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The general method is elaborated for the statistical-thermodynamic description within the ring approxima-
tion of the lattice gas with a complex crystal lattice and with nonpair atomic interactions of any order and
effective radii of action. The ring approximation corresponds to the first order of a modified thermodynamic
perturbation theory under the choice of the inverse effective number of atoms interacting with one fixed atom
as a small parameter of expansion. By the elaborated method one can calculate the complete phase diagram of
the lattice gas as well as the correlation effects in both disordered and long-range ordered states of it. The
elaborated method is general and analytically simple. The corresponding analytical expressions do not change
their form at an increase of the effective radius of atomic interactions and are valid in case of any superstruc-
ture. The number of the “variational” parameters for minimization of the free energy is considerably fewer
than that within the cluster-variation method and are determined by the type of the superstructure rather than
by the value of the effective radius of atomic interactions. Due to the analytical nature of the ring approxima-
tion, the time for calculations within it is much less than that of the Monte Carlo simulation. By a comparison
with the results of the Monte Carlo simulation the high numerical accuracy of the ring approximation is
demonstrated in wide temperature-concentration intervals. The tendency of increase of the numerical accuracy
of the ring approximation with increase of the effective radius of atomic interactions is shown. The applica-
bility of the ring approximation is discussed. The obtained results may be useful for a description of solid
solutions, alloys, magnetics, fluids, and amorphous materials.
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[. INTRODUCTION disordered lattice gas with a Bravais crystal lattice. The ap-
proximation was named as ring in accordance with the topol-
The lattice-gas modthas proved to be useful for a de- ogy of the diagrams being taken into account within the ap-
scription of solid solutions, alloys, magnetics, fluids, andproximation in the context of the corresponding diagram
amorphous materials. However, in many cases the atomi@chnique. In the cases of long-range atomic interactions, the
interactions in such systems are long ranffed the case of high numerical accuracy of the ring approximation was ob-
alloys see, e.g., an introduction in Rej. Zhe Monte Carld  tained in wide temperature-concentration intervély a
(MC) and cluster-variatioh” high-accuracy methods, which comparison with the MC simulationin Ref. 19 the method
are most widely used for the statistical-thermodynamic dewas proposed for description of a LRO lattice gas with pair
scription of the lattice-gas model, encounter the computaatomic interactions within the ring approximation.
tional difficulties in such case®.g., Ref. 8. The treatment The aim of the present paper is to elaborate the general
of the long-ranged atomic interactions is not problematicmethod for the statistical-thermodynamic description within
within the mean-field and high-temperature approximationghe ring approximation of a lattice gas with arbitrary com-
but the corresponding results have low numerical accuracplex crystal lattice and with many-body atomic interactions
and can be inadequate even qualitativ@yg., Refs. 4,9 of any order and effective radii of actiofThe importance of
Brout'%*3 suggested to use the quantity® as a small introduction of nonpair atomic interactions into the consid-
parameter of expansion in the thermodynamic perturbatioeration was discussed, e.g., in Sec. 1 of Ref) BDSec. I,
theory, wherez is the effective number of atoms interacting the configurational Hamiltonian is introduced for a descrip-
with one fixed atom. Such a parameter of expansion can bgon of the lattice gas. In Secs. Il and IV, the expression for
expected to be useful for systems with long-range atomithe free energy is obtained within the ring approximation. In
interactions wherz must be large. Besides, within such an Sec. V, the approximations within the lattice-gas model that
approach the interaction parameters appear in the final exre similar to the ring one are outlined. In Sec. VI, the ap-
pressions only through the Fourier transform of the interplicability of the ring approximation is discussed. In Sec.
atomic potential. So there are no computational difficultiesVIl, the equations of state for a determination of the thermo-
for consideration of long-range atomic interactions. Broutdynamically stable or metastable superstructures are derived
approach was elaborated in the case of a ferromagnetic statgthin the ring approximation. In Sec. VI, the sufficient
of the Ising modelwith only pair spin interactionswhich is  condition of the thermodynamical stability or metastability
equivalent to the disorderdde., without a long-range order of the superstructures is studied. In Sec. IX, the expressions
(LRO)] lattice-gas mode{e.g., Sec. 2.6 in Ref. 14 for the interatomic correlation functions are obtained within
In Refs. 2,15-18 the ™! approximation(up to the first the ring approximation. In Sec. X, the method of calculation
orden was used for study of the correlation effects in theof the complete phase diagram of the lattice gas is proposed.
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In Sec. Xl, the applicability of the obtained results in thethat structure. Such a description allows to take easily into
case of a multicomponent lattice gas is discussed. In Seaccount the symmetry difference of the mixing potentials for
XII, the expression for the heat capacity is obtained in thedifferent structures as well as to perform the summation of
case of the disordered state. The numerical accuracy of thée infinite series in the cumulant expansion in a general
method is verified through the comparison with the correform (see below Sec. I/ Our description is principally dif-
sponding data of MC simulation in Sec. Xlll. In Sec. XIV, ferent from that one accepted in the method of static concen-

advantages and disadvantages of the ring approximation atetion waves(e.g., Refs. 25—29 where any superstructure

summarized.

1. CONFIGURATIONAL HAMILTONIAN

Let us consider a two-componeA:B lattice gas: We
suppose that the unit cell of the crystal lattice consistg of
sites ¥=1). It is important that the case of>1 can be

is described in terms of the unit cell of the corresponding
parentdisorderedstructure.

Ill. FREE ENERGY

We describe our system within the grand canonical en-
semble. The necessity of use of such an ensemble is dis-

attributed not only to the complex character of the crystalcussed below in Sec. VI. The grand partition funct@nof
lattice itself but also to the presence of a LRO in atomicthe lattice gas

distribution. The crystal lattice can be divided ini@ravais

sublattices according with the unit cell. Taking into account _
the many-body atomic interactions of arbitrary orders and ==

radii of action, the Hamiltoniai of the lattice gas in ques-
tion can be written in the following forrfe.g., Eq(9) in Ref.
21]:

Nv

1
H= Nvo+2 — >
! i1,p, ... in Ri.Ry, ... Rp
XVi an iRy iin R Cip R Ciy Ry Cip Ry (D)
or writing the series explicitly,
H:Nvo+2 Vl(l)E Ci,R
i R
v(2) : :
2 |§2 R%z i1, Rl;iz,chll,Rlclz,R2
+12 G i rirCi rCiRCi
6 i, s R R RS i1,R15i5,Ry3i3,R3™I11, Ry i5,Ry™ig,Rg
+..- 2

In Egs. (1) and(2), the summations on the indicesnd on
the site radius vectoiR are carried over al sublattices and
over allN unit cells of the crystal lattice, respectively, r is
the configurational variable

1 ifthe site(i,R) is occupied by an

Cir= A-type atom

©)

0 otherwise

(type B is excluded from the configurational description—
see Sec. 2 in Ref. 21lv, is the energy per unit cell of the
lattice gas in which all sites are occupiedByype of atoms,

(ViR .. r IS the mixing potential ohth order @

=1,2,... Nv) [see Eq(10) in Ref. 21.

In the configurational description of the lattice gas pre-
sented above we follow Refs. 9,21-24 and cluster-variation

method methodology, where each LRO structisigerstruc-
ture) is described in terms of its own unit céboth in direct
and reciprocal spacgedetermined by the space symmetry of

- 5, )|

> expf—(kBTrl

{Ci rt
4
can be presented in the following form:
X
=== (5)
O{;R} [{ kBT}
where
=
Nv
=2, = (n) ,
X nzz ntiis, .., in RlszyE-..,Rn i1, Rysio Ry iRy
Xcil’Rlcierz' . .Cin R.» (7)
(n_ _
i1.Ry:i.Ry; iRy
i(f')R13i2’R2_’_l"Lilail,izéRl,R2 if n=2
Vl(f)Rl;iz Ryi.. i R, if n>2,
(8
=20V~ )+ ), ®

v andN® (i=1,2,... »; a=A,B) are the chemical po-
tentials and the total numbers aftype atoms atth sublat-
tice, respectivelyT is the absolute temperaturky is the
Boltzmann constant, the summation{d@ r} is carried over
all possible atomic configurations, artlis the Kronecker
delta. At derivation of Eq(5) the following relationships:
NO=F Ci,

NQ+N =N, (10)

[Cir]"=C (11)

where n is a positive integer, were used. The symmetry
equivalence of the crystal lattice sitesthin each sublattice
was taken into accourisee Sec. 3 in Ref. 21We put dif-

iR
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ferent values for the chemical potentials of atoms at differenThe values of the chemical potentigla{"} and, therefore
;ublattices assuming symmetry ineqqivalence of sublatticegee Eq(9)], the values ofu; corresponding to given values
in general case. Such inequivalence is caused, for examplef {P;} are found from the following standard relationships
by space inhomogeneity in atom distribution due to the pres¢i=1,2, . .. p):

ence of a LRO.

Note that the expressiof®b) for the grand partition func-
tion can be converted into the expression for ta@monical
partition function formally by settings;=0 for all i (under
neglect of the configuration-independent multiplifthis al-

(NP Lro=— QU 9u)

a !

(19

which transform into the following equations for determina-

tion of w;:

lows us, if need be, to make a step from the grand canonical
description to the canonical one in the final expressions for

statistical-thermodynamic characteristics of the lattice gas by

settingu;=0.

According to the Kirkwood methodology, the expres-
sion for the grand thermodynamic potentialcorresponding
to the grand partition functiofb) can be written as follows:

—KsTINAT +AQ,
(12

Q:—kBTmE:N[UO—Z ud)
i=1

where

AQ=—kBTIn< exp{—% > (13
B

the sign(- - -) means the statistical average over/ll pos-
sible configurations

(+-)=AT71Y ..., AT= D |,

{Ci rt {Cirt

14

At a statistical-thermodynamic description of the lattice-
gas model it is convenient to use the average sublattice ato

concentrations?; (i=1,2, ... p) rather than the chemical
potentials as givefinput) parameterd?

