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Thermally assisted magnetization reversal in the presence of a spin-transfer torque
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We propose a generalized stochastic Landau-Lifshitz equation and its corresponding Fokker-Planck equation
for the magnetization dynamics in the presence of spin-transfer torques. Since the spin-transfer torque can
pump a magnetic energy into the magnetic system, the equilibrium temperature of the magnetic system is ill
defined. We introduce an effective temperature based on a stationary solution of the Fokker-Planck equation. In
the limit of high-energy barriers, the law of thermal agitation is derived. We find that tleéBiewn relax-
ation formula remains valid as long as we replace the temperature by an effective one that is linearly dependent
on the spin torque. We carry out the numerical integration of the stochastic Landau-Lifshitz equation to support
our theory. Our results agree with existing experimental data.
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. INTRODUCTION andM¢=|M| is the saturation magnetization. If we define an

) o effective fieldH)=(a;/MgM X I\7Ip from STT, it is evident
Thermal!y ass!sted magnetization re"efsa' has been the, ;j cannot be written as a total derivative of a function

subject of mtenswg theoretical and experimental study fo(/vith respect to the magnetization vector, i.e., there is no
many decades. Aside from the relevance of the subject t\%ell-defined energy associated with the fid'elgi '
emerging magnetic technology such as heat-assisted mag-p . .. experiment$2on the thermal effect of the spin
ggggsge?éﬂgg%?gg dtarl]ri:anrq]?ail S;ﬁsglgs %cf Tni%l?tliczar?ongorrg- torque had also indicated that the thermally assisted magne-

o . 7 ) .~ _tization reversal cannot be simply described by the NB for-
versal process driven by Whltg noise is very rich. ClasS'Calnula. Urazhdinet al® found tﬁgt the activat)i/on energy
transition-rate theory of Kramehas supplied a framework strongly depends on the magnitude as well as the direction of

in understanding thermal activation of a single domain magy . urrent. To capture the aloss features of the observed
netic element. Namely, the thermal switching probability ) P g

P(t) can be described by the’ MeBrown (NB) relaxation- experiments, they have to mtroduce an effective temperatqre
. . S unrelated to the true temperature in the NB formula. Their
time formulaP(t) =1—exp(—t/7), where the relaxation time

1 ) : proposed effective temperature was then interpreted via a
IS 7= fobexchb/kB;:)’. foh's an attempt frquuenchl '.3 the . possible magnetic heating and magnetic excitations from the
energy barrier, and is the temperature. For a multidomain i, ansfer torque. The current directional dependence of

structure, .the energy surfacg becomes extremely comp'l|<_:atq e effective temperature indicated that the heating is not of
and identifying energy barriers are numerically nontrivial. . ordinary current-induced Joule heating. However, no at-
Nevertheless, with recent development of micromagneti empt has been made to mathematically link the effective
modeling, one can und_erstand thermal reversal reasona ¥mperature with the spin-transfer torque of EX.

well for a not-too-complicated structure. The problem of thermally assisted escape process driven
. o by a nongradient driven force, not derivable from a potential,
Is that magnetization dynam|cs is governed by a torque fromy’ 5y ynresolved outstanding problem in statistical physics.
an effective magnetic f'elme”.: ~ VmE(M), _whgreE(M) . While there are already some efforts to formulate the escape
is the total magnetic energy, i.e., the effective field is deriv-;,a in this case the general conclusion is that the law of
able from the derivative of an energy function with respect to scape time Iack’s universality and a variety of scaling rela-
the.magrjetization vector. Therefore, an energy ba”‘ef is we ions existt* The standard treatment of the thermal escape
defined in the NB relaxation formula. If the torque is not o ohiem in the presence of a nongradient field would start
derivable from an energy function, one would expect breakt,, , the Fokker-Planck equation and one numerically solves
down of t_he NB formula. Recently, a new class of torquesy, e probability distributiot* This procedure involves
call_e_d spln-transfer torqgu@TT),_has bgaen proposéd anq proper averaging over the possible escape trajectories. Let us
verified experimentallfi® STT is derived from a spin-  concider the total work done by the conservative torque and

polarized current in_magnetic multilayers. For a spin valvethe nonconservative STT along an arbitrary trajectory,
structure, STT is written ds

