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Statistical-thermodynamic description within the ring approximation. II. Ising model
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The results obtained previously@R. V. Chepulskii, Phys. Rev. B69, 134431~2004!# within the ring approxi-
mation in the case of the lattice gas model are generalized to the case of the Ising model with a complex crystal
lattice and arbitrary magnetic order. The nonpair spin interactions of any order and effective radii of action are
taken into account. The verification of the numerical accuracy of the ring approximation in the cases that are
typical at consideration of the Ising model is performed.
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I. INTRODUCTION

The spin-1/2 Ising model with two possible directions
the spin~up and down! is statistically equivalent to the two
component lattice gas model.1,2 However, in contrast to the
lattice gas model, which can be directly applied to study
alloys and even fluids and amorphous materials, the Is
model is a crude model for investigation of real magne
systems. Nevertheless, the Ising model has been one o
basic models used for development of the statistical mech
ics of phase transitions. A great number of analytical a
numerical, exact and approximate, results were obtained
this model.

In the previous paper,3 the lattice gas model was consid
ered within the ring approximation. The aim of the prese
paper is to generalize the obtained results to the case of s
1/2 Ising model considering paramagnetic, ferromagne
and antiferromagnetic states~Secs. II–III!. In Sec. IV, we
outline the approximations within the Ising model that a
similar to the ring one. In Sec. V, the verification of th
numerical accuracy of the ring approximation is perform
in the cases that have been typical at consideration of
Ising model.

II. GENERAL CASE

Let us consider the spin-1/2 Ising model. We suppose
the unit cell of the crystal lattice consists ofn crystal lattice
sites (n>1). It is important that the case ofn.1 can be
attributed not only to the complex character of the crys
lattice itself but also to the presence of a long-range anti
romagnetic order in a spin distribution. The crystal latti
can be divided inton Bravais sublattices according to th
unit cell. Taking into account the many-body spin intera
tions of arbitrary orders and radii of action, the Hamiltoni
H of the Ising model in question can be written in the fo
lowing form @see, e.g., Eq.~8.12! in Ref. 4#:

H52N j02(
i

hi(
R

s i ,R

2 (
n52

Nn
1

n! (
i 1 ,i 2 , . . . ,i n

(
R1 ,R2 , . . . ,Rn

Ji 1 ,R1 ; i 2 ,R2 ; . . . ;i n ,Rn

(n)

3s i 1 ,R1
s i 2 ,R2

•••s i n ,Rn
, ~1!
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or writing the series explicitly

H52N j02(
i

hi(
R

s i ,R

2
1

2 (
i 1 ,i 2

(
R1 ,R2

Ji 1 ,R1 ; i 2 ,R2

(2) s i 1 ,R1
s i 2 ,R2

2
1

6 (
i 1 ,i 2 ,i 3

(
R1 ,R2 ,R3

Ji 1 ,R1 ; i 2 ,R2 ; i 3 ,R3

(3) s i 1 ,R1
s i 2 ,R2

s i 3 ,R3

2•••. ~2!

In Eqs.~1! and ~2!, the summations on the indicesi and on
the site radius vectorsR are carried over alln sublattices and
over all N unit cells of the crystal lattice, respectively,hi is
the nonuniform~for a generality! external magnetic field
~measured in energy units!, s i ,R is the configurational vari-
able,

s i ,R5H 1 if the spin at site~ i ,R! is up

21 otherwise,
~3!

and Ji 1 ,R1 ; i 2 ,R2 ; . . . ;i n ,Rn

(n) is the spin interaction potential o

nth order (n52,3, . . . ,Nn). Note that in the configurationa
description of the Ising model we follow the same line
reasoning as in Ref. 3~see Sec. 2 there!.

The general expression for the free energy of the lat
gas obtained within the ring approximation in Ref. 3@see Eq.
~38! there# can be transformed to the case of the Ising mo
as follows:

f ring5 f MF2
1

2 (
i 51

n

m i~12si
2!1

kBT

2N (
k

ln detAk , ~4!

where T is the absolute temperature,kB is the Boltzmann
constant,si is the~unitless! statistical average magnetizatio
of the sites ati th sublattice (i 51,2, . . . ,n),

si5^s i ,R&, ~5!

f MF5«MF2TsMF , ~6!