Pi:<Ci,R>LRo:<Ng)>LRo/N, (15

flou;=0. (20)
In such a description the quantities are intermediate just
like w in Fermi-Dirac distribution(e.g., Chap. 5 in Ref. 31

IV. CUMULANT EXPANSION

According to the general approach of the thermodynamic
perturbation theorysee Refs. 10-12,26,30,32-34 and Sec. 3
in Ref. 17, the expressiofil8) for Af can be expanded in a
cumulant series in powers of the inverse temperature,

_ ke _ XN kel zw 1 MaX)
Af= N '”<exr{ kBTD_ N @Zin! (—kgT)"’
(21

whereM (X) is the cumulant ohth order.
The expression(7) for X converts to the corresponding
expression(3.2) in Ref. 17 by the transformation
(i,R)—R. (22
Pis easy to show that the final results obtained in Sec. 3 of
Ref. 17 are also valid for more general case being considered
in the present paper if one performs the transformat&s)

in those results. Taking this fact into account and following
to the Brout approacfi—'?(see also Secs. 5-7 in Ref.)1let

where sign(- - - ) ro Means the statistical average over all us select the contributionsf, andAf, to the cumulant ex-
possible atomic configurations with a given LRO. Note thatPansion(21) from the irreducible summands proportional,

P; is equal to the probability of finding aiA-type atom at a
site belonging to théth sublattice and all the quantitié
are independent of the radius veckof unit cell due to the

respectively, to the zeroth and first powers of the quantity
z~ 1, with z being equal to the effective number of atoms
interacting with one fixed atom,

translational invariance of unit cells. According to such a

description, we move to the expression for the free enérgy

per unit cell of the system in question,

f:Nl|Q+E [Mf’-\i)<Ng‘)>LRO+Mg)<Ng)>LRO]]y
i=1
(16)
which can be presented in the foiftmy the use of Eq(12)]

f200+2 Pi
i

v %} ~N " kgTINAT +Af, (17)

where[see Eq(13)]

Af=AQ/N. (18

Nv
1 1
O_N rZZmlllz in Rl,Rz,z...,Rn
XWi(T)Rl?izsz in Rnﬁilbiz' 'F’in’ (23
keT — 1
Afj=—— —
! 2N nzlnil,iz,...,ln Rl,RZ,E...,Rn
iqi P in.i
lel_Zszészs. o Rn—lRl’ (24
where
Pi=(CiR). (25
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- VP (1P ) (i 8, i, O, Rt ‘I)iF'ql’i,mRm) VP (1P )

i1him
fr R, kT (26)
LN PiPiy-- Py ey
lm —
R A T 2 VIR R R R R @
[ETIP T i Rl,R2 ..... Rt
|
Note that Eqs(23) and (24) are similar to Eqs(6.2) and kgT
(7.2 in Ref. 17, respectively. Nevertheless, there is a princi- Afy=53 ; IndetA,, (32

pal difference between them. Namely, E¢&3) and (24) of

the present paper correspond to the initially LRO Stat§nere the summations dn are carried over all the points

whereas Eqs(6.2) and (7.2) in Ref. 17 correspond to the
initially disordered state with fluctuating LR@ee also Sec.
VIl below).
Let us approximately putsee below a discussion in Sec.
VI)
P~P,

INAT~INAT o, (28)

whereAT | ro is the number of configurations corresponding

to a state with a given LR@e.g., Refs. 4,26,30

INAT go=—N>, [PiInP;+(1—P)In(1—P)].
i=1
(29)
Introducing the Fourier transforms

v |
RSP I PP SR

of the mixing potentialsr{=2,3, ... Nv)

Q)

i1,Kq5ip Koo i Kn— 10

mo .
iRy Ry i Ry g0 0

m ;
i1, R, Ry iRy 101 Ry

Ly

= -1
N1 kg ko o kg

X ex;{

and performing a number of matrix transformatigase Ap-
pendix A), one can obtain

VO .
P kgiig koo iin_1.Kn_qiin

n—1

iZl ki(Ri—Rn) |, (30)

Nv
1 1
— p2 - v . .
Afy 2 Z wiPi +n§2 nl il,i22..,in V|1,0;|2,O;...;|n71,0;|n
XPi1Pi2~--Pin, (31

specified by the cyclic boundary conditions in the corre-
sponding first Brillouin zone and the designation Agt
means the determinant of the matiy with the following
elements:

Aikl’izz S i,
VPi, (1- Pil)[#i15i1,i2+a)i(f,)k;i2] VPi,(1-Pi)
+ .
kgT
(33

The function®{?); in Eq. (33) corresponds to the par-

ticular casen=2 [see Eq.(B3) in Appendix B| of the

ion ®M,_ . . .
more general function % i .o ik i, (D
=0,1,...Nvp)
M , .
CI)|1,k1;|2,k2;...;|r]71,kr]71;|r]
N_
VEnl >  P/P.--P
= TR P B
|1’|2""'It
X~(t+n)
i110;ié’0;"'?it"O;il’kl;iZ*kz;"';in—l'kn—l;in’
(34)

which will be necessary below.

A. Mean-field (MF) approximation

Let us take into account only the contributidif, to the
cumulant expansion. According to the Brout apprdich
(see also Secs. 5-7 in Ref.)isuch a contribution is propor-
tional to the zeroth power of the quantity X, with z being
equal to the effective number of atoms interacting with one
fixed atom. Below in Sec. VI, it is shown that within the
approximations that take into account the finite numbers of
terms in the cumulant expansion, it is correct to useddte
nonicalensemble. As it was noticed in Sec. Ill, we can move
to the canonical formalism putting;=0 for anyi in the
final expressions obtained within the grand canonical formal-
ism. On such a way substituting E@1) instead ofAf into
Eq. (17), we get the well known MF approximation
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NTI A i =1 (39)
Equation(39) was derived from Eq(20) at substitution of
fring instead off. The designatioffA, Y|;; means théth di-
agonal element of the matrié\sk’l inverse toA,, which is
defined in Eq(33). By a symmetry consideration, it is easy
to show that one may use the matAx with the following
elements:

[Mi15i1,i2+‘5i(f,)k;i2]a (40)

kgT
instead ofA, in Egs.(38) and (39).
From EQ.(38) one can obtain the following expressions

for the energye i,y and entropys;i,g within the ring approxi-
mation:

1
8ringstF_EEi: 1iPi(1=Py), (41)

ke
Sting™= SMF~ g Ek) In detA, , (42)

irreducible diagrams corresponding to the terms in the cumulant

expansion(see Sec. 3 in Ref.)2

fvr=evr— T Svr, (35
where[see Eqs(34) and(B1) in Appendix B
eme=2©, (36)

14

SyE= _"B-Zl [PilnPi+(1-P)In(1-P)]. (37)

B. Ring approximation

Let us take into account both contributioas, andAf;

to the cumulant expansion. According to the Brout

approach’~1?(see also Secs. 5-7 in Ref.)lthose irreduc-

ible contributions are proportional to the zeroth and first

powers of the quantitg !, with z being equal to the effec-

tive number of atoms interacting with one fixed atom. We
shall call such an approximation as the ring approximation.
Note that such name is in accordance with the topology of

the diagrams corresponding &df ; in the context of the de-
veloped diagram technigusee Eq(7.1) in Ref. 17 and Fig.
1 of the present papgr

In that case substituting Eq&1) and(32) instead ofA f
into Eq.(17), we obtain the following expression for the free
energy within the ring approximatiofs:

1 kgT
fring:fMF_E E| MiPi(l—Pi)‘Fm ; IndetA,,
(39

wheref e is defined in Eq(35) and the quantitieg; are to
be determined from the equations<1,2, ... p)

where g\, and sy are determined in Eq€36) and (37),
respectively.

C. Case of the disordered lattice gas with a Bravais
crystal lattice

In such a caseP;=c (c is the total concentration of
A-type atom§ and it is not necessary to introduce the sub-
lattice indexi. Instead of(35) and (38) we have within the
MF approximation and ring approximations, respectively,

Nv n
fur=vo+cVH+ ;::2 HV%, )

+kgT[clnc+(1—c)In(1—-c)], (43
1
fring:fMF_Eﬂc(l_C)
kgT c(l-c) ~ (2)
+m;|n[1+ T [+ ® ]], (44)

where the quantitys is to be determined from the equation

c(l—c) - -1
N1 {1+ [u+<1><k2>]] =1, (45
k kBT
Nv—n Ct
dM - Zyy(t+n)
Py k= 240 V00, 0ky Ky kg
—\7 /(L
—Vﬁrl),kz, o ,kn_1+CVE),k+lr,]I22, Ky

N ke, (46)
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approximation obtained in Refs. 28,29 is not higher than that
1.0 of the mean-field one.
It is remarkable that the Debye-kkel approximation can
be derived within the same statistical-thermodynamic ap-
47 proach as the ring approximation, and one can find similari-
ties in the corresponding expressions for the free energy de-
spite the principal difference of the simple gas and lattice-gas
Note that Eqs(46) and(47) are the particular cases of Egs. models(e.qg., Ref. 41
(34) and(30). The expressions for the energy and entropy are |t should be noted that in fact our derivation within the
obvious in the considered case. ring approximation is just the different approaghithin the
lattice-gas model plus grand canonical formalista the
Brout approximation elaborated in Refs. 10-12 within the
V. SIMILAR APPROXIMATIONS Ising model(see also Ref. 36 Perhaps, one may even call

Let us outline the approximations within the lattice-gasthe ring approximation as the Brout one. The generalization
model that are similar to the ring onén the case of the ©f the ring(Brout) approximation to the case of the lattice-
Ising model the same will be done in Ref. B6. gas model has the ut_|I|ty by itself. Besn_lles, the qon3|deration

In the particular case of only pair atomic interactions, ©f & long-range atomic ord¢correspondingly, antiferromag-
expression(38) transforms into Eqs(3) and(12) in Ref. 19.  Netic states within the Ising modgla non-Bravais crystal

In Ref. 24, by integration of the equations of state of thelattice, and nonpair interactions is much easier within our
Onsager cavity field approximatidi®® the expressions for @pproach than in the framework of the initial Brout ap-
the free energy were obtained in the case of the disordergfoach. _ _
state,L 1, andL 1, structures of the face-centered-culfie) In our opinion, it would be interesting and helpful to com-
lattice gas. Those expressions are similar to the correspon@ré the above-denoted approximations in more detail in a
ing expressions obtained within the ring approximation wherPéparate paper. In the presegsee Sec. XII below and
nonpair atomic interactions are neglected. Unfortunately, awbsequgﬁ? papers we performed the detailed numerical
general expression for the free energy of arbitrary superstrugtudy of just the ring approximation, which can help to un-
ture was not obtained in Ref. 24. derstand the features of similar approximations as well.

In Ref. 23(Secs. 3.2.2 and 3.4 therevithin both Brout
approach and collective variables method, the expression fory,; aAppLICABILITY OF THE RING APPROXIMATION
the free energy of arbitrary superstructure was obtained. Be-
sides, in Ref. 39see also Ref. 40 by the collective vari- As in all diagrammatic methods, we have to use not only
ables method within the Gaussian approximation, the expregheoretical justifications but also trial-and-error method to
sion for the free energy of thdisorderedlattice gas with a  get analytically and/or numerically adequate results in stan-
complex crystal lattice was obtained. The corresponding exdard casege.g., Ref. 33 Usually, it is not possible to derive
pressions in Refs. 23,39 and those obtained within the ringompletelyconsistent approximation without summirzdl
approximation are not identical but have common featuresthe diagramé? Besides, the practical feasibilite.g., the
The expressions obtained within the ring approximationpossibility of analytical summation of certain type of dia-
seem to be mathematically simpler. In the case of the disoigramg plays an important role in a choice of approximation.
dered lattice gas with a Bravais crystal lattice and with only  The first approximation we made consists in taking into
pair atomic interactions, both expressions in Refs. 23,3@&ccount only the terms proportional to the zeroth and first
transform into the corresponding equati¢dd) obtained powers of the quantity ! in the cumulant expansion with
within the ring approximation. being equal to the effective number of atoms interacting with

In Refs. 28,29, the superstructures were described ione fixed atom in Brout classificatith'® (see also Secs.
terms of the unit cells of the correspondidigorderedstruc-  5-7 in Ref. 17. In diagram technique language, it means
tures(see Sec. Il above according to the usual method of that we include into consideration the infinite number of the
static concentration wave®.g., Refs. 25—-27 As a result, ring-type diagramsthird column in Fig. 3. Such a “verti-
within the Brout approach, the expressions for the free encal” (see Fig. 1 way of diagram summation, whexi ! is
ergy were obtained for the disordered stdté, andL1, chosen as a small parameter, is alternative to the usual “hori-
structures of the fcc lattice gas. That expression for the diszontal” one, whenT 1 is chosen as a small parameterg.,
ordered state is identical to E@4) with u;=0 and neglect- Refs. 25,26,30,43 Note thatz"* expansion is referred to as
ing nonpair atomic interactions. The expressions for the fredigh-density one in Refs. 10,11. Such a name seems not to be
energy ofL 1, andL 1, structures obtained in Refs. 28,29 are adequate because big valueszotorrespond to long-range
more complicated than E38). A general expression for the atomic interactions rather than to high concentration of
free energy of arbitrary superstructure was not obtained and(B)-type atoms.
nonpair atomic interactions were not taken into account in It should be emphasized that both classifications of the
Refs. 28,29. Besides, the quantities suchuasvere not in-  terms in the cumulant expansion by the powersof and
troduced in Refs. 28,29 because the canonical formalism was 1 are approximate and have only a suggestive meaning.
used. Therefore, by the same line of reasoning as below iBrout classification is not rigorous by its nature. At es-
Sec. VI, one may conclude that the numerical accuracy of thémation we do not take into account an implicit temperature
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dependence of the terms in the cumulant expansion throughf MF approximation (see Sec. IV A However, if

P; and u; . Besides the numerical testirijgee Sec. Xlll be- we take into account the terms that include quantities
low), the ring approximation is supported by its similarity to <Ci1~R1Cizsz' . .Cin'Rn> with infinite values ofn (just like in

other approximationésee Sec. Yas well as by the fact that the ring approximatiop for correctness of the transforma-
we obtain the high-accuracy spherical model approximationon (48) we have to use the grand canonical ensemble. The
for the short-range order by the method of differentiationnecessity to change the statistical ensemble was discussed,
with respect to potential within the ring approximatitsee e g., in Sec. 4.3 of Ref. 45.

