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Thermally assisted magnetization reversal in the presence of a spin-transfer torque

Z. Li and S. Zhang
Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, USA

~Received 5 December 2003; published 12 April 2004!

We propose a generalized stochastic Landau-Lifshitz equation and its corresponding Fokker-Planck equation
for the magnetization dynamics in the presence of spin-transfer torques. Since the spin-transfer torque can
pump a magnetic energy into the magnetic system, the equilibrium temperature of the magnetic system is ill
defined. We introduce an effective temperature based on a stationary solution of the Fokker-Planck equation. In
the limit of high-energy barriers, the law of thermal agitation is derived. We find that the Ne´el-Brown relax-
ation formula remains valid as long as we replace the temperature by an effective one that is linearly dependent
on the spin torque. We carry out the numerical integration of the stochastic Landau-Lifshitz equation to support
our theory. Our results agree with existing experimental data.
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I. INTRODUCTION

Thermally assisted magnetization reversal has been
subject of intensive theoretical and experimental study
many decades. Aside from the relevance of the subjec
emerging magnetic technology such as heat-assisted m
netic recording1 and thermal stability of magnetic rando
access memory,2 fundamental physics of magnetization r
versal process driven by white noise is very rich. Class
transition-rate theory of Kramer3 has supplied a framewor
in understanding thermal activation of a single domain m
netic element.4 Namely, the thermal switching probabilit
P(t) can be described by the Ne´el-Brown ~NB! relaxation-
time formulaP(t)512exp(2t/t), where the relaxation time
is t5 f 0

21exp(Eb /kBT), f 0 is an attempt frequency,Eb is the
energy barrier, andT is the temperature. For a multidoma
structure, the energy surface becomes extremely complic
and identifying energy barriers are numerically nontrivi
Nevertheless, with recent development of micromagn
modeling, one can understand thermal reversal reason
well for a not-too-complicated structure.5

An implicit and yet critical assumption in the NB theor
is that magnetization dynamics is governed by a torque fr
an effective magnetic fieldHe f f52“ME(M ), whereE(M )
is the total magnetic energy, i.e., the effective field is der
able from the derivative of an energy function with respec
the magnetization vector. Therefore, an energy barrier is w
defined in the NB relaxation formula. If the torque is n
derivable from an energy function, one would expect bre
down of the NB formula. Recently, a new class of torqu
called spin-transfer torque~STT!, has been proposed6,7 and
verified experimentally.8,9 STT is derived from a spin-
polarized current in magnetic multilayers. For a spin va
structure, STT is written as7

Gs5
gaJ

Ms
M3~M3M̂ p!, ~1!

whereaJ represents the strength of STT; it is proportional
the current density.g is gyromagnetic ratio,M̂ p is a unit
vector representing the direction of the magnetization of
pinned layer,M is the magnetization vector of the free laye
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andMs5uM u is the saturation magnetization. If we define
effective fieldHJ8[(aJ /Ms)M3M̂ p from STT, it is evident
that HJ8 cannot be written as a total derivative of a functio
with respect to the magnetization vector, i.e., there is
well-defined energy associated with the fieldHJ8 .

Recent experiments10–13 on the thermal effect of the spin
torque had also indicated that the thermally assisted ma
tization reversal cannot be simply described by the NB f
mula. Urazhdinet al.10 found that the activation energ
strongly depends on the magnitude as well as the directio
the current. To capture the gloss features of the obser
experiments, they have to introduce an effective tempera
unrelated to the true temperature in the NB formula. Th
proposed effective temperature was then interpreted v
possible magnetic heating and magnetic excitations from
spin-transfer torque. The current directional dependence
the effective temperature indicated that the heating is no
the ordinary current-induced Joule heating. However, no
tempt has been made to mathematically link the effect
temperature with the spin-transfer torque of Eq.~1!.