, aJ Mf A~
FS:y—aJMx(MXMp), n SW f(HeprHJ) dM=E, M. MO(Mpr) dM,
Ms @
wherea, represents the strength of STT; it is proportional towhere we have assumed that the magnetization vector starts
the current densityy is gyromagnetic ratioM, is a unit  at an initial equilibrium pointM,=Mgg, and reaches to an
vector representing the direction of the magnetization of theenergy saddle poini;, and we have defined the energy
pinned layerM is the magnetization vector of the free layer, barrier from the conservative torqug,=E(M¢)—E(My).
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One immediately realizes thatV defined above depends on stochastic LL equation captures the main random processes
the escape trajectory. In the absence of STT, one relies on thieduced by thermal fluctuation. Nevertheless, one could, in
assumption that the most probable path of the escape inciple, have introduced a second random field or torques
through a minimum energy barrier, i.eM; would be an to take into account the fluctuation of the spin torque. In our
energy saddle point. In the presence of STT, such assumptig@roposed LL equation, the thermal effect on the spin torque
breaks down in general. In the present paper, we do nds only encoded in the dependence of the magnetization vec-
intend to address the general problem of the thermal escaper.

in an open system, rather we want to answer a very focused To establish the thermal properties from the above sto-
guestion: to what extent one can formulate the thermal agiehastic equation, one must take a proper thermal average.
tation in terms of a simplified N&-Brown activation process Fortunately, much of theoretical work on the stochastic LL in
and to what accuracy one can analyze the relevant experihe absence of the spin torque had been carriedGuiere
mental data through a simple effective formula we will de-we will follow and generalize the procedure pioneered by
velop in the later sections? The paper is organized as followsrown? We defineP(M,t) as a nonequilibrium probability

In Sec. Il, we propose the stochastic Landau-Lifshitz equaeensity for magnetic orientation vectors associated with the
tion and its corresponding Fokker-Planck equation in thestochastic equatiofB). The rate equation foP(M,t) is
presence of the current. In Sec. Ill, we introduce a stationary

solution for the probability density of magnetization by iden- )

tifying an effective barrier or an effective temperature asso- i TV I-AVEP=0, )
ciated with spin torques. In Sec. IV, we present a humerical

calculation to demonstrate the validity of our theory in sev-yhere the probability current density=PdM/dt, V is a
eral realistic cases. Finally, we compare our theory with exghort notation for the gradient operator on the magnetization

isting experiments and summarize our theory. vector Vy,, and\ is the diffusion constant whose value is
determined by fluctuation-dissipation theorem. In the present
Il. STOCHASTIC LANDAU-LIFSHITZ EQUATION IN THE case,\ is related toD by A=D?(1+ a?). The above rate
PRESENCE OF CURRENTS equation, Eq(5), is a simple statement for the angular mo-

mentum conservation: the change of probability density in an
enclosed small voluméirst term) has to be balanced by the
net probability in-flowing flux(second terrplus the prob-
eability density loss via spin diffusiofthird term). By insert-

Let us first explicitly propose the following generalized
stochastic Landau-LifshitzZ L) equation that describes dy-
namics of the magnetization vector subject to a STT at finit

temperatures ing Eq. (3) into Eq. (5), after a straightforward but rather

dM o tedious algebra manipulatidfithe resulting equation is the

i YM X (Hgs+h,) — YM_M X[MX (Hgs+hy)] Fokker-Planck equation,

S
+T., 3 aP ya
S ( ) E:_ [ _YMXHeff+FS_M_MX(MXHeff)

where« is the damping constant.¢; is the effective mag- s
netic field including the external field, the anisotropy field, 5 )
the exchange field, and the demagnetization field,larid a +y(1+a”)DMX(MXV) P ©)

fluctuating field with a Gaussian stochastic process whose

statistical properties are defined as In the absence of the spin torque, i.Es=0, the thermal
‘ , _ equilibrium distribution density? demands to take the form
(hi())=0, (hi(t)h}(t"))=2Dg;é(t—t'), (4  of the Boltzmann distribution function, i.eP(a;=0,T)