Sec. IX below. As it was pointed out in Sec. 11 of Ref. 33, From Eq.(43), it follows that within the MF approxima-

the more the contribution from a vertex, the less the linegjon the critical temperaturg" of the absolute instability of

enter a vertex of a diagram. Thus, one may expect that thge gisordered state is determined[ase Eq.(2.3) in Ref.
ring diagrams, for which only two lines enter each vertex,4¢

mainly contribute to the cumulant expansion. If the Brout
classification is valid, one should expect an increase of the keTVF=—c(1—c)min®P=—c(1-c)d®. (49
numerical accuracy of the ring approximation with increase K 0
of the radius of atomic interactions and/or of the dimension- . ]
ality of the crystal lattice because the parametet de- L€t us putu=0 in Eq.(44) for a moment, what is the same
creases in such cases. Note that one may consider the qud consideration within the canonical ensenibtee Sec. 1)l
tity z as the effective dimensionality of the Hamiltoniggee ~ In Such a case, due to the presence of the logarithm, the free
Sec. 1.6 in Ref. 4% energy(44) of the disordered lattice gas does not exisT at
The second approximation we made consists in a neglecE Te' » even within the ring approximation. Correspond-
of the terms corresponding to theduciblediagrams in the ingly, the critical temperature of the absolute instability of
cumulant expansiorNote that some of the reducible dia- the disordered state as well as the order-disorder phase tran-
grams are implicitly taken into account by the renormaliza-sition temperature can be only more or equal{ . Thus,
tion (28) of the diagram vertices, see beldWhe account of we arrive at the important conclusion that without the grand
such terms is problematic in practice. There is a number ofanonical consideratioiti.e., without introduction ofu),
prerequisites to neglect such tefm®26324hut the ultimate ~ even taking into account the ring diagrams in cumulant ex-
answer seems to be obtained only through the numerical capansion, it is impossible to diminish tHesually too high
culations. The neglect of the reducible diagrams correspondrder-disorder phase-transition temperature obtained within
ing to the low powers o ~* can result, for example, in the the MF approximation. In Sec. Xl below, it is shown that
low numerical accuracy of the ring approximation at suffi- the use of the ring approximation within tigeand canonical
ciently low temperatures when the contribution of such diaformalism allows to substantially increase the numerical ac-
grams can be considerable. Besides, the results of the rimguracy of the MF approximation results. There is a number
approximation can be inadequate in the immediate vicinityof other important discrepancies within the ring approxima-
of the critical temperature@nd concentrationof the abso- tion in the canonical formalisrif. 123342
lute instability of structures, where the contribution from the In order to get the high-accuracy results within the ring
divergent reducible diagramjand those irreducible that are approximation it is important to introducg into the
proportional toz™ " (n>1)] is considerablgsee Chap. 2, Wi(f’)Rl;iZ,R2 [see Eq.(8)] before the classification of the
Sec. 6 in Ref. 1p Thus, we should expect the low numerical teyms of the cumulant expansion in powers of'. The
accuracy at calculation of the temperatures of phase tranSfoﬁuantities analogous to oyt; were introduced on several
mations of the second or close to second orders, when _tr@ounds within a number of approximatiotsee Sec. .
mter_v_al between the critical temperature of _the _absolute iNThe possibility to get the results within tlggand canonical
stability and that of the phase transformation is comparatormalism that are different from those obtained within the
tively small (or vanishep o _ canonical formalism was pointed out in Sec. 2.3 of Ref. 14.
We describe our system within the grand canonical en- |n order to obtain the physical adequacy and high numeri-
semble. The necessity of use of such an ensemble is causggy accuracy, we have also introduced the self-consistent

by our use of the transformation field approximation28). As a result, if we puj;=0 we get
the adequate transformation of our final expressions to those
(Ci, r,Ci, R, "Ci R )=(Ci, r{Ci, R, (Ci r) obtained within the canonical formalism. Besides, we obtain

(48  asimilarity with other approximationsee Sec. Y. The ap-
proximation(28) corresponds to a renormalization of the dia-
[n>1, (i;,R)#(im,Rm)] in all the cumulant expansion gram vertices, i.e., to the implicit summation of additional
terms. In the case of theanonicalensemble, the transforma- (educible diagrams in the cumulant expansi@ee Refs.
tion (48) is valid for only finite values ofn, when the fixed 33 42 and Chap. 2, Sec. 6 in Ref.)1Rote that it is impor-
concentration restriction on summation over the configuraiant to introduce the approximati@@8) after the decoupling
tional states is negligible in thermodynamic limit. Thus, if (48) because otherwise we return to the canonical consider-
we take into account the terms that include quantitiestion. We should expect the contribution of the self-
(Ci, r,Ci, R, -Ci r ) With only finite values ofn, it is  consistent field approximation to the low numerical accuracy
correct to use theanonicalensemble. This is the case of of the ring approximation within the critical regions of phase
high-temperature approximations of finite orders as well asliagram. However, such a contribution must be diminished
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by an incre_ase (_)f the radius of atomic interactions and/or of f{'“% i r=—(kgT) 7} = R(1=P; r)

the dimensionality of the crystal lattice. P m m P P

Below in Sec. XIII we will verify all the theoretical state- X (i r&i i 8 + @ fuct
||,RI i R|,Rm

H H H iI'RI;im'Rm)
ments of the present section by numerical calculations.

X P (1=P; ), (52
VII. EQUATIONS OF STATE Pfluct
I| ,R| ;Im,R
The thermodynamically stable or metastable superstruc- Ny—2
tures correspond, respectively, to the absolute or local _ i E E P P
minima of the free energy in the space of LRO parameters = I T R i RITIZR,
according to the variational property of the free enefgge, 1rare vz t
e.g., Sec. 4.2.2 in Ref. 14Therefore, the values of the LRO i (2+1)
. Xplf R,Vi' R’ i’ R': 'R iR, i R (53)
parameters corresponding to such stable or metastable struc- L T A TR e ime Rm

tures must satisfy the equations that follow from the CondiIcompare with Eqs(26) and (27)] and ; ¢ are to be deter-
tion of zero values of the first derivatives of the free energyhined from the equations €1,2, . . . V)"

with respect to such parameters. The present section will be
devoted to a general de_rivation of such equati_ons, which we ﬁf‘;liﬁg/(gﬂi‘R:O (54)
shall call as the equations of state. Below in the present

paper, we neglect a dependence of the mixing potentials dkgompare with Eq(20)]. _ .
the quantitiesP; . Note that the expressid®0) is analogous to Eq.7.4) in

Ref. 17. The principal difference between them lies in the

fact that in the present paper we consider the fluctuations of
A. Ring approximation the initially LRO state rather than those of the initially dis-
ordered(i.e., without a LRQ state.

Let us consider the fluctuation8P;  of the quantities . i
P;. The presence of the argumeRitin 5P; r means that we theUﬁertholrEdq;54), we have for the free energy variation of

take into account not only the fluctuations of the differences

Pi—P; (i#]) but also the fluctuations oP; within each fluct
sublattice. We have also to take into account the correspond- Sfiwe=2> > aP"ng 5P . (55)
ing chemical potential fluctuation$u; r of the quantitiesu; PR LRlo

(see Ref. 18 Itis easy to show that within the ring approxi- |, gq (55) and below, index 0 means that the derivatives are

mation the free energy functioné,fl‘,’{g;t of the fluctuatingPi . taken atP, x=P; and u; r= ;-

and u; g has the following form:

0= by ey s g (56)
1

fﬁ'i‘n‘ét=vo— N Z ER: i rRPi r(1=PiRr)

Substituting Eq(50) into Eg. (55), we get

8fing= 2 D["Pi 0, (57)

+N7Y D P v

'R where5l~3u< is the Fourier transform oéP; g,
181
N nzzmil,izg..,in Rl,Rz,E...,Rn 5Pi,R:; 5P exp(—ikR), (58
Vi(??Rl i, Ryt i R Pi R Py Ry Pil R,

1-P,

D{"= B! (1-2P) +keT In
+N’1kBT§i: ; [P; rINP; g+ (1—P; R)IN(1-P; )]

_ kB_T 2 ?i(,SO);j,q;I”A;l”Ij (59)
kT o 1 S e 2N g 57 Pi(1-P)
2N &ini i R RS R, TR R 5
Xfiﬂzurcéz?isyRsl ' 'fiﬂrlujlc't?n?ille (50 1_—[1 Pin(1=Pi,)
ORI FONE
i kqiinkoiig kT FRLSHPRLEHEY
[compare with Eqs(17), (23), and(24)], where (60)

the functionsd(¥ and®(*), ;| ;. correspond to the par-
Pir=Pi+ 6P r, uir=ni+ouir, (51) ticular casesn=1 andn=3 [see Egs.(B2) and (B4) in
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Appendix Bl, respectively, of the function state(66) can be simplified by series expansion in powers of
oM . defined in Eq(34) such small differences with taking into account only lowest
f1oKyiig ki iino g knoqiin Lo powers.
Taking into account the constraint 8% Let us consider the case of structures characterized by one

v LRO parametery. In this case, all the quantitieB; (i
E > Pi r=(Np) (61) =1,2,... ) take only two different valueB, andP,, (e.g.,
i=1 R Sec. 1in Ref. §

(N4 is the total number ofA-type atom$ and correspond-

|ng|y for api,R and 5hpi,k P|:C+(1_CSI) 7, PIIZC_CS’[ni (68)

wherecg, is the stoichiometric concentration of the structure.

