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The results obtained previoudIR. V. Chepulskii, Phys. Rev. B9, 134431(2004] within the ring approxi-
mation in the case of the lattice gas model are generalized to the case of the Ising model with a complex crystal
lattice and arbitrary magnetic order. The nonpair spin interactions of any order and effective radii of action are
taken into account. The verification of the numerical accuracy of the ring approximation in the cases that are
typical at consideration of the Ising model is performed.
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I. INTRODUCTION or writing the series explicitly

The spin-1/2 Ising model with two possible directions of [, ,: _ _
the spin(up and downis statistically equivalent to the two- H="NJo 2. h'; iR
component lattice gas modef. However, in contrast to the
lattice gas model, which can be directly applied to study of 1
alloys and even fluids and amorphous materials, the Ising 2
model is a crude model for investigation of real magnetic
systems. Nevertheless, the Ising model has been one of the 1
basic models used for development of the statistical mechan- 6
ics of phase transitions. A great number of analytical and
numerical, exact and approximate, results were obtained for — ... 2)
this model. ) o

In the previous papérthe lattice gas model was consid- In Egs.(1) and(2), the summations on the indicesnd on
ered within the ring approximation. The aim of the presentthe site radius vectorR are carried over ali sublattices and
paper is to generalize the obtained results to the case of spiaver all N unit cells of the crystal lattice, respectively, is
1/2 Ising model considering paramagnetic, ferromagneticthe nonuniform(for a generality external magnetic field
and antiferromagnetic statéSecs. ll-1l). In Sec. IV, we (measured in energy unjiso; g is the configurational vari-
outline the approximations within the Ising model that areable,
similar to the ring one. In Sec. V, the verification of the

2 . .
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numerical accuracy of the ring approximation is performed 1  ifthe spin atsite(i,R) is up
in_the cases that have been typical at consideration of the JiRT] 1 otherwise, 3
Ising model.

andJMg i, r,:...i. IS the spin interaction potential of

Il. GENERAL CASE nth order f=2,3, ... Nv). Note that in the configurational

Let us consider the spin-1/2 Ising model. We suppose thaescription of the Ising model we follow the same line of
the unit cell of the crystal lattice consists pfcrystal lattice ~ reasoning as in Ref. Gee Sec. 2 theye
sites @=1). It is important that the case of>1 can be The general expression for the free energy of the lattice
attributed not only to the complex character of the crystalgas obtained within the ring approximation in Refsge Eq.
lattice itself but also to the presence of a long-range antifer¢38) therg can be transformed to the case of the Ising model
romagnetic order in a spin distribution. The crystal latticeas follows:
can be divided intor Bravais sublattices according to the
unit cell. Taking into account the many-body spin interac- 12 5. kgT
tions of arbitrary orders and radii of action, the Hamiltonian Fring=fvr— 5 > mi(l—s)+ N > IndetA,, (4)
H of the Ising model in question can be written in the fol- =t .

lowing form [see, e.g., E(8.12) in Ref. 4]: where T is the absolute temperaturkg is the Boltzmann
constantg; is the (unitlesg statistical average magnetization
H=-Njo— > h> oir of the sites atth sublattice (=1,2, ... p),
i R '

Nv si=(0iRr), 5
_ il m_

n=2 b i in R1.Ry, ..., R, 'tRul2Ri. 'n-Rn fur=eme— TSuE, (6)
X0i R, Ti, R, " Ti R D eppe=— 0O, @
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1+s; 1+s- 1-s 1-5 12
Swr=—K BE | > -+ > In > (8 Sring=8MF_§iZl pi(1=s7), (13

The quantitiesu; are to be determined from the equations

he K
(i=12,...2) Sing=SME— 5 > IndetA, . (14)
2N %

N‘lg 1A =1, (9)

Note that moving from the lattice gas model to the Ising

. model we used the following relationships:
fue, eme, andsye are, respectively, the free energy, energy,

and entropy corresponding to the mean-field approximation.
The designations déy, and|A, Y;; mean, respectively, the
determinant of the matrid, and theith diagonal element of
the matrixAlZ1 inverse toA,, which has the following ele-

