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A conceptual consideration is given to a zero-energy $EHES) at the surface of unconventional supercon-
ductors. The reflection coefficients in normal-metal/supercondybtBy junctions are calculated based on a
phenomenological description of the reflection processes of a quasiparticle. The phenomenological theory
reveals the importance of the sign change in the pair potential for the formation of the ZES. The ZES is
observed as the zero-bias conductance gBICP) in the differential conductance of NS junctions. The split
of the ZBCP due to broken time-reversal symmetry states is naturally understood in the present theory. We also
discuss effects of external magnetic fields on the ZBCP.
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[. INTRODUCTION of the unconventional pairing symmetry for the formation of
the ZES without directly solving the BdG equation. More-
Transport phenomena in unconventional superconductorsver, we easily understand that the ZES is a result of the
have attracted considerable interest in recent years becauisgerference effect of a quasiparticle. The applicability of the
high-T, superconductors may have th&twave pairing analysis in the previous paper, however, is very limited be-
symmetry'~3 The unconventional pairing symmetry causescause of its simplicity.
the anisotropy in transport properties such as the electric In this paper, we reconstruct the phenomenological theory
conductance and the thermal conductifityln normal-  of the Andreev reflection to meet the mathematical accuracy.
metal/highT. superconductor junctions, for instance, theWe calculate the reflection coefficients of an electronlike
shape of the differential conductance reflects the density afjuasiparticle incident from a normal metal into a NS inter-
states when tha axis of highT, materials is perpendicular face. Near the junction interface, a quasiparticle suffers two
to the junction interface. Whea axis deviates from the in- kinds of reflection:(i) the normal reflection by the barrier
terface normal, on the other hand, the conductance showsptential at the NS interface arid) the Andreev reflection
large peak at the zero bias voltatjé® Such anisotropy in the by the pair potential in the superconductor. In the present
conductance is now explained by the formation of a zerotheory, we consider the two reflections separately to calculate
energy statéZES®!° at the interface of junctions. Since the the transport coefficients. As a consequence, the Andreev re-
ZES appears just on the Fermi energy, it drastically affectdlection coefficient is decomposed into a series expansion
transport properties through the interface of unconventionalith respect to the normal reflection probability of NS junc-
superconductor junctions. The low-temperature anomaly ofions. The expression of the Andreev reflection probability
the Josephson current between the two unconventional senhables us to understand the importance of the unconven-
perconductors is explained in terms of the resonant tunnelinonal pairing symmetry for the formation of the ZES. In
of Cooper pairs via the ZE®~24So far a considerable num- unconventional superconductors, the pair potential in the
ber of studies have been made on the ZES itself and relatezglectron branch £ ,) differs from that in the hole branch
phenomena of transport properties in both spin-singlet an¢)A ). The Andreev reflection probability at the zero energy
spin-triplet unconventional superconductor junctiéfig€®=>°  is expressed as the summation of the alternating series when
The conductance in normal-metal/supercondudies) A, andA_ have the same sign. In this case, the zero-bias
junctions is calculated from the normal and the Andreevconductance becomes a small value proportionalt if,
reflectior? coefficients which are obtained by solving the where|ty|? is the normal transmission probability of junc-
Bogoliubov—de GennefBdG) equation® under appropriate tions. On the other hand when, A _ <0, all the expansion
boundary conditions at the junction interface. Consequentlgeries have the same sign and the conductance has a large
we easily find the zero-bias conductance pe#BCP) in NS peak at the zero bias. The phenomenological theory can be
junctions of highT, superconductordAlthough the algebra applied to superconductors with a broken time-reversal sym-
itself is straightforward, it is not easy to understand the physmetry statg BTRSS (Refs. 54—6Y and NS junctions under
ics behind the calculation. In a previous papewe briefly  external magnetic field¥:58-7°
discussed reasons for the appearance of the ZBCP by a phe- This paper is organized as follows. In Sec. II, the Andreev
nomenological argument. The phenomenological analysiand the normal reflection coefficients are derived from a phe-
has several advantages. For instance, it shows the importannemenological description of a quasiparticle’s motion near
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Normal metal superconductor following can be extended to spin-triplet superconductors as
shown in the Appendix. When an electronlike quasiparticle is

bk (ke ky) incident from the normal metal as shown in Fig. 1, the wave
(—ky y)x / x> By function in the normal metal is given by
he b W W(r)= ! e'kX 4 ! e Xpeey 0 glkxxphe _eikyy
1, \h N 0 0 1 W'
Y| (e, ky) f/ LN ) (4)
(ke ky) e ky) wherek, andk, are the wave numbers on the Fermi surface
and they satisfkZ+ki=kZ with ke being the Fermi wave
X x=0 number. Throughout this paper we assume tRatA,
(@) <ug, WhereA, is the amplitude of the pair potential akd
is the energy of a quasiparticle measured from the Fermi
= = + + energy,ur=%2k2/(2m). In Eq. (4), r®® andr"® are the nor-
O +©+ D O mal and the Andreev reflection coefficients, respectively.
= + = — When a quasiparticle is incident from the normal metal in
d d d. the electron branch, directions of the outgoing waves are
s x%y? xy sign