‘ o ‘ = The maximum values of, P, P ( 7max. PP, respec-
;1 ER oPir Ni; OPi0=0, 62) tively) possible at a given concentratiorare the following:
we can expressP, ; as c
) Tnagy PITTey FITTO (esed
8P, o=—2>, 6Piy. (63
=1 - 1-c pme P“W:c—cSt (c>cy)
max ) ) T st)-
Substituting Eq(63) into Eq.(57), we obtain the expression 1-Cq 1-Cq
for 5t through theindependentluctuations (69)
o From Eq.(66), assuming thaty= 7., We obtain
Sting= 2, (D{"—D}") 6P 5. (64) c 1
i=1
n=—|1- — — (c<cg), (70
Because the free energy variation of the first—or@éﬂ‘r’]g‘ Cst 1+(Csmc)(e—1)
vanishes in case of thermodynamically stable or metastable —
superstructures: n=1- —1+lt4eg(l-ca)(e "—1) (c=cy=<0.5)
fluct_ 2Cst(1_cst)(8_l_ 1) * '
5t g =0, (65) (71)
from Eq. (64) we obtain the following equations of state (
_ 1y.35 —1+1+4cy(l—cg)(e—1)
1,2,...p—1): _ -
7=l T e (e 1) (c=Cs>0.9),
ring__ ~ring__ S| S
{D; D=0, (66) (72
whereD!" is defined in Eq(59). Note that, at neglect of the 1—c 1

nonpair interactions, the obtained equations of state are simi- = -
lar to the corresponding ones derived within the Onsager 1-cy 1+(c—cy(e—1)
cavity-field approximatiod®>":38 where

As an example, let us write down the equations of state

for L1, and L1, structures in case of presence of only s:exp[(kBT)*l[R- J(IPM) — R ([PT1) Ty
1= J 1= J 1
(7

(c>cq), (73

nearest-neighbor pair atomic interaction€, : 4

kT 2P b 1 2P+ pa(1—2Py)] oy L
O UP(1-Py 2 ST R({PH =BV Zmi(1-2P)
=—4v2 gy, (67) - T A,
. _ B E 1,0,j,g;111"g 1l 75
where the corresponding; and LRO parameter, are re- 2N < 4 —P O (79
' iltL=F

lated below in Eqs(132 and (133) and w; are to be deter-

mined from Eq.(39). Note that the difference between Eq. Note thatR; _,({P["™}) means that is equal to the number of
(67) and the corresponding expressions obtained within th%my sublattice of type | and that we pwR=P™ (]
MF approximation[e.g., Eqs.(16.8 and (16.24 in Ref. 9 =1,2,... ). The quantitiesy; (i=1,2, ... 'V; aré to be

lies in the nonzero value of the quantitigs. determined from Eq(39). It should be emphasized that the

condition of T—0 was not imposed at derivation of Egs.

(70—(75), so that they could not be applied only at low
In wide temperature-concentration intervéfot only at  temperatures.

low temperatures the differences between the values of the The expression&70)—(75) were used at our calculation of

LRO parameters and their maximum possible values aréhe phase diagrams below Sec. XlIl. Especially, they proved

small. Thus, within such intervals, the general equations ofo be useful at low temperatures when the difference between

Case of the almost maximum LRO parameter
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the value of the LRO parameter and its maximum possible e=exp{(keT) YOO, ({P™4)— (1)({pma><}
value is of the same order as the precision of the computer ° IR (80)
calculations.

Note that the expressiofT1) [taking into account E¢(80)]
B. Mean-field (MF) approximation transforms into Eq(19.13 in Ref. 9 if one additionally im-
poses the condition ofF —0 and neglects all nonpair atomic
interactions. The expression30)—(75) together with Eq.
(80) were used at our calculations of the phase diagrams

Using Eq.(35), within the MF approximation we obtain
the following free energy functiondlf*' of the fluctuating

PiR within the MF approximation in Sec. Xl below.
fluct 1 (1)
fiE =votN” 2 2 PiRVi VIll. STRUCTURAL STABILITY
1 Mg The condition(65) of the thermodynamical stability or
> — > metastability of the superstructures is the necessary condi-
N =2 Nt i i g ReRs - Ry tion. In order to study the sufficient condition we have to
><V n) L. P aPir...P & consider the free energy variation of the second order.
17 2 20 n'n 101 12072 n'"n
1 A. Ring approximation
+N"kgTY, X [PirINP; g+(1—P; g)IN(1-P; p)]. o _ o -
i R Within the ring approximation the free energy variation of
(76)  the second-orded*f{i.¢' has the following form:
By the same way as in the preceding section, we arrive at the 1 2 fluct
following free energy variation of the first order: s2ffuct—— N — ™| 5P, g SP; &
fing ™~ 2 ] Ri.Ry &Pi,RlaPJ,RZ LRy 70 1Rz
quct 0
fluct 2 ¢fluct
i 20°f
ot 22f9p|Rp P&P,,R 9 6P R, Opj R
aPI Rlal(l’j Ryl Tl T2
v—1
_ D-MF—DMF 5]5_ , 7 azfﬂuct
2, (DT-DJ)5P (77) oL . @1
IR MRy~ T

where

From Eq.(54), by taking the first derivative with respect to
P; r, One can obtain that

~ P
DM =B+ kgT In— (78)

Pi
d oF J°F
dPigr, dujr, IPiRr, MR,

+2 2

{DMF_DMF_, (79 TR dmr R, PR,

[the function® (V) is defined in Eq(B2)]. Correspondingly,
the equations of state have the following form (

:1,2, e ,1/_1): (?ZF alLl’R! .

82
From comparison of Eq$59) and(798) it follows that one 2

can transform the equations of state obtained within the rin
approximation to those of the MF approximation one by put-
ting uj=0 and neglecting the last term in E§9). Note that
the last term in Eq(59) gives contribution only in case of
presence of nonpair atomic interactions. S _E E I R
Equations of statér9) are the generalization of those pre- HiR= T R/ PR
sented in Eq(5) of Ref. 22 to the case of presence of nonpair '
atomic interactions of any order. Besides, we take into ac-
count the constrain®l) explicitly, instead of introduction of
the Lagrange multiplier as it was done in Ref. @2spirit of
Khachaturyan approath?). (83)
In the case of almost maximum LRO parameter, within
the MF approximation from Eq(79) we obtain the same Thus, from Eq.(81), taken into account Eq$82) and (83),
expression$70)—(73) but with we get up to the second order

%egdes for the variatioAu; r, we generally have up to the
second order
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1 52 ffluct The necessary and sufficient condition of the thermody-
52fﬂ$1;t E 2 6P r, 0P R S—L namical stability or metastability of a superstructure is as
2 5 &%, 1 21 Pj R, IPj R, follows:
fl
S SR MR 5*tting >0, )

(84

T R IPiR, du R PR, . which [together with Eq(65)] guarantee the presence of a

local minimum of the free energy in the space of LRO pa-
Substitutingfﬂt‘]gt from Eq. (50) into Eq. (84), we obtain rameters. Substituting E¢85) into Eq. (91), we obtain

(see the details of derivation in Appendiy C keT

52fﬂ‘r‘§ E Ek: A, xld, k?>0, (92

it g sB1% 5B, 85 .
nng 2 E Frik? " 9 where A, are the eigenvalues of Hermitian matrB{"
with the elementg"[%,,

where
5]5' 5AF‘)i'k (86) 2 Brlr]]gkvak A(r kva k@ﬁrlngvo,k:A(r,kVU,ki (93)
B
! v' . are the components of the eigenvectors of the ma-
Pi(1=P) | areth f th f th
trix g9,
1 1-2P ~ 2P,
B%= A+ m[” i ”]TIJD) o
V(rl,kvtrz,k: 501,0'2! ; Ulrr,kvjrr,k: 5IJ ’ (94)
i -1y | L is 1-2P; : S ;
“'% Tl s 5Tk mﬁsj d,, are the coordinates of the vectof®, (with the ele-
' : ) mentssP/ ) in the complete space of the eigenvecteys
ZNEEf ]—k|1q||| q1|||21 ~, i ~,
i1 8P =2 dyyvl & P=2 dyVor. (99
1 _
- 2N |2| i 2 f(l a-k;ip, fq;i”Aq 1||i2,i3 Because the conditiof®2) must be valid for any values of
1.12:13:14 ~
6P, (and correspondingly ofl, ), we get the following
xF®) AA D (87)  necessary and sufficient condition of the thermodynamical
|3q|4k a: g —kllig iy o " .
stability or metastability of a superstructurmgether with
the functionf(¥) ., \ . was defined in Eq(60), Eq. (66)]:
4 Ay x>0 (96)
nHl VPi (1=P; ) (for any o andk). The critical temperatur€, of the absolute
T4 - instability of a superstructure is determined by the equétion
'k12k23k34 kBT
minA, =A, . =0edetsi"=0, 9
X(I)(A) (88) ok k 0-Ko IBK ( 7)

ISHPRL HELCHIS

the functlonCID,( )k i ki, n Eq. (88) corresponds to where oy and Kk may be callgd_the instability mode and
1:12.Kaii3:k35l4 ) : wave vector, respectively, df"? is the determinant of the

the particular case=4 [see Eq(B5) in Appendix B of the i B9 with the elements defined in E¢87). The im-

function®™, .\ .\ . definedin Eq(34), I,*  portant feature of the ring approximatidwhich is absent

is the matrix inverse td)k, which has the elements within the MF ong is that the wave vectdk, of instability

of the same superstructure can be different for different con-

centrations of the lattice gas even in the case of constant and

ij—_N—1 “LATY . o . :
he= zq: ”Aqu”u”Aq H'I ' (89 pair atomic interactiongsee examples below in Sec. Xl
1. Orientational order
—N-1 y F(3 -1 . . .
” |2 E ||A ”JI |(1)q |2,7(k+q);i”Ak+q||i2j : The instability modes, and wave vectok, contain the
112

(90) important information about the thermodynamically stable
structure to appear after the corresponding phase transforma-

Note thatﬁ””g can be named as the inverse generalized sudion from a given structurésee below Sec. X However,

septibility W|th|n the lattice-gas modéSecs. 4.2.4 and 4.3.3 both cases of decompositigeegregationand orientational

in Ref. 14. order correspond t&,= 0, where by the orientational order
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we mean the redistribution of probabilitid?; among the
same sublattices without a change of the primitive unit cell.
In order to distinguish between the decomposition and orien-

tational order, let us consider the ﬂuctuatio&f?,i,kzo, im-
plying the constraint63),

KeT < g cn o
52fﬂ?§:7|2 BI100PT.00P1 0
Eq. (63T "t ey
= T itE:l il,'[,go 5P:O 5Pi'0|
(98)
where
fing
B9 = - : (99)
W P(I=P)P(1-Py)
=B BlI%BIE BN, (100

PHYSICAL REVIEW B69, 134431 (2004

(3) 3 (3) 2
T(1)=£ E q)q,—(k+q) T(z)zi E [(I)q,—(k+q)]
“ N4 AdPkrq NG AgPk+q
(105
Ok, andV{V, are defined in Eqs46)

and (47). Note that Eqs(102 and (103 are the particular
cases of Eq987) and (33).

As it follows from Eq.(101), the critical temperatur@,
of the absolute instability of a disordered state is determined
by the equation

min,Bkz,BkOIO, (106)
k

which is the particular case of E(Q7) (kg is the instability
wave vecto). It should be emphasized that within the ring
approximation[in contrast to the MF one—Ed113)] even

in the case of only pair atomic interactions genere;!{)%)

#min, V?, i.e.,V?) has no absolute minimum &t.
If nonpair atomic interactions are equal to zefice.,

The quantitys®f i in Eq. (98) contains only the fluctuations PP=V@, T(P=T’=Q,=0) andc=0.5, then from Eq.

corresponding to the orientational order because the implie

¢LO6) we obtain the familiar resuit

constraint(63) means that the total concentrations of the at-

oms of all types are fixedln case of decomposition those

concentrations change.