«MF52F̃ (0), ~7!
©2004 The American Physical Society32-1
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sMF52kB(
i 51

n F11si

2
ln

11si

2
1

12si

2
ln

12si

2 G . ~8!

The quantitiesm i are to be determined from the equatio
( i 51,2, . . . ,n)

N21(
k

iAk
21i i i 51, ~9!

f MF , «MF , andsMF are, respectively, the free energy, ener
and entropy corresponding to the mean-field approximat
The designations detAk and iAk

21i i i mean, respectively, the
determinant of the matrixAk and thei th diagonal element o
the matrixAk

21 inverse toAk , which has the following ele-
ments:

Ak
i 1 ,i 25d i 1 ,i 2

2
A12si 1

2 @F̃ i 1 ,k; i 2
(2) 2m i 1

d i 1 ,i 2
#A12si 2

2

kBT
.

~10!

The functionsF̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n) (n51,2, . . . ,Nn)

are defined as~for n50,1, . . . ,4 see theAppendix!

F̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n)

5 (
t50

Nn2n
1

t! (
i 18 ,i 28 , . . . ,i t8

si
18
si

28
•••si

t8

3 J̃i
18 ,0; i

28 ,0; . . . ;i
t8 ,0; i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n

(t1n)
, ~11!

where J̃i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n) (n52,3, . . . ,Nn) are the

Fourier transforms of the interaction potentials:

J̃(0)5 j 0 , J̃i
(1)5Ji

(1)5hi ,

J̃i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n)

5 (
R1 ,R2 , . . . ,Rn21

Ji 1 ,R1 ; i 2 ,R2 ; . . . ;i n21 ,Rn21 ; i n ,0
(n)

3expF2 i (
i 51

n21

k iRi G ,

Ji 1 ,R1 ; i 2 ,R2 ; . . . ;i n21 ,Rn21 ; i n ,Rn

(n)

5N2(n21) (
k1 ,k2 , . . . ,kn21

J̃i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n)

3expF i (
i 51

n21

k i~Ri2Rn!G . ~12!

In Eqs. ~4!, ~9!, and ~12! and below in this paper, the sum
mations onk are carried over all the points specified by t
cyclic boundary conditions in the corresponding first Br
louin zone. From Eq.~4! one can obtain the following ex
pressions for the energy« ring and entropysring within the ring
approximation:
13443
,
n.

« ring5«MF2
1

2 (
i 51

n

m i~12si
2!, ~13!

sring5sMF2
kB

2N (
k

ln detAk . ~14!

Note that moving from the lattice gas model to the Isi
model we used the following relationships:

Ci ,R5
11s i ,R

2
, Pi5

11si

2
, ~15!

where Ci ,R is the configurational variable andPi is atom
distribution probability within the lattice gas model@see Eqs.
~3! and~15! in Ref. 3#. For a convenience, the above defin

m i[m i
Ising

and

F̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n) [F̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n

(n)Ising

are different from those defined in Ref. 3@with sign LG
~lattice gas! below# by the factors (222n) and 4, respec-
tively:

m i
Ising[4m i

LG , ~16!

F̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n)Ising

[222nF̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n)LG . ~17!

The values of the quantitiessi corresponding to the ther
modynamically stable or metastable states are to be fo
from the condition of the absolute or local, respective
minima of the free energy, according to the variational pro
erty of the free energy~see, e.g., Sec. 4.2.2 in Ref. 2!. The
corresponding equations of state for determination of sucsi
within the ring approximation in the case of the Ising mod
can be obtained from Eq.~66! in Ref. 3 as (i 51,2, . . . ,n)

kBT

2
ln

11si

12si
5Gi ~18!

or, equivalently,

si5tanh@Gi /~kBT!#, ~19!

where

Gi5F̃ i
(1)2m isi

1
1

2N (
q

(
j ,l

A~12sj
2!~12sl

2!F̃ i ,0;j ,q; l
(3) iAq

21i l j .

~20!
2-2
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In the derivation of Eqs.~18! and~19! we took into account
that, in contrast to the lattice gas model, within the Isi
model there is no such constraint as the total concentratio
A-type atoms. Note that within the mean-field approxim
tion, the equations of state are the same as Eqs.~18! and~19!

but with Gi5F̃ i
(1) .

The critical temperature of the absolute instability of a
structure is determined by the equation@see Eq.~97! in Ref.
3#

detbk50, ~21!

where the elements of the matrixbk are defined as

bk
i j 5Ak

i j 1
2si@ i I k

21i i j 2d i j #sj

A~12si
2!~12sj

2!
1(

l ,s
Tk

i l i I k
21i ls

3F1

2
T2k

js 1
2sj

A~12sj
2!

ds jG
2

1

2N (
i 1 ,i 2

(
q

f̃ i ,k; j ,Àk; i 1 ,q; i 2
(4) iAq

21i i 2 ,i 1

2
1

2N (
i 1 ,i 2 ,i 3 ,i 4

(
q

f̃ i 1 ,q2k; i 2 ,2q; i
(3) iAq

21i i 2 ,i 3

3 f̃ i 3 ,q; i 4 ,kÀq; j
(3) iAq2k

21 i i 4 ,i 1
, ~22!

f̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n)

5

)
m51

n

A12si m
2

kBT
F̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n

(n) , ~23!