indicated by arrows as shown in Fig. 1. The trajectories of a
(b) quasiparticle in the electron branch and those in the hole
branches are denoted by solid and broken lines, respectively.
(@). The trajectories of a quasiparticle in the electron branch angne interface changes its sign in the normal reflection,
those in the hole branch are denoted by solid and broken 'ine%hereas all velocity components change signs in the An-
rGSpeCt;V.ely‘ In(b), rt]he p?'r ﬁotflalntl?lstoﬁ, dxe—y2, andd,y wave  qraey reflection. In the superconductor, the wave number in
symmetries are schematically flustrated. the electron branch isk(,k,), but that in the hole branch

. . becomes Kk, ,ky). In unconventional superconductors, the
the NS interface. In Sec. lll, we discuss the conductanceair potential in the electron brangh , =A (ks k,)] differs

peaks in NS junctions. A relation between the broken time? . o
reversal symmetry states and the peak position in the co rom that in the.hOI? branchA _=A( kx’ky).]' There.fore
ductance is discussed in Sec. IV. We apply the phenomen he wave function in the superconductor is described by

logical theory to NS junctions under magnetic fields in Sec. hese two pair potentials:

V. In Sec. VI, we summarize this paper. u
_ + ik®x;ee
VD={| g4 g e, ) t
II. QUASIPARTICLE’S MOTION NEAR NS INTERFACES U+
Let us consider two-dimensional NS junctions as shown . e'’-¢ %U)e“khxthe elkyy ©)
in Fig. 1, where a normal metak&0) and a superconductor _ Jw'’
(x>0) are separated by a potential barfié&r)=Vy4(x).
We assume the periodic boundary condition inyttérection 1 QO.
and the width of the junction i$V. The NS junctions are Us(vs)= §(1+(—)?), (6)
described by the Bogoliubov—de Gennes equatfon:
f ,(6(r—r'>ho<r’> A(r,r)eles )(u(r')) g D2 v
A*(rrye e —s(r—rhe(r) /L u(r) 2]
u(r) e(th) | .2 2 VE _|A+(*)| rz
E(v(r))’ (1) k ke+(—)Kg e , (8)
h2v? Q.=VE*—|A.[|% 9
ho(r) == =+ Vd(X) ~ e 2 emEERR ©
wheret®® (t"®) is the transmission coefficient to the electron
(hole) branch in superconductors. The wave numbers of a
S AKERT,  X,>0 quasiparticle are approximately given bk® MW~k
A(Rg,r)= Vol K 3 +(—)il(2&,) for E~0, whereéy=rhvg/(mA,) is the co-
0, X, <0, herence length and-=7kg/m is the Fermi velocity. Thus a

quasiparticle penetrates into the superconductor within a
where ¢ is a macroscopic phase of the supercondud®gr, range ofé,. In Egs.(5)—(7), a phase' = represents the sign
=(X¢,Yo)=(r+r")/2, andr,=r—r’. Here we assume spin- (internal phaseof the pair potential and appears in the wave
singlet superconductors for simplicity. The argument in thefunction in addition to a macroscopic phase of the supercon-
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N S e N We next consider the reflection by the potential barrier in
st ord ,rO 3rd order a phenomenological way. In the presence of the potential
stor e: o ' barrier, the Andreev reflection processes are shown in Fig. 2.
e In the electron branch, the normal transmission and the nor-
F Wk mal reflection coefficients of the barrier are calculated to be
’ r’i tn=Ky/(kyt+izg) and ry=—izg/(ketizg), respectively,
" N ) with ky=Kk,/kg. Those in the hole branch atd andr% .
@ N The Andreev reflection coefficient in the first-order process
N S e t’i’ is given by
0 ,
2nd order | 7, Ak rhe(l)ZtErBetN. (16)

ol ¥
o

()

At first an electronlike quasiparticle starting fraptransmits

into the superconductor through (ty). In Fig. 2, the vec-
tors in real space are surrounded by squares to avoid confu-
sion. While traveling the superconductor within the range of
&0, the quasiparticle is reflected into the hole branch by the
pair potential at; (rge). Then the quasiparticle goes back to

() the normal metal in the hole branch through(ty). The

FIG. 2. The Andreev reflection processes are decomposed into$£c0nd-order Andreev reflection process in Fig) Zan be
series of reflections by the pair potential and the barrier potential.€Stimated in the same way:

