5@12uk~s!#2, guu51, ~5!

wherek(s)5A(a9)21(b9)2 is the curvature of the referenc
line. In this case the curvature of the reference curveC takes
the formk(s)5u8(s). The curveC2 (C1) which is given by
Eq. ~4! with u52w/2 (u5w/2) represents the inner bound
ary ~outer boundary! of the junction.

In the case when the external magnetic field is caused
a current passing through the junction, then inhomogene
Neumann boundary conditions are induced for the ove
geometry and they may be written in the form of

FIG. 1. Curved Josephson junction structure.
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]f

]u U
u56w/2

56
I

2,6
, ~6!

whereI is the normalized total bias through the junction a
,6 is the normalized length of the boundaryC6 . Assuming
that ,6@w, we will neglect the difference between th
length of the inner and outer boundaries and replace,6 by ,
in Eq. ~6!.

In the curvilinear (s,u) coordinates the sG equation~1!
takes the form

]2f

]t2
2

1

g

]

]s S 1

g

]f

]s D2
1

g

]

]u S g
]f

]u D1a
]f

]t
1sin~f!50,

~7!

whereg[Agssguu512uk(s) is the Jacobian of the trans
formation from the Cartesian coordinates to the (s,u) coor-
dinates, with the boundary conditions~6! and

]sf→0 for s→6`. ~8!

Let C be straight on both ends,s,s1 ands.s2, and let it
have a finite constant curvature inside this interval

k~s!5H 1

R
when s1<s<s2

0 elsewhere.
~9!

The corresponding expression foru in the bent region is
u(s)5(p/2)(s2s1)/(s22s1).

We will consider the scattering and trapping of kinks
they pass through the bending region.

III. A COLLECTIVE COORDINATE APPROACH

We will use the method of collective coordinates to ga
understanding of how the bending affects the kink dynam
It is not convenient to apply the collective coordinate a
proach in the case of inhomogeneous von Neumann bou
ary conditions. We use a trick similar to the one which w
proposed in Ref. 18 for the case of rectangular Joseph
junctions of overlap geometry. To this end we introduce
auxiliary functionF0(u) which satisfies the equation

d2F0

du2
2sinF050, ~10!
r
FIG. 2. Change from Cartesian to curvilinea
coordinates.
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dF0

du U
u56w/2

56
I

2,
. ~11!

Now, a solution of the form

f~s,u,t !5F0~u!1c~s,u,t ! ~12!

reduces Eqs.~6!, ~7!, and~8! to

]2c

]t2
2

1

g

]

]s S 1

g

]c

]s D2
1

g

]

]u S g
]c

]u D1a
]c

]t
1sin~c1F0!

2sinF02
1

g

]g

]u

dF0

du
50, ~13!

with the homogeneous von Neumann boundary condition

]c

]u U
u56w/2

50, ~14!

for the transversal coordinateu and the boundary condition
for the arclength coordinates identical to Eq.~8!,

]sc→0 for s→6`. ~15!

In the absence of damping (a50) the sG equation~13!
may be obtained by variation of the Lagrange function

L$f%5E
2`

` E
2w/2

w/2 1

w
Lduds, ~16!

where the Lagrangian densityL can be represented as th
following sum:

L5L01Ld . ~17!

The first term represents the density in the case with
damping,

L05H 1

2 S ]c

]t D 2

2
1

2g2 S ]c

]s D 2

2
1

2 S ]c

]u D 2

2@12cos~c!#J g,

~18!

while the second is

Ld5F ~12cosF0!~12cosc!2sinF0 sinc

2s
]c

]s
sinF01

1

g

]g

]u

dF0

du
c Gg, ~19!

and describes driving effects in the fluxon dynamics.
The starting point of the collective coordinate method

to choose a localized self-similar trial function which is clo
to the exact solution in the absence of bending and cont
a number of parameters which become time dependent
to the perturbations. In our case, the trial function may
chosen as

c~s,u,t !54 arctan expS s2S~u,t !

B~u,t ! D , ~20!
13450
ut
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e

where the functionsB(u,t) andS(u,t) determine the width
and the position, respectively, of the kink. From Eq.~14! we
get the boundary conditions

]B
]u U

u56w/2

5
]S
]uU

u56w/2

50. ~21!