. . L xexp(—E/kgT) whereT is the temperature and is the en-
wherei andj are Cartesian indicef) represents the strength ergy defined byH,=—VE. Inserting this equilibrium

of the thermal fluctuations whose value will be_ de_terminedp(ajzoy-l-) into Eq. (6), one finds that

later.{ ) denotes an average taken over all realization of the

fluctuating field. In the absence of the spin torque, the above

equation is the standard stochastic LL equation. Note that we __“ kB_T. @)
have conveniently dropped the customary renormalized gy- 1+ a2 YMg’
romagnetic ratioy/(1+ a?) when compared with the stan-

dard Landau-Lifshitz-Gilber{LLG) equation. The critical this is the well-known dissipation-fluctuation relation. We
assumption of our proposed stochastic LL equation,(By. now postulate thathe fluctuating field is independent of the

is thatthe spin torque does not contain a fluctuating fielJd  spin torque This hypothesis is consistent with our notion
The justification for this choice is that the spin torque comeshat the spin torque is a deterministic action so that the spin
from the conduction electrons whose transport properties am@rque does not alter the randomness induced by the thermal
less affected by thermal fluctuations since the Fermi level isluctuation. With this identification, the stochastic LL equa-
much higher than the thermal energy. Therefore, the thermalon, Eq.(3), and its corresponding Fokker-Planck equation,
fluctuation would not appear to affeat; which represents Eq. (6), completely determine the dynamics of the magneti-
the strength of the spin torque. We believe that our proposedation vector at finite temperatuiie
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lll. STATIONARY SOLUTION AND EFFECTIVE is nearly at the direction oM. For concreteness, let us
TEMPERATURES consider a most experimentally relevant geometry where

Before we numerically solve the above stochastic LLMp=& and

equation for a number of interesting cases, we should first

look for a stationary solution in Eq6), i.e., P=Py(M) is H ff=<H +iM )ex—47-rM e, (12)
independent of time. Without the spin torque, this solution is ¢ Mg X o

known as the equilibrium Boltzmann distribution function
mentioned earlier. With the spin torque, the system is nd" ; . . X
more in an equilibrium state because the system is subject ™ Hy s t.he anisotropy field, and 47M e, is the Qemag- .
the spin torque and thus it is not a closed system. For afetization field perpendicular to the plane of the film. In this

open system, the law of thermal dynamics does not requir@Se; the energy minimum are ldt,= =M, My=M,=0.
the minimum free energy and the concept of thermal equiVVeé SIMPly keep the first order iM, and M, and setM,
librium breaks down. Nevertheless, it is still meaningful to = VMs—Mj—M;=M; up to the first order; we find
obtain a stationary solutioRg where Fokker-Planck prob-

ability density is time independed®P,/dt=0. Thus, MX(MXHei) =My(Hext Hi)ey
+M,(HeytHe+47mMg)e,, (13

hereH.,; is the external field which is applied atdirec-

ya

V'[[_’}/MXHGH"'FS_ M
S

MX(MXHerr) andM X (MXM)~Me,+M.e,. By placing these expres-

sions into Eq(11) and carrying out the divergende for M,
p.l=0 ®) andM, components we finflone noticed that the divergence
S ' operator onP4 produces higher orders since E@3) is al-

ready the first order iM, andM,, thus it is consistent with

l_Jnfortuna’Fer, the above_ gigenstate problem for an arbitrgr)bur approximation by neglecting the terms of divergence on
field Hq¢s is generally difficult to solve. One can immedi- P

ately verify that the Boltzmann probability density,

«exp(—E/kgT) is no more a solution of the above equation.

To make progress, we need to consider a special case below. a(27M ¢+ H gt Hy)
First, we recall that the N&-Brown formula for the thermal

agitation is in fact most useful where the energy barrier con-

structed byH; is much higher than the thermal enetgym.  ©F

In this limit, the probability density will be very small if the

direction of the magnetization vector is away from the en- =T
ergy minimum. Here we should also consider this case. We

now tentatively seek a solution d?g in the form of Pg ] N )
xexp(~E/kgT*) where we have introduced an effective tem-Where we defined a critical spin torque= a(HextHx
peratureT* that will be determined next. By placing thix +2m7Mg). Coincidentally, this critical spin torque is pre-

+9?(1+ a®>)DM X (M X V)

T
T—*—l)-l-aJ:O, (14

: (15

into Eq. (8) and by noticing cisely the minimum spin torque required to switch the mag-
netization at zero temperatuté.
VE Heorf We should point out that the concept of the effective tem-
VP=— P= Ps, (90  perature introduced here should be understood in terms of
kgT* kgT* the stationary solution of the probability density. The ther-

mally averaged dynamical variable, for example, the magne-
tization vectof M) = [P Msin édfd¢ would behave as if the
_ * temperature of the system iE*. However, the magnetic