.. . - h
ductor. The transmission and the reflection coefficients are r"(2) =tNAs 6 tn 17
obtained from the boundary conditions of these wave func-
tions. Near the junction interface, an incident quasiparticle AS:rgerNrShrﬁ (18

suffers two kinds of reflection(i) the normal reflection by

the barrier potential at the NS interface &jig the Andreev =—|rn2v v € @-—), (19

reflection by the pair potential in the superconductor. In this

paper, we consider separately contributions of the two reflecAfter the first Andreev reflection into the hole branch, the

tion processes to the reflection coefficients. quasiparticle suffers the normal reflectiony]. Next the
We first consider NS junctions with no barrier potential atholelike quasiparticle experiences the second Andreev reflec-

the interface, tion to the electron branch a (rg". Then the electronlike

quasiparticle suffers the normal reflectiony) followed by

the third Andreev reflection into the hole branat§q). Fi-

nally the holelike quasiparticle goes back to the normal metal

éhroughr(’) (tX). We only show the expression of the An-

dreev reflection coefficient in the third-order process,

Yo _g 10
In=——=
0= 7o =0 (10
wherez, represents the strength of the potential barrier. Th
Andreev reflection coefficients become

rge:_iv+efi¢+efi¢sy (12) rhe(S)ztﬁAérBetN. (20
reh_ i, aidgies (12) The correspondjng trajeptpry i; show_n in Figc)2 The total _
0 - ’ Andreev reflection coefficient is obtained by the summation
E_Q of these reflection processes up to the infinite order,
Vi=|—|Ai| , (13

he_ 2,.he n—-1
. . . re=|ty|r E As . 21)
wherer ¢ is the Andreev reflection coefficient from the elec- Itl*ro i (

tron branch to the hole branch in the absence of the potential o ) o .
barrier. We also give the Andreev reflection coefficient from!n the similar way, the normal reflection coefficient results in
the hole branch to the electron branat§'§. In the case of
E?— A% <0, v. can be described as

VA2-E? E

_ 2. .% .he.eh n-1
ree=ry+tirirhers nZl ALY (22)

V= TTA +i A.] (14  Although the reflection coefficients in Eq®1) and(22) are
- - obtained based on the phenomenological description of a
—C0Sf. +ising. =elf- (15) quasiparticle’s motion, they are mathematically identical to

the exact expressions calculated from the boundary condi-
Thus the Andreev reflection coefficients include only thetions of the wave functions in the presence of the potential
phase information in the limit of,=0. barrier® (See also Note Added in Propf.
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I1l. CONDUCTANCE 4
2]ty|

|rhe|2: )
(2= ty|?)?

The differential conductance is calculated from the nor- (28
mal and the Andreev reflection coefficiets’?
In low transparent junction§.e., z3>1) the Andreev reflec-
) tion probability becomes a small vallig|*/2x1/z5. There-
fore the zero-bias conductance in Eg4) is proportional to
1/23. Second, we consider that the signs of the two pair
whereVy,,s is the bias voltage applied to NS junctions. We potentials are opposite to each other. The pair potential
focus on the limit ofE—0 for a while, where the Andreev
reflection probability dominates the zero-bias conductance Ag (k)zzAOFX?y (dyy wave) (29
because the conductance can be described by Xy

2¢? 2. |, he|2
Gns= h > [1—[re92+[r"92]
X
y

E=eVjas

satisfiese'(?-~¢+)=—1 for all wave numbers and is real-
ized in a junction where tha axis of a highT. supercon-
ductor is oriented by 45° from the interface normal. All the
expansion series in Eq25) have the same sign and the
A quasiparticle after the Andreev reflection traces back thé\ndreev reflection probability becomes

original trajectory of a quasiparticle before the Andreev re-

flection. This is called the retro property of a quasiparticle. rhe2=1. (30

When we estimate the reflection coefficients in E84) and . . . .
HGY Thus the zero-bias conductance in Eg4) takes its maxi-

(22), we only consider the phase factor of the Andreev re ) . . ;
flection. A quasiparticle, however, may suffer additional MUM value. The sign of the pair potentials characterizes the

phase shift while moving around the NS interface. Actua"y,mterferenice effect of a quasiparticle'nea}r the NS interface.
an electron acquires a phag& (1= while traveling from 0" e(?-"0-)=1, the alternating series in E(5) reflect

ro to ry as shown in Fig. @). In addition to this, a phase the Qestr_uctl\{e mterferenc_e among the partial waves of a
quasiparticle in the expansion series. Hence the conductance

factore o~ is multiplied while traveling fronty tor5in  pecomes small at the zero bias. On the other hand for
the hole branch. These two phase factors exactly cancel eagh¢-—¢.)= 1 the expansion series with the same sign
other out when the retro property holds becauser,. Thus  imply that the partial waves in the expansion series interfere
r¢, indicates the same position for all In particular forE  constructively, which leads to the large zero-bias conduc-
=0, arelationr;=r;_for all n holds, which means the retro tance. The constructive interference at the interface causes a
property of a quasiparticle in the normal metal. In the limit "€SOnant state which is now referred to as the ZES. The
of E—0, we find in Eq.(15) that v.—1 irrespective of Andreev reflection probability is unity, independent of the
symmetries of the pair potential. The Andreev reflectionnormal transmission probability of junctions as shown in Eq.