To take explicitly into account the boundary conditio
~21! we expand the position of the wave frontS(u,t) and the
width B(u,t) in Fourier series,

S~u,t !5 (
n50

` H S2n~ t !cosF2npu

w G
1S2n11~ t !sinF ~2n11!pu

w G J , ~22!

B~u,t !5 (
n50

` H B2n~ t !cosF2npu

w G
1B2n11~ t !sinF ~2n11!pu

w G J . ~23!

Here the functionS0(t) describes the motion of the flat fron
while the functionsSn(t) (nÞ0) characterize the curvatur
of the front. The functionsBn(t) give the dependence of th
width on time. Inserting Eqs.~20!, ~22!, and ~23! into Eqs.
~16!–~19! and carrying out the integrations overs andu we
obtain an effective Lagrangian in the form~see Appendix A
for details!

L5L01Ld , ~24!

being

L05T2V, ~25!

where

T54S Ṡ21
p2

24
Ḃ2D ~26!

is the effective kinetic energy, and

V54H S p4

24w2
1

1

2D B21a0U2F S 2w

p2R
2a1D F

1S 2w

p2R
1a1D UGBJ ~27!

is the effective potential energy. Finally

Ld528gS. ~28!

In Eqs. ~24!–~28!, S(t)[S0(t), B(t)[B1(t), and the fol-
lowing expressions have been used:
6-3
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U5
sinh~2a!

cosh~2a!1cosh~2S!
,

F5
a1S

2cosh2~S1a!
1

a2S

2cosh2~S2a!
, ~29!

a05211
R

w
ln

2R1w

2R2w
,

a15
R

wE2w/2R

w/2R x

12x
sinS pR

w
xDdx, ~30!

g5
p

2w

]f

]u U
u5w/2

[p
4I
w,

. ~31!

Here 2a5s22s1 is the length of the bent region.
By deriving the Lagrange function~24!–~28! the follow-

ing approximations were used.
~1! In the expansion~22! only the harmonics withn50

are taken into account. This means that we neglected
front curvature@we checked the accuracy of this approxim
tion and found that in the case when the width of the junct
is not too large (w<2p) the discarded terms do not contrib
ute significantly to the kink dynamics#.

~2! In the expansion~23! we substitute B(u,t)51
1B(t)sin(pu/w), which means that we neglected the zero
harmonics and putB0(t)51 ~remember that in the case o

the straight waveguideB05A12Ṡ2), and discarded the har
monics withn>1. As expected we found this approximatio
to be correct for slow moving kinks (Ṡ!1) and moderately
wide waveguides (w,2p).

~3! Since we are interested in slow moving kinksṠ
!1) we neglected the coupling terms of the typeṠḂ.

~4! Taking into account that we are interested here in
weak driving case (g,1) only the linear driving terms were
considered. We also neglected the difference between
driving in the straight and bent part of the junction.

When the results of more sophisticated approach base
the four variational parametersS0 , S1 , B0, andB1 ~see Ap-
pendix A! are compared with that of Eqs.~25!–~27!, it is
apparent that the simple approach catches all essential
tures of the kink dynamics.

IV. NUMERICAL AND ANALYTICAL RESULTS

A. Case without driving and damping

From the Lagrangian~25!–~27! we obtain the equation
of motion in the form

8S̈1
]V

]S
50,

p2

3
B̈1

]V

]B
50. ~32!
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Thus in the collective coordinate approach the kink d
namics in a curved waveguide is equivalent to the dynam
of a particle moving in the two-dimensional potentialV. It is
necessary to stress that considering the soliton widthB(u,t)
as a variational parameter in the trial function~20! is crucial.
This variational parameter takes into account the centrifu
force which acts on the kink in the bending region. T
width of the soliton in its stationary stateBst is given by the
equation

]V

]B
50, ~33!

and its value is

Bst5
@2w/~p2R!2a1#F1@2w/~p2R!1a1#U

11p4/~12w2!
. ~34!