I k
21 is the matrix inverse toI k with the elements

I k
i j 5N21(

q
iAk2q

21 i i j iAq
21i i j , ~24!

Tk
i j 5N21 (

i 1 ,i 2
(

q
iAq

21i j i 1
f̃ i 1 ,q; i 2 ,2(k1q); i

(3) iAk1q
21 i i 2 j .

~25!

Let us define the short-range order~SRO! parametersaR
i j

and there Fourier transformak
i j as

aR12R2

i j 5
^~sR1

i 2si !~sR2

j 2sj !&

A~12si
2!~12sj

2!
, ~26!

ak
i j 5(

R
aR

i j exp~2 ikR!, aR
i j 5N21(

k
ak

i j exp~ ikR!.

~27!

Within the ring approximation for the SRO, we obtain~see
Sec. IX in Ref. 3!

ak
i j 5ibk

21i i j , ~28!
13443
of
-

where matrixbk
21 is inverse tobk determined in Eq.~22!.

By a direct differentiation of the equations of state, E
~18!, we obtain the following for the generalized susceptib
ity x i j :

x i j [
]si

]hj
5

A~12si
2!~12sj

2!

kBT
ak50

i j , ~29!

whereak
i j is determined in Eq.~28!. The relationship~29! is

the fluctuation-dissipation theorem@see, e.g., Eq.~124.5! in
Ref. 5 and Sec. 4.3.5 in Ref. 2#, which is therefore satisfied
within the ring approximation and may be also rewritten

]si

]hj
5iF21i i j , ~30!

whereF21 is the matrix inverse toF that has the following
elements:

F lm[
]2f ring

]sl]sm
. ~31!

Note that in the case of a paramagnetic state at the cry
lattice with two sublattices and only pair interactions, t
expression~29! transforms into Eq.~21! of Ref. 6 derived
within the Onsager cavity field approximation.

Using the above general expressions, one can calcu
the complete~configurational! phase diagram of the Ising
model with any complex crystal lattice according to the p
cedure suggested in Sec. X of Ref. 3. Any paramagne
ferromagnetic, and antiferromagnetic states can be taken
account. For example, in the cases of ferromagnetic
paramagnetic states, correspondinglysi5s andsi50 for any
values of the indexi, which may still be necessary due to th
complex character of the crystal lattice itself.

III. CASE OF A FERROMAGNETIC STATE WITHIN A
BRAVAIS CRYSTAL LATTICE

A. Nonpair spin interactions

In such a particular case it is not necessary to introd
the sublattices. Correspondingly, instead of Eqs.~1! and ~3!
we have

H52N j02h(
R

sR

2 (
n52

Nn
1

n! (
R1 ,R2 , . . . ,Rn

JR1 ,R2 , . . . ,Rn

(n) sR1
sR2

•••sRn
,

~32!

sR5H 1 if the spin at siteR is up

21 otherwise.
~33!

The corresponding expressions for the free energy, ene
entropy, and equation of state can be easily obtained wi
the ring approximation by deleting both indices of sublattic
2-3
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and summations on them in all the above presented, in
II, expressions. Thus, we obtain

f ring5 f MF2
1

2
m~12s2!1

kBT

2N (
k

ln detAk , ~34!

wheres5^sR& is the total magnetization,

f MF5«MF2TsMF , ~35!

«MF52F̃ (0), ~36!

sMF52kBF11s

2
ln

11s

2
1

12s

2
ln

12s

2 G , ~37!

Ak512
12s2

kBT
@F̃k

(2)2m#. ~38!

The quantitym is to be determined from the equation

N21(
k

Ak
2151. ~39!

It is easy to find that the expression~34! satisfies the rela-
tionships52] f /]h. The equation of state can be written
~from ] f /]s50)

kBT

2
ln

11s

12s
5G ~40!

or, equivalently,

s5tanh@G/~kBT!#, ~41!

where

G5F̃ (1)2ms1
12s2

2N (
q

F̃0,q
(3)

Aq
. ~42!

The corresponding expressions for the energy and ent
are the following:

« ring5«MF2 1
2 m~12s2!, ~43!

sring5sMF2
kB

2N (
k

ln detAk . ~44!