4¢?
Gus= 2 I (24
y

E=eVjjas

probability becomes (30). This can be interpreted as a result of the resonant trans-
mission of a quasiparticle through the ZES. A microscopic
> 2 calculation shows that the ZES has a large local density of
[rhe2=ty|4| D ral?[—el¢-—2n) . (25  states arounat= ¢, at the zero energy Similar arguments
n=0 have been done in normal-metal/insulator/normal-metal/

First, we consider superconductors where the pair potentiajgsulator/superconduct% junctidiisand at the surface of
in the two branchesX, andA ) have the same sigfie.,  Mgh-Tc superconductors.
el(®-~¢)=1). For example, the pair potentials below sat- " EQ- (30), we can explain a large conductance at the

isfy the condition irrespective of the wave numbers of a quaZ€r0 bias. In what follows, we will show that the conduc-
siparticle: tance has a peak structure around the zero bias. Vihen

#0 but still EsA,, the degree of resonance is suppressed
A(k)=A, (swave, (26)  becausev.. is no longer unity as shown in E@15). In the
superconductor, the argument of the phase cancellation in the
A K =An(KC—K dos ave, 2 round trip betweem, andr, in Fig. 2(a) is still valid as far as
dey2(K)=R0(K—ky)  (dez-y2 Wave) @ E2—|A.|?<0 is being satisfied. In the electron branch on
where?xsz/kF and?yzky/kp are the normalized wave the way tor,, thex component of the wave number is given

numbers on the Fermi surface in thkeandy directions, re- by
spectively. The schematic figures of the pair potentials are

shown in Fig. 1b). Equation(26) represents the pair poten- . ke V]AL[P~E*
; . pe Ke=Ky+i— ———. (31)
tial of swave superconductors. The pair potential in &Y) Ky 2

is realized in a junction where theeaxis of a highT; super-

conductor is perpendicular to the interface normal. WherThe real part determines the direction of the quasiparticle’s
e(¢-~4+)=1 is satisfied, Eq(25) becomes the summation motion. The inverse of the imaginary part characterizes the
of the alternating series. The Andreev reflection probabilitydumping of the wave function and is roughly estimated to be
results in &o. It is also shown thak, is the real part of the wave
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number in the hole branch on the way backr§o The An-
dreev reflection probability for finit& is given by

[tn]*

[ta]*+2|ry| 1+ Rev, v_e(4-—9:)]

[r"e2= (32

To make clear a relation between the peak positions of the
conductance and the relative sign of the pair potentials, we —

consider the pair potential

Ag, (K =Aosgrikyk,), (33

instead of Eq(29). Here the anisotropy of pair potential is

taken into account only through the phasé= and thek

dependence of the pair potential is neglected. The pair po-

tential in Eq.(33) is illustrated in Fig. 1b). We will check

the validity of Eq.(33) later. The Andreev reflection prob-

ability for Adsign becomes
4 2
e e
|ta|*+4|ry|?siP  E2+E3’
Aglty[?
o2 %

where we use a relatio=6,=6_ in Eq. (15. The
Andreev reflection probability has a peak structurd=at0
and the width of the peak is characterized By which is
Aq/Z3 in the limit of Z2>1. On the other hand is wave
junctions(i.e., e'(*-~¢+)=1), we find

|t _ Ej

ltyl4+4|ry|2cog0  (A2—E?)+E2’

|rhe|2:

(36)

The Andreev reflection probability has a peakEat A, re-
flecting a peak of the bulk density of statesstwave super-
conductors. In Fig. 3, we plot the conductance, wheye

=3 andN.=Wkg/ is the number of propagating channels

on the Fermi surface. The results fewave junction are
indicated by the broken line. The conductance digf 2

PHYSICAL REVIEW B9, 134501 (2004
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FIG. 3. The conductance is plotted as a functionEpfwhere
z,=23. The anisotropy of the pair potentialdy, symmetry is taken
into account only through the phase faced*-~¢+) andk depen-
dence of the pair potential is neglected in the dash-dotted line. The
dy, symmetry is fully taken into account in the solid line. The
conductance fod,2_,> symmetry is amplified by five times in the
dotted line.

We note that there are no remarkable differences between
the mathematical origin of the peaksB&0 for /(- ~¢+)
=—1 and that alE=A, for €'(?-~¢)=1. Actually it is
easy to confirm aE=A, that the Andreev reflection prob-
ability in sswave junctions becomes

2

he|2_|t | 2n[ei(¢>,f¢>+)]n (37)

1=

All the expansion series have the same signdéf-—¢+)
=1.