The problem of thermally assisted escape process dr
by a nongradient driven force, not derivable from a potent
is an unresolved outstanding problem in statistical phys
While there are already some efforts to formulate the esc
time in this case, the general conclusion is that the law
escape time lacks universality and a variety of scaling re
tions exist.14 The standard treatment of the thermal esca
problem in the presence of a nongradient field would s
from the Fokker-Planck equation and one numerically sol
for the probability distribution.14 This procedure involves
proper averaging over the possible escape trajectories. Le
consider the total work done by the conservative torque
the nonconservative STT along an arbitrary trajectory,

dW52E ~He f f1HJ8!•dM5Eb2
aJ

Ms
E

M0

M f
~M3M̂ p!•dM ,

~2!

where we have assumed that the magnetization vector s
at an initial equilibrium pointM05Msex and reaches to an
energy saddle pointM f , and we have defined the energ
barrier from the conservative torqueEb5E(M f)2E(M0).
©2004 The American Physical Society16-1
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One immediately realizes thatdW defined above depends o
the escape trajectory. In the absence of STT, one relies on
assumption that the most probable path of the escap
through a minimum energy barrier, i.e.,M f would be an
energy saddle point. In the presence of STT, such assump
breaks down in general. In the present paper, we do
intend to address the general problem of the thermal es
in an open system, rather we want to answer a very focu
question: to what extent one can formulate the thermal
tation in terms of a simplified Ne´el-Brown activation process
and to what accuracy one can analyze the relevant exp
mental data through a simple effective formula we will d
velop in the later sections? The paper is organized as follo
In Sec. II, we propose the stochastic Landau-Lifshitz eq
tion and its corresponding Fokker-Planck equation in
presence of the current. In Sec. III, we introduce a station
solution for the probability density of magnetization by ide
tifying an effective barrier or an effective temperature as
ciated with spin torques. In Sec. IV, we present a numer
calculation to demonstrate the validity of our theory in se
eral realistic cases. Finally, we compare our theory with
isting experiments and summarize our theory.

II. STOCHASTIC LANDAU-LIFSHITZ EQUATION IN THE
PRESENCE OF CURRENTS

Let us first explicitly propose the following generalize
stochastic Landau-Lifshitz~LL ! equation that describes dy
namics of the magnetization vector subject to a STT at fin
temperatures

dM

dt
52gM3~He f f1hr !2g

a

Ms
M3@M3~He f f1hr !#

1Gs , ~3!

wherea is the damping constant,He f f is the effective mag-
netic field including the external field, the anisotropy fie
the exchange field, and the demagnetization field, andhr is a
fluctuating field with a Gaussian stochastic process wh
statistical properties are defined as

^hr
i ~ t !&50, ^hr

i ~ t !hr
j ~ t8!&52Dd i j d~ t2t8!, ~4!

wherei andj are Cartesian indices,D represents the strengt
of the thermal fluctuations whose value will be determin
later. ^ & denotes an average taken over all realization of
fluctuating field. In the absence of the spin torque, the ab
equation is the standard stochastic LL equation. Note tha
have conveniently dropped the customary renormalized
romagnetic ratiog/(11a2) when compared with the stan
dard Landau-Lifshitz-Gilbert~LLG! equation. The critical
assumption of our proposed stochastic LL equation, Eq.~3!,
is thatthe spin torque does not contain a fluctuating fieldhr .
The justification for this choice is that the spin torque com
from the conduction electrons whose transport properties
less affected by thermal fluctuations since the Fermi leve
much higher than the thermal energy. Therefore, the ther
fluctuation would not appear to affectaJ which represents
the strength of the spin torque. We believe that our propo
13441
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stochastic LL equation captures the main random proce
induced by thermal fluctuation. Nevertheless, one could
principle, have introduced a second random field or torq
to take into account the fluctuation of the spin torque. In o
proposed LL equation, the thermal effect on the spin torq
is only encoded in the dependence of the magnetization
tor.