YV LMXHer) Ps]= = vkeT* V- (MXVPy). (10) temgerature which is ()j/efined through the thermal fll?ctuation
By realizing the vector algebra relatidiV,-(r XV, f)=0  remains to bel. An alternative understanding of this effec-
for any functionf(r)], one immediately sees that EJ.0) is tive temperature is to rewrite the stationary solution Ry
identically zero. Next, we combine the last two terms of Eq.*exp(—E*/ksT) whereE* is an effective activation energy
(8) by using Eq.(9) again, and we have

the first term of Eq(8) is

ay
i T E*=E 1—a—). (16)
V. aJMX(MXMp)-i—a(—*—l M X (M X Hggf) PS] ¢
T In other words, we can state that the spin torque alters the
-0. (12) magnetic energy and thus there will be an effective energy

barrier associated with the spin current. Therefore, it is
Clearly, the above equation does not necessarily have a sequivalent to think of the effect of the spin torque via the
lution for an arbitrary effective field. However, as we point modification of the temperature or of the energy barrier.
out earlier, we have limited ourselves to a high barrier case To conclude this section, we have found a stationary so-
such that the magnetization vector at the stationary conditiotution P of the stochastic LL equation. Since the life time or
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the relaxation timer is inversely proportional to the prob-

- ) ] : 10000
ability densityP, we can write the generalized BleBrown
formula below
10004
Epx(1—aj/a.) -
rlzfoexp< -, a7 2 1001
kBT e a,=50 (Oe)
a=10(Oe)
wheref, is an attempt frequency arf, is the energy bar- 1034 ;;?1353;’)
rier. a~50(0¢]

% 0be 005 006 0b7 008 009 0.0
IV. COMPARISON BETWEEN NUMERICAL AND 1K, T (mev)”
ANALYTICAL RESULTS
. . . FIG. 1. Relaxation timer as a function of the inverse of the
The stationary solutiorPsxexd —E(M)/kgT* ], is based temperature for several values of the spin-transfer torques. The ex-
on the assumption of high-energy barrier. In general casesernal field ofH,,~=440 Oe is applied along x direction.
one should start the calculation of magnetization dynamics

from our generalized LL equation, EB). Since the station- fixed applied fieldH ;= 440 Oe. Two features are immedi-

ary solution is simple and easy to use in analyzing experiyie|y seen: first the data fall on a straight line for any fixed

me.nt.al data, it would be.necgssary to establi;h the range 9:1f3; this indicates the thermally assisted reversal can be de-
va}hdlty of Eg. §17) fo_r various interesting experimental situ- scribed by an activation process, i.e.7#il/kgT. Therefore,
atlops. Once ”5 validity is establ|§hed, we expgct tha}t OUtt is meaningful to introduce an effective activation energy,
stationary solution would be serving as a starting point ;00 Eq(16), in accordance with the é&Brown law of ther-
understand various therma_l agitation phenome_na n thehal agitation. The second conclusion is that the slope, or the
present of the current. In this section, we numerically inte-, ~tivation energy depends on STT: the positiefavors a

grate Eq.(3) and compare the result with . lower-energy barrier. All these features are well described b
The standard white-noise spectrum, E4), whereD is Eqs.(lS)—(?.};). ' y

given by Eq(7), is used for the modeling of the temperature "\, iy 5 the effective activation energies are shown to be

dependence of random fields. The calculgtion procedure !r?hearly dependent on the current and they vanish at almost
same as th;é fgr thehstandarq LL(f; Equatm_n, eﬁzept a SPhe same poind, for different external fieldgnote thata, is
Torque 'f] a Ie tolt € equgzon;&t € mC()thOI’;]. mﬁ‘_gﬂet"?/veakly dependent on the external field, see the definition of
ayer,_w2055e atera S|zed|s inal nm and w O_Sl_it e -I a. after Eq.(15)]. In the insert of Fig. 2, we have shown the
nessis 2.5 nm, Is treated as a single macrospin. The in-p ar}a%tivation energy as a function of the magnetic field for sev-

uniaxial anisotropy fieltHy is 500 Oe and the saturation o5 gifferent STT. The activation energy can be fitted by
magnetization is 4M¢=12000 Oe. These parameters are

reasonably consistent with the experiments performed by the a Ho\B
Cornell groug® The Gilbert damping constant was taken as ~ Ef = Eb(Hext)( 1- —J) = Eo( 1- e’“)
a=0.03 throughout the modeling. The magnetization of the ac

free layer is initially saturated at x direction. Att=0, we

apply a magnetic field atx direction whose magnitude is \yhereH, is the switching field at zero temperatug, is the

c_Iose to_but less th:_;m the anisotropy fiélg . At the same energy barrier at zero magnetic field, agdis a constant,
time, a; is also applied to the system. Equati(® was nu-

merically integrated in time using the stochastic Heun

method with a 0.3 ps time step. A smaller time step has been
tested and it yields nearly identical results in all the cases
presented in the paper.