In above arguments, we have assumed that the junctions
have nonzero transmission probabilities. In the end of this
section, we briefly mention that the ZES becomes a real

symmetry in the dotted line is amplified by five times. This bound state in the limit of,— . A quasiparticle motion is
conductance has a peakEt A, reflecting the bulk density spatially limited at the surface of the semifinite supercon-

of states. The results fdkdsign andd,, are shown with the

ductor because of the perfect normal reflection by the surface

dash-dotted line and the solid line, respectively. There is n@nd the Andreev reflection by the pair potential. The ZES

significant difference between the conductancedgrsym-

becomes a bound state because there are no quasiparticle

metry and that fod,, because the relative sign of the two excitations which extend into the bulk superconductors at
pair potentials ¢ (- ~¢+)=—1) dominates the subgap con- E=0. In the density of states, such ZES is found as the
ductance structure. Throughout this paper, we describe théfunction peak. For finite transmission probability of junc-
pair potential by using the step function at the NS interfacdions, the finite propagation into normal metals gives a finite
and neglect its spatial dependence in superconductors. In reifetime of the ZES which is given byi/E,. On the other

NS junctions, the pair potential is suppressed at the interfackand fore'(?-~¢+)=1 the resonant state Bt= A, does not

in the presence of the ZE®8®® The conductance shape become a bound state because there are excitations that ex-

around the zero bias, however, almost remains unchangednd

into the bulk superconductors aE=A, In

even if the spatial dependence of the pair potential is takesuperconductor/insulator/supercondudi®iS) junctions, the
into account’® This is also because relative sign of the two ZES is also a bound state irrespective of the transmission
pair potentials determines the conductance around the zepyobability of junctions. The description of the Andreev
bias. The spatial dependence of the pair potential may affediound states in SIS junctions was given, for example, in

the width of the ZBCP througk, in Eg. (35).

Ref. 77.
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In the last equation, we repla(z.‘gjxy by Adsign' The conduc-

tance peakthe resonance energis expected at an energy
a=0 which satisfies co#+¢_)=0 as shown in Eq(41). The
resonance energies far=0 anda=1 areE=A, and E
Lo =0, respectively. These resonance energies are independent
of the wave numbers. Consequently the peak heightsxfor
=0 andae=1 become unity. The peak heights for finie
however, are always less than unity as shown in Fig. 4 be-
cause the resonance energy depends on wave numbers as
I shown in Eq.(42).
f \ The positions of the conductance peaks are roughly given
by E=*aA,, which can be understood by the resonance
00 L L L L L condition of cos@+¢_)=0 in Eq.(43). Since the peak posi-
-1.5 -1.0 0.5 0.0 0.5 1.0 15 tion is determined by, relative amplitudes of and d,,
E/A, components can be estimated from the peak splitting width
observed in experiment. In the phenomenological theory, ef-
FIG. 4. The conductance is plotted as a functionfofor s fects of the BTRSS on the conductance can be understood in
+idy, symmetry, where,=3. terms of the shift of the resonance energy.
In theoretical studies, it is shown that tke-id,, wave
BTRSS sgéits zero-energy peak of the local density of

In recent experiments, a possibility of the BTRSS at thestateS***~*°and the ZBCP! Experimental results are, how-
surface of hight, superconductors has been discus8etf ~ €Ver, still controversial. Some experiments reported the split

. . 59 .
These experiments found the split of the ZBCP in the zer®f the ZBCP at the zero magnetic fieftf,” others did not
P P gbserve the splitting19121316=18rhys opinions are still di-

magnetic field. It is pointed out that such surface states may. Y .
g P ided among scientists on the BTRSS in highsupercon-

have s+id,, (Ref. 60 or d,,+id,2_,2 (Ref. 6] pairing . X
symmetry. Theoretical studies showed the split of the surfacgucmrs' If the BTRSS doe.s not exist, we hgve to f|r_1d another
reasons for the peak splitting observed in experiments. In

. ,62—66 . .. _
density of state$ whens+id,, wave pairing symme recent papers, we have showed that the interfacial random-

try is assumed at the surface of tlig wave superconductor. peqq causes the split of the ZBCP in the zero magnetic field

Within the present phenomenological theory, it is also poSiy poth numericallf® using the recursive Green function

sible to discuss the split of the conductance peak by the,athod?8® and analyticall® using the single-site
BTRSS in terms of the shift of the resonance energy. Weypproximatiorf! Our conclusion, however, contradicts those
assume the pair potential as of a number of theori®4 %" based on the quasiclassical
. . Green function methotf~°2 The drastic suppression of the
: =aly+ + . . .
Astia, (K =alotiBAg (k) (stidywave (38) ZBCP by the interfacial randomness is the common conclu-