To establish the thermal properties from the above s
chastic equation, one must take a proper thermal aver
Fortunately, much of theoretical work on the stochastic LL
the absence of the spin torque had been carried out.4,15 Here
we will follow and generalize the procedure pioneered
Brown.4 We defineP(M ,t) as a nonequilibrium probability
density for magnetic orientation vectors associated with
stochastic equation~3!. The rate equation forP(M ,t) is

]P

]t
1“•J2l¹2P50, ~5!

where the probability current densityJ5PdM /dt, “ is a
short notation for the gradient operator on the magnetiza
vector“M , andl is the diffusion constant whose value
determined by fluctuation-dissipation theorem. In the pres
case,l is related toD by l5Dg2(11a2). The above rate
equation, Eq.~5!, is a simple statement for the angular m
mentum conservation: the change of probability density in
enclosed small volume~first term! has to be balanced by th
net probability in-flowing flux~second term! plus the prob-
ability density loss via spin diffusion~third term!. By insert-
ing Eq. ~3! into Eq. ~5!, after a straightforward but rathe
tedious algebra manipulation,16 the resulting equation is the
Fokker-Planck equation,

]P

]t
52“•H F2gM3He f f1Gs2

ga

Ms
M3~M3He f f!

1g2~11a2!DM3~M3“ !GPJ . ~6!

In the absence of the spin torque, i.e.,Gs50, the thermal
equilibrium distribution densityP demands to take the form
of the Boltzmann distribution function, i.e.,P(aJ50,T)
}exp(2E/kBT) whereT is the temperature andE is the en-
ergy defined byHe f f52“E. Inserting this equilibrium
P(aJ50,T) into Eq. ~6!, one finds that

D5
a

11a2

kBT

gMs
; ~7!

this is the well-known dissipation-fluctuation relation. W
now postulate thatthe fluctuating field is independent of th
spin torque. This hypothesis is consistent with our notio
that the spin torque is a deterministic action so that the s
torque does not alter the randomness induced by the the
fluctuation. With this identification, the stochastic LL equ
tion, Eq. ~3!, and its corresponding Fokker-Planck equatio
Eq. ~6!, completely determine the dynamics of the magne
zation vector at finite temperatureT.
6-2
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III. STATIONARY SOLUTION AND EFFECTIVE
TEMPERATURES

Before we numerically solve the above stochastic
equation for a number of interesting cases, we should
look for a stationary solution in Eq.~6!, i.e., P5P0(M ) is
independent of time. Without the spin torque, this solution
known as the equilibrium Boltzmann distribution functio
mentioned earlier. With the spin torque, the system is
more in an equilibrium state because the system is subje
the spin torque and thus it is not a closed system. For
open system, the law of thermal dynamics does not req
the minimum free energy and the concept of thermal eq
librium breaks down. Nevertheless, it is still meaningful
obtain a stationary solutionPs where Fokker-Planck prob
ability density is time independent]Ps /]t50. Thus,

“•H F2gM3He f f1Gs2
ga

Ms
M3~M3He f f!

1g2~11a2!DM3~M3“ !GPsJ 50. ~8!

Unfortunately, the above eigenstate problem for an arbitr
field He f f is generally difficult to solve. One can immed
ately verify that the Boltzmann probability densityP0
}exp(2E/kBT) is no more a solution of the above equatio
To make progress, we need to consider a special case b
First, we recall that the Ne´el-Brown formula for the therma
agitation is in fact most useful where the energy barrier c
structed byHe f f is much higher than the thermal energykBT.
In this limit, the probability density will be very small if the
direction of the magnetization vector is away from the e
ergy minimum. Here we should also consider this case.
now tentatively seek a solution ofPs in the form of Ps
}exp(2E/kBT* ) where we have introduced an effective tem
peratureT* that will be determined next. By placing thisPs
into Eq. ~8! and by noticing

“Ps52
“E

kBT*
Ps[

He f f

kBT*
Ps , ~9!

the first term of Eq.~8! is

2g“•@~M3He f f!Ps#52gkBT*“•~M3“Ps!. ~10!

By realizing the vector algebra relation@“ r•(r3“ r f )50
for any functionf (r )], one immediately sees that Eq.~10! is
identically zero. Next, we combine the last two terms of E
~8! by using Eq.~9! again, and we have

“•H FaJM3~M3M̂ p!1aS T

T*
21D M3~M3He f f!GPsJ

50. ~11!

