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Statistical-thermodynamic description within the ring approximation. I. Lattice-gas model
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The general method is elaborated for the statistical-thermodynamic description within the ring approxima-
tion of the lattice gas with a complex crystal lattice and with nonpair atomic interactions of any order and
effective radii of action. The ring approximation corresponds to the first order of a modified thermodynamic
perturbation theory under the choice of the inverse effective number of atoms interacting with one fixed atom
as a small parameter of expansion. By the elaborated method one can calculate the complete phase diagram of
the lattice gas as well as the correlation effects in both disordered and long-range ordered states of it. The
elaborated method is general and analytically simple. The corresponding analytical expressions do not change
their form at an increase of the effective radius of atomic interactions and are valid in case of any superstruc-
ture. The number of the ‘‘variational’’ parameters for minimization of the free energy is considerably fewer
than that within the cluster-variation method and are determined by the type of the superstructure rather than
by the value of the effective radius of atomic interactions. Due to the analytical nature of the ring approxima-
tion, the time for calculations within it is much less than that of the Monte Carlo simulation. By a comparison
with the results of the Monte Carlo simulation the high numerical accuracy of the ring approximation is
demonstrated in wide temperature-concentration intervals. The tendency of increase of the numerical accuracy
of the ring approximation with increase of the effective radius of atomic interactions is shown. The applica-
bility of the ring approximation is discussed. The obtained results may be useful for a description of solid
solutions, alloys, magnetics, fluids, and amorphous materials.
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I. INTRODUCTION

The lattice-gas model1 has proved to be useful for a de
scription of solid solutions, alloys, magnetics, fluids, a
amorphous materials. However, in many cases the ato
interactions in such systems are long ranged~for the case of
alloys see, e.g., an introduction in Ref. 2!. The Monte Carlo3

~MC! and cluster-variation4–7 high-accuracy methods, whic
are most widely used for the statistical-thermodynamic
scription of the lattice-gas model, encounter the compu
tional difficulties in such cases~e.g., Ref. 8!. The treatment
of the long-ranged atomic interactions is not problema
within the mean-field and high-temperature approximatio
but the corresponding results have low numerical accur
and can be inadequate even qualitatively~e.g., Refs. 4,9!.

Brout10–13 suggested to use the quantityz21 as a small
parameter of expansion in the thermodynamic perturba
theory, wherez is the effective number of atoms interactin
with one fixed atom. Such a parameter of expansion can
expected to be useful for systems with long-range ato
interactions whenz must be large. Besides, within such a
approach the interaction parameters appear in the final
pressions only through the Fourier transform of the int
atomic potential. So there are no computational difficult
for consideration of long-range atomic interactions. Bro
approach was elaborated in the case of a ferromagnetic
of the Ising model~with only pair spin interactions!, which is
equivalent to the disordered@i.e., without a long-range orde
~LRO!# lattice-gas model~e.g., Sec. 2.6 in Ref. 14!.

In Refs. 2,15–18 thez21 approximation~up to the first
order! was used for study of the correlation effects in t
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disordered lattice gas with a Bravais crystal lattice. The
proximation was named as ring in accordance with the top
ogy of the diagrams being taken into account within the
proximation in the context of the corresponding diagra
technique. In the cases of long-range atomic interactions,
high numerical accuracy of the ring approximation was o
tained in wide temperature-concentration intervals~by a
comparison with the MC simulation!. In Ref. 19 the method
was proposed for description of a LRO lattice gas with p
atomic interactions within the ring approximation.

The aim of the present paper is to elaborate the gen
method for the statistical-thermodynamic description with
the ring approximation of a lattice gas with arbitrary com
plex crystal lattice and with many-body atomic interactio
of any order and effective radii of action.~The importance of
introduction of nonpair atomic interactions into the cons
eration was discussed, e.g., in Sec. 1 of Ref. 20.! In Sec. II,
the configurational Hamiltonian is introduced for a descr
tion of the lattice gas. In Secs. III and IV, the expression
the free energy is obtained within the ring approximation.
Sec. V, the approximations within the lattice-gas model t
are similar to the ring one are outlined. In Sec. VI, the a
plicability of the ring approximation is discussed. In Se
VII, the equations of state for a determination of the therm
dynamically stable or metastable superstructures are der
within the ring approximation. In Sec. VIII, the sufficien
condition of the thermodynamical stability or metastabil
of the superstructures is studied. In Sec. IX, the express
for the interatomic correlation functions are obtained with
the ring approximation. In Sec. X, the method of calculati
of the complete phase diagram of the lattice gas is propo
©2004 The American Physical Society31-1
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In Sec. XI, the applicability of the obtained results in t
case of a multicomponent lattice gas is discussed. In S
XII, the expression for the heat capacity is obtained in
case of the disordered state. The numerical accuracy o
method is verified through the comparison with the cor
sponding data of MC simulation in Sec. XIII. In Sec. XIV
advantages and disadvantages of the ring approximation
summarized.

II. CONFIGURATIONAL HAMILTONIAN

Let us consider a two-componentA-B lattice gas.1 We
suppose that the unit cell of the crystal lattice consists on
sites (n>1). It is important that the case ofn.1 can be
attributed not only to the complex character of the crys
lattice itself but also to the presence of a LRO in atom
distribution. The crystal lattice can be divided inton Bravais
sublattices according with the unit cell. Taking into accou
the many-body atomic interactions of arbitrary orders a
radii of action, the HamiltonianH of the lattice gas in ques
tion can be written in the following form@e.g., Eq.~9! in Ref.
21#:

H5Nv01 (
n51

Nn
1

n! (
i 1 ,i 2 , . . . ,i n

(
R1 ,R2 , . . . ,Rn

3Vi 1 ,R1 ; i 2 ,R2 ; . . . ;i n ,Rn

(n) Ci 1 ,R1
Ci 2 ,R2

•••Ci n ,Rn
, ~1!

or writing the series explicitly,

H5Nv01(
i

Vi
(1)(

R
Ci ,R

1
1

2 (
i 1 ,i 2

(
R1 ,R2

Vi 1 ,R1 ; i 2 ,R2

(2) Ci 1 ,R1
Ci 2 ,R2

1
1

6 (
i 1 ,i 2 ,i 3

(
R1 ,R2 ,R3

Vi 1 ,R1 ; i 2 ,R2 ; i 3 ,R3

(3) Ci 1 ,R1
Ci 2 ,R2

Ci 3 ,R3

1••• . ~2!

In Eqs.~1! and ~2!, the summations on the indicesi and on
the site radius vectorsR are carried over alln sublattices and
over allN unit cells of the crystal lattice, respectively,Ci ,R is
the configurational variable

Ci ,R5H 1 if the site~ i ,R! is occupied by an

A-type atom

0 otherwise

~3!

~type B is excluded from the configurational description
see Sec. 2 in Ref. 21!, v0 is the energy per unit cell of the
lattice gas in which all sites are occupied byB-type of atoms,
Vi 1 ,R1 ; i 2 ,R2 ; . . . ;i n ,Rn

(n) is the mixing potential ofnth order (n

51,2, . . . ,Nn) @see Eq.~10! in Ref. 21#.
In the configurational description of the lattice gas p

sented above we follow Refs. 9,21–24 and cluster-varia
method methodology, where each LRO structure~superstruc-
ture! is described in terms of its own unit cell~both in direct
and reciprocal spaces! determined by the space symmetry
13443
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that structure. Such a description allows to take easily i
account the symmetry difference of the mixing potentials
different structures21 as well as to perform the summation o
the infinite series in the cumulant expansion in a gene
form ~see below Sec. IV!. Our description is principally dif-
ferent from that one accepted in the method of static conc
tration waves~e.g., Refs. 25–29!, where any superstructur
is described in terms of the unit cell of the correspond
parentdisorderedstructure.

III. FREE ENERGY

We describe our system within the grand canonical
semble. The necessity of use of such an ensemble is
cussed below in Sec. VI. The grand partition functionJ of
the lattice gas

J[ (
$Ci ,R%

expH 2~kBT!21FH2(
i 51

n

~mA
( i )NA

( i )1mB
( i )NB

( i )!G J
~4!

can be presented in the following form:

J5J0 (
$Ci ,R%

expF2
X

kBTG , ~5!

where

J05expH 2~kBT!21NFv02(
i 51

n

mB
( i )G J , ~6!

X5 (
n52

Nn
1

n! (
i 1 ,i 2 , . . . ,i n

(
R1 ,R2 , . . . ,Rn

Wi 1 ,R1 ; i 2 ,R2 ; . . . ;i n ,Rn

(n)

3Ci 1 ,R1
Ci 2 ,R2

•••Ci n ,Rn
, ~7!

Wi 1 ,R1 ; i 2 ,R2 ; . . . ;i n ,Rn

(n)

5H Vi 1 ,R1 ; i 2 ,R2

(2) 1m i 1
d i 1 ,i 2

dR1 ,R2 if n52

Vi 1 ,R1 ; i 2 ,R2 ; . . . ;i n ,Rn

(n)
if n.2,

~8!

m i52@Vi
(1)2mA

( i )1mB
( i )#, ~9!

ma
( i ) andNa

( i ) ( i 51,2, . . . ,n; a5A,B) are the chemical po-
tentials and the total numbers ofa-type atoms ati th sublat-
tice, respectively;T is the absolute temperature,kB is the
Boltzmann constant, the summation on$Ci ,R% is carried over
all possible atomic configurations, andd is the Kronecker
delta. At derivation of Eq.~5! the following relationships:

NA
( i )1NB

( i )5N, NA
( i )5(

R
Ci ,R , ~10!

@Ci ,R#n5Ci ,R , ~11!

where n is a positive integer, were used. The symme
equivalence of the crystal lattice siteswithin each sublattice
was taken into account~see Sec. 3 in Ref. 21!. We put dif-
1-2
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ferent values for the chemical potentials of atoms at differ
sublattices assuming symmetry inequivalence of sublatt
in general case. Such inequivalence is caused, for exam
by space inhomogeneity in atom distribution due to the pr
ence of a LRO.

Note that the expression~5! for the grand partition func-
tion can be converted into the expression for thecanonical
partition function formally by settingm i50 for all i ~under
neglect of the configuration-independent multiplier!. This al-
lows us, if need be, to make a step from the grand canon
description to the canonical one in the final expressions
statistical-thermodynamic characteristics of the lattice gas
settingm i50.

According to the Kirkwood methodology,30 the expres-
sion for the grand thermodynamic potentialV corresponding
to the grand partition function~5! can be written as follows

V52kBT ln J5NFv02(
i 51

n

mB
( i )G2kBT ln DG1DV,

~12!

where

DV52kBT lnK expF2
X

kBTG L , ~13!

the sign^•••& means the statistical average over allDG pos-
sible configurations

^•••&5DG21 (
$Ci ,R%

•••, DG5 (
$Ci ,R%

, ~14!

At a statistical-thermodynamic description of the lattic
gas model it is convenient to use the average sublattice a
concentrationsPi ( i 51,2, . . . ,n) rather than the chemica
potentials as given~input! parameters:14

Pi5^Ci ,R&LRO5^NA
( i )&LRO/N, ~15!

where sign^•••&LRO means the statistical average over
possible atomic configurations with a given LRO. Note th
Pi is equal to the probability of finding anA-type atom at a
site belonging to thei th sublattice and all the quantitiesPi
are independent of the radius vectorR of unit cell due to the
translational invariance of unit cells. According to such
description, we move to the expression for the free enerf
per unit cell of the system in question,

f 5N21H V1(
i 51

n

@mA
( i )^NA

( i )&LRO1mB
( i )^NB

( i )&LRO#J ,

~16!

which can be presented in the form@by the use of Eq.~12!#

f 5v01(
i

PiFVi
(1)2

m i

2 G2N21kBT ln DG1D f , ~17!

where@see Eq.~13!#

D f 5DV/N. ~18!
13443
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The values of the chemical potentials$ma
( i )% and, therefore

@see Eq.~9!#, the values ofm i corresponding to given value
of $Pi% are found from the following standard relationshi
( i 51,2, . . . ,n):

^Na
( i )&LRO52]V/]ma

( i ) , ~19!

which transform into the following equations for determin
tion of m i :

] f /]m i50. ~20!

In such a description the quantitiesm i are intermediate jus
like m in Fermi-Dirac distribution~e.g., Chap. 5 in Ref. 31!.

IV. CUMULANT EXPANSION

According to the general approach of the thermodynam
perturbation theory~see Refs. 10–12,26,30,32–34 and Sec
in Ref. 17!, the expression~18! for D f can be expanded in a
cumulant series in powers of the inverse temperature,

D f 52
kBT

N
lnK expF2

X

kBTG L 52
kBT

N (
n51

`
1

n!

Mn~X!

~2kBT!n
,

~21!

whereMn(X) is the cumulant ofnth order.
The expression~7! for X converts to the correspondin

expression~3.2! in Ref. 17 by the transformation

~ i ,R!→R. ~22!