1+0—i,R 1+Si
Ci,R: 2 ’ I:)i: 2

(19

where C; i is the configurational variable an; is atom

ments: distribution probability within the lattice gas modeskee Egs.
3) and(15) in Ref. 3]. For a convenience, the above defined
i \/1_Si21[q)|(12)k|2 i 8, i\ 1-s (3) and(13) ]
A=A, T | =l
(10)
. and
The functions® () .\ . 4 (N1=12,... Nw)
are defined asfor n=0,1,...,4 see the\ppendm Hm . , =&)(n)lsmg ,
ipKyiigokas i g Ko giin T Tigpkgiig ko iy gk gty
oM . .
q)'lvkl”z'kz;'--?'nfl'knfl“n are different from those defined in Ref. [@ith sign LG
g (lattice ga$ below] by the factors €27 ") and 4, respec-
2 — D susieeesy tively:
=o thy 7y e !
e o Ising_— LG
~(t+n) M 4:“4 s (16)
X J:, g ki ke . (11
| 0| ,0; . ol NI P T P O PN SR
_ a)(n)lsmg .
where Iy .k i (0=2.3,...Nv) are the 1Kiig Kpi - dino g Knoqiin
Fourier transforms of the interaction potentials: =2 "pMLe. , (17)
I k1 2k2 nfl'knfl;'n'

JO=j,, IV=3D=h,,
! : The values of the quantities corresponding to the ther-

&%) modynamically stable or metastable states are to be found
ERLSHIP RS T P L S from the condition of the absolute or local, respectively,
minima of the free energy, according to the variational prop-
= > N T erty of the free energysee, e.g., Sec. 4.2.2 in Ref.. Zhe
RiRp, o Rpog  FLm2720rnmdiinm i corresponding equations of state for determination of sych

within the ring approximation in the case of the Ising model
can be obtained from E@66) in Ref. 3 as (=1,2,... p)

i=1
- kBTI 1+Si _G 18
iRy, Ryt i 1Ry i R, 2 nl—si i (18)
—N—(n—1) 3 ) , or, equivalently,
N kl,kz,g-,knfl ‘]ll,kl;lz,kz;...;|n71,kn71;|n q y
n-1 si=tant G;/(kgT)], (19
Xex;{liEl k(R — Rn)] 12 here
In Egs.(4), (9), and(12) and below in this paper, the sum- G:CT)-(l)—,u-s-
mations onk are carried over all the points specified by the : ! ™
cyclic boundary conditions in the corresponding first Bril- 1 5 5 L
louin zone. From Eq(4) one can obtain the following ex- 5N > EI V(l—Sj)(1—5| ) ), atllAG Il -
pressions for the energy;,q and entropys,ing Within the ring a b
approximation: (20
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In the derivation of Eqs(18) and(19) we took into account where matrix,Bk’l is inverse toBy determined in Eq(22).
that, in contrast to the lattice gas model, within the Ising By a direct differentiation of the equations of state, Eq.
model there is no such constraint as the total concentration @fi.8), we obtain the following for the generalized susceptibil-
A-type atoms. Note that within the mean-field approxima-ity y;; :

tion, the equations of state are the same as @&s.and(19)
but with G;=®{1).

The critical temperature of the absolute instability of any
structure is determined by the equatimee Eq.(97) in Ref.

3]
det,Bk=0, (21)

where the elements of the mati are defined as

ZS|[|||k 1|||] 5I]]SJ

Be=A+ Ji- (1 s) = ke s
1 2s;
X| = TS, + ———= 5
N
F(4) -1
2N |2| Z f|kJ—k|1q| ”Aq ”iz'il
1
2N i1,0p,i3.ig4 E fl1 q-kiiy, _q;'HAq ”'2"3
><f|::.:)q|4k q]HAq k|||4 i (22)
Fm o . A
ERL S RIP L HR R PN . R Y
n
Il Ji-s’
m=1 ~
_ (n , .
kBT q)'l’kl;'Z'kZ;"';'nfl'knfl;'n’ (23)
I, 1 is the matrix inverse td, with the elements
II]_ 12 ”Ak q”lj”A 1|||]! (24)
”_ 1.2. 2 ||A l”JI fl(f)ql —(k+q);i||Ak_+lq||i2j-
112
(25)

Let us define the short-range ord@RO parametermg
and there Fourier transforaa, as

o {(ok, =Sk, = 5) s
N T 20

o) =3 adexp—ikR), all=N""3 alexp(ikR).
k

(27)