The functionsF̃k1 ,k2 , . . . ,kn21

(n) (n50,1, . . . ,3) entering the

above expressions one can obtain from the Appendix by
leting both indices of sublattices and summations on th
Note that within the mean-field approximation, the equatio
of state are the same but withG5F̃ (1).

From Eq.~106! of Ref. 3, the critical temperature of th
absolute instability of the paramagnetic state is determi
by the equation

b0us5050, ~45!

where
13443
c.

py

e-
.

s

d

bk5Ak1
2s2

12s2 F 1

I k
21G2

~12s2!2

2kBT
Qk

1
2~12s2!

kBT
Tk

(1)H ~12s2!2

4kBT FTk
(1)

I k
2

Tk
(2)

Tk
(1)G1

s

I k
J ,

~46!

I k5
1

N (
q

1

AqAk1q
, Qk5

1

N (
q

F̃k,Àk,q
(4)

Aq
, ~47!

Tk
(1)5

1

N (
q

F̃q,À(k1q)
(3)

AqAk1q
, Tk

(2)5
1

N (
q

@F̃q,2(k1q)
(3) #2

AqAk1q
.

~48!

Note that within the mean-field approximation, such a cr
cal temperatureTc is determined askBTc5F̃0

(2) .
In the considered case the SRO parametersaR and there

Fourier transformak should be defined as

aR12R2
5

^~sR1
2s!~sR2

2s!&

12s2
, ~49!

ak5(
R

aRexp~2 ikR!, aR5N21(
k

akexp~ ikR!.

~50!

Within the ring approximation for the SRO, we obtain

ak5bk
21 . ~51!

For the sucseptibilityx we have

x[
]s

]h
5

12s2

kBT
ak50 , ~52!

whereak is determined in Eq.~51!.

B. Pair spin interactions

Let us consider in more detail the particular case ofpair
spin interactions, which will be numerically studied below
Sec. V. In such a case, we have the following Hamiltonia

H52N j02h(
R

sR21/2 (
R1 ,R2

JR1 ,R2

(n) sR1
sR2

. ~53!

The free energy, energy, entropy, and equation of state ca
easily obtained by use of the above expressions~34!–~44!
where according to the Appendix

F̃ (0)5 j 01hs1 1
2 J̃0

(2)s2, ~54!

F̃ (1)5h1sJ̃0
(2) , F̃k

(2)5 J̃k
(2) , ~55!

F̃k1 ,k2

(3) 5F̃k1,k2 ,k3

(4) 50, ~56!

Ak512
12s2

kBT
@ J̃k

(2)2m#. ~57!
2-4
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From Eq.~107! in Ref. 3 we have a very simple expressio
for the critical temperatureTc of the absolute instability of
the paramagnetic state,7

1

kBTc
5N21(

k
@ J̃0

(2)2 J̃k
(2)#21. ~58!

The SRO Fourier transformak and heat capacitycV
5]« ring /]T are determined as

ak
215Ak1

2s2

12s2 F 1

I k
21G , ~59!

cV5
12s2

2T H X1
2ak50

kBT
@h1s~ J̃0

(2)2m!2sX#2J , ~60!

where

X52
kBT

12s2 F 1

I 0
21G , ~61!

I k are determined in Eq.~47! and the quantitym is to be
determined from the Eq.~39!. The expression for the sucse
tibility is the same as Eq.~52! but with ak determined by Eq.
~59!. In the case of aparamagneticstate whens50, we
obtain

cVus505
kB

2 F12
1

I 0
U

s50
G . ~62!

For comparison, within the mean-field approximation w
have

xMF5
12s2

kBT F12
12s2

kBT
J̃0

(2)G21

, ~63!

cV5H 1

T
xMF@h1sJ̃0

(2)#2, sÞ0

0, s50.

~64!

From Eq.~62! it follows that if TÞ` thencVÞ0 even ats
50, becauseI 0Þ1. It is just the spin correlations that con
tribute to the heat capacity of the paramagnetic state wi
the ring approximation in contrast to the mean-field o
Note that in the case of paramagnetic state, the express
for ak andx transform into those obtained in Refs. 7–9.

IV. SIMILAR APPROXIMATIONS

Let us outline the approximations that are similar to t
ring one in the case of the Ising model~with pair spin inter-
actions!. In the case of the lattice gas model the same w
done in Sec. V of Ref. 3.