It is easy to show that the final results obtained in Sec. 3
Ref. 17 are also valid for more general case being conside
in the present paper if one performs the transformation~22!
in those results. Taking this fact into account and followi
to the Brout approach10–12~see also Secs. 5–7 in Ref. 17!, let
us select the contributionsD f 0 andD f 1 to the cumulant ex-
pansion~21! from the irreducible summands proportiona
respectively, to the zeroth and first powers of the quan
z21, with z being equal to the effective number of atom
interacting with one fixed atom,

D f 05
1

N (
n52

Nn
1

n! (
i 1 ,i 2 , . . . ,i n

(
R1 ,R2 , . . . ,Rn

3Wi 1 ,R1 ; i 2 ,R2 ; . . . ;i n ,Rn

(n) P̃i 1
P̃i 2

••• P̃i n
, ~23!

D f 152
kBT

2N (
n51

`
1

n (
i 1 ,i 2 , . . . ,i n

(
R1 ,R2 , . . . ,Rn

3 f R12R2

i 1 ,i 2 f R22R3

i 2 ,i 3
••• f Rn2R1

i n ,i 1 , ~24!

where

P̃i5^Ci ,R&, ~25!
1-3
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f Rl2Rm

i l ,i m 52
AP̃i l

~12 P̃i l
!~m i l

d i l ,i m
dRl ,Rm

1FRl2Rm

i l ,i m !AP̃i m
~12 P̃i m

!

kBT
, ~26!

FRl2Rm

i l ,i m 5 (
t50

Nn22

(
i 18 ,i 28 , . . . ,i t8

P̃i
18
P̃i

28
••• P̃i

t8

t! (
R18 ,R28 , . . . ,Rt8

Vi
18 ,R

18 ,i
28 ,R

28 ; . . . ;i
t8R

t8 ; i l ,Rl ; i m ,Rm

(21t)
. ~27!
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Note that Eqs.~23! and ~24! are similar to Eqs.~6.2! and
~7.2! in Ref. 17, respectively. Nevertheless, there is a prin
pal difference between them. Namely, Eqs.~23! and ~24! of
the present paper correspond to the initially LRO st
whereas Eqs.~6.2! and ~7.2! in Ref. 17 correspond to the
initially disordered state with fluctuating LRO~see also Sec
VII below!.

Let us approximately put~see below a discussion in Se
VI !

P̃i'Pi , ln DG' ln DGLRO, ~28!

whereDGLRO is the number of configurations correspondi
to a state with a given LRO~e.g., Refs. 4,26,30!,

ln DGLRO52N(
i 51

n

@Pi ln Pi1~12Pi !ln~12Pi !#.

~29!

Introducing the Fourier transforms

Ṽi 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n)

of the mixing potentials (n52,3, . . . ,Nn)

Ṽi 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n)

5 (
R1 ,R2 , . . . ,Rn21

Vi 1 ,R1 ; i 2 ,R2 ; . . . ;i n21 ,Rn21 ; i n ,0
(n)

3expF2 i (
i 51

n21

k iRi G ,

Vi 1 ,R1 ; i 2 ,R2 ; . . . ;i n21 ,Rn21 ; i n ,Rn

(n)

5
1

Nn21 (
k1 ,k2 , . . . ,kn21

Ṽi 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n)

3expF i (
i 51

n21

k i~Ri2Rn!G , ~30!

and performing a number of matrix transformations~see Ap-
pendix A!, one can obtain

D f 05
1

2 (
i

m i Pi
21 (

n52

Nn
1

n! (
i 1 ,i 2 , . . . ,i n

Ṽi 1 ,0; i 2 ,0; . . . ;i n21 ,0; i n
(n)

3Pi 1
Pi 2

•••Pi n
, ~31!
13443
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D f 15
kBT

2N (
k

ln detAk , ~32!

where the summations onk are carried over all the point
specified by the cyclic boundary conditions in the cor
sponding first Brillouin zone and the designation detAk
means the determinant of the matrixAk with the following
elements:

Ak
i 1 ,i 25d i 1 ,i 2

1
APi 1

~12Pi 1
!@m i 1

d i 1 ,i 2
1F̃ i 1 ,k; i2

(2) #APi 2
~12Pi 2

!

kBT
.

~33!

The function F̃ i 1 ,k; i 2
(2) in Eq. ~33! corresponds to the par

ticular casen52 @see Eq.~B3! in Appendix B# of the
more general function F̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n

(n) (n

50,1, . . . ,Nn)

F̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n)

5 (
t50

Nn2n
1

t! (
i 18 ,i 28 , . . . ,i t8

Pi
18
Pi

28
•••Pi

t8

3Ṽi
18 ,0; i

28 ,0; . . . ;i
t8 ,0; i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n

(t1n)
,

~34!

which will be necessary below.

A. Mean-field „MF … approximation

Let us take into account only the contributionD f 0 to the
cumulant expansion. According to the Brout approach10–12

~see also Secs. 5–7 in Ref. 17! such a contribution is propor
tional to the zeroth power of the quantityz21, with z being
equal to the effective number of atoms interacting with o
fixed atom. Below in Sec. VI, it is shown that within th
approximations that take into account the finite numbers
terms in the cumulant expansion, it is correct to use theca-
nonicalensemble. As it was noticed in Sec. III, we can mo
to the canonical formalism puttingm i50 for any i in the
final expressions obtained within the grand canonical form
ism. On such a way substituting Eq.~31! instead ofD f into
Eq. ~17!, we get the well known MF approximation
1-4
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f MF5«MF2TsMF , ~35!

where@see Eqs.~34! and ~B1! in Appendix B#

«MF5F̃ (0), ~36!

sMF52kB(
i 51

n

@Pi ln Pi1~12Pi !ln~12Pi !#. ~37!

B. Ring approximation

Let us take into account both contributionsD f 0 andD f 1
to the cumulant expansion. According to the Bro
approach10–12 ~see also Secs. 5–7 in Ref. 17! those irreduc-
ible contributions are proportional to the zeroth and fi
powers of the quantityz21, with z being equal to the effec
tive number of atoms interacting with one fixed atom. W
shall call such an approximation as the ring approximati
Note that such name is in accordance with the topology
the diagrams corresponding toD f 1 in the context of the de-
veloped diagram technique@see Eq.~7.1! in Ref. 17 and Fig.
1 of the present paper#.

In that case substituting Eqs.~31! and ~32! instead ofD f
into Eq.~17!, we obtain the following expression for the fre
energy within the ring approximation:35

f ring5 f MF2
1

2 (
i

m i Pi~12Pi !1
kBT

2N (
k

ln det Ak ,

~38!

where f MF is defined in Eq.~35! and the quantitiesm i are to
be determined from the equations (i 51,2, . . . ,n)

FIG. 1. Classification by powers ofT21 andz21 of the linked
irreducible diagrams corresponding to the terms in the cumu
expansion~see Sec. 3 in Ref. 2!.
13443
t
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N21(
k

iAk
21i i i 51. ~39!

Equation~39! was derived from Eq.~20! at substitution of
f ring instead off. The designationiAk

21i i i means thei th di-
agonal element of the matrixAk

21 inverse toAk , which is
defined in Eq.~33!. By a symmetry consideration, it is eas
to show that one may use the matrixÃk with the following
elements:

Ãk
i 1 ,i 25d i 1 ,i 2

1
Pi 1

~12Pi 1
!

kBT
@m i 1

d i 1 ,i 2
1F̃ i 1 ,k; i2

(2) #, ~40!

instead ofAk in Eqs.~38! and ~39!.
From Eq.~38! one can obtain the following expression

for the energy« ring and entropysring within the ring approxi-
mation:

« ring5«MF2
1

2 (
i

m i Pi~12Pi !, ~41!

sring5sMF2
kB

2N (
k

ln detAk , ~42!

where «MF and sMF are determined in Eqs.~36! and ~37!,
respectively.

C. Case of the disordered lattice gas with a Bravais
crystal lattice

In such a case,Pi5c (c is the total concentration o
A-type atoms!, and it is not necessary to introduce the su
lattice indexi. Instead of~35! and ~38! we have within the
MF approximation and ring approximations, respectively,

f MF5v01cV(1)1 (
n52

Nn
cn

n!
Ṽ0,0, . . . ,0

(n)

1kBT@c ln c1~12c!ln~12c!#, ~43!

f ring5 f MF2
1

2
mc~12c!

1
kBT

2N (
k

lnH 11
c~12c!

kBT
@m1F̃k

(2)#J , ~44!

where the quantitym is to be determined from the equatio

N21(
k

H 11
c~12c!

kBT
@m1F̃k

(2)#J 21

51, ~45!

F̃k1 ,k2 , . . . ,kn21

(n) 5 (
t50

Nn2n
ct

t!
Ṽ0,0, . . . ,0,k1 ,k2 , . . . ,kn21

(t1n)

5Ṽk1 ,k2 , . . . ,kn21

(n) 1cṼ0,k1 ,k2 , . . . ,kn21

(11n)

1c2/2Ṽ0,0,k1 ,k2 , . . . ,kn21

(21n) 1•••, ~46!

nt
1-5
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Ṽk1 ,k2 , . . . ,kn21

(n) 5 (
R1 ,R2 , . . . ,Rn21

VR1 ,R2 , . . . ,Rn21 ,0
(n)

3expF2 i (
i 51

n21

k iRi G . ~47!

Note that Eqs.~46! and ~47! are the particular cases of Eq
~34! and~30!. The expressions for the energy and entropy
obvious in the considered case.

V. SIMILAR APPROXIMATIONS

Let us outline the approximations within the lattice-g
model that are similar to the ring one.~In the case of the
Ising model the same will be done in Ref. 36.!

In the particular case of only pair atomic interaction
expression~38! transforms into Eqs.~3! and~12! in Ref. 19.

In Ref. 24, by integration of the equations of state of t
Onsager cavity field approximation,37,38 the expressions fo
the free energy were obtained in the case of the disord
state,L10 andL12 structures of the face-centered-cubic~fcc!
lattice gas. Those expressions are similar to the corresp
ing expressions obtained within the ring approximation wh
nonpair atomic interactions are neglected. Unfortunately
general expression for the free energy of arbitrary superst
ture was not obtained in Ref. 24.

In Ref. 23 ~Secs. 3.2.2 and 3.4 there!, within both Brout
approach and collective variables method, the expression
the free energy of arbitrary superstructure was obtained.
sides, in Ref. 39~see also Ref. 40!, by the collective vari-
ables method within the Gaussian approximation, the exp
sion for the free energy of thedisorderedlattice gas with a
complex crystal lattice was obtained. The corresponding
pressions in Refs. 23,39 and those obtained within the
approximation are not identical but have common featu
The expressions obtained within the ring approximat
seem to be mathematically simpler. In the case of the di
dered lattice gas with a Bravais crystal lattice and with o
pair atomic interactions, both expressions in Refs. 23
transform into the corresponding equation~44! obtained
within the ring approximation.

In Refs. 28,29, the superstructures were described
terms of the unit cells of the correspondingdisorderedstruc-
tures~see Sec. III above!, according to the usual method o
static concentration waves~e.g., Refs. 25–27!. As a result,
within the Brout approach, the expressions for the free
ergy were obtained for the disordered state,L10 and L12
structures of the fcc lattice gas. That expression for the
ordered state is identical to Eq.~44! with m i50 and neglect-
ing nonpair atomic interactions. The expressions for the f
energy ofL10 andL12 structures obtained in Refs. 28,29 a
more complicated than Eq.~38!. A general expression for th
free energy of arbitrary superstructure was not obtained
nonpair atomic interactions were not taken into accoun
Refs. 28,29. Besides, the quantities such asm i were not in-
troduced in Refs. 28,29 because the canonical formalism
used. Therefore, by the same line of reasoning as below
Sec. VI, one may conclude that the numerical accuracy of
13443
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approximation obtained in Refs. 28,29 is not higher than t
of the mean-field one.

It is remarkable that the Debye-Hu¨ckel approximation can
be derived within the same statistical-thermodynamic
proach as the ring approximation, and one can find simil
ties in the corresponding expressions for the free energy
spite the principal difference of the simple gas and lattice-
models~e.g., Ref. 41!.

It should be noted that in fact our derivation within th
ring approximation is just the different approach~within the
lattice-gas model plus grand canonical formalism! to the
Brout approximation elaborated in Refs. 10–12 within t
Ising model~see also Ref. 36!. Perhaps, one may even ca
the ring approximation as the Brout one. The generalizat
of the ring ~Brout! approximation to the case of the lattice
gas model has the utility by itself. Besides, the considera
of a long-range atomic order~correspondingly, antiferromag
netic states within the Ising model!, a non-Bravais crysta
lattice, and nonpair interactions is much easier within o
approach than in the framework of the initial Brout a
proach.

In our opinion, it would be interesting and helpful to com
pare the above-denoted approximations in more detail i
separate paper. In the present~see Sec. XIII below! and
subsequent36 papers we performed the detailed numeric
study of just the ring approximation, which can help to u
derstand the features of similar approximations as well.