10}

z=3

02 05 038

2
Gy [4N¢* /1]
(=]
th
L]

IV. PAIRING WITHOUT TIME-REVERSAL SYMMETRY

with «?+ B2=1. We find sion of all the theories. The theories of the quasiclassical
Green function method, however, concluded that the random
|AL|=]A|=/aPA5+ ﬁzAﬁxy(k), (39  potentials do not split the ZBCP.
abg—iBAy ]2 V. EFFECTS OF MAGNETIC FIELD
ei(¢—7¢+):eZi¢—: Xy (40) . . .
|A] The TRS is also broken by applying external magnetic

In Fia. 4 h h q i heid fields onto NS junctions. The resonance a0 is sup-

n Fig. 4, we show the conductance in SI€ 1Oy symmetry pressed because a quasiparticle acquires a Aharonov-Bohm
for severala. For «=0, the results are identical to the con- like phase from magnetic field&:% Actually it is pointed
ductance ofd,, wave junctions in Fig. 3. The ZBCP splits + that the ZBCP in NS junctions splits into two peaks
into two peaks fora#0. The splitting width increases al- |, qar the magnetic fieff:55%8-"0The reflection process in
most linearly with increasinge. In the limit of a=1, the = g 54 corresponds td in Eq. (19). We consider uniform
results coincide with the conductancesafvave junctions in ic field dicular to the ol e B> d

Fig. 3. The peak position can be explained by the expressioﬂmlgne ic fields perpendicular to thy plane(i.e., B) an

of the Andreev reflection probability assume the Landau gaude,=Bxy. Effects of magnetic
fields are taken into account through the phase of the wave
rher2 tn]? @ function by using the gauge transformation. While traveling
phej2— , ; . )
It *+ 4|1y 2c02(0+ &) fric()bm fo to rq, an electronlike quasiparticle acquires a phase
e'¢m with
b ) |A[?—E? Ay E A @2 e (n e B
cog0+¢_)= e alg |A|2'8 dyy ¢m—%ﬁo dl-Aexl(l) = 5= 5 (Xat%0) (Y1~ Yo). (44)
\/P—_EZ £ Since the magnetic field is sufficiently weak, the integration
~ O—a+—ﬁsgr(kxky). (43  path can be replaced by a straight line betwegrand ry
Ao Ao which is denoted byC, in Fig. 5a). This approximation is
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FIG. 5. The motion of a quasiparticle near the interface is illus-

trated.

justified when the radius of the cyclotron motion of a quasi-

particle, 2ur/(kehieB/mc), is much larger tharg,. The
condition is equivalent to the relatiomA,>#eB/mc. In
high-T. materials, A;~30—40 meV, whereasfieB/mc is

10! meVv for B=1 T, where we use the bare mass of an

electron. The phase shift on the way framto rg (C,) in
the hole branch is equal ®¢m. This is because the direction
of a quasiparticle’s motion and the sign of the chargeCgn
are opposite to those 0@, at the same time. In the same
way, we can show that the phase shifts@nandC, in Fig.

5(a) are alsoe'?m. Under the gauge transformation, the pair

potential should be changed to

A(r,r’)ex;{%(fr—l-fr/)dl-Aext(l)} (45)
At rq, a phase factor
—i2e (n
exp{ e f dl-Agy(l) (46)

is multiplied to the Andreev reflection coefficients, where
andr’ in Eq. (45) are set to be,. A phase factor

i2e(r2
eX %f dl- Agyd()

is also multiplied to the Andreev reflection coefficients at
The total phase shift by the magnetic field aldDg-C, in
Fig. 5a) (e'2?s) is then given by

(47)

e (rn
do=20n+ 1= | "l Al (@8)
_ eB B B k
__%(yl_YO)(Xl_XO)__B_Ok_Xu (49
o
0_2’7T§0, (50)

where ¢o=27hc/e. On the way to Eq(49), we use a rela-
tion (X1—Xg)/(Y1—Yo) =Ky/ky, and x;—Xo~&,. We note
that 2¢g is the gauge invariant magnetic flux passing

PHYSICAL REVIEW B9, 134501 (2004

through the gray area in Fig. (5, where r;=(2x;
+Xp,Y0)- Thus 2pg remains unchanged in another gauges
such asAext=—By>A< and penetrating magnetic fields,,
=BNoe Moy with N\g>&,, where \, is the penetration
depth. In highT. materials,£,~2 nm and\y~200 nm.