Thus, if from Eq.(97) we have found that the instability
wave vectorky,=0, we have to study the eigenvalues of the

matrix D" with the elements determined in EG.00). In

4 ~ ~
T am

B. Mean-field approximation

the case of decomposition all such eigenvalues are positive Within f[he MF appfoximation, using Eq76), we pbtain
and any negative eigenvalue indicates the orientational ordeif?€ following expression for the free energy variation of the

2. Case of the disordered lattice gas with a Bravais
crystal lattice

Let us consider a particular case of the disordered two-
component lattice gas with a Bravais crystal lattice, which i
important from a practical point of view. In this case it is not
necessary to introduce the sublattice indeand instead of

Eq. (85) we have

kgT _
2¢fluct_ B ring| §B |2
o fnng 2C(1_C) ; ﬁk |5Pk| ’ (101)
where
. (1-2c)?[1 c?(1-c)?
rlng: A N
P = At 1= |1 kgt K
_ 201 _ ~\2| 17(D) (2) _
+c(1 C)T(l) c(1—c) TL_TL +1 2cC
keT % | 2keT | I T e |
(102
c(l-c) ~
- (2)
A=1 KT [u+dP, (103
1 1 1o PP,
he= D Qe Y i, (104
KNG AAGL, NG A,

second-ordep?f et

kgT =
=5 T 3 AfoPiobl, (o9
Swhere
e il VPAPREP(I-P)
Bij k= Akl =0= 8ij + kT :

(109

the func’[ionﬁ)ff?k;i2 is defined by Eq(B3) in Appendix B.

By the same way as within the ring approximation, we
obtain the necessary and sufficient condition of the thermo-
dynamical stability or metastability of a superstructiie-
gether with Eq.(79)]

keT>— Nk (110

(for any o andk), where\,  are the eigenvalues of Her-
mitian matrix with the elements) ,

ol =Pi(1-P)D?;

The critical temperature of the absolute instability of a su-
perstructure is determined by the equation

P,(1—P)). (110)

kKgTe=—min\,  ,=—\
o,k

(112

oy ,k07

134431-12



STATISTICAL-THERMODYNAMIC ... . I. ... PH/SICAL REVIEW B 69, 134431 (2004

where oy and kg may be called the instability mode and ods: method of differentiation with respect to potential and
wave vector, respectively. thermodynamic fluctuation method.
Equation(112) is the generalization of that one presented
in Eq. (17) in Ref. 22 to the case of presence of nonpair  A. Method of differentiation with respect to potential
atomic interactions of any order. In case of the disordered

state with a complex crystal lattice and only pair atomic in- Within this method we use the following relationship

teractions, Eq(112) transforms into the well-known expres- (e.9. Ref. 2
sion for the critical temperature of the absolute instability of 2  _p p
; i 1 Y o (20f10V{R ;. .= Pi Pi.)
the disordered state obtained within the MF approximation PUERLE pen2 > (118
[e.g., Eq(3.11.22 in Ref. 27. In case of the disordered state Ri~Ra \/Pi (1-P; )P, (1—P;))
1 1 2 2

with a Bravais crystal lattice, Eq112) transforms into Eq.

(2.3 of Ref. 46. And finally, in the case of the disordered Within the ring approximation substituting,,y from Eg.
state with a Bravais crystal lattice and only pair atomic in-(38) [using for convenience Eq$23) and (24)] into Eg.
teractions, Eq(112) transforms into the classical formula (118 and then going to the Fourier transform we obtain

e.g., Eq.(3.7.1) in Ref. 2 . _
[e.g. Eq.(3.7.12 7 ol =AY, (119

keTe=—c(l—c)minVP=—c(1-0)VZ). (113  yhere|A YJ;; means théj element of the matrix inverse to
K A [see Eq(33)]. The obtained expressighl9) for the Fou-
By the same way as within the ring approximation, we'er transform of the SRO parameters is a generalization of
obtain that if from Eq(112) we have found thak,=0, then  the spherical model approximatidsee Eqs(4.12, (6.4),

we have to study the eigenvalues of the mab{" with the ~ @nd (6.5 in Ref. 17 to the case of the lattice gas with a
elements i,t=1,2 y—1) complex crystal lattice and with a LRO. In analogy, we shall

call the obtained expressiofi1l9 as the spherical model

D:V'tFOZ BthFO— BiMVFo_ B';/”I?O+ B';/'E 0 approximation for the SRO parametéfdn case of the dis-
v v o v o ordered state with a complex crystal lattice and only pair
where atomic interactions, Eq119 transforms into Eq(29b) in
- Ref. 39.
BMF _ i,k (114 Within the MF approximation, using Eq118 we obtain
= i o
W Pi(1— P)P;(1-P)) the trivial result
In the case of decomposition all such eigenvalues are posi- Iy s 1 if i;=i, and R=0
tive and any negative eigenvalue indicates the orientational %RZN 0 otherwise. (120

order.
IX. SHORT-RANGE ORDER (SRO) B. Thermodynamic fluctuation method
_ - . In the context of the thermodynamic fluctuation method
Let us define the SRO parameter§ as the normalized (gee, e.g., Secs. 111, 116, and 146 in Ref. 31, and Ref. 49 and
correlation function Sec. 25a in Ref. }} from Eq. (85) obtained within the ring

approximation, it follows that
iy ((Ci, r,~Pi)(Ci, r,~Pi)) (115 PP
foRe P (1=P )P (1-P)) (8P1% 6P i uea=N"" i 1By H(ring) [, (121

with the normalization factor chosen in order to fulfill the Where(: - - )nt Means the statistical average over the Gauss-
constraint ian distribution of the probabilites of fluctuations,

) | Bx *(ring)[;; is theij element of the matrix that is inverse
ag_o=1. (116  to B"9. The SRO parametefd15) can be presented as

In fact, theay are just the ger?eralizatio.n of Warren-Cowley o (8Pi, R OPi, R )uct
parametet¥ to the case of lattice gas with a complex crystal a'Rl"}R = .
lattice and with a LRO. So the determined SRO parameters %2 P (1P )P (1-P;)
decrease with distance and characterize the atomic correla- . -
tions besidesthe LRO. The Fourier transforml of !} is ~ Going in Eq.(122) to the Fourier transforméP;  [see Eq.
defined as follows: (58)] and using Eq(121), we get

a) =B H(ring);; - (123

We shall call the obtained expressiét23 as the ring
(117) approximation for the SRO parameters. Within this approxi-

Below we shall derive the expressions for the SRO parammation one can calculate the Fourier transfomp of the

eters within the MF and ring approximations by two meth-SRO parameters using E@.23) and then the parametess}

(122

a) =2, allexp—ikR), all=N"1Y o) exgikR).
R k
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themselves by integration over the Brillouin zofsee Eq. We shall call the obtained expressi¢h24) as the MF ap-
(117)]. In Eq. (123 the matrixB, * (ring) is inverse tog"®  proximation for the SRO parameters.
defined in Eq.(87), where the quantitieg; are determined In case of the disordered state with a Bravais crystal lat-
from Eq. (39). tice, Eq.(124) transforms into Eq(2.13 in Ref. 20. In case
The ring approximation is a generalization of the corre-of the disordered state with a complex crystal lattice and
sponding approximation derived in Ref. I3ee Eqs(7.6)  only pair atomic interactions, Eq124) transforms into Eq.
and(7.7) therd to the case of the lattice gas with a complex (112.16) in Ref. 50(neglecting there the normalization by
crystal lattice and with a LRO. Besides, the chemical potenmuytiplier). In case of the disordered state with a Bravais
tial fluctuations were taken into account in Efj23) and the crystal lattice and only pair atomic interactions, Efj24)

correct equations for determination of the chemical potentransforms into the Krivoglaz approximatiggg. (34.50 in
tials were usedsee discussion in Ref. 18The particular Ref, g].

case of the ring approximatiofi23) is the spherical model
approximation (119 corresponding to the neglect of all
terms except foA}! in the expressiorig87) for 3. . C. Normalization

nar\:lvigh;ITJCttTJeat:\(A)E aigﬁg)élmﬁg%nﬁt;{] use of the thermody- The obtained expressions for SRO within the rifi@3
’ and MF (124) approximationgin contrast to the spherical
aLj :H:Bk_l(MF)”ij , (124) model one(119] dp nc_)t satisfy the constraint116). Previ- _
ously, the normalization by summands was suggested in
where|| 8, *(MF)||;; is theij element of the matrix that is Refs. 2,15 in order to improve the situation. For example, in
inverse togy'" with the elementg}'[, defined in Eq(109.  such a way we would get

aj =

1-N"1 |85 (ring) i+ B Mring) [y if i=]
q (125

B *(ring)l;; otherwise.

instead of Eq(123). The normalization results in more com- ak:[ﬁlr(ing]*l, (127
plicated expressions and calculations. However, such a nor-

malization is unimportant for physical results because it hagnd

no effect on the SRO parameters for nonzero coordination MF+—1

shells. In the reciprocal space normalization also results in ax=[B"] (128
only uniform shift of ¢ without any effect on its shape. By jithin the spherical model, ring, and MF approximations for
the numerical calculations we found that the violation of theyhe SRO, respectively, where

constraint116) is remarkable only within the critical regions

of the phase diagram, where the ring approximation gives a ((Cr.Cr.)—C?)

large error itself. Besides, the normalization violates the a,=>, arexp—ikR), agp _g=—— "
fluctuation-dissipation theoreffi. The normalization by a R v ¢(1-¢)
multiplier suggested in Ref. 51 is less justified and is not (129
feasible if the number of sublattices is more than one. Thus;a, are the usual Warren-Cowley parametérszi? is de-
in the present paper we suggest not to use any normalizatigthed in Eq.(102),

at all, although of course one can use the expressions such as

Eq. (125. The value of violation of the constraifi16) can c(l—c).
serve as a numerical criteria for applicability of an approxi- BT =1+ ——D, (130

mation (see also Sec. 4.2.4 in Ref.)14 B

®{? is defined in Eq(46) at n=2. The quantity in Egs.

D. Case of the disordered lattice gas with a Bravais (126) and (127) is determined from the same equatimee
crystal lattice Eq. (39)]
In such a particular case it is not necessary to introduce c(1—c) _ -1
the sublattice index and instead of Eqg119), (123, and N~ f1+ =~ [w+®P] =1. (131
(124) we have K B
. The expression$l126) and (128 have been obtained in
=11+ c(l—c)[ +P@) (126) Refs. 17,20 and are presented here for completeness. The
k kgT BTk ' expression(127) is the generalization of that one obtained in
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structures have the stoichiometric concentrations 0.25, 0.50,
and 0.25, respectively, and all LRO parameters being equal
to unity.

By a comparison of the free energies of all structures and
their mixtures(by a common tangents methosupposed to
be competitive at the considered external conditions, one can
calculate the complete phase diagram of the system in
questiort® In order to find the set of structures to be put into
competition one can use the corresponding experimental
data. For the case of poor on unreliable experimental data we
can suggest the following procedure.