VI. APPLICABILITY OF THE RING APPROXIMATION

As in all diagrammatic methods, we have to use not o
theoretical justifications but also trial-and-error method
get analytically and/or numerically adequate results in st
dard cases~e.g., Ref. 33!. Usually, it is not possible to derive
completelyconsistent approximation without summingall
the diagrams.42 Besides, the practical feasibility~e.g., the
possibility of analytical summation of certain type of di
grams! plays an important role in a choice of approximatio

The first approximation we made consists in taking in
account only the terms proportional to the zeroth and fi
powers of the quantityz21 in the cumulant expansion withz
being equal to the effective number of atoms interacting w
one fixed atom in Brout classification10–12 ~see also Secs
5–7 in Ref. 17!. In diagram technique language, it mea
that we include into consideration the infinite number of t
ring-type diagrams~third column in Fig. 1!. Such a ‘‘verti-
cal’’ ~see Fig. 1! way of diagram summation, whenz21 is
chosen as a small parameter, is alternative to the usual ‘‘h
zontal’’ one, whenT21 is chosen as a small parameter~e.g.,
Refs. 25,26,30,43!. Note thatz21 expansion is referred to a
high-density one in Refs. 10,11. Such a name seems not t
adequate because big values ofz correspond to long-range
atomic interactions rather than to high concentration
A(B)-type atoms.

It should be emphasized that both classifications of
terms in the cumulant expansion by the powers ofT21 and
z21 are approximate and have only a suggestive mean
Brout classification is not rigorous by its nature. AtT21 es-
timation we do not take into account an implicit temperatu
1-6
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dependence of the terms in the cumulant expansion thro
Pi andm i . Besides the numerical testing~see Sec. XIII be-
low!, the ring approximation is supported by its similarity
other approximations~see Sec. V! as well as by the fact tha
we obtain the high-accuracy spherical model approxima
for the short-range order by the method of differentiati
with respect to potential within the ring approximation~see
Sec. IX below!. As it was pointed out in Sec. 11 of Ref. 3
the more the contribution from a vertex, the less the lin
enter a vertex of a diagram. Thus, one may expect that
ring diagrams, for which only two lines enter each verte
mainly contribute to the cumulant expansion. If the Bro
classification is valid, one should expect an increase of
numerical accuracy of the ring approximation with increa
of the radius of atomic interactions and/or of the dimensi
ality of the crystal lattice because the parameterz21 de-
creases in such cases. Note that one may consider the q
tity z as the effective dimensionality of the Hamiltonian~see
Sec. 1.6 in Ref. 44!.

The second approximation we made consists in a neg
of the terms corresponding to thereduciblediagrams in the
cumulant expansion.@Note that some of the reducible dia
grams are implicitly taken into account by the renormaliz
tion ~28! of the diagram vertices, see below.# The account of
such terms is problematic in practice. There is a numbe
prerequisites to neglect such terms15,25,26,32,43but the ultimate
answer seems to be obtained only through the numerical
culations. The neglect of the reducible diagrams correspo
ing to the low powers ofT21 can result, for example, in th
low numerical accuracy of the ring approximation at su
ciently low temperatures when the contribution of such d
grams can be considerable. Besides, the results of the
approximation can be inadequate in the immediate vicin
of the critical temperatures~and concentrations! of the abso-
lute instability of structures, where the contribution from t
divergent reducible diagrams@and those irreducible that ar
proportional toz2n (n.1)] is considerable~see Chap. 2,
Sec. 6 in Ref. 12!. Thus, we should expect the low numeric
accuracy at calculation of the temperatures of phase tran
mations of the second or close to second orders, when
interval between the critical temperature of the absolute
stability and that of the phase transformation is compa
tively small ~or vanishes!.

We describe our system within the grand canonical
semble. The necessity of use of such an ensemble is ca
by our use of the transformation

^Ci 1 ,R1
Ci 2 ,R2

•••Ci n ,Rn
&5^Ci 1 ,R1

&^Ci 2 ,R2
&•••^Ci n ,Rn

&

~48!

@n.1, (i l ,Rl)Þ( i m ,Rm)] in all the cumulant expansion
terms. In the case of thecanonicalensemble, the transforma
tion ~48! is valid for only finite values ofn, when the fixed
concentration restriction on summation over the configu
tional states is negligible in thermodynamic limit. Thus,
we take into account the terms that include quantit
^Ci 1 ,R1

Ci 2 ,R2
•••Ci n ,Rn

& with only finite values ofn, it is
correct to use thecanonical ensemble. This is the case o
high-temperature approximations of finite orders as well
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of MF approximation ~see Sec. IV A!. However, if
we take into account the terms that include quantit
^Ci 1 ,R1

Ci 2 ,R2
•••Ci n ,Rn

& with infinite values ofn ~just like in
the ring approximation!, for correctness of the transforma
tion ~48! we have to use the grand canonical ensemble.
necessity to change the statistical ensemble was discus
e.g., in Sec. 4.3 of Ref. 45.

From Eq.~43!, it follows that within the MF approxima-
tion the critical temperatureTc

MF of the absolute instability of
the disordered state is determined as@see Eq.~2.3! in Ref.
46#

kBTc
MF52c~12c!min

k
F̃k

(2)52c~12c!F̃k0

(2) . ~49!

Let us putm50 in Eq. ~44! for a moment, what is the sam
as consideration within the canonical ensemble~see Sec. III!.
In such a case, due to the presence of the logarithm, the
energy~44! of the disordered lattice gas does not exist aT
<Tc

MF , even within the ring approximation. Correspon
ingly, the critical temperature of the absolute instability
the disordered state as well as the order-disorder phase
sition temperature can be only more or equal toTc

MF . Thus,
we arrive at the important conclusion that without the gra
canonical consideration~i.e., without introduction ofm),
even taking into account the ring diagrams in cumulant
pansion, it is impossible to diminish the~usually too high!
order-disorder phase-transition temperature obtained wi
the MF approximation. In Sec. XIII below, it is shown tha
the use of the ring approximation within thegrandcanonical
formalism allows to substantially increase the numerical
curacy of the MF approximation results. There is a num
of other important discrepancies within the ring approxim
tion in the canonical formalism.10–12,33,42

In order to get the high-accuracy results within the ri
approximation it is important to introducem i into the
Wi 1 ,R1 ; i 2 ,R2

(2) @see Eq.~8!# before the classification of the

terms of the cumulant expansion in powers ofz21. The
quantities analogous to ourm i were introduced on severa
grounds within a number of approximations~see Sec. V!.
The possibility to get the results within thegrand canonical
formalism that are different from those obtained within t
canonical formalism was pointed out in Sec. 2.3 of Ref.

In order to obtain the physical adequacy and high num
cal accuracy, we have also introduced the self-consis
field approximation~28!. As a result, if we putm i50 we get
the adequate transformation of our final expressions to th
obtained within the canonical formalism. Besides, we obt
a similarity with other approximations~see Sec. V!. The ap-
proximation~28! corresponds to a renormalization of the di
gram vertices, i.e., to the implicit summation of addition
reducible diagrams in the cumulant expansion~see Refs.
33,42 and Chap. 2, Sec. 6 in Ref. 12!. Note that it is impor-
tant to introduce the approximation~28! after the decoupling
~48! because otherwise we return to the canonical consi
ation. We should expect the contribution of the se
consistent field approximation to the low numerical accura
of the ring approximation within the critical regions of pha
diagram. However, such a contribution must be diminish
1-7
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by an increase of the radius of atomic interactions and/o
the dimensionality of the crystal lattice.

Below in Sec. XIII we will verify all the theoretical state
ments of the present section by numerical calculations.

VII. EQUATIONS OF STATE

The thermodynamically stable or metastable superst
tures correspond, respectively, to the absolute or lo
minima of the free energy in the space of LRO parame
according to the variational property of the free energy~see,
e.g., Sec. 4.2.2 in Ref. 14!. Therefore, the values of the LRO
parameters corresponding to such stable or metastable s
tures must satisfy the equations that follow from the con
tion of zero values of the first derivatives of the free ene
with respect to such parameters. The present section wi
devoted to a general derivation of such equations, which
shall call as the equations of state. Below in the pres
paper, we neglect a dependence of the mixing potentials
the quantitiesPi .

A. Ring approximation

Let us consider the fluctuationsdPi ,R of the quantities
Pi . The presence of the argumentR in dPi ,R means that we
take into account not only the fluctuations of the differenc
Pi2Pj ( iÞ j ) but also the fluctuations ofPi within each
sublattice. We have also to take into account the correspo
ing chemical potential fluctuationsdm i ,R of the quantitiesm i
~see Ref. 18!. It is easy to show that within the ring approx
mation the free energy functionalf ring

fluct of the fluctuatingPi ,R
andm i ,R has the following form:

f ring
fluct5v02

1

2N (
i

(
R

m i ,RPi ,R~12Pi ,R!

1N21(
i

(
R

Pi ,RVi
(1)

1
1

N (
n52

Nn
1

n! (
i 1 ,i 2 , . . . ,i n

(
R1 ,R2 , . . . ,Rn

3Vi 1 ,R1 ; i 2 ,R2 ; . . . ;i n ,Rn

(n) Pi 1 ,R1
Pi 2 ,R2

•••Pi n ,Rn

1N21kBT(
i

(
R

@Pi ,Rln Pi ,R1~12Pi ,R!ln~12Pi ,R!#

2
kBT

2N (
n51

`
1

n (
i 1 ,i 2 , . . . ,i n

(
R1 ,R2 , . . . ,Rn

f i 1 ,R1 ; i 2 ,R2

fluct

3 f i 2 ,R2 ; i 3 ,R3

fluct
••• f i n ,Rn ; i 1 ,R1

fluct ~50!

@compare with Eqs.~17!, ~23!, and~24!#, where

Pi ,R5Pi1dPi ,R , m i ,R5m i1dm i ,R , ~51!
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f i l ,Rl ; i m ,Rm

fluct 52~kBT!21APi l ,Rl
~12Pi l ,Rl

!

3~m i l ,Rl
d i l ,i m

dRl ,Rm
1F i l ,Rl ; i m ,Rm

fluct !

3APi m ,Rm
~12Pi m ,Rm

!, ~52!

F i l ,Rl ; i m ,Rm

fluct

5 (
t50

Nn22
1

t! (
i 18 ,i 28 , . . . ,i t8

(
R18 ,R28 , . . . ,Rt8

Pi
18 ,R

18
Pi

28 ,R
28
•••

3Pi
t8 ,R

t8
Vi

18 ,R
18 ,i

28 ,R
28 ; . . . ;i

t8R
t8 ; i l ,Rl ; i m ,Rm

(21t)
~53!

@compare with Eqs.~26! and ~27!# andm i ,R are to be deter-
mined from the equations (i 51,2, . . . ,n)

] f ring
fluct/]m i ,R50 ~54!

@compare with Eq.~20!#.
Note that the expression~50! is analogous to Eq.~7.4! in

Ref. 17. The principal difference between them lies in t
fact that in the present paper we consider the fluctuation
the initially LRO state rather than those of the initially di
ordered~i.e., without a LRO! state.

Using Eq.~54!, we have for the free energy variation o
the first order

d f ring
fluct5(

i
(
R

] f ring
fluct

]Pi ,R
U

0

dPi ,R . ~55!

In Eq. ~55! and below, index 0 means that the derivatives
taken atPi ,R5Pi andm i ,R5m i :

•••u0[•••uPi ,R5Pi ,m i ,R5m i
. ~56!

Substituting Eq.~50! into Eq. ~55!, we get

d f ring
fluct5(

i
Di

ringd P̃i ,0 , ~57!

whered P̃i ,k is the Fourier transform ofdPi ,R ,

dPi ,R5(
k

d P̃i ,k exp~2 ikR!, ~58!

Di
ring5F̃ i

(1)2
m i

2
~122Pi !1kBT ln

Pi

12Pi

2
kBT

2N (
q

(
j ,l

f̃ i ,0;j ,q; l
(3) iAq

21i l j

APi~12Pi !
, ~59!

f̃ i 1 ,k1 ; i 2 ,k2 ; i 3
(3) 52

)
m51

3

APi m
~12Pi m

!

kBT
F̃ i 1 ,k1 ; i 2 ,k2 ; i 3

(3) ,

~60!

the functionsF̃ i
(1) and F̃ i 1 ,k1 ; i 2 ,k2 ; i 3

(3) correspond to the par

ticular casesn51 and n53 @see Eqs.~B2! and ~B4! in
1-8
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Appendix B#, respectively, of the function
F̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n

(n) defined in Eq.~34!.

Taking into account the constraint forPi ,R

(
i 51

n

(
R

Pi ,R5^NA& ~61!

(NA is the total number ofA-type atoms! and correspond-
ingly for dPi ,R andd P̃i ,k

(
i 51

n

(
R

dPi ,R5N(
i 51

n

d P̃i ,050, ~62!

we can expressd P̃n,0 as

d P̃n,052 (
i 51

n21

d P̃i ,0 . ~63!