Within the ring approximation for the SRO, we obtdsee

Sec. IX in Ref. 3

a) =118 M . (28)

gs, N(1-s)(1-sf) .
= = 7 1
Xij o kT ®y=01 (29
WhereozLj is determined in Eq(28). The relationshig29) is
the fluctuation-dissipation theorefsee, e.g., E¢124.5 in
Ref. 5 and Sec. 4.3.5 in Ref],Avhich is therefore satisfied
within the ring approximation and may be also rewritten as

IS;

: 7, =127 (30)
whered ! is the matrix inverse t@ that has the following
elements:

‘92fring
Im= 07S|(9Sm' (39

Note that in the case of a paramagnetic state at the crystal
lattice with two sublattices and only pair interactions, the
expression(29) transforms into Eq(21) of Ref. 6 derived
within the Onsager cavity field approximation.

Using the above general expressions, one can calculate
the complete(configurational phase diagram of the Ising
model with any complex crystal lattice according to the pro-
cedure suggested in Sec. X of Ref. 3. Any paramagnetic,
ferromagnetic, and antiferromagnetic states can be taken into
account. For example, in the cases of ferromagnetic and
paramagnetic states, correspondinghky s ands;=0 for any
values of the index, which may still be necessary due to the
complex character of the crystal lattice itself.

Ill. CASE OF A FERROMAGNETIC STATE WITHIN A
BRAVAIS CRYSTAL LATTICE

A. Nonpair spin interactions

In such a particular case it is not necessary to introduce
the sublattices. Correspondingly, instead of Ed$.and (3)
we have

H:_Njo_hE OR
R

1
_ _ (n)
nz2 n! Rlsz,E--.Rn TRiRy. - RTRTRy TRy
(32)
1 if the spin at siteR is up
IR (33

—1 otherwise.

The corresponding expressions for the free energy, energy,
entropy, and equation of state can be easily obtained within
the ring approximation by deleting both indices of sublattices
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and summations on them in all the above presented, in Sec. 271 (1-5?)2
I, expressions. Thus, we obtain =A+——|——1|—-———
1 ,. . ksT N )
fing=fur— 5 (1= + 55 > IndetA, (39 L2078 [ TP T s
keT % | 4keT | e T®] 1)’
wheres={opg) is the total magnetization, 49
fur=emr— Tsur, (35 4
I_12 1 Q_lECI)(k’lkq .
SMF:_E)(O)v (36) KON a AAurg’ “'N q Aq
1+s 1+s 1-s 1-s 1 H®) 1 [ (ol
swe= —Kkg In + In , (37) TW=_S “a~krad 1)~ g~ (k*a)
2 2 2 2 “ N zq: AgPi+q “ N zq: Aqhi+q
- (48
A=1-1—= [DP— u]. (38)  Note that within the mean-field approximation, such a criti-
B cal temperaturd ; is determined aggT.=®{?.
The quantityu is to be determined from the equation In the considered case the SRO parametgrand there
Fourier transformy,, should be defined as
— _1_
NS AL (39) ((op,—S)(0R,~S))
Cl’le R, = 1— 32 ’ (49)
It is easy to find that the expressi@B4) satisfies the rela-
tionships= —df/gh. The equation of state can be written as
(from 9f/ds=0) ay=2, arexp—ikR), ar=N"1> aexpikR).
R k
keT 1+s (50)
TI 1—S_G 40 Within the ring approximation for the SRO, we obtain
or, equivalently, a=Bt. (51)
s=tani G/(ksT)] (41) For the sucseptibilityy we have
2
where _ f_ 1-s
X= ﬁh_ kBT k=0, (52)
(1 - &)ga% where «, is determined in Eq(51)
=p@_ A ay .
G=9o MmS+ 5N % Aq (42)
. . B. Pai in int ti
The corresponding expressions for the energy and entropy &l spininteractions
are the following: Let us consider in more detail the particular caseaif
spin interactions, which will be numerically studied below in
Ering= emF— 3 m(1—57), (43 Sec. V. In such a case, we have the following Hamiltonian:
k — —Ni.— _ (n)
Sring= SMF_ ﬁ 2 In detAk . (44) H NJO h; IR 1/2R§?2 JRl'RZURlURZ' (53)

- The free energy, energy, entropy, and equation of state can be
The functions®{”, ~  (n=0,1,... 3)entering the easily obtained by use of the above expressi@B—(44)
above expressions one can obtain from the Appendix by dewhere according to the Appendix
leting both indices of sublattices and summations on them.