Being in a region of the phase diagram where some struc-
ture is thermodynamically stable, we calculate the lower
critical temperatureT, of the absolute instability of this
structure as well as the instability wave vectdd§ (I
fG. 2. Th  cells oL L. L1 4L/ (Pammm =1,2,...) byusin2g7 Eq.(97). Then we(l)introduce the con-

. 2. The unit cells oL 1,, , andL’(P4/mmn) super- i - i
structures(e.g., Ref. 54 The afoms (\)Nithin the unit cells ar: enu- centration waves corresponding tdy",
merated in all cases. The sites with different valuesPpfare
marked differently. Pi’R=C+2 G exdikR]— P/ (139

Ref. 18 to the case of presence of the nonpair atomic interé

" Nealecting th i atomic int i c is the concentration oA-type atom. According to the
actions. Neglecting the nonpa:ilgga omic interactions, one ca pace periodicity oP; g we choose theew unit cell. The

also find similarities betweefs, ™ at u=0 and the expres- probability distribution Pi', within that new cell is deter-

sion for the spin correlation function obtained in Ref.[S2e : L .
Egs. (20) and (22) there or Sec. 16.3 in Ref. 5vithin the mined by the minimization of the corresponding free energy
functional either with respect t®/, (with the constraint

Ising model by use the inverse radius of spin interactions a

a small parameter of the diagram expansion. Ei”,zlPi’,z v’'c) or with respect to the coefficientg, con-
taining the information about thiype of a new structure as
X. PHASE DIAGRAM CALCULATION well as about the values of the corresponding LRO param-

] . ) o ) ] eters. The first way is more gener@ecause we also take
At given interatomic mixing potentials, using EJ88) o account som(ket{kg')}) but more time consuming be-

and(39), one can calculate the free energy of the lattice ga o
with any complex crystal lattice and any type of LRO. To%ause the number d@?;, is usually much larger than that of

achieve this aim it is necessary to know the unit cell of the>il

superstructure and the expression of the probabiliBes Being in the region of the phase diagram where the new

through the LRO parameters. Then, the minimization of thes:rubcfture found a;tt:]he %rewous st%p IS th((ajrmodynagwmallyh
free energy functional with respect to the LRO parameter§ avle, we repeat the above procedure and so on. By suc

has to be made by a direct numerical minimization and/or b)yvay’ begining fro”? the disordered state at high temperatures
solving of the corresponding equations of st&#) and then decreasing the temperature, we can find all com-
For example, in the cases of1 Ll' and petitive structures in all temperature-concentration regions

’ 21 0

L'(P4/mmn) superstructures of the two-component Iatticeam_jrggegegglr%’é%te rtgfegﬂr:;ﬂfﬁrﬁirlzs; ?;1295%2' roposed b
gas (studied below in Sec. Xl)| all the unit cells can be P prop y

chosen to be composed of four sites of the fcc crystal Iatticg ugaev and Ryzhk&@ (see a!so Sec.' 7 in Ref. P1How-
(see Fig. 2 with éver, we use the ring approximation instead of the MF one.

Besides, we suggest to minimize the free endigytained
within the ring approximationwith respect to the coeffi-

} [L1,], (132 cients¢; . In Ref. 22, according to the method of static con-
centration wavedSCW),>>~?" the coefficients{;, are pre-
sented as multiplication of the LRO parameters and

P1=P,=c+1/29 structural coefficients. Thereby, one LRO parameter is put

P;=P,=c—1/2y [L1o], 133 into correspondence to one irreducible representation of the

corresponding space group. The structural coefficients are to
be found from the pure symmetry consideration whereas the

LRO parameters are determined by a minimization of the

P,=c+1/4n,—1/2n, [L'(P4mmm], (134 free energy(by the use of the corresponding equations of
P;=P,=c— /47, state.
However, if we put only one LRO parameter into corre-
wherec is the concentration ang is the LRO parametés). spondence to one irreducible representation of the corre-
Being completely ordered.1,, L1, andL’(P4/mmm sponding space grouf,we cannot describe some possible

P2: P3: P4:C_ 1/47]

P,=c+1/4n9,+1/29,
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1.0 into account the spaddoth direct and reciprocasymmetry
differences of superstructures within the sublattice formal-
ism. Despite the use of the sublattice formalismpriori
assumptions on the superstructures to be appeared at
disorder-order and order-order phase transitions are not nec-
essary within our proceduk@ contrast to the method devel-
oped in Refs. 9,59 It is important that the instability wave
vectors corresponding to the high-symmeffstationary
points of the reciprocal space of a given superstructure may
not correspond to the high-symmetry points of the corre-
sponding parentlisorderedstructure?” Within the ring ap-
proximation(in contrast to the MF orf&2), even in the case

of the pair atomic interactions, disordered structure, and Bra-
vais crystal lattice, the instability wave vectors are not gen-
erally determined by the minima of the Fourier transform of
the pair mixing potential in the reciprocal spatsee ex-
amples below in Sec. XIII and also the discussion at the end
of Sec. 11 in Ref. b

0.8

0.2

0.0

0.0
XI. MULTICOMPONENT LATTICE GAS

FIG. 3. Phase diagrams calculated within the rinigg) and The above-obtained results can be directly applied not
mean-field(MF) approximations in the case of the two-componentOnly in the case of &avo-component lattice ga&-B but also
lattice gas with fcc crystal latticén the disordered statand with  in the cases when for eacth sublattice there are onlyvo
v, >0. V" is the value of thenth order mixing potential for the types of atomsA; and B; for which theith sublattice is
sth coordination shel(see Sec. 4 in Ref. 200f the fcc crystal allowed to be occupied. It is not generally the case of a
lattice. All the other mixing potentials except the denoted one argwo-component lattice gas because those two types of atoms
equal to zero. MC is the designation of the order-disorder phasenay be different for different sublattices. For example, it is
transformation temperatures corresponding to the abrupt change the case of a three-component substitutional-interstitial
the temperature dependence of the SRO parameters simulated pyB-X |attice gas in which all the substitutional sites are
the Monte Carlo method according to Sec. 2 in Ref.(48e also  gccupied byA- andB-type atoms and all the interstitial sites
Refs. 60—62 T is the critical temperature of the absolute instabil- 5. occupied by-type atoms and vacancies.
ity of the disordered state. The description of the structures is pre- |, such more general cases, all the obtained expressions
sgnted in Fig. 2 and in Sec. X. The region; corresponding to e just the same. Only we have to chadg® A, in defini-
Lni);trrflgf (tgodizt::gg::isloar? d)del_'l?fi f? %S?_rfffhl:’ ;rt:zj tion 3 of the configurat_ional _variabl@i,R'(a'II typesB; are _
® L12+L”. ' ’ ' excluded from t_he conflgL_JratlonaI descrlp_t!on—s_ee_Sec. 21in

Ref. 21). Accordingly,P; will be the probability of finding an

structures corresponding to the wave vectors appropriate ti-type atom at a site belonging to thén sublattice. Of
those representations. For example, in the case of fcc Bravaf®urse, in the case of the disordered state with a Bravais
crystal lattice(when one representation corresponds to onérystal lattice, we may consider only a two-component lattice
star of the wave vectoysthe method of SCW gives onlyl,  98S. . _ . .
andL1, structures corresponding %(0,0,1) (and onlyX) In general case .of a multicomponent Iatnc;e gas in which
star of the wave vectorS2"5"(Here and below, we present at least one sublattice is allowed to be_occupled by more than
the Cartesian coordinates of points in the reciprocal space iff¥0 types of atoms, the above-obtained formulas are not
units of 2ar/a, wherea is the lattice paramet@Thus, within ~ Valid and must be generalized.

the method of SCW it is impossible to describe

L’'(P4/mmm) structure, which also correspondsx¢0,0,1) XIl. HEAT CAPACITY IN THE DISORDERED STATE

(and only X) star and can be stable in wide temperature- .
concentration intervals of the phase diagratsse Refs. In a general case of the disordered state, we put tempera-
54,58, Sec. 4.4.1, in Ref. 14 and Fig. 3 ture independer®;=c; (i=1,2, ... »), wherec; is the con-

The above-proposed minimization of the free energy withcentration ofA;-type atoms(see Sec. Xl [In the particular

respect to the coefficients, (which are put into correspon- € Of @ two-component lattice gas=c (i=1.2, ... »),

dence to each wave vector in expans{@B85 rather than to W.he.r ecis t.he concen'tratic.)m—type atqmg. From Eq..(A.,l),
each irreducible representatjoallows to avoid such short- Within the ring approximation, assuming that the mixing po-

coming as well as allows to unify the determination of bothtentials are inerendent from 'Fhe temperature, we obtain for
the type of the structure and the values of the LRO paramt'® configurational heat capacity,

eters.
The above-described procedujast like that of Bugaev Cvzasring: Y ci(1-ci) %. (136
and Ryzhko%) unifies the Fourier analy’s 2’ with taking aT ] 2 aT
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TABLE |. The values of the order-disorder phase transformation
temperature¥, at c=0.25,0.5 obtained by MC simulation, by se-
ries expansiofSE) (from Table Il in Ref. 5, by cluster-variation 15
method in tetrahedron-octahedron approximatio'M) (Ref. 58,
within the MF and ring approximations in the casee Fig. 3 of
the two-component lattice gas with fcc crystal lattiae the disor-
dered stateand withV?,>0. V"V is the value of thenth-order

@

mixing potential for thesth coordination shel(see Sec. 4 in Ref. 710
20) of the fcc crystal lattice. All the other mixing potentials except &
the denoted one are equal to zero. All the temperatures are in unit &
2) e
of kg/VZ; .
To c¢=0.50 c=0.25 05
MC 0.43 0.449
SE 0.4365
Ring 0.4363 0.4566 \
CVM 0.4525 0.465 008
MF 1 0.827
FIG. 4. The same as in Fig. 3, but in the caseV§f,;>0,
From Eq.(39), one can get that V@, =—-05v?, .
ci(1-c;) <9Mi72 T 1 . N . :
ke a2 1o "Il — 1, (137  different combinations for different casésee captions to

figures. The interatomic mixing potentials are assumed to be

wherel|l, ¥ is the matrix inverse to that one whose elementsstructure independefisee Appendix Dand to have the sym-

Il are defined in Eq(89) (with P;=c;). Substituting Eq. Metry of thedisorderedstate. The corresponding phase dia-

(137) into Eq. (136), we have grams were calculated within the ring and MF approxima-
tions following the procedure suggested in Sec(Gur MF
Kg . approximation results presented in Figs. 3 and 4 are adequate
Cv—Z{V—Z o ij]- (138 to those in Ref. 54; see also Sec. 5.2.4 in Ref) Tthe
o order-disordeFigs. 3—5 and decompositiofFig. 6) phase
In the particular case of a two-component lattice gas with dransformation temperatures were also calculated by the MC
Bravais crystal lattice simulation. Note that in the cases corresponding to Figs. 3
and 4, the consideration of the concentrations greater than

kB(l ! 139
Cv=75 mE (139 —
—ring
where 20 L==="7.(ing
- -——T_(ring, no dy)
1 c(l—c) - 2 .
— (2)
= + + . ,
=52t T et ]] (140
o ) ) ] 1.5
Note that within the MF approximation the configura- a
tional heat capacity of the disordered state is equal to zero ir— T
contrast to the ring approximatiofif T# ). It is just the I~
interatomic correlations that contribute to the configurational Z, 1.0
heat capacity of the disordered state within the ring approxi-
mation in contrast to the MF one.
0.5

XIll. NUMERICAL CALCULATIONS

A. Phase diagrams

As an example of the phase diagram calculation and with 0.0 &
the aim to study the numerical accuracy of the ring approxi- 0.0
mation, we considered four model cases presented in Table |
and Figs. 3—-6. All the cases are appropriate to the two- FIG. 5. The same as in Fig. 3, but in the caseV§f,;>0,
component lattice gas that has fcc crystal lattice in the disy®,=—-0.5v®,, v, =0.2v{?, . “no 6u” means thatT, was
ordered state. The pair and triplet atomic interactions of thealculated not taking into account the chemical potential fluctua-
nearest and next-nearest neighbors are taken into accounttions within the ring approximation.
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can be considerable at low temperatures. Second, the ring
approximation can be sensitive to the frustration effects,
which are strong at low temperatures in case of short-range
atomic interaction$*°®®®Fortunately, there is a strong ten-
dency of decreasing the regions of unreasonable stability of
L1, structure in phase diagram calculated within the ring
approximation when the atomic interactions of the next-
nearest neighbors are taken into acco(gtmpare Figs. 3
and 4. So, one can expect that in case of actual systems with
long-range atomic interactions the ring approximation will
be applicable at sufficiently low temperatures. If the frustra-
tion effects are important for a low numerical accuracy of the

binodal (MF) ' ring approximation at low temperatures, one can expect also

WY the increase of such an accuracy under taking into account

s binodal (ring) the structural dependence of atomic interactions, which di-

= = = -spinodal (ring) minishes the frustration effects. Note that the same problem