Substituting Eq.~63! into Eq. ~57!, we obtain the expressio
for d f ring

fluct through theindependentfluctuations

d f ring
fluct5 (

i 51

n21

~Di
ring2Dn

ring!d P̃i ,0 . ~64!

Because the free energy variation of the first-orderd f ring
fluct

vanishes in case of thermodynamically stable or metast
superstructures:

d f ring
fluct50, ~65!

from Eq. ~64! we obtain the following equations of statei
51,2, . . . ,n21):35

$Di
ring2Dn

ring50, ~66!

whereDi
ring is defined in Eq.~59!. Note that, at neglect of the

nonpair interactions, the obtained equations of state are s
lar to the corresponding ones derived within the Onsa
cavity-field approximation.24,37,38

As an example, let us write down the equations of st
for L10 and L12 structures in case of presence of on
nearest-neighbor pair atomic interactionsVi 51

(2) :

kBT ln
P2~12P1!

P1~12P2!
1

1

2
@2m1~122P1!1m2~122P2!#

524Vi 51
(2) h, ~67!

where the correspondingPi and LRO parameterh are re-
lated below in Eqs.~132! and ~133! andm i are to be deter-
mined from Eq.~39!. Note that the difference between E
~67! and the corresponding expressions obtained within
MF approximation@e.g., Eqs.~16.8! and ~16.24! in Ref. 9#
lies in the nonzero value of the quantitiesm i .

Case of the almost maximum LRO parameter

In wide temperature-concentration intervals~not only at
low temperatures!, the differences between the values of t
LRO parameters and their maximum possible values
small. Thus, within such intervals, the general equations
13443
le
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r

e

e

re
f

state~66! can be simplified by series expansion in powers
such small differences with taking into account only lowe
powers.

Let us consider the case of structures characterized by
LRO parameterh. In this case, all the quantitiesPi ( i
51,2, . . . ,n) take only two different valuesPI andPII ~e.g.,
Sec. 1 in Ref. 9!,

PI5c1~12cst!h, PII5c2csth, ~68!

wherecst is the stoichiometric concentration of the structu
The maximum values ofh,PI ,PII(hmax,PI

max,PII
max, respec-

tively! possible at a given concentrationc are the following:

hmax5
c

cst
, PI

max5
c

cst
, PII

max50 ~c<cst!,

hmax5
12c

12cst
, PI

max51, PII
max5

c2cst

12cst
~c.cst!.

~69!

From Eq.~66!, assuming thath.hmax, we obtain

h5
c

cst
F12

1

11~cst2c!~«21!G ~c,cst!, ~70!

h512
211A114cst~12cst!~«2121!

2cst~12cst!~«2121!
~c5cst<0.5!,

~71!

h512
211A114cst~12cst!~«21!

2cst~12cst!~«21!
~c5cst.0.5!,

~72!

h5
12c

12cst
F12

1

11~c2cst!~«21!G ~c.cst!, ~73!

where

«5exp$~kBT!21@Ri 5II~$Pj
max%!2Ri 5I~$Pj

max%!#%,
~74!

Ri~$Pj%!5F̃ i
(1)2

1

2
m i~122Pi !

2
kBT

2N (
q

(
j ,l

f̃ i ,0; j ,q; l
(3) iAq

21i l j

APi~12Pi !
. ~75!

Note thatRi 5I($Pj
max%) means thati is equal to the number o

any sublattice of type I and that we putPj5Pj
max ( j

51,2, . . . ,n). The quantitiesm i ( i 51,2, . . . ,n) are to be
determined from Eq.~39!. It should be emphasized that th
condition of T→0 was not imposed at derivation of Eq
~70!–~75!, so that they could not be applied only at lo
temperatures.

The expressions~70!–~75! were used at our calculation o
the phase diagrams below Sec. XIII. Especially, they prov
to be useful at low temperatures when the difference betw
1-9
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the value of the LRO parameter and its maximum poss
value is of the same order as the precision of the comp
calculations.

B. Mean-field „MF … approximation

Using Eq.~35!, within the MF approximation we obtain
the following free energy functionalf MF

fluct of the fluctuating
Pi ,R :

f MF
fluct5v01N21(

i
(
R

Pi ,RVi
(1)

1
1

N (
n52

Nn
1

n! (
i 1 ,i 2 , . . . ,i n

(
R1 ,R2 , . . . ,Rn

3Vi 1 ,R1 ; i 2 ,R2 ; . . . ;i n ,Rn

(n) Pi 1 ,R1
Pi 2 ,R2

. . . Pi n ,Rn

1N21kBT(
i

(
R

@Pi ,Rln Pi ,R1~12Pi ,R!ln~12Pi ,R!#.

~76!

By the same way as in the preceding section, we arrive a
following free energy variation of the first order:

d f MF
fluct5(

i
(
R

] f MF
fluct

]Pi ,R
U

Pi ,R5Pi

dPi ,R

5 (
i 51

n21

~Di
MF2Dn

MF!d P̃i ,0 , ~77!

where

Di
MF5F̃ i

(1)1kBT ln
Pi

12Pi
~78!

@the functionF̃ i
(1) is defined in Eq.~B2!#. Correspondingly,

the equations of state have the following formi
51,2, . . . ,n21):

$Di
MF2Dn

MF50. ~79!

From comparison of Eqs.~59! and~78! it follows that one
can transform the equations of state obtained within the
approximation to those of the MF approximation one by p
ting m i50 and neglecting the last term in Eq.~59!. Note that
the last term in Eq.~59! gives contribution only in case o
presence of nonpair atomic interactions.

Equations of state~79! are the generalization of those pr
sented in Eq.~5! of Ref. 22 to the case of presence of nonp
atomic interactions of any order. Besides, we take into
count the constraint~61! explicitly, instead of introduction of
the Lagrange multiplier as it was done in Ref. 22~in spirit of
Khachaturyan approach25–27!.

In the case of almost maximum LRO parameter, with
the MF approximation from Eq.~79! we obtain the same
expressions~70!–~73! but with
13443
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«5exp$~kBT!21@F̃ i 5II
(1) ~$Pj

max%!2F̃ i 5I
(1) ~$Pj

max%!#%.
~80!

Note that the expression~71! @taking into account Eq.~80!#
transforms into Eq.~19.13! in Ref. 9 if one additionally im-
poses the condition ofT→0 and neglects all nonpair atomi
interactions. The expressions~70!–~75! together with Eq.
~80! were used at our calculations of the phase diagra
within the MF approximation in Sec. XIII below.

VIII. STRUCTURAL STABILITY

The condition~65! of the thermodynamical stability o
metastability of the superstructures is the necessary co
tion. In order to study the sufficient condition we have
consider the free energy variation of the second order.

A. Ring approximation

Within the ring approximation the free energy variation
the second-orderd2f ring

fluct has the following form:

d2f ring
fluct5

1

2 (
i , j

(
R1 ,R2

F ]2f ring
fluct

]Pi ,R1
]Pj ,R2

U
0

dPi ,R1
dPj ,R2

1
2]2f ring

fluct

]Pi ,R1
]m j ,R2

U
0

dPi ,R1
dm j ,R2

1
]2f ring

fluct

]m i ,R1
]m j ,R2

U
0

dm i ,R1
dm j ,R2G . ~81!

From Eq.~54!, by taking the first derivative with respect t
Pi ,R , one can obtain that

d

dPi ,R1

]F

]m j ,R2

5
]2F

]Pi ,R1
]m j ,R2

1(
l

(
R8

]2F

]m l ,R8 ]m j ,R2

]m l ,R8
]Pi ,R1

50.

~82!

Besides, for the variationdm i ,R , we generally have up to the
second order

dm i ,R5(
j

(
R1

]m i ,R

]Pj ,R1

dPj ,R1

1
1

2 (
j ,l

(
R1 ,R2

]2m i ,R

]Pj ,R1
]Pl ,R2

dPj ,R1
dPl ,R2

.

~83!

Thus, from Eq.~81!, taken into account Eqs.~82! and ~83!,
we get up to the second order
1-10



u
3

dy-
as

a
a-

f

ical

n

d

on-
and

le
rma-

r

STATISTICAL-THERMODYNAMIC . . . . I. . . . PHYSICAL REVIEW B 69, 134431 ~2004!
d2f ring
fluct5

1

2 (
i , j

(
R1 ,R2

dPi ,R1
dPj ,R2F ]2f ring

fluct

]Pi ,R1
]Pj ,R2

1(
l

(
R8

]2f ring
fluct

]Pi ,R1
]m l ,R8

]m l ,R8
]Pj ,R2

G
0

. ~84!

Substitutingf ring
fluct from Eq. ~50! into Eq. ~84!, we obtain

~see the details of derivation in Appendix C!

d2f ring
fluct5

kBT

2 (
i , j

(
k

b i , j ,k
ring d P̃j ,k8* d P̃i ,k8 , ~85!

where

d P̃i ,k8 5
d P̃i ,k

APi~12Pi !
, ~86!

b i , j ,k
ring 5Ak

i j 1
1

2

122Pi

APi~12Pi !
@ i I k

21i i j 2d i j #
122Pj

APj~12Pj !

1(
l ,s

Tk
i l i I k

21i lsF1

2
T2k

js 2
122Pj

APj~12Pj !
ds jG

2
1

2N (
i 1 ,i 2

(
q

f̃ i ,k; j ,2k; i 1 ,q; i 2
(4) iAq

21i i 2 ,i 1

2
1

2N (
i 1 ,i 2 ,i 3 ,i 4

(
q

f̃ i 1 ,q2k; i 2 ,2q; i
(3) iAq

21i i 2 ,i 3

3 f̃ i 3 ,q; i 4 ,kÀq; j
(3) iAq2k

21 i i 4 ,i 1
, ~87!

the function f̃ i 1 ,k1 ; i 2 ,k2 ; i 3
(3) was defined in Eq.~60!,

f̃ i 1 ,k1 ; i 2 ,k2 ; i 3 ,k3 ; i 4
(4) 52

)
m51

4

APi m
~12Pi m

!

kBT

3F̃ i 1 ,k1 ; i 2 ,k2 ; i 3 ,k3 ; i 4
(4) , ~88!

the functionF̃ i 1 ,k1 ; i 2 ,k2 ; i 3 ,k3 ; i 4
(4) in Eq. ~88! corresponds to

the particular casen54 @see Eq.~B5! in Appendix B# of the
function F̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n

(n) defined in Eq.~34!, I k
21

is the matrix inverse toI k , which has the elements

I k
i j 5N21(

q
iAk2q

21 i i j iAq
21i i j , ~89!

Tk
i j 5N21 (

i 1 ,i 2
(

q
iAq

21i j i 1
f̃ i 1 ,q; i 2 ,2(k1q); i

(3) iAk1q
21 i i 2 j .

~90!

Note thatb i , j ,k
ring can be named as the inverse generalized s

septibility within the lattice-gas model~Secs. 4.2.4 and 4.3.
in Ref. 14!.
13443
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The necessary and sufficient condition of the thermo
namical stability or metastability of a superstructure is
follows:

d2f ring
fluct.0, ~91!

which @together with Eq.~65!# guarantee the presence of
local minimum of the free energy in the space of LRO p
rameters. Substituting Eq.~85! into Eq. ~91!, we obtain

d2f ring
fluct5

kBT

2 (
s

(
k

Ls,kuds,ku2.0, ~92!

where Ls,k are the eigenvalues of Hermitian matrixbk
ring

with the elementsb i , j ,k
ring ,

(
j

b i , j ,k
ring vs,k

j 5Ls,kvs,k
i ⇔bk

ringvs,k5Ls,kvs,k , ~93!

vs,k
i are the components of the eigenvectorsvs,k of the ma-

trix bk
ring ,

vs1 ,kvs2 ,k5ds1 ,s2
, (

s
vs,k

i vs,k
j 5d i j , ~94!

ds,k are the coordinates of the vectorsdP̃k8 ~with the ele-

mentsd P̃i ,k8 ) in the complete space of the eigenvectorsvs,k

d P̃i ,k8 5(
s

ds,kvs,k
i ⇔dP̃k85(

s
ds,kvs,k . ~95!

Because the condition~92! must be valid for any values o
dP̃k8 ~and correspondingly ofds,k), we get the following
necessary and sufficient condition of the thermodynam
stability or metastability of a superstructure@together with
Eq. ~66!#:

Ls,k.0 ~96!

~for anys andk). The critical temperatureTc of the absolute
instability of a superstructure is determined by the equatio35

min
s,k

Ls,k5Ls0 ,k0
50⇔detbk

ring50, ~97!

where s0 and k0 may be called the instability mode an
wave vector, respectively, detbk

ring is the determinant of the
matrix bk

ring with the elements defined in Eq.~87!. The im-
portant feature of the ring approximation~which is absent
within the MF one! is that the wave vectork0 of instability
of the same superstructure can be different for different c
centrations of the lattice gas even in the case of constant
pair atomic interactions~see examples below in Sec. XIII!.