This quantity is finite inside the bending region and rapid
vanishes outside of it~see Fig. 3!. An illustration of how the
presence of the second variational parameter affects the
dynamics is given in Figs. 4 and 5. The latter represents
two-dimensional behavior of the potential function along t
pathB5Bst . The figures show clearly that the potential pr
file which corresponds to the case of the one-parametric
function (B50) represents a simple barrier. On the oth
hand, moving along the pathB5Bst the particle experience
a potential profile with two humps separated by a val
between them. This potential well is shallow whenw<R and

FIG. 3. Solution to Eq.~32! with V given by Eq.~27! plotted in
(S,B) plane for w54,R54,s252s15p.

FIG. 4. The effective potentialV given by Eq. ~27! for an
equivalent mechanical system withw56,R54,s252s15p.
6-4
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becomes deep and well pronounced whenw→2R. However,
it is worth noting that the casew'2R is beyond the accu
racy of our approximations as the conditionuB21u!1 is
violated whenw is close to 2R.

The numerical simulations of Eq.~1! have been con-
ducted in the Cartesian coordinates (x,y) using the finite
element program packageFEMLAB.19 On the triangular ele-
ments we have used Lagrange-linear and Lagrange-quad
basis functions to expand the solution numerically. The
pansion coefficients are time dependent and are governe
a system of ordinary differential equations~ODE’s! derived
from a variational formulation of Eq.~1!. This system is
automatically set up byFEMLAB and have been solved nu
merically employing the Matlab ordinary differential equ
tion solvers ode15s and ode45. The ode15s is a multi
method solver of variable order designed for stiff syste
and ode45 is an explicit Runge-Kutta method of order fo
and five. Specifying relative tolerances of 1026–1023 gave
satisfactory accurate numerical solutions with about 3800
ements in the domain at Fig. 2. We found that the nons
solver ode45 is faster than ode15s and sufficiently effic
and accurate for the sine-Gordon equation~1!. Typical run
times are 9 h with ode45 on a SUN Fire 3800, simulatin
from t50 to t5200 with about 3800 elements and relati
tolerance 1023, absolute tolerance 1024.

Initially the kink is located in the straight part of the do
main far away from the domain edge and from the curv
region to avoid interference with the boundaries. It
launched into the strip with different initial velocities. So
initial conditions for our numerical simulations we choo
the function

f~s,u,0!54 arctan expS s2X0

A12v0
2D , ~35!

and ] tf(s,u,0)52v0]sf(s,u,0) which satisfies the sG
equation in the straight region in the absence of drivingI
50. Here X0 is the initial position, andv0 is the initial
velocity. For the system of equations~32!, satisfied by the
collective coordinates, the initial conditions are

S~0!5X0 ,Ṡ~0!5v0 and B~0!5Ḃ~0!50. ~36!

FIG. 5. Effective potential projection along the pathB50 for
w54,R54,s252s15p ~doted line! and along the pathB5Bst for
w56,R54,s252s15p ~continuous line! and for w54,R54,s2

52s15p ~dashed line!.
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Let us consider the kink dynamics in the right-ang
waveguide withw5R54, s22s152p. In terms of the col-
lective coordinate approach this choice of parameters co
sponds to a rather shallow interhump well~see Fig. 5 dashed
line!. Two typical examples of the kink evolution for tw

FIG. 6. The wave is reflected forR54, w54, andv050.17,
while vcr'0.19.
6-5
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C. GORRIAet al. PHYSICAL REVIEW B 69, 134506 ~2004!
different initial velocities are presented in Figs. 6 and 7.
the first one, corresponding to a small initial velocity, t
kink is seen to be reflected from the bending region while
the second, for large enough initial velocity, the kink pas
the bent region leaving behind some small radiation.

The results of a more systematic study of the front pro
gation @i.e., the position of the points for the levelf(s,u,t)