Note that within the mean-field approximation, the equations DO =jy+hs+3IPs?, (54
of state are the same but with=d D). ~ ~ o
From Eq.(106) of Ref. 3, the critical temperature of the PW=h+s3?, ®P=32, (55
absolute instability of the paramagnetic state is determined
by the equation <I>(ki),l<2=d>(k‘i?k2,k3= , (56)
Bols=0=0, (45 1-¢2
A=1- [3&)— ] (57)
where k T Wk T
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From Eq.(107) in Ref. 3 we have a very simple expression range atomic order both in the present and previpapers.

for the critical temperaturd . of the absolute instability of

the paramagnetic stafe,

1
kgTe

=N [0 -301 (58)

The SRO Fourier transformy, and heat capacitycy
= deing/ JT are determined as

ST 59
= -1, (59
1—32 dp=o ~
_ (2)_ _ 2
Vo 1x ket L1 TS0 w)msX] ] (60

where

1

lo

kgT
1-¢?

1], (62)

I, are determined in Eq47) and the quantityu is to be

determined from the Eq39). The expression for the sucsep-

tibility is the same as Eq52) but with «, determined by Eq.
(59). In the case of gparamagneticstate whens=0, we
obtain

1
1—- =
lo

kg

Cyls—0= 2 (62)

s=0

For comparison, within the mean-field approximation weHorwitz-Callen

have
1-¢° 1-s%. 171
MF _ _ (2)
X T kT keT JO} ' 63
PSP, 540
cv=1T (64)

0, s=0.

From Eq.(62) it follows that if T# >~ thency,#0 even ats
=0, becauséy#1. It is just the spin correlations that co

tribute to the heat capacity of the paramagnetic state withi
the ring approximation in contrast to the mean-field one.
Note that in the case of paramagnetic state, the expressio

for ) and y transform into those obtained in Refs. 7-9.

IV. SIMILAR APPROXIMATIONS

If the external magnetic field is zero and the temperature
is higher than the critical temperature of the absolute insta-
bility of the paramagnetic state, the ring approximation for
the paramagnetic state gives the same results as the spherical
model (e.g., Ref. 11 This fact allowed Brout to name the
ring approximation as the spherical model. Such a name
seems not to be adequate enough because the ring approxi-
mation may be effectively used also at nonzero external
magnetic field and/or below the critical temperat(irecon-
trast to the spherical model

One can find a number of similarities between the results
obtained within the ring approximation and in the framework
of Onsager cavity field approximatiért2

In Ref. 13 (see also Refs. 10 and 14-1&lorwitz and
Callen elaborated a different form of the ring approximation.
By numerical calculations we found that the results of the
Horwitz-Callen and ring approximations are the same quali-
tatively and very close to one another quantitatively. For ex-
ample, in the case of face-centered-cubic crystal lattice
within the Horwitz-Callen approximation we goff.;
=2.216, T;=2.408, andT. ,=2.426, whereas within the
ring approximation we have correspondingly;=2.231,
To=2.406, andT.,=2.423. (T, is the temperature of the
ferromagnetic phase transition of the first order, apdand
T., are the temperatures of absolute instability of the para-
magnetic and ferromagnetic states, respectively, see below
Sec. V) However, Horwitz-Callen approximation is more
complicated than the ring one because it contains additional
integrations in the corresponding expressions. Besides, the
approximation does not satisfy the
fluctuation-dissipation theorelthin contrast to the ring ap-
proximation[see above Eq$29) and(30)]. Note that in Ref.

19 (see also Chap. 9 in Ref),7just using the similarity
between the Horwitz-Callen and ring approximations, it was
erroneouslyconcluded that the ring approximation does not
satisfy the fluctuation-dissipation theorem as well.

The free-energy expressions similar to Eg84) with u
=0 were derived in Ref. 20within the Gaussian modelin
Ref. 13[see Eq.(121) there corresponding to partial renor-
malization], in Ref. 21, and in Refs. 7—@vithin the random-

n- phase approximatignAll of them suffer from the same prin-
gipal drawback as the ring approximationat=0; namely,

due to the presence of the logarithm, the free energy of the
Qramagnetic state does not exist at the temperatures lower
than the critical temperature of the ferromagnetic phase tran-
sition calculated within the mean-field approximatisee
also Sec. 6 in Ref.)3
There are also similarities between HEd) and the free-