1. Orientational order

The instability modes0 and wave vectork0 contain the
important information about the thermodynamically stab
structure to appear after the corresponding phase transfo
tion from a given structure~see below Sec. X!. However,
both cases of decomposition~segregation! and orientational
order correspond tok050, where by the orientational orde
1-11
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we mean the redistribution of probabilitiesPi among the
same sublattices without a change of the primitive unit c
In order to distinguish between the decomposition and or
tational order, let us consider the fluctuationsd P̃i ,k50 , im-
plying the constraint~63!,

d2f ring
fluct5

kBT

2 (
i , j 51

n

Bi , j ,0
ring d P̃j ,0* d P̃i ,0

5
Eq. ~63!kBT

2 (
i ,t51

n21

Di ,t,0
ring d P̃t,0* d P̃i ,0 ,

~98!

where

Bi , j ,k
ring 5

b i , j ,k
ring

APi~12Pi !Pj~12Pj !
, ~99!

Di ,t,0
ring 5Bi ,t,0

ring 2Bi ,n,0
ring 2Bn,t,0

ring 1Bn,n,0
ring . ~100!

The quantityd2f ring
fluct in Eq. ~98! contains only the fluctuation

corresponding to the orientational order because the imp
constraint~63! means that the total concentrations of the
oms of all types are fixed.~In case of decomposition thos
concentrations change.!

Thus, if from Eq.~97! we have found that the instabilit
wave vectork050, we have to study the eigenvalues of t
matrix D0

ring with the elements determined in Eq.~100!. In
the case of decomposition all such eigenvalues are pos
and any negative eigenvalue indicates the orientational or

2. Case of the disordered lattice gas with a Bravais
crystal lattice

Let us consider a particular case of the disordered t
component lattice gas with a Bravais crystal lattice, which
important from a practical point of view. In this case it is n
necessary to introduce the sublattice indexi and instead of
Eq. ~85! we have

d2f ring
fluct5

kBT

2c~12c! (
k

bk
ringud P̃ku2, ~101!

where

bk
ring5Ak1

~122c!2

2c~12c! F 1

I k
21G1

c2~12c!2

2kBT
Qk

1
c~12c!

kBT
Tk

(1)H c2~12c!2

2kBT FTk
(1)

I k
2

Tk
(2)

Tk
(1)G1

122c

I k
J ,

~102!

Ak511
c~12c!

kBT
@m1F̃k

(2)#, ~103!

I k5
1

N (
q

1

AqAk1q
, Qk5

1

N (
q

F̃k,2k,q
(4)

Aq
, ~104!
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ve
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s

Tk
(1)5

1

N (
q

F̃q,2(k1q)
(3)

AqAk1q
, Tk

(2)5
1

N (
q

@F̃q,2(k1q)
(3) #2

AqAk1q
,

~105!

F̃k1 ,k2 , . . . ,kn21

(n) and Ṽk1 ,k2 , . . . ,kn21

(n) are defined in Eqs.~46!

and ~47!. Note that Eqs.~102! and ~103! are the particular
cases of Eqs.~87! and ~33!.

As it follows from Eq. ~101!, the critical temperatureTc
of the absolute instability of a disordered state is determi
by the equation

min
k

bk5bk0
50, ~106!

which is the particular case of Eq.~97! (k0 is the instability
wave vector!. It should be emphasized that within the rin
approximation@in contrast to the MF one—Eq.~113!# even
in the case of only pair atomic interactions generallyṼk0

(2)

Þmink Ṽk
(2) , i.e., Ṽk

(2) has no absolute minimum atk0.
If nonpair atomic interactions are equal to zero~i.e.,

F̃k
(2)5Ṽk

(2) , Tk
(1)5Tk

(2)5Qk50) andc50.5, then from Eq.
~106! we obtain the familiar result12

1

kBTc
5

4

N (
k

@Ṽk
(2)2Ṽk0

(2)#21. ~107!

B. Mean-field approximation

Within the MF approximation, using Eq.~76!, we obtain
the following expression for the free energy variation of t
second-orderd2f MF

fluct :

d2f MF
fluct5

kBT

2 (
i , j

(
k

b i , j ,k
MF d P̃j ,k8* d P̃i ,k8 , ~108!

where

b i , j ,k
MF 5Ak

i j um i505d i j 1
APi~12Pi !F̃ i ,k; j

(2) APj~12Pj !

kBT
,

~109!

the functionF̃ i 1 ,k; i2
(2) is defined by Eq.~B3! in Appendix B.

By the same way as within the ring approximation, w
obtain the necessary and sufficient condition of the therm
dynamical stability or metastability of a superstructure@to-
gether with Eq.~79!#

kBT.2ls,k ~110!

~for any s and k), wherels,k are the eigenvalues of Her
mitian matrix with the elementswk

i j ,

wk
i j 5APi~12Pi !F̃ i ,k; j

(2) APj~12Pj !. ~111!

The critical temperature of the absolute instability of a s
perstructure is determined by the equation

kBTc52min
s,k

ls,k52ls0 ,k0
, ~112!
1-12
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where s0 and k0 may be called the instability mode an
wave vector, respectively.

Equation~112! is the generalization of that one present
in Eq. ~17! in Ref. 22 to the case of presence of nonp
atomic interactions of any order. In case of the disorde
state with a complex crystal lattice and only pair atomic
teractions, Eq.~112! transforms into the well-known expres
sion for the critical temperature of the absolute instability
the disordered state obtained within the MF approximat
@e.g., Eq.~3.11.22! in Ref. 27#. In case of the disordered sta
with a Bravais crystal lattice, Eq.~112! transforms into Eq.
~2.3! of Ref. 46. And finally, in the case of the disordere
state with a Bravais crystal lattice and only pair atomic
teractions, Eq.~112! transforms into the classical formul
@e.g., Eq.~3.7.11! in Ref. 27#

kBTc52c~12c!min
k

Ṽk
(2)52c~12c!Ṽk0

(2) . ~113!

By the same way as within the ring approximation, w
obtain that if from Eq.~112! we have found thatk050, then
we have to study the eigenvalues of the matrixD0

MF with the
elements (i ,t51,2, . . . ,n21)

Di ,t,0
MF 5Bi ,t,0

MF 2Bi ,n,0
MF 2Bn,t,0

MF 1Bn,n,0
MF ,

where

Bi , j ,k
MF 5

b i , j ,k
MF

APi~12Pi !Pj~12Pj !
. ~114!

In the case of decomposition all such eigenvalues are p
tive and any negative eigenvalue indicates the orientatio
order.

IX. SHORT-RANGE ORDER „SRO…

Let us define the SRO parametersaR
i j as the normalized

correlation function

aR12R2

i 1 ,i 2 5
^~Ci 1 ,R1

2Pi 1
!~Ci 2 ,R2

2Pi 2
!&

APi 1
~12Pi 1

!Pi 2
~12Pi 2

!
~115!

with the normalization factor chosen in order to fulfill th
constraint

aR50
i i 51. ~116!

In fact, theaR
i j are just the generalization of Warren-Cowle

parameters47 to the case of lattice gas with a complex crys
lattice and with a LRO. So the determined SRO parame
decrease with distance and characterize the atomic cor
tions besidesthe LRO. The Fourier transformak

i j of aR
i j is

defined as follows:

ak
i j 5(

R
aR

i j exp~2 ikR!, aR
i j 5N21(

k
ak

i j exp~ ikR!.

~117!

Below we shall derive the expressions for the SRO para
eters within the MF and ring approximations by two me
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ods: method of differentiation with respect to potential a
thermodynamic fluctuation method.

A. Method of differentiation with respect to potential

Within this method we use the following relationsh
~e.g., Ref. 2!:

aR12R2

i 1 ,i 2 5
~2] f /]Vi 1 ,R1 ; i 2 ,R2

(2) 2Pi 1
Pi 2

!

APi 1
~12Pi 1

!Pi 2
~12Pi 2

!
. ~118!

Within the ring approximation substitutingf ring from Eq.
~38! @using for convenience Eqs.~23! and ~24!# into Eq.
~118! and then going to the Fourier transform we obtain

ak
i j 5iAk

21i i j , ~119!

whereiAk
21i i j means thei j element of the matrix inverse to

Ak @see Eq.~33!#. The obtained expression~119! for the Fou-
rier transform of the SRO parameters is a generalization
the spherical model approximation@see Eqs.~4.12!, ~6.4!,
and ~6.5! in Ref. 17# to the case of the lattice gas with
complex crystal lattice and with a LRO. In analogy, we sh
call the obtained expression~119! as the spherical mode
approximation for the SRO parameters.48 In case of the dis-
ordered state with a complex crystal lattice and only p
atomic interactions, Eq.~119! transforms into Eq.~29b! in
Ref. 39.

Within the MF approximation, using Eq.~118! we obtain
the trivial result

aR
i 1 ,i 25H 1 if i 15 i 2 and R50

0 otherwise.
~120!

B. Thermodynamic fluctuation method

In the context of the thermodynamic fluctuation meth
~see, e.g., Secs. 111, 116, and 146 in Ref. 31, and Ref. 49
Sec. 25a in Ref. 4!, from Eq. ~85! obtained within the ring
approximation, it follows that

^d P̃i ,k1
8* d P̃j ,k2

8 &fluct5N21 dk1k2
ibk1

21~ring!i i j , ~121!

where^•••&fluct means the statistical average over the Gau
ian distribution of the probabilities of fluctuations
ibk

21(ring)i i j is the i j element of the matrix that is invers
to bk

ring . The SRO parameters~115! can be presented as

aR12R2

i 1 ,i 2 5
^dPi 1 ,R1

dPi 2 ,R2
&fluct

APi 1
~12Pi 1

!Pi 2
~12Pi 2

!
. ~122!

Going in Eq.~122! to the Fourier transformsd P̃i ,k @see Eq.
~58!# and using Eq.~121!, we get

ak
i j 5ibk

21~ring!i i j . ~123!

We shall call the obtained expression~123! as the ring
approximation for the SRO parameters. Within this appro
mation one can calculate the Fourier transformak

i j of the
SRO parameters using Eq.~123! and then the parametersaR

i j
1-13
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themselves by integration over the Brillouin zone@see Eq.
~117!#. In Eq. ~123! the matrixbk

21 ~ring! is inverse tobk
ring

defined in Eq.~87!, where the quantitiesm i are determined
from Eq. ~39!.

The ring approximation is a generalization of the cor
sponding approximation derived in Ref. 17@see Eqs.~7.6!
and~7.7! there# to the case of the lattice gas with a compl
crystal lattice and with a LRO. Besides, the chemical pot
tial fluctuations were taken into account in Eq.~123! and the
correct equations for determination of the chemical pot
tials were used~see discussion in Ref. 18!. The particular
case of the ring approximation~123! is the spherical mode
approximation ~119! corresponding to the neglect of a
terms except forAk

i j in the expression~87! for bk
i j .

Within the MF approximation, by use of the thermod
namic fluctuation method, we obtain

ak
i j 5ibk

21~MF!i i j , ~124!

where ibk
21(MF)i i j is the i j element of the matrix that is

inverse tobk
MF with the elementsb i , j ,k

MF defined in Eq.~109!.
-
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ha
tio
s
y
he
s
s

th

o
u
ti

ch

xi

uc

13443
-

-

-

We shall call the obtained expression~124! as the MF ap-
proximation for the SRO parameters.

In case of the disordered state with a Bravais crystal
tice, Eq.~124! transforms into Eq.~2.13! in Ref. 20. In case
of the disordered state with a complex crystal lattice a
only pair atomic interactions, Eq.~124! transforms into Eq.
(P2.16) in Ref. 50~neglecting there the normalization b
multiplier!. In case of the disordered state with a Brava
crystal lattice and only pair atomic interactions, Eq.~124!
transforms into the Krivoglaz approximation@Eq. ~34.50! in
Ref. 9#.

C. Normalization

The obtained expressions for SRO within the ring~123!
and MF ~124! approximations@in contrast to the spherica
model one~119!# do not satisfy the constraint~116!. Previ-
ously, the normalization by summands was suggested
Refs. 2,15 in order to improve the situation. For example
such a way we would get
ak
i j 5H 12N21(

q
ibq

21~ring!i i i 1ibk
21~ring!i i i if i 5 j

ibk
21~ring!i i j otherwise.

~125!
or

The
in
instead of Eq.~123!. The normalization results in more com
plicated expressions and calculations. However, such a
malization is unimportant for physical results because it
no effect on the SRO parameters for nonzero coordina
shells. In the reciprocal space normalization also result
only uniform shift ofak

i j without any effect on its shape. B
the numerical calculations we found that the violation of t
constraint~116! is remarkable only within the critical region
of the phase diagram, where the ring approximation give
large error itself. Besides, the normalization violates
fluctuation-dissipation theorem.36 The normalization by a
multiplier suggested in Ref. 51 is less justified and is n
feasible if the number of sublattices is more than one. Th
in the present paper we suggest not to use any normaliza
at all, although of course one can use the expressions su
Eq. ~125!. The value of violation of the constraint~116! can
serve as a numerical criteria for applicability of an appro
mation ~see also Sec. 4.2.4 in Ref. 14!.