0 C of adequate description of the low-temperature regions was
0.0 0.2 0.4 0.6 0.8 1.0 also revealed within the MF and CVM in the two-

s dimensional casée.g., Ref. 67.
The discrepancy between the MC and ring approximation
FIG. 6. The same as in Fig. 3, but in the casegipV/?,<0, data occurs to be considerable only in case of pair nearest-
v@,=0, (i) V&,<0, V&@,=v@,. The MC simulation data neighbor atomic interactiongsee Fig. 3 at c<0.18 (c
were taken from Ref. 63. Solid and dashed lines correspond, respes-0.82). However, in this case one carpriori expect the
tively, to the binodalgmiscibility gaps and spinodals of the de- problem of adequate description within the ring approxima-
compositions into two disordered phases of different concentration in which the inverse value of the effective numlzesf
tions. atoms interacting with one fixed atom is chosen as a small
parameter in the corresponding perturbation theory. At suffi-
the equiatomic one is not required due to the symmetry otiently low (or high) concentrations, in all temperature inter-
the phase diagram with respect to equiatomic concentratiowals the free energy is lowest for random distribution of non-
in the case of lattice gas with concentration-independeninteracting atoms, when each atom has no nearest neighbors.
atomic interactions of less than or equal to the secondo there is no order-disorder phase transformation at such
order?° concentrations down to and includifig=0 (see MC curve in
Accepting the results of the MC simulation as a standardFig. 3). But in such a case=0 and the ring approximation
on the basis of the data presented in Table | and Figs. 3—@nust be inapplicable.
one may conclude the following. The numerical accuracy of the ring approximation data is
In all the considered cases the ring approximation yielddow in the case of pair nearest-neighbor atomic interactions
the adequate results in wide temperature-concentration intesee Fig. 3 in the vicinity of the triple point neac=0.40
vals. The phase transformation temperatures are predictg¢d=0.60). However, the problem of adequate description of
much more accurately within the ring approximation than inthe vicinity of the triple point is well known and is attributed
the MF one in all the considered cases. At low temperaturet the “frustration” character of the corresponding model
the numerical accuracy of the ring approximation data iscase due to the strongly degenerate ground &tafef®One
lower in the cases of ordering. Namely, from Figs. 3-5 itencounters this problem within both the KfGind CVM®58
follows that at low temperatures the ring approximation pre{see also Ref. 8 and Sec. 5.1.5 in Ref).Ifaking into ac-
dicts the stability ofL1, structure in wide concentration in- count the next-neighbor interactions allows to resolve the
tervals.L1, occurs to be the unique ground-state structureproblem diminishing such a degenera@ompare Figs. 3
for all concentrationgbut c=0;0.25;0.75;1) within the ring and 4.
approximation in all three considered cases. Such results are In the cases of decomposition into two disordered phases
in contradiction with those of the MF approximatighRigs.  of different concentrationgFig. 6), the quantitative corre-
3-5 and Ref. 54 MC simulation®®®! and cluster-variation spondence between MC and ring approximation data is ex-
method (CVM),>85% where at low temperature§ncluding  cellent and much better than that between MC and MF. Nev-
T=0) we havelL1, andL’ structure®® or the mixtures of ertheless, there are qualitative discrepancies between the
pure component, 1, andL1, structures to be stable in the results of the MC simulation and MF approximation on one
corresponding cases. hand and of the ring approximation on other hand. Namely,
Thus, one can conclude that the ring approximation givesn contrast to the MC simulati§d and MF approximation
inadequate results at low temperatures probably unreasodata, within the ring approximation we hav@ the decom-
ably decreasing the free energyldE, structure. Such wrong position into two disordered phases of concentrationand
predictions within the ring approximation can be explainedc, with c;+c,#1 in very small temperature intervals at the
by two reasons. First, as noted in Sec. VI, the contribution ofop of the phase diagrams afio) the phase transformation
the neglected reducible diagrams in the cumulant expansioof the first order atc=0.5.5° According to our unpublished
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calculations within CVM(see also Refs. 4,5,70-)/Xuch
behavior of the ring approximation is also in contradiction
with CVM. The same problem of adequate description of the
order of the phase transformation was also revealed withir
the approximations that are similar to the ring
ong?2433364273 gnd even within CVM (in the two-
dimensional case, see Sec. 10 in Ref.According to our
above discussion in Sec. VI, such inadequacy of the ring
approximation can be caused by the proximity of the binodal ~ ¢.2
(miscibility gap and spinodal in the correspondifgc re-

gion of the phase diagrantBy the binodal or miscibility gap

we mean the curve corresponding to the concentrations 0

two coexisting phases at decomposition; by spinodal we

mean the critical temperature of absolute instability of ho- 0.0
mogenies disordered state, see e.g., Ref. 4.

It should be emphasized that all the considered cases col
responding to atomic interactions of only nearest and next-
nearest neighbors are obviously most unfavorable as for ¢
high numerical accuracy of the ring approximation in which

0.4

K

z 1 is chosen as a small parameter in the corresponding 0.2 /}‘/

perturbation theory. Additional problems are caused also by 1 I- 1 1 1 2 1 1 1
frustration effects, which are strong in the considered cases 12 14 1.6 1.8 2.0
Our choice of the considered cases was dictated by an eas kBTIVFlm

realization of the corresponding MC simulation, by presence
of the corresponding data obtained within other approxima- FIG. 7. Temperature evolution of the SRO parameters ag,
tions and by desire to study the magndencief the nu-  for the first four coordination shelld €1,2, . . . ,4) of the fcais-
merical accuracy of the ring approximation. Besides, theordered two-component lattice gas calculated in the framework of
consideration of the fcc crystal lattice is also unfavorable inthe spherical modelSM) (126), ring (Ring) (127), and mean field
comparison with that of the bcc ofieSurprisingly, even in  (MF) (128) approximations as well as obtained by the Monte Carlo
such unfavorable cases the ring approximation demonstratsinulation (MC) at ¢=0.75, V?,>0, V&,=-05v2,, v,
its adequacy in widd-c regions. The high numerical accu- =0.1v; . Ry is the radius vector of a site belonging to thi
racy of this approximation even in the cases of the shortcoordination shell. The MC simulation was performed in accor-
range atomic interactions as well as the essential increase @fnce with the procedure described in Sec. 2 of Refl15andT,
the accuracy when the atomic interactions for the next&r® the temperatures of. the absolute instability of the disordgred
nearest neighbors are taken into account clearly demonstratéte and of the order-disorder phase transformation, respectively,
the quick convergence of the cumulant expansion under Suc(ﬁﬂlculated within the ring and MF approximations. The point qf the
a choice of a small parameter as in the ring approximation 2°rupt change of the MC curves corresponds to the order-disorder
In Figs. 3—6 we also presented the critical temperafyre phase transformation within the Monte Carlo simulation.
of the absolute instability of the disordered state calculated -
- , S such critical temperature be even more than the temperature
within the ring (106) and MF (113) approximations. In the of the order-disorder phase transformation
case of decompositiofsee Fig. 6 within both the MF and P '
ring approximations the instability wave vectiog=(0,0,0)
(I" point) in all concentration region. In the case of ordering
(see Figs. 3-p within the MF approximation the instability As an example of the SRO calculation, we considered the
wave vectorko=(1,0,0) (X point) in all concentration re- fcc disordered two-component lattice gas with concentration
gion. Within the ring approximatioky,= (1,0,0) (X poinY) in  ¢=0.75 and with the same atomic interactions as in the case
a wide concentration region. However, at very small and bigoresented in Fig. 5. The corresponding results of calculations
concentrations, wher€, curve demonstrates nonmonotonic are shown in Fig. 7. Note that the SRO at temperatures lower
changeky=(0,0,0) " point). So, in such a particulaibut  than the temperature of the order-disorder phase transforma-
importany case of the disordered state, we demonstrated théon corresponds to the metastable disordered state.
possibility to describe the concentrational dependence of the Accepting the results of the MC simulation as a standard,
instability wave vectok, within the ring approximation in from Fig. 7 it follows that the ring approximation yields the
contrast to the MF one. results of high numerical accuracy in wide temperature inter-
In Fig. 5 we also presentef, calculated not taking into val down to the temperature of the order-disorder phase
account the chemical potential fluctuations within the ringtransformation. The numerical accuracy of the ring approxi-
approximation[i.e., atsu; r=0 in Eq. (81)]. As it follows  mation is higher than that of the spherical model, especially
from Fig. 5, the neglect of the chemical-potential fluctuationsfor the coordination shells with big radius. The numerical
can be noticeable and can erroneously make the value efccuracies of both the ring and spherical model approxima-

B. Short-range order
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tions is much higher than that of the MF one. It should besionality of the crystal lattic®) was shown in accordance
noted also that within the ring approximatidim contrast to  with the Broutz™! classification.
the MF and spherical model oneis is possible to describe  The ring approximation demonstrates the comparatively
the important phenomenon of the temperature dependence v numerical accuracy at sufficiently low temperatures in
the positions of the SRO peaks in the reciprocal space fogase of nonstoichiometric compositions and short-ranged
lattice gas even with constant atomic interactions. We do no4tomic interactions. Such wrong predictions within the ring
study this phenomenon in the present paper because mugpproximation can be explained by two reasons. First, the
attention was given to it earliéf: contribution of the neglected reducible diagrams in the cu-
mulant expansion can be considerable at low temperatures.
Second, the ring approximation can be sensitive to the frus-
tration effects, which are strong at low temperatures in case
In the present paper the general method was elaborateaf short-range atomic interactiof$>®®*Fortunately, there is
for the statistical-thermodynamic description within the ringa strong tendency of decrease the low-temperature regions of
approximation of the lattice gas with a complex crystal lat-low accuracy of the ring approximation with increase of the
tice and with nonpair atomic interactions of any order andradius of atomic interactions. So one can expect that in case
effective radii of action. By this method one can calculate theof actual systems with long-range atomic interactions the
complete phase diagram of the lattice ¢8ec. XY as well as  ring approximation will be applicable at sufficiently low
the atomic correlation functiotin real and reciprocal space temperatures. If the frustration effects are important for a low
in both disordered and LRO states of 8ec. 1X). numerical accuracy of the ring approximation at low tem-
The elaborate method is general and analytically simpleperatures, one can also expect the increase of such an accu-
The corresponding analytical expressions do not change theiacy taking into account the structural dependence of atomic
form at an increase of the effective radius of atomic interacinteractions, which diminishes the frustration effects.
tions and are valid in case of any superstructure. The number It should be added that, from the practical point of view,
of the variational parameters for minimization of the freethe most interesting part of the phase diagram is the order-
energy is considerably fewer than that one within the clustedisorder phase transformation rather than the low-
variation methodCVM) (see Sec. 4 in Ref. 19esulting in  temperature regions. Besides, at low temperatures the relax-
the considerable reduction of the time for the correspondingtion can be so slow that the thermodynamically stable states
computer calculations. It is important that, within the ring cannot be reached in reasonable tirfiEhat is the reason
approximation, these numbers of the variational parametenghy the low-temperature calculations are problematic within
are determined only by the type of the structure and ardC and CVM, see e.g., Ref. 8 and Sec. 5.1.5 in Ref) 14.
independent from the value of the effective radius of atomidBecause of the Nernst theorem, when the atomic interactions
interactions in contrast to CVM. Of course, due to the anaare not frustrated, atT—0 we have a mixture of almost
lytical nature of the ring approximation, the time for calcu- completely ordered structures whose concentrations are close
lations within it is much less than that of the MC simulation. to the corresponding stoichiometric onésg., Sec. 12 in
Within the ring approximation, the difference of the spaceRef. 9 and Ref. 40 Thus, in the low-temperature region we
symmetries of the interatomic potentials for different can use the theory of almost completely ordered structures or
structure$! can easily be taken into account. even the MF approximation, which is applicable at low tem-
The ring approximation offers the principal advantageperatures for description of structures with almost stoichio-
over MC and CVM for a description of actual alloys in metric concentration&Sec. 19 in Ref. 2 Besides, we found
which the elastic distortions induce extremely long-rangethat within the ring approximation in case of the stoichio-
atomic interactions. It is because the Fourier transform of thenetric compositions, there is no problem of low numerical
strain-induced interatomic potential of such alloys has eaccuracy at low temperatures.
nonanalyticity, which cannot be described in terms of the In the case of short-ranged atomic interactions, the ring
values of the potential for any great but finite number ofapproximation gives comparatively big error for evaluation
coordination shellge.g., Sec. 7a in Ref.)4However, within  of the temperatures of the phase transformations of the sec-
the ring approximatioriin contrast to MC and CVMitisnot  ond or close to second orders. However, in real lattice sys-
necessary to approximate the interatomic potentials by itteems such phase transformations are very rarely encountered.
values for a finite number of coordination shells because théccount of structural dependence and/or long-range charac-
potentials appear in the corresponding expressions onlier of atomic interactions result in change of order of phase
through their Fourier transforms. transformations from the second to fifstg., Sec. 4.4 in Ref.
The applicability of the ring approximation is discussed45). Besides, actually such MF-like theories as the ring ap-
on the basis of theoretical considerati@ec. V) as well as  proximation and CVM are not intended to be used for a
by a comparison of the numerical results with the corre-description of the critical phenomena but rather for descrip-
sponding MC simulatioriSec. XIlIl). The high numerical ac- tion of phase diagrams, correlation effects, nonequilibrium
curacy of the ring approximation was demonstrated in widgorocesses, etc. outside the critical regions, which neverthe-
temperature-concentration intervals in the case of shortess is of great interest from practical point of vide.g.,
ranged atomic interactions. The tendency of increase of th€hap. 5 in Ref. 4, Secs. 4.1 and 4.5.6 in Ref).1Hor a
numerical accuracy of the ring approximation with increasedescription of the critical phenomena and universal charac-
of the effective radius of atomic interactiofend the dimen- teristics of phase transitions, we have to use the special