Clearly, the above equation does not necessarily have a
lution for an arbitrary effective field. However, as we poi
out earlier, we have limited ourselves to a high barrier c
such that the magnetization vector at the stationary condi
13441
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is nearly at the direction ofM p . For concreteness, let u
consider a most experimentally relevant geometry wh
M p5ex and

He f f5S Hext1
HK

Ms
MxDex24pMzez , ~12!

whereHext is the external field which is applied atx direc-
tion, HK is the anisotropy field, and24pMzez is the demag-
netization field perpendicular to the plane of the film. In th
case, the energy minimum are atMx56Ms , M y5Mz50.
We simply keep the first order inM y and Mz , and setMx

5AMs
22M y

22Mz
25Ms up to the first order; we find

M3~M3He f f!'M y~Hext1HK!ey

1Mz~Hext1HK14pMs!ez , ~13!

andM3(M3M p)'M yey1Mzez . By placing these expres
sions into Eq.~11! and carrying out the divergence“ for M y
andMz components we find@one noticed that the divergenc
operator onPs produces higher orders since Eq.~13! is al-
ready the first order inM y andMz , thus it is consistent with
our approximation by neglecting the terms of divergence
Ps],

a~2pMs1Hext1HK!S T

T*
21D 1aJ50, ~14!

or

T* 5TS 12
aJ

ac
D 21

, ~15!

where we defined a critical spin torqueac5a(Hext1HK
12pMs). Coincidentally, this critical spin torque is pre
cisely the minimum spin torque required to switch the ma
netization at zero temperature.17

We should point out that the concept of the effective te
perature introduced here should be understood in term
the stationary solution of the probability density. The th
mally averaged dynamical variable, for example, the mag
tization vector̂ M &5*PsMsinududf would behave as if the
temperature of the system isT* . However, the magnetic
temperature which is defined through the thermal fluctuat
remains to beT. An alternative understanding of this effec
tive temperature is to rewrite the stationary solution byPs
}exp(2E* /kBT) whereE* is an effective activation energy

E* 5ES 12
aJ

ac
D . ~16!

In other words, we can state that the spin torque alters
magnetic energy and thus there will be an effective ene
barrier associated with the spin current. Therefore, it
equivalent to think of the effect of the spin torque via t
modification of the temperature or of the energy barrier.

To conclude this section, we have found a stationary
lution Ps of the stochastic LL equation. Since the life time
6-3
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the relaxation timet is inversely proportional to the prob
ability densityPs , we can write the generalized Ne´el-Brown
formula below

t215 f 0expS 2
Eb~12aJ /ac!

kBT D , ~17!

where f 0 is an attempt frequency andEb is the energy bar-
rier.

IV. COMPARISON BETWEEN NUMERICAL AND
ANALYTICAL RESULTS

The stationary solution,Ps}exp@2E(M )/kBT* #, is based
on the assumption of high-energy barrier. In general ca
one should start the calculation of magnetization dynam
from our generalized LL equation, Eq.~3!. Since the station-
ary solution is simple and easy to use in analyzing exp
mental data, it would be necessary to establish the rang
validity of Eq. ~17! for various interesting experimental situ
ations. Once its validity is established, we expect that
stationary solution would be serving as a starting point
understand various thermal agitation phenomena in
present of the current. In this section, we numerically in
grate Eq.~3! and compare the result withPs .

The standard white-noise spectrum, Eq.~4!, whereD is
given by Eq~7!, is used for the modeling of the temperatu
dependence of random fields. The calculation procedur
same as that for the standard LLG equation, except a
torque is added to the equation of the motion. A magne
layer, whose lateral size is 64 nm364 nm and whose thick
ness is 2.5 nm, is treated as a single macrospin. The in-p
uniaxial anisotropy fieldHK is 500 Oe and the saturatio
magnetization is 4pMs512 000 Oe. These parameters a
reasonably consistent with the experiments performed by
Cornell group.8 The Gilbert damping constant was taken
a50.03 throughout the modeling. The magnetization of
free layer is initially saturated at1x direction. At t50, we
apply a magnetic field at2x direction whose magnitude i
close to but less than the anisotropy fieldHK . At the same
time, aJ is also applied to the system. Equation~3! was nu-
merically integrated in time using the stochastic He
method with a 0.3 ps time step. A smaller time step has b
tested and it yields nearly identical results in all the ca
presented in the paper.