The expressions~34!, ~41!, and ~58! ~with zero nonpair
spin interactions! are the same as those obtained by Brou
Refs. 7–9~see also Ref. 10!. Perhaps, one may even call th
ring approximation as the Brout one~correspondingly gener
alized to the cases of antiferromagnet, non-Bravais cry
lattice, nonpair interactions, and lattice gas model with lo
13443
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range atomic order both in the present and previous3 papers!.
If the external magnetic field is zero and the temperat

is higher than the critical temperature of the absolute ins
bility of the paramagnetic state, the ring approximation
the paramagnetic state gives the same results as the sph
model ~e.g., Ref. 11!. This fact allowed Brout to name th
ring approximation as the spherical model. Such a na
seems not to be adequate enough because the ring app
mation may be effectively used also at nonzero exter
magnetic field and/or below the critical temperature~in con-
trast to the spherical model!.

One can find a number of similarities between the res
obtained within the ring approximation and in the framewo
of Onsager cavity field approximation.6,12

In Ref. 13 ~see also Refs. 10 and 14–18!, Horwitz and
Callen elaborated a different form of the ring approximatio
By numerical calculations we found that the results of t
Horwitz-Callen and ring approximations are the same qu
tatively and very close to one another quantitatively. For
ample, in the case of face-centered-cubic crystal lat
within the Horwitz-Callen approximation we gotTc1
52.216, T052.408, andTc252.426, whereas within the
ring approximation we have correspondinglyTc152.231,
T052.406, andTc252.423. (T0 is the temperature of the
ferromagnetic phase transition of the first order, andTc1 and
Tc2 are the temperatures of absolute instability of the pa
magnetic and ferromagnetic states, respectively, see be
Sec. V.! However, Horwitz-Callen approximation is mor
complicated than the ring one because it contains additio
integrations in the corresponding expressions. Besides,
Horwitz-Callen approximation does not satisfy th
fluctuation-dissipation theorem19 in contrast to the ring ap-
proximation@see above Eqs.~29! and~30!#. Note that in Ref.
19 ~see also Chap. 9 in Ref. 7!, just using the similarity
between the Horwitz-Callen and ring approximations, it w
erroneouslyconcluded that the ring approximation does n
satisfy the fluctuation-dissipation theorem as well.

The free-energy expressions similar to Eq.~34! with m
50 were derived in Ref. 20~within the Gaussian model!, in
Ref. 13 @see Eq.~121! there corresponding to partial reno
malization#, in Ref. 21, and in Refs. 7–9~within the random-
phase approximation!. All of them suffer from the same prin
cipal drawback as the ring approximation atm50; namely,
due to the presence of the logarithm, the free energy of
paramagnetic state does not exist at the temperatures l
than the critical temperature of the ferromagnetic phase t
sition calculated within the mean-field approximation~see
also Sec. 6 in Ref. 3!.

There are also similarities between Eq.~4! and the free-
energy expression obtained byg-expansion method and pre
sented in Ref. 22@see Eq.~17! there#.

In the following section we perform the detailed nume
cal study of the ring approximation, which can also help
to understand the features of similar approximations.

V. NUMERICAL CALCULATIONS

This section is devoted to the verification of the adequa
and numerical accuracy of the ring approximation in the c
2-5
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of the spin-1/2 Ising model. Such a verification was partia
performed in Refs. 7–9 and 13. However, it was not co
plete and some important conclusions were done erroneo
~see below!. We consider three classical cases of the fer
magnetic Ising model with the linear chain, simple quadra
and face-centered-cubic~fcc! crystal lattices, and neares
neighbor spin interactions. Such a consideration is an im
tant addition to the numerical study of the ring approxim
tion performed in Ref. 3. Our choice of the cases to
considered is caused by the existence of a large numbe
results~including the exact ones! obtained previously in such
cases. We do not consider the Ising model with an antife
magnetic order because it is equivalent to the lattice
model with a long-range order~e.g., Sec. 2.6 in Ref. 2!,
which was already considered numerically in Ref. 3 to
large extent. The dependence of the numerical accurac
the ring approximation with respect to the radius of inter
tions was also investigated in Ref. 3 and will not be touch
here.