With above specified parameters and procedure, we first
determine the probability?(t) that the magnetic layer has
been reversed within the waiting tinbeBy performing up to
5x 10* independent runs for each set of parameteash run
starts at =0 and ends at the time that the magnetization has
either been just switched or ends at the time uptto
=5 us, whichever is smallgrand then by recording the
number of them that the magnetization is switched at time
interval (t, t+At), we obtained a simulate@(t) that is ?1_0 05 00 05 10 15 20
fitted by a simple exponential function, i.d2(t)=1—exp ; 2
(—=t/7) where 7 is the fitting parameter for the relaxation Spin transfertorque 3, (107 0e)
time. We have found that the fit works remarkably well for  FIG. 2. Activation energf} as a function ofy; at three differ-
any values of; we have considered. In Fig. 1, we show the ent external fields. Inse€f vs 1—H,,/H, for several different
fitted relaxation timer as a function of the temperature for a values of STT.

403

& 2-50(Ce)

300+

003 005 0.09
1-HH,

200

100
& H_ =430 (Oe)
A H. =435 (Oe)
® H_ =440 (Oe)

Activation energy 3W (mev)
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2.0 :
201 \" ‘l === H_=-10mT
p 0 \-\-\ -\. \\ —H w0
é 1.5 \.\ —-—--Hm=10 mT
5 20 E; \
.f_: -40 £ 10 VRO U VSO
E 601 *E—Fé . N,
ﬁ -804 = 05110425 mA\‘-\,
| P=-1.25 mA
-100 : . . H,=-22mT :
06 03 00 03 06 oo = , S
Current | (mA) -0.8 -0.4 0.0 0.4
Current | (mA)

FIG. 3. H-l Phase boundary of equal dwell timésap)
=(7p). The coupling field isHs,=—22 mT, the critical currents
arelAP=—1.25 mA for the transition fromAP to P alignments and
IP=0.425 mA fromP to AP alignments. Line; Eq(19) exceptH cy . . ) )
being replaced by, .+ Hsy: Square, experimental datRefs. 11 field that will be added tdHey, in Eg. (19). Evidently, the

FIG. 4. Ratio of the relaxation times iep)/In(forap). The pa-
rameters are same as those in Fig. 3.

and 12. agreement between our results and the experimental data is
excellent:2
which has been argued to be 1.5 or 2. The expogeng for Next we compare the ratio of the dwell times of antipar-
the external field applied parallel to the easy axis. Thes@/lel and parallel states for a fixed magnetic field. Again,
simulated results confirm our analytical result, Etg). from Eq.(17), we have
H 1.5 |
V. COMPARISON WITH EXPERIMENTAL DATA (1_ eXt) 1— —
In(fo7p) Hs c

A number of experiments on spin torque induced thermal =
agitation had been carried out. It would be interesting to see In(forap) Hext| ™ |
whether our prediction, Eq17), agrees with these existing 1+ 1- |A_P
data. The phenomenon that we want to compare first is the ¢
so-called “telegraph noises” or dwell times. Experimentally, |n Fig. 4, we show the ratio of the dwell times for a fixed
one simultaneously applies an external magnetic field and gagnetic field as a function of the spin torque by using the
spin current to a spin valve structure so that the magnetizasame set of experimental parameters as in Fig. 3. The results
tion direction of the free layer is fluctuating from one direc- gre consistent with experimental dathowever, the data
tion to another due to thermal agitatidh'* The dwell time  points in Refs. 11 and 12 are rather scattered so that we do
e (7ap) is defined as an average time the magnetization ofiot include those data in the figure
the free layer is paralle{antiparalle] to that of the fixed Up till now, we have studied the thermal activation by
layer. In generalyp# 74p. However, by adjusting the mag- apruptly introducing an external field and a STTtat0. In
netic field or the spin current, one is able to obtain an equaéxperiments, there are ramping times, e.g., STT is gradually