D. Case of the disordered lattice gas with a Bravais
crystal lattice

In such a particular case it is not necessary to introd
the sublattice indexi and instead of Eqs.~119!, ~123!, and
~124! we have

ak5H 11
c~12c!

kBT
@m1F̃k

(2)#J 21

, ~126!
r-
s
n
in

a
e

t
s,
on
as

-

e

ak5@bk
ring#21, ~127!

and

ak5@bk
MF#21 ~128!

within the spherical model, ring, and MF approximations f
the SRO, respectively, where

ak5(
R

aR exp~2 ikR!, aR12R2
5

~^CR1
CR2

&2c2!

c~12c!
~129!

(aR are the usual Warren-Cowley parameters47!, bk
ring is de-

fined in Eq.~102!,

bk
MF511

c~12c!

kBT
F̃k

(2) , ~130!

F̃k
(2) is defined in Eq.~46! at n52. The quantitym in Eqs.

~126! and ~127! is determined from the same equation@see
Eq. ~39!#

N21(
k

H 11
c~12c!

kBT
@m1F̃k

(2)#J 21

51. ~131!

The expressions~126! and ~128! have been obtained in
Refs. 17,20 and are presented here for completeness.
expression~127! is the generalization of that one obtained
1-14
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Ref. 18 to the case of presence of the nonpair atomic in
actions. Neglecting the nonpair atomic interactions, one
also find similarities betweenbk

ring at m50 and the expres
sion for the spin correlation function obtained in Ref. 52@see
Eqs. ~20! and ~22! there or Sec. 16.3 in Ref. 53# within the
Ising model by use the inverse radius of spin interactions
a small parameter of the diagram expansion.

X. PHASE DIAGRAM CALCULATION

At given interatomic mixing potentials, using Eqs.~38!
and~39!, one can calculate the free energy of the lattice
with any complex crystal lattice and any type of LRO. T
achieve this aim it is necessary to know the unit cell of
superstructure and the expression of the probabilitiesPi
through the LRO parameters. Then, the minimization of
free energy functional with respect to the LRO paramet
has to be made by a direct numerical minimization and/or
solving of the corresponding equations of state~66!.

For example, in the cases ofL12 , L10, and
L8(P4/mmm) superstructures of the two-component latti
gas ~studied below in Sec. XIII!, all the unit cells can be
chosen to be composed of four sites of the fcc crystal lat
~see Fig. 2! with

P15c13/4h

P25P35P45c21/4hJ @L12#, ~132!

P15P25c11/2h

P35P45c21/2hJ @L10#, ~133!

P15c11/4h111/2h2

P25c11/4h121/2h2

P35P45c21/4h1

J @L8~P4/mmm!#, ~134!

wherec is the concentration andh is the LRO parameter~s!.
Being completely ordered,L12 , L10, and L8(P4/mmm)

FIG. 2. The unit cells ofL12 , L10, andL8(P4/mmm) super-
structures~e.g., Ref. 54!. The atoms within the unit cells are enu
merated in all cases. The sites with different values ofPi are
marked differently.
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structures have the stoichiometric concentrations 0.25, 0
and 0.25, respectively, and all LRO parameters being eq
to unity.

By a comparison of the free energies of all structures a
their mixtures~by a common tangents method! supposed to
be competitive at the considered external conditions, one
calculate the complete phase diagram of the system
question.35 In order to find the set of structures to be put in
competition one can use the corresponding experime
data. For the case of poor on unreliable experimental data
can suggest the following procedure.55

Being in a region of the phase diagram where some st
ture is thermodynamically stable, we calculate the low
critical temperatureTc of the absolute instability of this
structure as well as the instability wave vectorsk0

( l ) ( l
51,2, . . . ) byusing Eq.~97!. Then we introduce the con
centration waves25–27 corresponding tok0

( l ) ,

Pi ,R5c1(
l

z i l exp@ ik0
( l )R#↔Pi 8

8 ~135!

(c is the concentration ofA-type atom!. According to the
space periodicity ofPi ,R we choose thenew unit cell. The
probability distribution Pi 8

8 within that new cell is deter-
mined by the minimization of the corresponding free ene
functional either with respect toPi 8

8 ~with the constraint

( i 851
n8 Pi 8

8 5n8c) or with respect to the coefficientsz i l con-
taining the information about thetypeof a new structure as
well as about the values of the corresponding LRO para
eters. The first way is more general~because we also tak
into account somek¹$k0

( l )%) but more time consuming be
cause the number ofPi 8

8 is usually much larger than that o
z i l .

Being in the region of the phase diagram where the n
structure found at the previous step is thermodynamic
stable, we repeat the above procedure and so on. By
way, begining from the disordered state at high temperatu
and then decreasing the temperature, we can find all c
petitive structures in all temperature-concentration regi
and then calculate the complete phase diagram.

The described procedure is similar to the one proposed
Bugaev and Ryzhkov22 ~see also Sec. 7 in Ref. 21!. How-
ever, we use the ring approximation instead of the MF o
Besides, we suggest to minimize the free energy~obtained
within the ring approximation! with respect to the coeffi-
cientsz i l . In Ref. 22, according to the method of static co
centration waves~SCW!,25–27 the coefficientsz i l are pre-
sented as multiplication of the LRO parameters a
structural coefficients. Thereby, one LRO parameter is
into correspondence to one irreducible representation of
corresponding space group. The structural coefficients ar
be found from the pure symmetry consideration whereas
LRO parameters are determined by a minimization of
free energy~by the use of the corresponding equations
state!.

However, if we put only one LRO parameter into corr
spondence to one irreducible representation of the co
sponding space group,56 we cannot describe some possib
1-15
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structures corresponding to the wave vectors appropriat
those representations. For example, in the case of fcc Bra
crystal lattice~when one representation corresponds to o
star of the wave vectors!, the method of SCW gives onlyL10
andL12 structures corresponding toX(0,0,1) ~and onlyX)
star of the wave vectors.25–27,57~Here and below, we presen
the Cartesian coordinates of points in the reciprocal spac
units of 2p/a, wherea is the lattice parameter.! Thus, within
the method of SCW it is impossible to describ
L8(P4/mmm) structure, which also corresponds toX(0,0,1)
~and only X) star and can be stable in wide temperatu
concentration intervals of the phase diagrams~see Refs.
54,58, Sec. 4.4.1, in Ref. 14 and Fig. 3!.

The above-proposed minimization of the free energy w
respect to the coefficientsz i l ~which are put into correspon
dence to each wave vector in expansion~135! rather than to
each irreducible representation! allows to avoid such short
coming as well as allows to unify the determination of bo
the type of the structure and the values of the LRO para
eters.

The above-described procedure~just like that of Bugaev
and Ryzhkov22! unifies the Fourier analysis25–27 with taking

FIG. 3. Phase diagrams calculated within the ring~ring! and
mean-field~MF! approximations in the case of the two-compone
lattice gas with fcc crystal lattice~in the disordered state! and with
Vs51

(2) .0. Vs
(n) is the value of thenth order mixing potential for the

sth coordination shell~see Sec. 4 in Ref. 20! of the fcc crystal
lattice. All the other mixing potentials except the denoted one
equal to zero. MC is the designation of the order-disorder ph
transformation temperatures corresponding to the abrupt chan
the temperature dependence of the SRO parameters simulate
the Monte Carlo method according to Sec. 2 in Ref. 15~see also
Refs. 60–62!. Tc is the critical temperature of the absolute instab
ity of the disordered state. The description of the structures is
sented in Fig. 2 and in Sec. X. The regions corresponding t
mixture of two structures are denoted as~a! disorder1L12, ~b!
L101L12, ~c! disorder1L10, ~d! L101L10, ~e! L121L12, and
~f! L121L8.
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into account the space~both direct and reciprocal! symmetry
differences of superstructures within the sublattice form
ism. Despite the use of the sublattice formalism,a priori
assumptions on the superstructures to be appeare
disorder-order and order-order phase transitions are not
essary within our procedure~in contrast to the method deve
oped in Refs. 9,59!. It is important that the instability wave
vectors corresponding to the high-symmetry~stationary!
points of the reciprocal space of a given superstructure m
not correspond to the high-symmetry points of the cor
sponding parentdisorderedstructure.22 Within the ring ap-
proximation~in contrast to the MF one25–27!, even in the case
of the pair atomic interactions, disordered structure, and B
vais crystal lattice, the instability wave vectors are not ge
erally determined by the minima of the Fourier transform
the pair mixing potential in the reciprocal space~see ex-
amples below in Sec. XIII and also the discussion at the
of Sec. 11 in Ref. 5!.

XI. MULTICOMPONENT LATTICE GAS

The above-obtained results can be directly applied
only in the case of atwo-component lattice gasA-B but also
in the cases when for eachi th sublattice there are onlytwo
types of atomsAi and Bi for which the i th sublattice is
allowed to be occupied. It is not generally the case o
two-component lattice gas because those two types of at
may be different for different sublattices. For example, it
the case of a three-component substitutional-interst
A-B-X lattice gas in which all the substitutional sites a
occupied byA- andB-type atoms and all the interstitial site
are occupied byX-type atoms and vacancies.

In such more general cases, all the obtained express
are just the same. Only we have to changeA to Ai in defini-
tion 3 of the configurational variableCi ,R ~all typesBi are
excluded from the configurational description—see Sec. 2
Ref. 21!. Accordingly,Pi will be the probability of finding an
Ai-type atom at a site belonging to thei th sublattice. Of
course, in the case of the disordered state with a Bra
crystal lattice, we may consider only a two-component latt
gas.

In general case of a multicomponent lattice gas in wh
at least one sublattice is allowed to be occupied by more t
two types of atoms, the above-obtained formulas are
valid and must be generalized.

XII. HEAT CAPACITY IN THE DISORDERED STATE

In a general case of the disordered state, we put temp
ture independentPi5ci ( i 51,2, . . . ,n), whereci is the con-
centration ofAi-type atoms~see Sec. XI!. @In the particular
case of a two-component lattice gas,ci5c ( i 51,2, . . . ,n),
wherec is the concentrationA-type atoms.# From Eq.~41!,
within the ring approximation, assuming that the mixing p
tentials are independent from the temperature, we obtain
the configurational heat capacitycV

cV5
]« ring

]T
52(

i

ci~12ci !

2

]m i

]T
. ~136!

t

e
e
in
by

e-
a
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From Eq.~39!, one can get that

ci~12ci !

kB

]m i

]T
5(

j
i I 0

21i i j 21, ~137!

wherei I k
21i is the matrix inverse to that one whose eleme

I k
i j are defined in Eq.~89! ~with Pi5ci). Substituting Eq.

~137! into Eq. ~136!, we have

cV5
kB

2 H n2(
i , j

i I 0
21i i j J . ~138!

In the particular case of a two-component lattice gas wit
Bravais crystal lattice

cV5
kB

2 S 12
1

I D , ~139!

where

I 5
1

N (
k

H 11
c~12c!

kBT
@m1F̃k

(2)#J 22

. ~140!

Note that within the MF approximation the configur
tional heat capacity of the disordered state is equal to zer
contrast to the ring approximation~if TÞ`). It is just the
interatomic correlations that contribute to the configuratio
heat capacity of the disordered state within the ring appro
mation in contrast to the MF one.

XIII. NUMERICAL CALCULATIONS

A. Phase diagrams

As an example of the phase diagram calculation and w
the aim to study the numerical accuracy of the ring appro
mation, we considered four model cases presented in Ta
and Figs. 3–6. All the cases are appropriate to the t
component lattice gas that has fcc crystal lattice in the
ordered state. The pair and triplet atomic interactions of
nearest and next-nearest neighbors are taken into accou

TABLE I. The values of the order-disorder phase transformat
temperaturesT0 at c50.25,0.5 obtained by MC simulation, by se
ries expansion~SE! ~from Table III in Ref. 5!, by cluster-variation
method in tetrahedron-octahedron approximation~CVM! ~Ref. 58!,
within the MF and ring approximations in the case~see Fig. 3! of
the two-component lattice gas with fcc crystal lattice~in the disor-
dered state! and with Vs51

(2) .0. Vs
(n) is the value of thenth-order

mixing potential for thesth coordination shell~see Sec. 4 in Ref
20! of the fcc crystal lattice. All the other mixing potentials exce
the denoted one are equal to zero. All the temperatures are in
of kB /Vs51

(2) .