Let us outline the approximations that are similar to the€nergy expression obtained yexpansion method and pre-

ring one in the case of the Ising modglith pair spin inter-

sented in Ref. 22see Eq(17) therd.

actions. In the case of the lattice gas model the same was In the following section we perform the detailed numeri-

done in Sec. V of Ref. 3.
The expression$34), (41), and (58) (with zero nonpair

cal study of the ring approximation, which can also help us
to understand the features of similar approximations.

spin interactionsare the same as those obtained by Brout in

Refs. 7-9(see also Ref. J0Perhaps, one may even call the

V. NUMERICAL CALCULATIONS

ring approximation as the Brout orieorrespondingly gener-
alized to the cases of antiferromagnet, non-Bravais crystal This section is devoted to the verification of the adequacy
lattice, nonpair interactions, and lattice gas model with long-and numerical accuracy of the ring approximation in the case

134432-5
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of the spin-1/2 Ising model. Such a verification was partially TC“‘"°t=TCf"g=0 To“'“gTCf“g T\
performed in Refs. 7-9 and 13. However, it was not com- 1.0 T - e
plete and some important conclusions were done erroneously B —i1g
(see below. We consider three classical cases of the ferro- e ' (stable)
magnetic Ising model with the linear chain, simple quadratic, =05} o ring
and face-centered-cubidcc) crystal lattices, and nearest- (mefastable)
neighbor spin interactions. Such a consideration is an impor- (] S—— N o

tant addition to the numerical study of the ring approxima-
tion performed in Ref. 3. Our choice of the cases to be
considered is caused by the existence of a large number of
results(including the exact ongé®btained previously in such
cases. We do not consider the Ising model with an antiferro-
magnetic order because it is equivalent to the lattice gas
model with a long-range ordee.g., Sec. 2.6 in Ref.)2
which was already considered numerically in Ref. 3 to a
large extent. The dependence of the numerical accuracy of
the ring approximation with respect to the radius of interac-
tions was also investigated in Ref. 3 and will not be touched
here.

In Figs. 1-3, we presented the temperature dependencies 1.0
of the magnetization, heat capacity, sucseptibility, free en- '
ergy, energy, and entropy in zero magnetic field in the three
above-mentioned cases. The temperature regions not far
from the phase transition points are considered. In Figs. 4 ; ;
and 5, we presented the dependencies of the magnetization 2.0 e , 3
with respect to the magnetic field for a number of tempera- P :
tures in the cases of linear chain and fcc crystal lattices. The
dependencies were obtained within the ring and mean-field
approximations, by the exact calculations, series expansion,
as well as by the Monte Carlo simulation. Both thermody-
namically stable and metastable states were considered
within the ring approximation. The values of the character-
istic temperatures obtained by different methods are pre-
sented in Table I. For calculations within the ring and mean-
field approximations we used the expressions listed in Sec.
Il of the present paper. The exact results in the case of linear
chain and simple quadrati©nsager solutioncrystal lattices p L . ‘ .
were taken from Refs. 23 and 24 and from the textbooks on 0.0 02 0.4 0.6
statistical mechanicg.g., Refs. 5, 25, and 26The sources kgT [ (47))
of the other results presented in figures one can find in their FIG. 1. The temperature dependences of the Ising model mag-
captions. Note that the low- and high-temperature series exetizations, heat capacitycy, sucseptibilityy, free energyf, en-
pansions can be used only for the verification of right asympergy &, and entropy in zero magnetic field in the case of linear
totical behavior of the ring approximation in the correspond-chain crystal lattice with nearest-neighbor ferromagnetic spin inter-
ing temperature regions. actions. The dependences were obtained within the (tigk and

|n the present paper we do not present the Venﬂca‘“on O‘hln lines in case of the thermodynamica”y stable and metastable
the spin-correlation functioior, equivalently, SRQwithin  States, respectiveland mean-fieldopen circles, MF approxima-
the ring approximation. Actually, one can find such verifica-tions as well as by the exact calculatiofepen triangles, exart
tion in the paper27~28 devoted to the consideration of the The designations of curves are the same for all quantities. At the top

ioti H . i 3 .Tring ; .
statistically equivalent case of the lattice gas model. Beside$) th_e_f'g“rfe'go : 'S thg tempg,f%t“red;’fﬁ:ghe ferrzomag”enc phase
in all three cases considered here of nearest-neighbor spiffnS!tion of the first order, antc,” andT ;" are the temperatures

absolute instability of the paramagnetic and ferromagnetic states,

interactions, the numerical accuracy of the nearest-neighbo0

. . . . . respectively; all calculated within the ring approximatiagii®*and
;pm-correlauon funCtl.on .Ca.n be dlreptly studied through theT"’":pare thé, temperatures of the ferron?agﬁztic phase transition of
internal energy to which it is proportional. N