(20

S

dwell time for parallel and antiparallel statesp=7ap. increasing at rate of, say 10 Oe/us (Ref. 13 and care
From Eq.(17) for the parallel and the antiparallel states, themust be taken when one compares our theory,(Eg, with
condition of the equal dwell time is experiments. In the current ramping periag,is not a con-
stant and thus the activation energy, Ef8), varies with
Hox 15 | Heoy| I time. In this case, one should utilize the differential form of
1+ H, 1- I,g\_P =|1- H, 1- E ' the switching probability instead d¥(t) =1—exp(-t/7),
(19 dP(t)  dt »
wherel 2P and|F are the critical currents for the magnetiza- 1-P(t)  7(t)° @D

tion switching from antiparallel to parallel alignments and

vice versa; their magnitudes are not necessary the same, i.8y assuming a linear ramping of STT, i.€=da,/dt is a
12P= —1P in a typical experimental geometty*? To com- ~ constant and by placing Eql7) and(18) into Eq.(21), we
pare our prediction, Eq19), with experiments, we plot the integrate Eq.(21) from t=0 to t=t,; and find the average
H-I phase diagram of equal dwell timg= rp in Fig. 3. It ~ SWitching STTa.(T,C)=a,(to)

is noted that we have shifted the external field Hy,
=—22 mT to take into account of the magnetic coupling
between the free and fixed layers. The coupling may come
from either the exchange or dipolar couplings. Since we as-
sume that the magnetization of the fixed layer is held at thevhere fy= —foIn[1—P(ty)]. The variance of the switching
direction ofe,, the free layer receives an effective coupling STT is found as

kT
1—iln

a.(T,C)=a, E,

EC (22)

fékBTac”
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1 =001 Outs o dence ofa.(T,C) and o,. A logarithmic dependence of
204 g — lws 3 a.(T,C) on the sweeping rate has been found, which is in a
g, oo © good agreement to Eq22). Moreover, the inset of Fig. 5
-, describes the temperature dependence6T,C) and o, .
2001 [ IR - I We have verified that the temperature dependence, 6$ a
g T linear relationship anda.(T,C) monotonically decreases
g with increasingT.
O 1961 Myers et al*® have discovered that the thermal activation
& driven by spin torque is qualitatively different from that
160 driven by the magnetic field. They have suggested an activa-
A Tk tion energy whose form is similar to ours, except that they
v T=300K have postulated an arbitrary exponent, i.efWe«(1
1884, . : . : —aylag)¢. Although they have stated thgtmight be 1.5,
0001 0002 0007 0018 0050 most of experimental data shown in their paper can be used
C=da,/dt (Oe/ns) to determine the value df. One set of data, Fig.(d) of Ref.

_ o 13, shows that(T,C) linearly increases with I@ as pre-
FIG. 5. Dependence @f,(T,C) on the sweeping rat at finite  qiote 4 by our Eq(22). If one uses different scaling relation,
temperature. Inseti,(T,C) ando, as a function of temperature for e.q., 5WOC(1—aJ/aC)1'5, one would obtain a,(T,C)
the sweeping rate of STT at 0.01 Oe/ns. (In C)?® that would disagree with the experimental data.
Therefore, the existing data support the linear scaling be-
__ keT tween the activation energy and the spin torque.
O'azacE—b. (23
VI. CONCLUSIONS
These relations, Eq$22) and(23), are consistent with ear- )
lier studies on the similar energy barrier formalism for a very =[N summary, we have extended the law of thermal agita-
different physical systert? tion tp include thg spln—trar_wsfer tqrque driven by the spin-
Numerically, the finite ramping rate can be rather eaS"ypolanzed current in magnetic multilayers. AIthou_gh the con-
handled. In determining(T,C) at finite temperature, we C€Pt Of the energy barrier or the temperature in thelNe
rampa; with a fixed rate. At a certain time, the magnetiza- Brown formula breaks down in the presence of the spin-
tion vector switches and we record the valueagf By re- transfer torque, we are able to reestablish thelMBrown

peating the above procedure 800 times, we are able to estalffMula by properly introducing an activation energy or an
lish the switchinga, histograms from which the mean effective temperature to replace the true energy barrier or

switching a(T,C) and its standard deviatiorr, are ob- true lattice temperature. Our formalism is further supported
C ' a

tained. At temperature between 100 K and 300 K, we calcuby numerical solutions and is in agreement with experimen-
lated the mean and standard deviation of the distributions a{?l results.
a sweeping rate between 0.001 Oe/ns and 0.1 Oe/ns. As ex-

pected for a thermally activated proceas(T,C) increases

with decreasing temperature and with increasing sweeping This work was supported by NSFGrants Nos. ECS-
rate. Figure 5 shows temperature and sweeping rate deped223568 and DMR-031445%6
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