T0 c50.50 c50.25

MC 0.43 0.449
SE 0.4365
Ring 0.4363 0.4566
CVM 0.4525 0.465
MF 1 0.827
13443
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different combinations for different cases~see captions to
figures!. The interatomic mixing potentials are assumed to
structure independent~see Appendix D! and to have the sym
metry of thedisorderedstate. The corresponding phase d
grams were calculated within the ring and MF approxim
tions following the procedure suggested in Sec. X.~Our MF
approximation results presented in Figs. 3 and 4 are adeq
to those in Ref. 54; see also Sec. 5.2.4 in Ref. 14.! The
order-disorder~Figs. 3–5! and decomposition~Fig. 6! phase
transformation temperatures were also calculated by the
simulation. Note that in the cases corresponding to Figs
and 4, the consideration of the concentrations greater t

n

its

FIG. 4. The same as in Fig. 3, but in the case ofVs51
(2) .0,

Vs52
(2) 520.5Vs51

(2) .

FIG. 5. The same as in Fig. 3, but in the case ofVs51
(2) .0,

Vs52
(2) 520.5Vs51

(2) , Vs51
(3) 50.1Vs51

(2) . ‘‘no dm ’’ means thatTc was
calculated not taking into account the chemical potential fluct
tions within the ring approximation.
1-17
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the equiatomic one is not required due to the symmetry
the phase diagram with respect to equiatomic concentra
in the case of lattice gas with concentration-independ
atomic interactions of less than or equal to the sec
order.20

Accepting the results of the MC simulation as a standa
on the basis of the data presented in Table I and Figs. 3
one may conclude the following.

In all the considered cases the ring approximation yie
the adequate results in wide temperature-concentration in
vals. The phase transformation temperatures are pred
much more accurately within the ring approximation than
the MF one in all the considered cases. At low temperatu
the numerical accuracy of the ring approximation data
lower in the cases of ordering. Namely, from Figs. 3–5
follows that at low temperatures the ring approximation p
dicts the stability ofL10 structure in wide concentration in
tervals.L10 occurs to be the unique ground-state struct
for all concentrations~but c50;0.25;0.75;1) within the ring
approximation in all three considered cases. Such results
in contradiction with those of the MF approximation~Figs.
3–5 and Ref. 54!, MC simulation,60,61 and cluster-variation
method ~CVM!,58,64 where at low temperatures~including
T50) we haveL12 and L8 structures65 or the mixtures of
pure component,L10 andL12 structures to be stable in th
corresponding cases.

Thus, one can conclude that the ring approximation gi
inadequate results at low temperatures probably unrea
ably decreasing the free energy ofL10 structure. Such wrong
predictions within the ring approximation can be explain
by two reasons. First, as noted in Sec. VI, the contribution
the neglected reducible diagrams in the cumulant expan

FIG. 6. The same as in Fig. 3, but in the cases of~i! Vs51
(2) ,0,

Vs52
(2) 50, ~ii ! Vs51

(2) ,0, Vs52
(2) 5Vs51

(2) . The MC simulation data
were taken from Ref. 63. Solid and dashed lines correspond, res
tively, to the binodals~miscibility gaps! and spinodals of the de
compositions into two disordered phases of different concen
tions.
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can be considerable at low temperatures. Second, the
approximation can be sensitive to the frustration effec
which are strong at low temperatures in case of short-ra
atomic interactions.14,58,66Fortunately, there is a strong ten
dency of decreasing the regions of unreasonable stabilit
L10 structure in phase diagram calculated within the ri
approximation when the atomic interactions of the ne
nearest neighbors are taken into account~compare Figs. 3
and 4!. So, one can expect that in case of actual systems
long-range atomic interactions the ring approximation w
be applicable at sufficiently low temperatures. If the frust
tion effects are important for a low numerical accuracy of t
ring approximation at low temperatures, one can expect a
the increase of such an accuracy under taking into acco
the structural dependence of atomic interactions, which
minishes the frustration effects. Note that the same prob
of adequate description of the low-temperature regions
also revealed within the MF and CVM in the two
dimensional case~e.g., Ref. 67!.

The discrepancy between the MC and ring approximat
data occurs to be considerable only in case of pair near
neighbor atomic interactions~see Fig. 3! at c,0.18 (c
.0.82). However, in this case one cana priori expect the
problem of adequate description within the ring approxim
tion in which the inverse value of the effective numberz of
atoms interacting with one fixed atom is chosen as a sm
parameter in the corresponding perturbation theory. At su
ciently low ~or high! concentrations, in all temperature inte
vals the free energy is lowest for random distribution of no
interacting atoms, when each atom has no nearest neigh
So there is no order-disorder phase transformation at s
concentrations down to and includingT50 ~see MC curve in
Fig. 3!. But in such a casez50 and the ring approximation
must be inapplicable.

The numerical accuracy of the ring approximation data
low in the case of pair nearest-neighbor atomic interacti
~see Fig. 3! in the vicinity of the triple point nearc50.40
(c50.60). However, the problem of adequate description
the vicinity of the triple point is well known and is attribute
to the ‘‘frustration’’ character of the corresponding mod
case due to the strongly degenerate ground state.14,58,66One
encounters this problem within both the MC62 and CVM58,68

~see also Ref. 8 and Sec. 5.1.5 in Ref. 14!. Taking into ac-
count the next-neighbor interactions allows to resolve
problem diminishing such a degeneracy~compare Figs. 3
and 4!.

In the cases of decomposition into two disordered pha
of different concentrations~Fig. 6!, the quantitative corre-
spondence between MC and ring approximation data is
cellent and much better than that between MC and MF. N
ertheless, there are qualitative discrepancies between
results of the MC simulation and MF approximation on o
hand and of the ring approximation on other hand. Nam
in contrast to the MC simulation63 and MF approximation
data, within the ring approximation we have~a! the decom-
position into two disordered phases of concentrationsc1 and
c2 with c11c2Þ1 in very small temperature intervals at th
top of the phase diagrams and~b! the phase transformatio
of the first order atc50.5.69 According to our unpublished

ec-

a-
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calculations within CVM~see also Refs. 4,5,70–72!, such
behavior of the ring approximation is also in contradicti
with CVM. The same problem of adequate description of
order of the phase transformation was also revealed wi
the approximations that are similar to the rin
one12,24,33,36,42,73 and even within CVM ~in the two-
dimensional case, see Sec. 10 in Ref. 5!. According to our
above discussion in Sec. VI, such inadequacy of the r
approximation can be caused by the proximity of the bino
~miscibility gap! and spinodal in the correspondingT-c re-
gion of the phase diagram.~By the binodal or miscibility gap
we mean the curve corresponding to the concentration
two coexisting phases at decomposition; by spinodal
mean the critical temperature of absolute instability of h
mogenies disordered state, see e.g., Ref. 4.!

It should be emphasized that all the considered cases
responding to atomic interactions of only nearest and n
nearest neighbors are obviously most unfavorable as f
high numerical accuracy of the ring approximation in whi
z21 is chosen as a small parameter in the correspond
perturbation theory. Additional problems are caused also
frustration effects, which are strong in the considered ca
Our choice of the considered cases was dictated by an
realization of the corresponding MC simulation, by presen
of the corresponding data obtained within other approxim
tions and by desire to study the maintendenciesof the nu-
merical accuracy of the ring approximation. Besides,
consideration of the fcc crystal lattice is also unfavorable
comparison with that of the bcc one.4 Surprisingly, even in
such unfavorable cases the ring approximation demonstr
its adequacy in wideT-c regions. The high numerical accu
racy of this approximation even in the cases of the sh
range atomic interactions as well as the essential increas
the accuracy when the atomic interactions for the ne
nearest neighbors are taken into account clearly demons
the quick convergence of the cumulant expansion under s
a choice of a small parameter as in the ring approximati

In Figs. 3–6 we also presented the critical temperatureTc
of the absolute instability of the disordered state calcula
within the ring ~106! and MF ~113! approximations. In the
case of decomposition~see Fig. 6!, within both the MF and
ring approximations the instability wave vectork05(0,0,0)
(G point! in all concentration region. In the case of orderi
~see Figs. 3–5!, within the MF approximation the instability
wave vectork05(1,0,0) (X point! in all concentration re-
gion. Within the ring approximationk05(1,0,0) (X point! in
a wide concentration region. However, at very small and
concentrations, whereTc curve demonstrates nonmonoton
change,k05(0,0,0) (G point!. So, in such a particular~but
important! case of the disordered state, we demonstrated
possibility to describe the concentrational dependence of
instability wave vectork0 within the ring approximation in
contrast to the MF one.

In Fig. 5 we also presentedTc calculated not taking into
account the chemical potential fluctuations within the ri
approximation@i.e., atdm i ,R[0 in Eq. ~81!#. As it follows
from Fig. 5, the neglect of the chemical-potential fluctuatio
can be noticeable and can erroneously make the valu
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such critical temperature be even more than the tempera
of the order-disorder phase transformation.

B. Short-range order

As an example of the SRO calculation, we considered
fcc disordered two-component lattice gas with concentrat
c50.75 and with the same atomic interactions as in the c
presented in Fig. 5. The corresponding results of calculati
are shown in Fig. 7. Note that the SRO at temperatures lo
than the temperature of the order-disorder phase transfo
tion corresponds to the metastable disordered state.

Accepting the results of the MC simulation as a standa
from Fig. 7 it follows that the ring approximation yields th
results of high numerical accuracy in wide temperature in
val down to the temperature of the order-disorder ph
transformation. The numerical accuracy of the ring appro
mation is higher than that of the spherical model, especi
for the coordination shells with big radius. The numeric
accuracies of both the ring and spherical model approxim

FIG. 7. Temperature evolution of the SRO parametersa i[aRi

for the first four coordination shells (i 51,2, . . . ,4) of the fccdis-
ordered two-component lattice gas calculated in the framework
the spherical model~SM! ~126!, ring ~Ring! ~127!, and mean field
~MF! ~128! approximations as well as obtained by the Monte Ca
simulation ~MC! at c50.75, Vs51

(2) .0, Vs52
(2) 520.5Vs51

(2) , Vs51
(3)

50.1Vs51
(2) . Rs is the radius vector of a site belonging to thesth

coordination shell. The MC simulation was performed in acc
dance with the procedure described in Sec. 2 of Ref. 15.Tc1 andT0

are the temperatures of the absolute instability of the disorde
state and of the order-disorder phase transformation, respecti
calculated within the ring and MF approximations. The point of t
abrupt change of the MC curves corresponds to the order-diso
phase transformation within the Monte Carlo simulation.
1-19
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tions is much higher than that of the MF one. It should
noted also that within the ring approximation~in contrast to
the MF and spherical model ones! it is possible to describe
the important phenomenon of the temperature dependen
the positions of the SRO peaks in the reciprocal space
lattice gas even with constant atomic interactions. We do
study this phenomenon in the present paper because m
attention was given to it earlier.46,74–76

XIV. CONCLUSIONS

In the present paper the general method was elabor
for the statistical-thermodynamic description within the ri
approximation of the lattice gas with a complex crystal l
tice and with nonpair atomic interactions of any order a
effective radii of action. By this method one can calculate
complete phase diagram of the lattice gas~Sec. X! as well as
the atomic correlation function~in real and reciprocal space!
in both disordered and LRO states of it~Sec. IX!.

The elaborate method is general and analytically sim
The corresponding analytical expressions do not change
form at an increase of the effective radius of atomic inter
tions and are valid in case of any superstructure. The num
of the variational parameters for minimization of the fr
energy is considerably fewer than that one within the clus
variation method~CVM! ~see Sec. 4 in Ref. 19! resulting in
the considerable reduction of the time for the correspond
computer calculations. It is important that, within the rin
approximation, these numbers of the variational parame
are determined only by the type of the structure and
independent from the value of the effective radius of atom
interactions in contrast to CVM. Of course, due to the a
lytical nature of the ring approximation, the time for calc
lations within it is much less than that of the MC simulatio
Within the ring approximation, the difference of the spa
symmetries of the interatomic potentials for differe
structures21 can easily be taken into account.

The ring approximation offers the principal advanta
over MC and CVM for a description of actual alloys
which the elastic distortions induce extremely long-ran
atomic interactions. It is because the Fourier transform of
strain-induced interatomic potential of such alloys has
nonanalyticity, which cannot be described in terms of
values of the potential for any great but finite number
coordination shells~e.g., Sec. 7a in Ref. 4!. However, within
the ring approximation~in contrast to MC and CVM! it is not
necessary to approximate the interatomic potentials by
values for a finite number of coordination shells because
potentials appear in the corresponding expressions
through their Fourier transforms.

The applicability of the ring approximation is discuss
on the basis of theoretical consideration~Sec. VI! as well as
by a comparison of the numerical results with the cor
sponding MC simulation~Sec. XIII!. The high numerical ac-
curacy of the ring approximation was demonstrated in w
temperature-concentration intervals in the case of sh
ranged atomic interactions. The tendency of increase of
numerical accuracy of the ring approximation with increa
of the effective radius of atomic interactions~and the dimen-
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sionality of the crystal lattice36! was shown in accordanc
with the Broutz21 classification.