. the second order calculated exactly and within the mean-field ap-
From Table | and Figs. 1-5, one can conclude the fOIIOW'proximation, respectively.

ing. In the cases of simple quadratic and fcc crystal lattices,
the ring approximation gives the ferromagnetic phase transithe case of the one-dimensional linear chain crystal lattice,
tion temperature3 ™ that are very close to the correspond- the ring approximation gives finite phase transition tempera-
ing ones obtained exactly, by series expansion, or by Montéure in contrast to zero one obtained exactly.

Carlo simulation(which can be considered as a stanglaiml In all the considered cases, we obtain the phase transitions

P

fla,
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ting exact g ting MF ting - mOg 1ing - MC MF
T, 0 NI To T, 10 Ty TonTo T T
1.0 T 3 T ] . T 3 33 3\_/
A e.xact s Ao MC
% 0.5 _nnii eble ‘ | o\ 0.5 | ====ring (stable) "Wy |
. p rin,
(metastable) £ B
(metastable) o
00} —O0—MF .
40F..an SE based |
. Pero HTSE
~ L "'.‘ H i
k)> 2.0 ', .,.‘o. i.’o”o’_m)
B
) o
96 = *
OF Q ]
5—1 "v\
> 5 F ’0,.‘.. 4
0 HT-SE Q"“u-.’.
o . ]
6.0 b e :
~" i ‘
3 |-@e LTSE Ry
-8.0F iy HT-SE e T
v SE based ' ‘
00F & mc ‘ ;
O+ HT-SE _punr
) s/
w -3.0 ‘,.-"" /¢: 1
o o
' ad 'l v SEbased
v SE basc’d 0
0.6F..... ]
g 0+ HT-SE, . ji 3
j=¥ o >
g e i
§ 03 ~ o e .
00§ w 2 3
0.0 0.5 1.0 kT [ (47)

ke, T/ (47)

F1G. 2. Th in Eia. 1. but in th £ simpl drati FIG. 3. The same as in Fig. 1 but in the case of fcc crystal lattice
- < 1€ same as in Fg. 1. but In e case ot simple quadraliGy,, ., the exact calculations which are absent. The Monte Carlo
crystal lattice. The data for sucseptibilify corresponding to the

high-temperaFure series gxpansi(upen diamonds, HT-SEwere isr:mFl:;?“f(g)diitaRz? n;g.grﬁtézal\zgrrn/: rce;::écz;a:aedotnhrg:grg;::jeata
calculated using E¢26.2 in Ref. 29. obtained through our own Monte Carlo simulation of the correlation
function at the first coordination shellUnfortunately, below the

of thefirst order within the ring approximation in contrast to phase transition temperature we failed to achieve the good conver-
the secondorder obtained by the other standard methodsgence of our results with respect to the size of the Monte Carlo
That is why within the ring approximation the temperaturesimulation samplg.T¢'® is the temperature of the ferromagnetic
Tgng of the phase transitiofCurie temperatupeis different phase transition of the second order calculated by the Monte Carlo

from the temperature'ﬁgrfg andT'Cigg of absolute instability of simulation(Ref. 30. The series expansidiSE) based data for heat

. . . apacityc, were taken from Fig. 14 of Sec. 4.7.3 in Ref. 23. The
the paramagnetic and ferromagnetic states, respectively. Cozata for sucseptibilityy corresponding to the high-temperature se-

responding!y, we have d_iSC(_)ntinuances in _the temper_at_L_JrreleS expansiotHT-SE) were taken from Ref. 31. The data for free
dependencies of magnetlzatlpn, heat capacity, su_c_sept|b|llt)é,nergyf corresponding to the low-temperatufeiT) and high-
energy, and entropy at t,h,e point of Fhe pha;e tr.anS|_t|on. Thu?emperature(LT) series expansions were calculated using, respec-
we do not study the critical quantitigs.g., indicey intro-

i T tively, Egs. (119 and (127) of Chap. 4 in Ref. 23. The data for
duced for a description of the phase transitionsxactlythe  energyf and entropy corresponding to the high-temperature series