Effects of magnetic field can be taken into account in the
present theory by

As—Ae? %, (51)

whereA; is defined in Eq(19). We show the conductance in
d,, wave junctions calculated from EqR1)—(23) and (51)

in Fig. 6, wherezo=3 and 10 in(a) and(b), respectively. In
high-T. superconductor3, is about 160 T. The ZBCP de-
creases with increasinB in both Figs. 6@ and &b). The
degree of suppression due to magnetic fields depends on the
transmission probability of the junction. More drastic sup-
pression can be seen in lower transparent junctions. In Fig.
6(b), the ZBCP almost disappears f@=0.08, The
ZBCP, however, remains one peak and does not split into
two peaks even in the strong magnetic fields. The results in
Fig. 6 are qualitatively well described by the analytical ex-
pression of the Andreev reflection probability fér< A,

|tn]*
hel2 _
ree= (52
™ |tal =+ 41 N[ 2SinP(6+ ¢p)
tnl 4 A2
13| o3

|tn]*| A2+ 4] r | 2(E+|A] )2

We linearize the magnetic fields in s ¢g) in Eq. (53).
Equation (53) implies that the resonance energy may be
shifted fromE=0 by magnetic fields. In contrast to the split-
ting of the ZBCP by the BTRSS in Sec. IV, we do not find
the peak splitting under magnetic fields in Fig. 6. In the
BTRSS, the shift of the resonance energy is caused by the
swave component which has the resonance energi at
=A,. On the other hand, any resonant states are not associ-
ated with magnetic fields. Thus the magnetic fields only sup-
press the resonance of the ZES as shown in Fig. 6.

In a previous papeY however, the split of the ZBCP in
magnetic fields was reported within the quasiclassical ap-
proximation (QCA). The results in Eq(53) are similar to
that in the argument of the Dopplar shift in the QCA. The
supercurrent flows along the interface shift the energy of a
quasiparticle as

E—)E"’UF'pS, (54)

eA eBng . .

= = a 0
Ps C C € Y, (55)

wherep; is the condensate momentum at the interface. In Eq.
(55), d wave character of the supercurrent is not considered.
The corresponding approximation in the present theory is
replacingE+|A|¢g by E+Ay¢g in Eq. (53) and we find

|tn]*A]?
|tn] Y| A[2+4[ry|2(E+Agpg)?

|rhel (ZQCA: (56)
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2 : 0/-01 0.05 FIG. 7. The conductance in the quasiclassical approximation is
] r N plotted for several magnetic fields i@), where zy=10. In (b),
X P L “=a threshold magnetic fields are shown as a function §.1/
-0.05 0.00 0.05

E/A . . .
/4, satisfy the gauge invariance. In the present theory, on the

FIG. 6. The conductance under magnetic fieldsdgy symme- other hand, we consider uniform magnetic field and the nor-

try, wherezo=3 and 10 in(a) and (b), respectively. In highr, ~ Malization of magnetic fieldsHp) is about 160 T. This value
material, B, is estimated to be 160 T. remains unchanged even if we consider penetrating magnetic

field asBe " oz with o> &,. For example, in Fig. (b), we

In Fig. 7(a), we show the conductance calculated from Eq.find thatB is about 0.B, at z,=3. ThereforeB, is esti-
(56) for z,=10. In contrast to Fig. @), we find split of the mated to be 16 T in the present theogﬁ The same results are
ZBCP when magnetic fields are larger than the thresholdnterpreted a8, =0.16 T if we useB¢“* in the QCA. The
magnetic fieldB,. The threshold depends ag as shown in  threshold magnetic field in the QCA is estima}ted_to be much
Fig. 7(b), whereB, is plotted as a function of 2] which is smaller than that in the present thgory. This dlsagreement
proportional to the normal transmission probability of junc- May be important because the maximum value of magnetic
tions. The threshold increases with increasing the transmidields in experiments is about 10 T
sion probability of junctions. This has been pointed out in the
conductance calculated on the lattice model by using the
QCA® In the lattice model, it was also shown tHag de-
creases with the increase of the doping rate. The Fermi en- We have presented a phenomenological theory of the An-
ergy is a decreasing function of the doping rate. Thereforelreev reflection to make clear reasons for the appearance of
the transmission probability of junctions decreases with inthe ZBCP in normal-metal/unconventional-superconductor
creasing the doping rate. junctions. The phenomenological theory reveals that the ZES
Although Egs.(53) and(56) are similar to each other, the is a consequence of the constructive interference effect of a
responses of the ZBCP to magnetic fields are qualitativelyjuasiparticle. The expression of the Andreev reflection prob-
different. To make clear if a magnetic field splits the ZBCP ability enables us to understand the importance of the uncon-
or not, we need some numerical simulations, where effects afentional pairing symmetry for the formation of the ZES.
magnetic field are taken into account accurately. In experiThe phenomenological theory is applied to superconductors
ments, some papers show the split of the ZBCP in magnetiwith a BTRSS and junctions under magnetic fields. The split
fields®>°" On the other hand, several papers report no splitof the ZBCP ins+id,, wave superconductors is understood
ting of the ZBCP:>%~%A microscopic scattering theory in- in terms of the shift of the resonance energy by sheave
dicates that the sensitivity of the ZBCP to magnetic fieldscomponent. The Aharonov-Bohm like phase received from
depends_on the degree of potential disorder near the Nfagnetic fields suppresses the degree of resonance of the
interface’® ZES, which explains the suppression of the ZBCP in mag-
Finally we briefly discuss an important difference of netic fields.
the conductance in the present theory and that in the QCA. Note Added in ProofAlthough the reflection coefficients
The phenomenological theory reaches at &) which is  in Egs.(21) and(22) are obtained from a phenomenological
almost the same as the conductance expression in theXdCAdescription of a quasiparticle’s motion, the calculations
The two theories, however, still lack a quantitative agreethemselves are done in a correct quantum-mechanical way.
ment of the threshold magnetic field. The normalization forThe expansion in Fig. 2 corresponds to the estimation of
the penetrating magnetic fields in the QCPBY“*  probability amplitude of a quasiparticle starting forand
= ¢ol(2mEghg)] is about 1.6 T withh g~ 100,.°*%%In Eq.  appearing at another point . The probability amplitude is
(55), ps in the QCA is originally given by the vector potential calculated by multiplying the probability amplitudes along a
which is not an observable value. Thus the QCA does nopropagation path and by summing over all possible paths