FIG. 7. The wave is transmitted forR54, w54, and v0

50.18, whilevcr'0.19.
13450
n
s

-

5p] in the curved stripe are given in the phase portrait@front
position S(t), front velocity Ṡ] presented in Fig. 8. In the
same figure the results of the collective coordinate appro
based on Eqs.~32! are also presented. It is observed that t
collective coordinate approach gives a qualitatively go
agreement with the results of the numerical simulations.
the figure shows, the initial velocity of the soliton determin
completely its trajectory. When the initial velocity is lowe
than some critical valuevcr the trajectories do not penetra
into the bending region. On the other hand, for higher init
velocities,v0.vcr , the kink passes the curved region a
propagates all the way through the junction. In this rega
the motion of sG kinks in two-dimensional curved strips
similar to the propagation of fluxons in Josephson lines w
impurities.20 It is also worth noting that the approach bas
on the two variational parametersSandB agrees quantitively
with the results of the numerical simulations for the critic
velocity vcr while the approach based on a single variatio
parameter~the kink position! exaggerates the height of th
effective potential in the bent region. For example, whenw
5R54 the value of the critical velocity obtained from simu
lations is 0.18<vcr<0.19, while the variational approac
assuming a modulation of the width givesvcr'0.19. The
simple variational approach based only on the kink posit
givesvcr'0.3.

For a straight driven damped sine-Gordon equation
excitation switches to a spatially uniform state for high-b
current at a critical velocity.22 It is an interesting question
whether a similar limiting velocity exists in the curve
geometry.

B. Case with driving and damping: kink capture

We consider the motion of fluxons in the presence
damping and driving. The energy-providing mechanism h
is modeled by the inhomogeneous von Neumann bound
conditions ~6!. The equivalence of bending to a potenti
barrier, demonstrated above, suggests that in a waveg
kinks can be captured nearby the bending by applying
external driving. Theg coefficient in the wave equation~7!
for the s variable is similar to a surface inductance in t

FIG. 8. Phase portrait (S,Ṡ) using w54,R54 for the simula-
tions ~continuous line! and the collective variable equations~37!
~dashed line!. The critical velocity for transmission isvcr'0.18.
6-6
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KINK PROPAGATION AND TRAPPING IN A TWO- . . . PHYSICAL REVIEW B 69, 134506 ~2004!
Josephson context so that one expects kink trapping a
interface in the presence of a current as in~Ref. 23!. Indeed,
in the presence of driving and damping the equations of m
tion for the collective coordinatesSandB are~see Appendix
B for details!

S̈1
1

8

]V

]S
1aṠ1g50,

B̈1
3

p2

]V

]B
1aḂ50. ~37!

An analysis shows that forugu,gcr Eqs. ~37! possess a
stable sink-type fixed point which corresponds to a trapp
of fluxon ~see Fig. 9!. The trap is always located outside th
bent region and gets closer to the barrier when the driv
force g increases. The critical value of the driving forcegcr
decreases when the width of the junction decreases~see Figs.
10–11!.

The two-dimensional projections of the phase portr
onto the (S,Ṡ) plane are shown in Fig. 12. In full agreeme
with the results of the collective coordinate approach ba
on Eqs.~37!, as the width of the junction increases, the tra
ping occurs closer to the bent region of the junction.

FIG. 9. Effective potentialV(S) as a function of the kink posi-
tions in the precence of a driving force obtained from Eqs.~27! and
~37! in the absence of damping.g50.03 forw53,R52. Kink trap-
ping is possible as shown by the local minimum of this potential
S,0.

FIG. 10. Phase diagram forR52. The kink-trapping region is
shown in gray.
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V. CONCLUSIONS

We consider nonlinear wave propagation in a curved p
nar waveguide using as a model kink solutions for the si
Gordon equation. The waveguide consists of two rectang
regions joined by a bent section of constant curvature. Tra
verse homogeneous and inhomogeneous Neumann boun
conditions are used. The latter models an energy-provid
mechanism for Josephson junctions of overlap type. We
velop a collective variable approach based on the kink p
tion and the kink width depending on the transversal coo
nate. It allows us to take into account both longitudinal a
centrifugal forces, which act on the nonlinear excitati
moving in a region with finite curvature and to obtain
qualitatively good agreement with the results of the nume
cal simulations.

The curved region might manifest itself as a two-hum
potential barrier with interbarrier space acting as a poten
valley. The height of the barriers and depth of the interbar
valley depend on the ratio between the width of the wa
guidew and its radius of curvatureR. The appearance of th
double barrier structures is due to the two-dimensional ch
acter of the kink evolution in curved waveguides. Whenw
<R the well is shallow and the bending region acts as
potential barrier.