In Figs. 1–3, we presented the temperature dependen
of the magnetization, heat capacity, sucseptibility, free
ergy, energy, and entropy in zero magnetic field in the th
above-mentioned cases. The temperature regions no
from the phase transition points are considered. In Figs
and 5, we presented the dependencies of the magnetiz
with respect to the magnetic field for a number of tempe
tures in the cases of linear chain and fcc crystal lattices.
dependencies were obtained within the ring and mean-fi
approximations, by the exact calculations, series expans
as well as by the Monte Carlo simulation. Both thermod
namically stable and metastable states were consid
within the ring approximation. The values of the charact
istic temperatures obtained by different methods are p
sented in Table I. For calculations within the ring and me
field approximations we used the expressions listed in S
III of the present paper. The exact results in the case of lin
chain and simple quadratic~Onsager solution! crystal lattices
were taken from Refs. 23 and 24 and from the textbooks
statistical mechanics~e.g., Refs. 5, 25, and 26!. The sources
of the other results presented in figures one can find in t
captions. Note that the low- and high-temperature series
pansions can be used only for the verification of right asym
totical behavior of the ring approximation in the correspon
ing temperature regions.

In the present paper we do not present the verification
the spin-correlation function~or, equivalently, SRO! within
the ring approximation. Actually, one can find such verific
tion in the papers3,27,28 devoted to the consideration of th
statistically equivalent case of the lattice gas model. Besi
in all three cases considered here of nearest-neighbor
interactions, the numerical accuracy of the nearest-neigh
spin-correlation function can be directly studied through
internal energy to which it is proportional.

From Table I and Figs. 1–5, one can conclude the follo
ing. In the cases of simple quadratic and fcc crystal lattic
the ring approximation gives the ferromagnetic phase tra
tion temperaturesT0

ring that are very close to the correspon
ing ones obtained exactly, by series expansion, or by Mo
Carlo simulation~which can be considered as a standard!. In
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the case of the one-dimensional linear chain crystal latt
the ring approximation gives finite phase transition tempe
ture in contrast to zero one obtained exactly.

In all the considered cases, we obtain the phase transit

FIG. 1. The temperature dependences of the Ising model m
netizations, heat capacitycV , sucseptibilityx, free energyf, en-
ergy «, and entropy in zero magnetic field in the case of line
chain crystal lattice with nearest-neighbor ferromagnetic spin in
actions. The dependences were obtained within the ring~thick and
thin lines in case of the thermodynamically stable and metast
states, respectively! and mean-field~open circles, MF! approxima-
tions as well as by the exact calculations~open triangles, exact!.
The designations of curves are the same for all quantities. At the
of the figure:T0

ring is the temperature of the ferromagnetic pha
transition of the first order, andTc1

ring andTc2
ring are the temperature

of absolute instability of the paramagnetic and ferromagnetic sta
respectively; all calculated within the ring approximation.Tc

exactand
Tc

MF are the temperatures of the ferromagnetic phase transitio
the second order calculated exactly and within the mean-field
proximation, respectively.
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of thefirst order within the ring approximation in contrast
the secondorder obtained by the other standard metho
That is why within the ring approximation the temperatu
T0

ring of the phase transition~Curie temperature! is different
from the temperaturesTc1

ring andTc2
ring of absolute instability of

the paramagnetic and ferromagnetic states, respectively.
respondingly, we have discontinuances in the tempera
dependencies of magnetization, heat capacity, sucseptib
energy, and entropy at the point of the phase transition. T
we do not study the critical quantities~e.g., indices! intro-
duced for a description of the phase transitions ofexactlythe
second order. The susceptibility takes an infinite values o
for metastable paramagnetic and ferromagnetic states atTc1

ring

and Tc2
ring , respectively. The heat capacity takes finitekB/2

FIG. 2. The same as in Fig. 1. but in the case of simple quadr
crystal lattice. The data for sucseptibilityx corresponding to the
high-temperature series expansion~open diamonds, HT-SE! were
calculated using Eq.~26.2! in Ref. 29.
13443
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FIG. 3. The same as in Fig. 1 but in the case of fcc crystal lat

without the exact calculations which are absent. The Monte C
simulation data on magnetizations were calculated through the dat
in Fig. 1~a! in Ref. 30. The Monte Carlo data on energy« were
obtained through our own Monte Carlo simulation of the correlat
function at the first coordination shell.~Unfortunately, below the
phase transition temperature we failed to achieve the good con
gence of our results with respect to the size of the Monte Ca
simulation sample.! Tc

MC is the temperature of the ferromagnet
phase transition of the second order calculated by the Monte C
simulation~Ref. 30!. The series expansion~SE! based data for hea
capacitycV were taken from Fig. 14 of Sec. 4.7.3 in Ref. 23. T
data for sucseptibilityx corresponding to the high-temperature s
ries expansion~HT-SE! were taken from Ref. 31. The data for fre
energy f corresponding to the low-temperature~HT! and high-
temperature~LT! series expansions were calculated using, resp
tively, Eqs. ~119! and ~127! of Chap. 4 in Ref. 23. The data fo
energyf and entropy corresponding to the high-temperature se
expansion~HT-SE! were taken Ref. 32. The series expansion~SE!
based data for critical values of the free energy, energy, and ent
were taken from Table 6 of Sec. 4.7.1 in Ref. 23.
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value for metastable paramagnetic state atTc1
ring and infinite

value for metastable ferromagnetic state atTc2
ring .