second order. The susceptibility takes an infinite values onlgyxpansion(HT-SE) were taken Ref. 32. The series expansiSi)
for metastable paramagnetic and ferromagnetic staf€s'at  based data for critical values of the free energy, energy, and entropy
and T39, respectively. The heat capacity takes firktg2  were taken from Table 6 of Sec. 4.7.1 in Ref. 23.
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i T T T TABLE I. The values of the characteristic temperatures obtained
A by different methods in the cases of linear chdichain), simple
10 quadratic(sg), and face-centered-cubifce) crystal latticesTy ™ is
the temperature of the ferromagnetic phase transition of the first
order, Ti9 and T™9 are the temperatures of absolute instability of
the paramagnetic and ferromagnetic states, respectively; all calcu-

lated within the ring approximationl¥'“, TSE, T&@ TMF " gnd
. TSYM are the temperatures of the ferromagnetic phase transition of
0.5 | the second order calculated by Monte Carlo simulation, by series
. =025 expansion, exactly, within the mean-field approximation, and by
_0_::" 05 e (ot cluster-variation methodwithin the square or trianglésg and
e MF —riog (sable) ] tetrahedron-octahedrafficc) approximationg respectively. All the
ring (metastable)
temperatures are in unitg/(4J4).
0.0 0.0 02 0.4
00 . , .k \ | chain sq fcc
Y 05 10 -
A T4 0 0 2.231
T 0.2148 0.6186 2.406
FIG. 4. The dependences of the magnetizasiovith respect to Ting 0.2516 0.6427 2.423
the magnetic fieldh in the case of linear chain crystal lattice for the TMC 2 448
reduced temperaturesI’=0.12, 0.25, and 0.35 wherel’ TgE 0.567 244G
=kgT/(4J,). The dependences were obtained within the (thigk Tgm 0 0'5673 '
line) and mean-fielddash line approximations as well as by the - )
exact calculationgopen circles Tc 0.5 1 3
T 0.6057 2.502

c

value for metastable paramagnetic statd ﬁf’ and infinite  aReference 30.
value for metastable ferromagnetic statelg°. bTable 5 in Sec. 4.7.1 of Ref. 23.

Note that in some cases the wrofifiyst) order of the CTable Ill in Ref. 33.
phase transition within the ring or ringlike approximations %Table V in Ref. 34.
was also found in Refs. 3, 16, 17, 22, and 35. In Refs. 8, 9,
and 13 the second order of the phase transition was assumgdo-dimensional casegat zero external magnetic figld
a priori thus resulting in the wrong conclusions about thewhereas actually in these cases only the temperaﬂ[ﬁ;of
behavior of the heat capacity in the vicinity of the phaseapsolute instability of the paramagnetic state vanishes rather
transition. In Chap. 9 of Ref. 7, assuming the second order of,an the temperatur-égng of the phase transition itself. Note
the phase transition and using the similarity to the sphericahat the same problem of adequate description of the order of
model, it was erroneously concluded that there is no phasge phase transformation was also revealed within the
transition at all within the ring approximation in one- and .| ster-variation method in the two-dimensional cdsee
Sec. 10 in Ref. 3B

In the dependences of the magnetization with respect to
the magnetic field the discontinuances take place when the
magnetic field is small and the temperaturecisseto the
phase-transition temperature. Such behavior was found to be
inadequatdsee Chap. 9 in Ref. 7 and Refs. 9 and t®the
Lee and Yang general theorém.

It is remarkable that within the mean-field approximation
we obtain the right order of the phase transitions and there is
not discontinuances in the dependences of the magnetization
/ ting (stable) with respect to the magnetic field. But, nevertheless, the nu-
“ | ——ring (metastable) {- merical accuracy of the ring approximation is much higher

o2} [ than that of the mean-field one in all the considered cases.
As a rule, the numerical accuracy of the ring approxima-
0.0 | tion is high for all considered quantities in all temperature

00 o o= region except the vicinity of the phase transition. Only in the
. : L . L one-dimensional case, the error of magnetization and sucsep-
tibility is substantial also at low temperatures. Remarkably
high numerical accuracy of the ring approximation is ob-