VI. CONCLUSION
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[see R.P. Feynman and A.R. Hiblggjantum Mechanics and . -2z

Path Integrals(McGraw-Hill, N.Y., 1965]. These calcula- 'N="—"7"00, (A13)
tions are carried out in Eq§16)—(21) in a correct way. Thus 7

Egs. (21) and (22) coincide with the correct expressions of

thg reflectipn_coefficients calculated from the t_)_oundary con- zozﬁsinr’(pr), (A14)
ditions. This is pointed out by M. Belogolovskii and details F

are given in Ref. 74. — —
z;=(px— ki) sinh(pyL) +2ik,py cosip,L), (AlS)

APPENDIX: ANDREEV REFLECTION wherep,=(Vo/ur) — (ks /kg)? is the wave number at the
BY SPIN-TRIPLET SUPERCONDUCTORS insulator andp, = p, /K .

In the text, we consider two-dimensional spin-singlet su- The argument in Sec. Il leads to the exact expression of
perconductors and-function type potential barrier for sim- the Andreev and the normal reflection coefficiéhtshich
plicity. Here we generalize the phenomenological theory tcare given by
spin-triplet superconductors in three dimension. The pair po- ~ee A A on A1
tential in superconductors is given by re6=—zpzs[ 00— WI[|z1|*o0—2gW] ", (A16)

) id(k)- e, triplet rhe= —e 1esakZpZA T, R 4[| 2o| 00— Z2W] 1,
Aw={ _ (A1) (A17)
id(k)o,, singlet,

" N . W=RAOALRe) - (A18)
whereg; for j=1, 2, and 3 are Pauli matrices representing

the spin degree of freedom. We assume that the current is ifhe results Pf unitary states including thg spin-sipglet states
the x direction and consider a potential barrier can be obtained when we use the following relations:

2__ 2_
V(D =Ve[O(x)— O (x—L)], (A2) ﬁ(i):—w(}m (A19)
wherel is the thickness of the insulating layer. The Andreev -
reflection coefficients in the absence of the insulator are cal- |d.|, singlet
i D.|l= N . A2
culated analytically |D .| .|, triplet (A20)
fge: _e*iwsﬁzrﬂﬁq(ﬂ, (A3) in Egs. (A16)—(A18). The differential conductance is given
by
ro'=—esR)A., (A4) e? I e
Gns=7y > Tr[Uo_ree(ree)T"'rhe(l’he)T“E:evb- :
N ) A K. .k, l1as
2 A relationd_= —d, represents the condition for the perfect
Ro.\= 1 2 K',“I . (A6) formation of the ZES. Actually whewl, =d=vd_ with v
)7 2].] =1 A2’+ ’ ==1, the Andreev reflection probability becomes
2 .22 2
Aps=v]d: [P~ (= 1)a.], (A7) Tihehe =S APAK, | ,
=1 |4k2p2az+Z3(a7—vK)
K ~=VE?—Af.—E, (A8) (A22)
Whel’eK|=K|'+=K|’, andA|:A|’+:A|', .
P .=|0.|oo—(—1)'q. - o, (A9) In the limit of E—0 andz,>1, we find
122\ 2
O =id. X dt | (A10) o o HPx)
Tr[r"e(rhe)f= 273 (A23)
di:d(ikXJ(yka)a (All) 2, v= —1,

whereegg is a macroscopic phase of supercondudior,1 or  where spin degree of freedom gives rise to a factor 2. Thus
2) indicates the two spin branches of Cooper pairs,@nis ~ the zero-bias conductance is independent of the transmission
the 2x 2 unit matrix. The normal transmission and the nor-probability of junctions wherl_ = —d, is satisfied.

mal reflection coefficients of the insulator are calculated as In spin-singlet superconductors, we show that the internal
phase of a Cooper pair is responsible for the ZES. In spin-

R —ZiEaxe_ikaA triplet superconductors, the internal spin degree of freedom
tN=———— 00, (A12) of a Cooper pair has other possibilities for the formation of
Z; some resonant states in subgap energies.
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