Kink capture may occur when a driving force is applied

FIG. 12. Numerical~continuous line! and analytical~dashed

line! (S,Ṡ) phase portrait forw53, R52, g50.03, anda50.03.
Trapping occurs ats,2a52p/2.

r

FIG. 11. Position of the kink trap as a function of the curre
density for three different waveguide widthsw53, 4, and 5.R
54.
6-7
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C. GORRIAet al. PHYSICAL REVIEW B 69, 134506 ~2004!
the kink. In Josephson junctions this driving force is pr
vided by a magnetic field via the inhomogeneous von N
mann boundary conditions. The kink trapping occurs only
a finite interval of the driving parameter when this for
drives the kink against the repulsion caused by the bar
created in the bent section. Beyond this interval the kink
transmitted along the waveguide.

This study shows that by changing the geometry
waveguides one can efficiently control the dynamics of n
linear excitations. Depending on the width of the wavegu
and its curvature the bending regions may act either as
tential barriers or as traps for nonlinear excitations. This f
ture could be applied to electronic devices for storing bin
data.
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APPENDIX A

Inserting Eq.~20! into the Lagrange functions~16!–~19!
and carrying out the integration over the arclengths, we
obtain an effective Lagrangian for the dynamics of the fro
S(u,t) and the widthB(u,t) in the form

L$f%5L$B,S%5Ls1Lb1Ldr , ~A1!

where

Ls54
1

wE2w/2

w/2 H S ]S
]t D

2

2S ]S
]uD 2

1
p2

12 F S ]B
]t D

2

2S ]B
]u D 2G

2B 221J 1

Bdu ~A2!

is the effective Lagrange function for the straight junctio
The first perturbation term

Lb52
4

wE2w/2

w/2 u

R H F S ]S

]t D
2

2S ]S

]uD 2

2B 21
R

R2uGU0

12F]S

]t

]B

]t
2

]S

]u

]B

]uGU11F S ]B
]t D

2

2S ]B
]u D 2GU2J 1

Bdu

~A3!
13450
-
-

n

er
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-
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-
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-
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t

-

-
-

t

.

is due to the presence of the bending region~9! in the junc-
tion. Here the notation

Un5
1

2E2(a1S)/B

(a2S)/B
xn sech2 xdx, n50,1,2 ~A4!

is introduced. The second perturbation term also consist
two parts

Ldr5Ldr8 1Ldr9 . ~A5!

The functional

Ldr8 524
1

wE2w/2

w/2 H p

2

d2F0

du2
S~u,t !2~12cosF0!B~u,t !J du

~A6!
describes the driving effects in the straight junction while

Ldr9 5
1

wE2w/2

w/2 1

R H FarctanS sinh~a/B!

cosh~S/B! D d

du S u
dF0

du DS~u,t !

1C~S,B!B~u,t !G1
8sinh~a/B!sinh~S/B!

cosh~2a/B!1cosh~2S/B!
u

d2F0

du2

2aarctanS cosh~a/B!

sinh~S/B! DdF0

du J du ~A7!

with

C~S,B!52E
2(a1S)/B

(a2S)/B
x sechx dx, ~A8!

is due to the combined action of driving force and curvatu
To take explicitly into account the boundary conditio

~21! we expand the frontS(u,t) and the widthB(u,t) in
Fourier series

S~u,t !5 (
n50

` H S2n~ t !cosS 2npu

w D
1S2n11~ t !sinS ~n11!pu

w D J ,

B~u,t !5 (
n50

` H B2n~ t !cosS 2npu

w D
1B2n11~ t !sinS ~n11!pu

w D J . ~A9!

The results of the numerical simulations show that
curvature of the front is small and therefore we need o
take into account the first few terms in the expansion~23!. In
this appendix, to check the accuracy of the approximati
used in the main text we extend the set of variational para
eters and derive the collective coordinate Lagrangian ass
ing that

S~u,t !5S0~ t !1S1~ t !sinS pu

w D ,
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B~u,t !5B0~ t !1B1~ t !sinS pu

w D . ~A10!