XIV. CONCLUSIONS

134431-20



STATISTICAL-THERMODYNAMIC ... . I. ... PH/SICAL REVIEW B 69, 134431 (2004

tmhgglgt.js(e.g., series expansions and renormallzanon-groupF o P (1— Pil)[ﬂi15i1,i2+a’ff?k;i2] P (1— Piz)
Thus, the ring approximation being an example of the 2 kgT '
wave (or reciprocal-spademethodé can be recommended (A1)

for the statist?cal—thermodynamic .de_scriptio.n of the Iattic.e—One can obtain
gas model with long-range atomic interactions along with
MC and CVMZ which are the examples of the clusi@r T =
direct-space methods! The ring approximation as well as Afp=—— >3 ZrEn, (A2)
CVM are the examples of closed form approximations. The 2N & a=1n
advantages of such approximations over the series expansi
methods are discussed in Ref. 77. Being much simpler th
MC and CVM, the ring approximation can be particularly
useful at consideration of complex situations like vicinal V=S A3

4 . . . . . - i ij ( )
surface$” Being a single-site theory, the ring approximation
can be easily implemented within first-principles electronic(é is the Kronecker deljathat is the unitary transformation
methods. of the matrixF,

At calculation of phase diagram within the ring approxi-
mation it is also possible to include into consideration the F=U"'vu. (A4)
metastable structurgsvhich may be important at low tem- )
peratures due to the slow relaxatipthe long-period struc- NOt€ thaty; are the eigenvalues of the matrkx and the
tures and the structures with different parent crystal lattice$Nitary matrixU can be built through the eigenvectors of the
(being actual in case of, for example, Cu-Zn, Pt-V, and Cu-pfnatrix F.
alloy systems Within MC and CVM the consideration of Because
such structures is hardly feasible in contrast to the ring ap-
proximation._ _ _ . _ TrF”=Tr\P”=E il (A5)
The detailed numerical study of the ring approximation i

performed in the present paper can help to understand the ] .
features of similar approximations as wédee Sec. Y. The the expressioitA2) can be rewritten as
ring approxinzg%on ha§8 been alregedy successfully used for .
study of Ni-V,™*Ni-H,® and Cu-Pd’ alloys. It can be also kgT 1 kg
applied in the case of multicomponent lattice dase Sec. Afy=— 2N zk: Z 2‘1 ﬁ‘ﬁinzm Ek: '”H (=)
XI). The approach advanced in the present work may be (AB)
extended to the case of the Ising motheThe absence cd
priori assumptions about the space dimensionality of a crysTaking into account that
tal lattice in the developed formalism permits readily to ap-

PRt us introduce also the diagonal matNx with the ele-
ents

ply it in investigations of low-dimension lattice systelisee de{A—F)=defU(A—F)U 1]

also Ref. 36. The approximation elaborated in the present

work may be also useful in the investigations of fluids and =de‘(A—\If)=H (1— ), (A7)
amorplhzous materials within the framework of the lattice-gas [

model:

where A is the unity matrix with elements;;, from Eq.
(A6) we finally have
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The general expressidid34) for

APPENDIX A Hm _ ,
- - - . ) RSP T PP SR
Performing the Fourier transformation in E§4) and in-
troducing the Hermitian matri with the elements takes the following forms in the particular casesnef0:
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1
0) = (1) ) -1
P v +2 PV +2 E VI 0|2P 1PI2 2N ~, % Kij,—kiip.aiiy ” q |||2 1] (CY

i1.ip

From Eq.(54) one can derive the following relationships
2 VI 1,015, 0|3P 1Pi2pi3

"6 i i betweensu; x and 6P, :
1 < Pi(1—P;) ~
_ (4) P P.P 4. e Vs
- 24i1,i§3,i4 Vi 0i.0i5,01,Pi PiPigPi, T keT Opi
o S L L 11
n=1: T P (1-P) | VP,(1- P) U
(1)_ (D) Y@ PigPi Q) 1) Tjs
(I) =V; +IE P VI O| E . |l,0,|é,0;i +25 Hlk ||SITk]! (C2
1
P,/P, P Whereéﬁi'k is the Fourier transform ofu; g,
+ E %Vf@mé,o;ié,o;i—k‘ o (BZ) ~ .
1503 5MLR=§§ Sui x exp —ikR). (C3)
n=2: Taking into account Eq.C2), we get
_ $(3) 2 efluct
P =V +2 PiVis o, iy 1 Pting IR 5P P
2T R, Rp.R’ 3Pi,le9M|,Rf 07PJ-’R2 . Ry “ 1Ry
=il ~ ~
+> Sy N (B3) kgT OP} SPi k
~ 2 |1,O,|2,O,|1,k,|2 -
2 0% JPi(l—Pi)Pju—Pj)
n=3: [1 1— L i 26 ] 1-2P,
k lij [T e e———
SRy C) | +2 P v“" 2 JPi(1-P)) P;(1-P))
Ilvkl;IZ'k2;|3 11, kl|2 k2 3 7 i Oll kl 2k2 3 1 2P
| ij is|y —1
| T T s
4+, (B4) /—Pj(l_Pj)[ k ES k” k ”51}
n=4: 1 ilis 1 -1
B +§|§;4 T T2 s - (CH
(D'(f)kl P HEN H Vi(fr)kl?inkz?isrks?i4+ . (B9 N ’ . .
Substituting Eqs(C1) and (C4) into Eq. (84), we arrive at
Eq. (85) (see Sec. VI).
APPENDIX C
Using the expressiofB0) for ffinc', we obtain APPENDIX D

In this appendix, we present the expressions for the Fou-
5P, g OP; rier transformsV(@., , VY, ., andV{ o1 ; of the mix-
! 2 ing potentials through its values in the direct space, which
are necessary for calculations of the phase diagrams within
kgT SPF\OP; the ring approximation performed in Sec. XIlI. -
=7 It is convenient to present the general expres at
2 T T P(1-P)P(1-P) n=2 in the following f%rm: ’ P

1 (?Zfﬂuct

ring

2 77 Rk, IPiR PR, |

1 o1-2p, 1-2P, .

X A'J__—I|'l_5..—J _ .

{ <2 PPy "]\/Pj(l—Pj) VIRi=2 ViR oexd —ikR]= 2, VPZR;, (D1
1-2p, 1

e S S W

VPi(1-Pj) © 2NipixTais 1A= %l "4

I(SIZ ] _ 2 eXd i kRI(JS)]' ZJ(S& i = Zl(Szk i (DZ)

><||A 1|||2 3f|(33)Q|4k q;j”A;—lk”u,il
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R{Y are the radius vectors connecting two unit cells in ~4) v Z6D i 1#Eme#i#]

which, respectivelyjth and jth sites are separated by the Vioim,0i ki = 0 otherwise (D7)
distance ofsth coordination sheIIRi(jS) can be equal to zero '

in the case where sudhh andjth sites belong to the same

unit cell. When a four-site unit cell is chosen as a cube of fcGyhere the tripletv(®); and quadruplev{®,; atomic interac-

crystal lattice(see Fig. % for s=1,2 we have tions for only first corresponding coordination shells are

a _ taken into account. It should be noted that in the above-
o written expressions we impose the symmetry of thsor-
Z(ﬂ();g:exlc[—ia(kx+ky)/2]ny, fjeredstate on the mixing potentials. Thus, we do not _tqke
into account the structural dependence of the mixing
; 1
Z®) = exd —ia(k+ky)12]Zy,, potentials’

In conclusion let us write down the following symmetry
property of the mixing potentials, which was not obtained in
Ref. 21 and which is a generalization of the one presented in
Z(zi);szexli[_ ia(—ky+k,)/2]Z,,, Eq. (9.5 of Ref. 17 to the case of presence of sublattices:

z{) ,=exid —ia(k,+k,)/2]1Z,,,

Z8).,=exd —ia(—k,+k)/12]1Z,,, "
7(n

[P SR P O TP PPN SR P
Z{) = exl —ia(—k+k))/2]Zyy, (D3) R
Y
z();= 8;2[codak,) + cogak,) +cogak,)], (D4) 1K iig ki i1 kg
(n)
where . | | | 08
Z,y=2{cog a(ky+k,)/2]+coga(k,—ky)/2]}, —pz,l Kpiits1Keqs - oiinog Koo piiy

Z,,=2{cog a(k,+k,)/2]+cog a(k,—k,)/2]},

(t=1,2,...n—1). Note the interchange of the positions of
Zy=2{coda(k,+k;)/2]+coda(k,—k,)/2]}, (D5) i andi,in Eq.(D8). This property was used at derivation of

ky,ky .k, are the Cartesian coordinatestoin units of 2r/a  the expressions in Secs. VIl and VIIl. The proof of the

(a is the lattice parametgrOne can also obtain that property is similar to that one in Sec. 9 of Ref. 17.
D et o Erom the definition (34) it follows that the functions
V), - vz it 1#i fj 06) Sy i ki i ki also have the symmetry property
S 0 otherwise, (D8).
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