Note that in some cases the wrong~first! order of the
phase transition within the ring or ringlike approximatio
was also found in Refs. 3, 16, 17, 22, and 35. In Refs. 8
and 13 the second order of the phase transition was assu
a priori thus resulting in the wrong conclusions about t
behavior of the heat capacity in the vicinity of the pha
transition. In Chap. 9 of Ref. 7, assuming the second orde
the phase transition and using the similarity to the spher
model, it was erroneously concluded that there is no ph
transition at all within the ring approximation in one- an

FIG. 4. The dependences of the magnetizations with respect to
the magnetic fieldh in the case of linear chain crystal lattice for th
reduced temperaturesT850.12, 0.25, and 0.35 whereT8
[kBT/(4J1). The dependences were obtained within the ring~thick
line! and mean-field~dash line! approximations as well as by th
exact calculations~open circles!.

FIG. 5. The same as in Fig. 4 but in the case of fcc crystal lat
without the exact calculations which are absent. The sign MC~open
circles! correspond to the Monte Carlo simulation data taken fr
Figs. 1~b! and 1~c! in Ref. 30.
13443
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two-dimensional cases~at zero external magnetic field!,
whereas actually in these cases only the temperatureTc1

ring of
absolute instability of the paramagnetic state vanishes ra
than the temperatureT0

ring of the phase transition itself. Not
that the same problem of adequate description of the orde
the phase transformation was also revealed within
cluster-variation method in the two-dimensional case~see
Sec. 10 in Ref. 33!.

In the dependences of the magnetization with respec
the magnetic field the discontinuances take place when
magnetic field is small and the temperature isclose to the
phase-transition temperature. Such behavior was found t
inadequate~see Chap. 9 in Ref. 7 and Refs. 9 and 19! to the
Lee and Yang general theorem.1

It is remarkable that within the mean-field approximati
we obtain the right order of the phase transitions and ther
not discontinuances in the dependences of the magnetiza
with respect to the magnetic field. But, nevertheless, the
merical accuracy of the ring approximation is much high
than that of the mean-field one in all the considered case

As a rule, the numerical accuracy of the ring approxim
tion is high for all considered quantities in all temperatu
region except the vicinity of the phase transition. Only in t
one-dimensional case, the error of magnetization and suc
tibility is substantial also at low temperatures. Remarka
high numerical accuracy of the ring approximation is o
tained for the free energy in the almost all temperature reg
in all three cases. The error contributions of energy and
tropy to the free energy seem to compensate one anothe

The numerical accuracy of the ring approximation ha

TABLE I. The values of the characteristic temperatures obtain
by different methods in the cases of linear chain~l chain!, simple
quadratic~sq!, and face-centered-cubic~fcc! crystal lattices.T0

ring is
the temperature of the ferromagnetic phase transition of the
order,Tc1

ring andTc2
ring are the temperatures of absolute instability

the paramagnetic and ferromagnetic states, respectively; all ca
lated within the ring approximation.Tc

MC , Tc
SE, Tc

exact, Tc
MF , and

Tc
CVM are the temperatures of the ferromagnetic phase transitio

the second order calculated by Monte Carlo simulation, by se
expansion, exactly, within the mean-field approximation, and
cluster-variation method@within the square or triangle~sq! and
tetrahedron-octahedron~fcc! approximations#, respectively. All the
temperatures are in unitskB /(4J1).

l chain sq fcc

Tc1
ring 0 0 2.231

T0
ring 0.2148 0.6186 2.406

Tc2
ring 0.2516 0.6427 2.423

Tc
MC 2.448a

Tc
SE 0.567b 2.449c

Tc
exact 0 0.5673

Tc
MF 0.5 1 3

Tc
CVM 0.6057d 2.502c

aReference 30.
bTable 5 in Sec. 4.7.1 of Ref. 23.
cTable III in Ref. 33.
dTable V in Ref. 34.
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strong tendency of increase with increase of the dimensio
the crystal lattice. In particular, the order of the phase tr
sitions becomes closer to the second order~the temperatures
Tc1

ring , T0
ring , and Tc2

ring approach one another!. Such a ten-
dency is in accordance with the choice of the inverse eff
tive number of atoms~spins! interacting with one fixed atom
~spin! as a small parameter of expansion within the ri
approximation.3 According to such a tendency, one can e
pect also an increase of the numerical accuracy of the
approximation with increase of the effective radius of atom
interactions. Such effect was much verified in Refs. 3,27,
28 rather than in the present paper. Note that even in the
of the one-dimensional linear chain, the phase transition d
exist in the case of sufficiently long-range spin interactio
~e.g., Sec. 5.5 in Ref. 24! in accordance with the predictio
of the ring approximation.