First, we consider the case without driving (I50) and with-
out damping. Inserting Eqs.~A10! into the Lagrangian~A1!–
~A3! and carrying out the integrations over the transver
variable, we obtain that the kink dynamics in the case w
out driving and damping is described by the effective L
grangian function

L5
4

B0
H Ṡ0

21
1

2
Ṡ1

21
p2

12 S Ḃ0
21

1

2
Ḃ1

2D2
p2

2w2
S1

22B0
221

2
1

2B0
2 S 11

p4B0
2

12w2D B1
22

2w

p2R
@2Ṡ0Ṡ1U0

1~Ṡ0Ḃ11Ṡ1Ḃ0!U112Ḃ0Ḃ1U2#2a0U02a1S1

]U0

]S0

2a1

B1

B0
S B0

]U0

]B0
2U0D1

2w

p2R
FS1B0

]U

]S0

1B1S B0

]U0

]B0
1U0D G J , ~A11!

where

Un5UnuB15S150 , n50,1,2. ~A12!

We solved numerically the set of Euler-Lagrange eq
tions corresponding to the Lagrangian~A11!. The results are
presented in Fig. 13 together with the corresponding res
obtained in the framework of the simple approach used in
Sec. III. A good agreement of both approaches is obser
Therefore, to gain a qualitative understanding of the k
dynamics it is sufficient to use the simple collective coor
nate approach based on two variational parametersS(t)
[S0(t) andB(t)[B1(t).

APPENDIX B

In this appendix we derive a collective coordinate eq
tion of motion for the case with driving and damping. In o
derivation we will follow the method given in Ref. 21 for th
case of the damped nonlinear Schro¨dinger equation. The
equation of motion~13! can be written in the form

]L
]c

2
]

]t

]L
]c t

2
]

]s

]L
]cs

2
]

]u

]L
]cu

5agc t , ~B1!

where the Lagrange densityL is given by Eqs.~17!–~19!.
Assuming that the solution of the equation may be written

c54arctan expF s2S~ t !

11B~ t !sin~pu/w!G , ~B2!

invoking Eq.~16! and integrating by parts we get
13450
l
-
-

-

lts
e
d.
k
-

-

s

]L

]S
5E

2`

` 1

wE2w/2

w/2 S ]L
]c

]c

]S
1

]L
]cu

]cu

]S
1

]L
]cs

]cs

]S

1
]L
]c t

]c t

]S Ddsdu

5E
2`

` 1

wE2w/2

w/2 F S ]L
]c

2
]

]u

]L
]cu

2
]

]s

]L
]cs

D ]c

]S

1
]L
]c t

]c t

]S Gdsdu, ~B3!

d

dt

]L

]St
5E

2`

` 1

wE2w/2

w/2 ]L
]c t

]c t

]St
dsdu

5
d

dtE2`

` 1

wE2w/2

w/2 ]L
]c t

]c

]S
dsdu

5E
2`

` 1

wE2w/2

w/2 S ]c

]S

d

dt

]L
]c t

1
]L
]c t

]c t

]S Ddsdu.

~B4!

Subtracting now Eq.~B4! from Eq. ~B3! and invoking Eq.
~B1!, we get

]L

]S
2

d

dt

]L

]St
5aE

2`

` 1

wE2w/2

w/2 ]c

]t

]c

]S
gdsdu. ~B5!

In the same way one can obtain the equation forB

FIG. 13. Comparison of the two-dimensional projections on

(S,Ṡ) plane~upper panel! and onto (S,B) plane~lower panel! for
the simple collective coordinate approach,S(t)5S0(t) and B(t)
5B1(t) ~full curve! and for the extended approach given by E
~A10! ~dotted curve!. w54,R54.
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]L

]B
2

d

dt

]L

]Bt
5aE

2`

` 1

wE2w/2

w/2 ]c

]t

]c

]B
gdsdu. ~B6!

Introducing Eq.~B1! into Eqs. ~B5!–~B6! and carrying
out the integrations with respect tos andu we get

]L

]S
2

d

dt

]L

]St
58aSt , ~B7!
ry
th

nc

r,

r

13450
]L

]B
2

d

dt

]L

]Bt
5

p2

3
aBt , ~B8!

where we neglected the difference of the damping effect
the bent and in the straight regions of the channel due
smallness of the damping coefficient (a!1). The nonlinear
terms in the right-hand sides of Eqs.~B5! and~B6! were also
neglected.
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