FIG. 5. The same as in Fig. 4 but in the case of fcc crystal latticdained for the free energy in the almost all temperature region
without the exact calculations which are absent. The sign(p@n  in all three cases. The error contributions of energy and en-
circles correspond to the Monte Carlo simulation data taken fromtropy to the free energy seem to compensate one another.
Figs. 1b) and Xc) in Ref. 30. The numerical accuracy of the ring approximation has a

08 |-

0.6 |1

02|

0.0
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strong tendency of increase with increase of the dimension ddpin interactions and the dimensionality of the crystal lattice.
the crystal lattice. In particular, the order of the phase tranBy the use of the ring approximation one can perform the
sitions becomes closer to the second oidee temperatures high-accuracy calculations of the magnetization, heat capac-
TG TO9 and TM9 approach one anotherSuch a ten- ity, sucseptibility, free energy, energy, and entropy in a wide
dency is in accordance with the choice of the inverse effectemperature region except the vicinity of the phase transition.
tive number of atomsgsping interacting with one fixed atom Remarkably high numerical accuracy of the ring approxima-
(spin as a small parameter of expansion within the ringtion is obtained for the free energy within the almost all
approximatior® According to such a tendency, one can ex-temperature region. The numerical accuracy of the ring ap-
pect also an increase of the numerical accuracy of the ringroximation is much higher than that of the mean-field one.
approximation with increase of the effective radius of atomic
interactions. Such effect was much verified in Refs. 3,27, and
28 rather than in the present paper. Note that even in the case
of the one-dimensional linear chain, the phase transition does
exist in the case of sufficiently long-range spin interactions This research was supported by the Defense Advanced
(e.g., Sec. 5.5 in Ref. 24n accordance with the prediction Research Projects Agency through ONR Contract No.
of the ring approximation. N00014-02-01-0590 and by National Science Foundation
MRSEC Grant No. DMR0213985. The author thanks Profes-
sor E. Bruno, Professor B. L. Gyorffy, Dr. L. V. Pourovskii,
Dr. A. V. Ruban, Dr. S. Shallcross, Professor J. B. Staunton,
and Dr. V. A. Tatarenko for stimulating discussions as well as
ddr- W. H. Butler, Professor N. P. Kulish, and Professor V. B.
Molodkin for constant support during this research.
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VI. CONCLUSIONS

In the present paper, we generalized the results obtain
in Ref. 3 within the ring approximation to the case of the
spin-1/2 Ising model with a complex crystal lattice, arbitrary
magnetic order and with nonpair spin interactions of any
order and effective radii of actio(Becs. II-Il). By the use
of those results one can calculate the complete phase dia-
gram of the Ising model as well as the correlation effects. We The (12)
also performed the verification of the numerical accuracy 01‘19.(l Kyiipkoi. . iin 1.k, gii, taKeS the following forms in the
the ring approximation in the cases that have been typical giarticular case s afi=0,
consideration of the Ising modébec. ).

In the case of the Ising model the ring approximation has
the same advantages and shortcomings as in the case of the (P(O)—JoJrz h; S.+ 2 J(z 01,51, 51,
lattice gas mode(for more details see conclusions in Ref. 3
The corresponding expressions are general and analytically
simple. The ring approximation offers the advantages over 6
the cluster-variation method and Monte Carlo simulation. 1

It should be emphasized that, actually, such mean-field- 1
like theories as the ring approximatiéas well as the cluster- +2—4 '
variation methoglare not intended to be used for a descrip- "
tion of the critical phenomena but rather for description of
phase diagrams, correlation effects, nonequilibrium pro-
cesses, etc. outside the critical regions, which nevertheless 5= 1,
of great interest from practical point of vie(e.g., Secs. 4.1
and 4.5.6 in Ref. 2, and Chap. 5 in Ref.)3Rarticularly, it is
impossible to require the high accurate description of the CD(l)—h +E Si’ 3(2)0|+ 2
critical indices within such theories. For a description of the i1 i1
critical phenomena and universal characteristics of phase
transitions, we have to use the special meth@dg., series
expansions and renormalization-group theory

Nevertheless, the study performed in the present paper
demonstrates that, even in the most unfavorable cases gf
nearest-neighbor spin interactions and phase transformations
of the second order, the ring approximation gives high-
accurate values for the temperatures of such phase transfor-
mations(in two- and three-dimensional cagels such cases,
within the ring approximation the order of the phase trans-

APPENDIX

general expression for
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formations is not perfectly second but close to it. There is a
strong tendency of increase of the numerical accuracy of the
ring approximation with increase of the effective radius of
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