The ring approximation demonstrates the comparativ
low numerical accuracy at sufficiently low temperatures
case of nonstoichiometric compositions and short-ran
atomic interactions. Such wrong predictions within the ri
approximation can be explained by two reasons. First,
contribution of the neglected reducible diagrams in the
mulant expansion can be considerable at low temperatu
Second, the ring approximation can be sensitive to the fr
tration effects, which are strong at low temperatures in c
of short-range atomic interactions.14,58,66Fortunately, there is
a strong tendency of decrease the low-temperature region
low accuracy of the ring approximation with increase of t
radius of atomic interactions. So one can expect that in c
of actual systems with long-range atomic interactions
ring approximation will be applicable at sufficiently low
temperatures. If the frustration effects are important for a l
numerical accuracy of the ring approximation at low te
peratures, one can also expect the increase of such an a
racy taking into account the structural dependence of ato
interactions, which diminishes the frustration effects.

It should be added that, from the practical point of vie
the most interesting part of the phase diagram is the or
disorder phase transformation rather than the lo
temperature regions. Besides, at low temperatures the re
ation can be so slow that the thermodynamically stable st
cannot be reached in reasonable time.~That is the reason
why the low-temperature calculations are problematic wit
MC and CVM, see e.g., Ref. 8 and Sec. 5.1.5 in Ref. 1!
Because of the Nernst theorem, when the atomic interact
are not frustrated, atT→0 we have a mixture of almos
completely ordered structures whose concentrations are c
to the corresponding stoichiometric ones~e.g., Sec. 12 in
Ref. 9 and Ref. 49!. Thus, in the low-temperature region w
can use the theory of almost completely ordered structure
even the MF approximation, which is applicable at low te
peratures for description of structures with almost stoich
metric concentrations~Sec. 19 in Ref. 9!. Besides, we found
that within the ring approximation in case of the stoichi
metric compositions, there is no problem of low numeric
accuracy at low temperatures.

In the case of short-ranged atomic interactions, the r
approximation gives comparatively big error for evaluati
of the temperatures of the phase transformations of the
ond or close to second orders. However, in real lattice s
tems such phase transformations are very rarely encounte
Account of structural dependence and/or long-range cha
ter of atomic interactions result in change of order of pha
transformations from the second to first~e.g., Sec. 4.4 in Ref
45!. Besides, actually such MF-like theories as the ring
proximation and CVM are not intended to be used for
description of the critical phenomena but rather for desc
tion of phase diagrams, correlation effects, nonequilibri
processes, etc. outside the critical regions, which never
less is of great interest from practical point of view~e.g.,
Chap. 5 in Ref. 4, Secs. 4.1 and 4.5.6 in Ref. 14!. For a
description of the critical phenomena and universal char
teristics of phase transitions, we have to use the spe
1-20
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methods~e.g., series expansions and renormalization-gr
theory!.

Thus, the ring approximation being an example of t
wave ~or reciprocal-space! methods4 can be recommende
for the statistical-thermodynamic description of the lattic
gas model with long-range atomic interactions along w
MC and CVM,35 which are the examples of the cluster~or
direct-space! methods.4 The ring approximation as well a
CVM are the examples of closed form approximations. T
advantages of such approximations over the series expan
methods are discussed in Ref. 77. Being much simpler t
MC and CVM, the ring approximation can be particular
useful at consideration of complex situations like vicin
surfaces.24 Being a single-site theory, the ring approximatio
can be easily implemented within first-principles electro
methods.

At calculation of phase diagram within the ring approx
mation it is also possible to include into consideration
metastable structures~which may be important at low tem
peratures due to the slow relaxation!, the long-period struc-
tures and the structures with different parent crystal latti
~being actual in case of, for example, Cu-Zn, Pt-V, and Cu
alloy systems!. Within MC and CVM the consideration o
such structures is hardly feasible in contrast to the ring
proximation.

The detailed numerical study of the ring approximati
performed in the present paper can help to understand
features of similar approximations as well~see Sec. V!. The
ring approximation has been already successfully used
study of Ni-V,46,74 Ni-H,78 and Cu-Pd76 alloys. It can be also
applied in the case of multicomponent lattice gas~see Sec.
XI !. The approach advanced in the present work may
extended to the case of the Ising model.36 The absence ofa
priori assumptions about the space dimensionality of a c
tal lattice in the developed formalism permits readily to a
ply it in investigations of low-dimension lattice systems~see
also Ref. 36!. The approximation elaborated in the prese
work may be also useful in the investigations of fluids a
amorphous materials within the framework of the lattice-g
model.12
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APPENDIX A

Performing the Fourier transformation in Eq.~24! and in-
troducing the Hermitian matrixF with the elements
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Fi 1 ,i 2
52

APi 1
~12Pi 1

!@m i 1
d i 1 ,i 2

1F̃ i 1 ,k; i2
(2) #APi 2

~12Pi 2
!

kBT
,

~A1!

one can obtain

D f 152
kBT

2N (
k

(
n51

`
1

n
Tr Fn. ~A2!

Let us introduce also the diagonal matrixC with the ele-
ments

C i j 5c id i j ~A3!

(d is the Kronecker delta! that is the unitary transformation
of the matrixF,

F5U21CU. ~A4!

Note thatc i are the eigenvalues of the matrixF and the
unitary matrixU can be built through the eigenvectors of th
matrix F.

Because

Tr Fn5Tr Cn5(
i

c i
n , ~A5!

the expression~A2! can be rewritten as

D f 152
kBT

2N (
k

(
i

(
n51

`
1

n
c i

n5
kBT

2N (
k

ln)
i

~12c i !.

~A6!

Taking into account that

det~D2F !5det@U~D2F !U21#

5det~D2C!5)
i

~12c i !, ~A7!

where D is the unity matrix with elementsd i j , from Eq.
~A6! we finally have

D f 15
kBT

2N (
k

ln det~D2F !. ~A8!

The expression~A8! is identical to Eq.~32! because@see
Eqs.~33! and ~A1!#

Ak5D2F. ~A9!

APPENDIX B

The general expression~34! for

F̃ i 1 ,k1 ; i 2 ,k2 ; . . . ;i n21 ,kn21 ; i n
(n)

takes the following forms in the particular cases ofn50:
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F̃ (0)5v01(
i

PiVi
(1)1

1

2 (
i 1 ,i 2

Ṽi 1 ,0; i 2
(2) Pi 1

Pi 2

1
1

6 (
i 1 ,i 2 ,i 3

Ṽi 1 ,0; i 2 ,0; i 3
(3) Pi 1

Pi 2
Pi 3

1
1

24 (
i 1 ,i 2 ,i 3 ,i 4

Ṽi 1 ,0; i 2 ,0; i 3 ,0; i 4
(4) Pi 1

Pi 2
Pi 3

Pi 4
1••• ,

~B1!

n51:

F̃ i
(1)5Vi

(1)1(
i 18

Pi
18
Ṽi

18 ,0; i
(2)

1 (
i 18 ,i 28

Pi
18
Pi

28

2
Ṽi

18 ,0; i
28 ,0; i

(3)

1 (
i 18 ,i 28 ,i 38

Pi
18
Pi

28
Pi

38

6
Ṽi

18 ,0; i
28 ,0; i

38 ,0; i
(4)

1••• , ~B2!

n52:

F̃ i 1 ,k; i2
(2) 5Ṽi 1 ,k; i 2

(2) 1(
i 18

Pi
18
Ṽi

18 ,0; i 1 ,k; i 2

(3)

1 (
i 18 ,i 28

Pi
18
Pi

28

2
Ṽi

18 ,0; i
28 ,0; i 1 ,k; i 2

(4)
1••• , ~B3!

n53:

F̃ i 1 ,k1 ; i 2 ,k2 ; i 3
(3) 5Ṽi 1 ,k1 ; i 2 ,k2 ; i 3

(3) 1(
i 18

Pi
18
Ṽi

18 ,0; i 1 ,k1 ; i 2 ,k2 ; i 3

(4)

1••• , ~B4!

n54:

F̃ i 1 ,k1 ; i 2 ,k2 ; i 3 ,k3 ; i 4
(4) 5Ṽi 1 ,k1 ; i 2 ,k2 ; i 3 ,k3 ; i 4

(4) 1••• . ~B5!

APPENDIX C

Using the expression~50! for f ring
fluct , we obtain

1

2 (
i , j

(
R1 ,R2

]2f ring
fluct

]Pi ,R1
]Pj ,R2

U
0

dPi ,R1
dPj ,R2

5
kBT

2 (
i , j

(
k

d P̃j ,k* d P̃i ,k

APi~12Pi !Pj~12Pj !

3H Ak
i j 2

1

2

122Pi

APi~12Pi !
@ I k

i j 2d i j #
122Pj

APj~12Pj !

2
122Pj

APj~12Pj !
Tk

i j 2
1

2N (
i 1 ,i 2 ,i 3 ,i 4

(
q

f̃ i 1 ,q2k; i 2 ,2q; i
(3)

3iAq
21i i 2 ,i 3

f̃ i 3 ,q; i 4 ,k2q; j
(3) iAq2k

21 i i 4 ,i 1
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2
1

2N (
i 1 ,i 2

(
q

f̃ i ,k; j ,2k; i 1 ,q; i 2
(4) iAq

21i i 2 ,i 1J . ~C1!

From Eq. ~54! one can derive the following relationship
betweendm̃ i ,k andd P̃j ,k :

Pi~12Pi !

kBT
dm̃ i ,k

5(
j

d P̃j ,k

APj~12Pj !
H 122Pj

APj~12Pj !
@d i j 2i I k

21i j i #

1(
s

i I k
21isiTk

jsJ , ~C2!

wheredm̃ i ,k is the Fourier transform ofdm i ,R ,

dm i ,R5(
k

dm̃ i ,k exp~2 ikR!. ~C3!

Taking into account Eq.~C2!, we get

1

2 (
i , j ,l

(
R1 ,R2 ,R8

]2f ring
fluct

]Pi ,R1
]m l ,R8

]m l ,R8
]Pj ,R2

U
0

dPi ,R1
dPj ,R2

5
kBT

2 (
i , j

(
k

d P̃j ,k* d P̃i ,k

APi~12Pi !Pj~12Pj !

3H 1

2

122Pi

APi~12Pi !
@ I k

i j 1i I k
21i i j 22d i j #

122Pj

APj~12Pj !

1
122Pj

APj~12Pj !
FTk

i j 2(
s

Tk
isi I k

21is jG
1

1

2 (
l ,s

Tk
i l T2k

js i I k
21i lsJ . ~C4!

Substituting Eqs.~C1! and ~C4! into Eq. ~84!, we arrive at
Eq. ~85! ~see Sec. VIII!.

APPENDIX D

In this appendix, we present the expressions for the F
rier transformsṼi ,k; j

(2) , Ṽl ,0; i ,k; j
(3) , andṼl ,0;m,0; i ,k; j

(4) of the mix-
ing potentials through its values in the direct space, wh
are necessary for calculations of the phase diagrams w
the ring approximation performed in Sec. XIII.

It is convenient to present the general expression~30! at
n52 in the following form:

Ṽi ,k; j
(2) [(

R
Vi ,R; j ,0

(2) exp@2 ikR#5(
s51

`

Vs
(2)Zi ,k; j

(s) , ~D1!

where

Zi ,k; j
(s) 5(

Ri j
(s)

exp@2 ikR i j
(s)#, Zj ,k; i

(s) 5Zi ,2k; j
(s) , ~D2!
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Ri j
(s) are the radius vectors connecting two unit cells

which, respectively,i th and j th sites are separated by th
distance ofsth coordination shell.Ri j

(s) can be equal to zero
in the case where suchi th and j th sites belong to the sam
unit cell. When a four-site unit cell is chosen as a cube of
crystal lattice~see Fig. 2!, for s51,2 we have

Zi ,k; i
(1) 50,

Z1,k;2
(1) 5exp@2 ia~kx1ky!/2#Zxy ,

Z1,k;3
(1) 5exp@2 ia~kx1kz!/2#Zxz ,

Z1,k;4
(1) 5exp@2 ia~ky1kz!/2#Zyz ,

Z2,k;3
(1) 5exp@2 ia~2ky1kz!/2#Zyz ,

Z2,k;4
(1) 5exp@2 ia~2kx1kz!/2#Zxz ,

Z3,k;4
(1) 5exp@2 ia~2kx1ky!/2#Zxy , ~D3!

Zi ,k; j
(2) 5d i j 2@cos~akx!1cos~aky!1cos~akz!#, ~D4!

where

Zxy52$cos@a~kx1ky!/2#1cos@a~kx2ky!/2#%,

Zxz52$cos@a~kx1kz!/2#1cos@a~kx2kz!/2#%,

Zyz52$cos@a~ky1kz!/2#1cos@a~ky2kz!/2#%, ~D5!

kx ,ky ,kz are the Cartesian coordinates ofk in units of 2p/a
(a is the lattice parameter!. One can also obtain that

Ṽl ,0; i ,k; j
(3) 5H 2Vs51

(3) Zi ,k; j
(s51) if lÞ iÞ j

0 otherwise,
~D6!

(n)
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