VI. CONCLUSIONS

In the present paper, we generalized the results obta
in Ref. 3 within the ring approximation to the case of t
spin-1/2 Ising model with a complex crystal lattice, arbitra
magnetic order and with nonpair spin interactions of a
order and effective radii of action~Secs. II–III!. By the use
of those results one can calculate the complete phase
gram of the Ising model as well as the correlation effects.
also performed the verification of the numerical accuracy
the ring approximation in the cases that have been typica
consideration of the Ising model~Sec. V!.

In the case of the Ising model the ring approximation h
the same advantages and shortcomings as in the case o
lattice gas model~for more details see conclusions in Ref. 3!.
The corresponding expressions are general and analyti
simple. The ring approximation offers the advantages o
the cluster-variation method and Monte Carlo simulation

It should be emphasized that, actually, such mean-fi
like theories as the ring approximation~as well as the cluster
variation method! are not intended to be used for a descr
tion of the critical phenomena but rather for description
phase diagrams, correlation effects, nonequilibrium p
cesses, etc. outside the critical regions, which neverthele
of great interest from practical point of view~e.g., Secs. 4.1
and 4.5.6 in Ref. 2, and Chap. 5 in Ref. 34!. Particularly, it is
impossible to require the high accurate description of
critical indices within such theories. For a description of t
critical phenomena and universal characteristics of ph
transitions, we have to use the special methods~e.g., series
expansions and renormalization-group theory!.

Nevertheless, the study performed in the present pa
demonstrates that, even in the most unfavorable case
nearest-neighbor spin interactions and phase transforma
of the second order, the ring approximation gives hig
accurate values for the temperatures of such phase tran
mations~in two- and three-dimensional cases!. In such cases
within the ring approximation the order of the phase tra
formations is not perfectly second but close to it. There i
strong tendency of increase of the numerical accuracy of
ring approximation with increase of the effective radius
13443
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spin interactions and the dimensionality of the crystal latti
By the use of the ring approximation one can perform
high-accuracy calculations of the magnetization, heat cap
ity, sucseptibility, free energy, energy, and entropy in a w
temperature region except the vicinity of the phase transit
Remarkably high numerical accuracy of the ring approxim
tion is obtained for the free energy within the almost
temperature region. The numerical accuracy of the ring
proximation is much higher than that of the mean-field o
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APPENDIX

The general expression ~11! for
F̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n

(n) takes the following forms in the

particular cases ofn50,

F̃ (0)5 j 01(
i

hisi1
1

2 (
i 1 ,i 2

J̃i 1 ,0; i 2
(2) si 1

si 2

1
1

6 (
i 1 ,i 2 ,i 3

J̃i 1 ,0; i 2 ,0; i 3
(3) si 1

si 2
si 3

1
1

24 (
i 1 ,i 2 ,i 3 ,i 4

J̃i 1 ,0; i 2 ,0; i 3 ,0; i 4
(4) si 1

si 2
si 3

si 4
1•••;

~A1!

n51,

F̃ i
(1)5hi1(

i 18
si

18
J̃i

18 ,0; i
(2)

1 (
i 18 ,i 28

si
18
si

28

2
J̃i

18 ,0; i
28 ,0; i

(3)

1 (
i 18 ,i 28 ,i 38

si
18
si

28
si

38

6
J̃i

18 ,0; i
28 ,0; i

38 ,0; i
(4)

1•••; ~A2!

n52,

F̃ i 1 ,k; i 2
(2) 5 J̃i 1 ,k; i 2

(2) 1(
i 18

si
18
J̃i

18 ,0; i 1 ,k; i 2

(3)

1 (
i 18 ,i 28

si
18
si

28

2
J̃i

18 ,0; i
28 ,0; i 1 ,k; i 2

(4)
1•••; ~A3!
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n53,

F̃ i 1 ,k1 ; i 2 ,k2 ; i 3
(3) 5 J̃i 1 ,k1 ; i 2 ,k2 ; i 3

(3) 1(
i 18

si
18
J̃i

18 ,0; i 1 ,k1 ; i 2 ,k2 ; i 3

(4)
1•••;

~A4!
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