With above specified parameters and procedure, we
determine the probabilityP(t) that the magnetic layer ha
been reversed within the waiting timet. By performing up to
53104 independent runs for each set of parameters~each run
starts att50 and ends at the time that the magnetization
either been just switched or ends at the time up tot
55 ms, whichever is smaller! and then by recording the
number of them that the magnetization is switched at ti
interval (t, t1Dt), we obtained a simulatedP(t) that is
fitted by a simple exponential function, i.e.,P(t)512exp
(2t/t) where t is the fitting parameter for the relaxatio
time. We have found that the fit works remarkably well f
any values ofaJ we have considered. In Fig. 1, we show t
fitted relaxation timet as a function of the temperature for
13441
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fixed applied fieldHext5440 Oe. Two features are immed
ately seen: first the data fall on a straight line for any fix
aJ ; this indicates the thermally assisted reversal can be
scribed by an activation process, i.e., lnt}1/kBT. Therefore,
it is meaningful to introduce an effective activation energ
see Eq.~16!, in accordance with the Ne´el-Brown law of ther-
mal agitation. The second conclusion is that the slope, or
activation energy depends on STT: the positiveaJ favors a
lower-energy barrier. All these features are well described
Eqs.~15!–~17!.

In Fig. 2, the effective activation energies are shown to
linearly dependent on the current and they vanish at alm
the same pointac for different external fields@note thatac is
weakly dependent on the external field, see the definition
ac after Eq.~15!#. In the insert of Fig. 2, we have shown th
activation energy as a function of the magnetic field for s
eral different STT. The activation energy can be fitted by

Eb* 5Eb~Hext!S 12
aJ

ac
D5E0S 12

Hext

Hs
D bS 12

aJ

ac
D ,

~18!

whereHs is the switching field at zero temperature,E0 is the
energy barrier at zero magnetic field, andb is a constant,

FIG. 1. Relaxation timet as a function of the inverse of th
temperature for several values of the spin-transfer torques. The
ternal field ofHext5440 Oe is applied along2x direction.

FIG. 2. Activation energyEb* as a function ofaJ at three differ-
ent external fields. Inset:Eb* vs 12Hext /Hs for several different
values of STT.
6-4
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which has been argued to be 1.5 or 2. The exponentb52 for
the external field applied parallel to the easy axis. Th
simulated results confirm our analytical result, Eq.~16!.

V. COMPARISON WITH EXPERIMENTAL DATA

A number of experiments on spin torque induced therm
agitation had been carried out. It would be interesting to
whether our prediction, Eq.~17!, agrees with these existin
data. The phenomenon that we want to compare first is
so-called ‘‘telegraph noises’’ or dwell times. Experimental
one simultaneously applies an external magnetic field an
spin current to a spin valve structure so that the magnet
tion direction of the free layer is fluctuating from one dire
tion to another due to thermal agitation.10,12 The dwell time
tP (tAP) is defined as an average time the magnetization
the free layer is parallel~antiparallel! to that of the fixed
layer. In general,tPÞtAP . However, by adjusting the mag
netic field or the spin current, one is able to obtain an eq
dwell time for parallel and antiparallel states,tP5tAP .
From Eq.~17! for the parallel and the antiparallel states, t
condition of the equal dwell time is

S 11
Hext

Hs
D 1.5S 12

I

I c
APD 5S 12

Hext

Hs
D 1.5S 12

I

I c
PD ,

~19!

whereI c
AP and I c

P are the critical currents for the magnetiz
tion switching from antiparallel to parallel alignments a
vice versa; their magnitudes are not necessary the same
I c

APÞ2I c
P in a typical experimental geometry.11,12 To com-

pare our prediction, Eq.~19!, with experiments, we plot the
H-I phase diagram of equal dwell timetP5tAP in Fig. 3. It
is noted that we have shifted the external field byHsh
5222 mT to take into account of the magnetic coupli
between the free and fixed layers. The coupling may co
from either the exchange or dipolar couplings. Since we
sume that the magnetization of the fixed layer is held at
direction ofex , the free layer receives an effective couplin

FIG. 3. H-I Phase boundary of equal dwell times^tAP&
5^tP&. The coupling field isHsh5222 mT, the critical currents
areI c

AP521.25 mA for the transition fromAP to P alignments and
I c

P50.425 mA fromP to AP alignments. Line; Eq.~19! exceptHext

being replaced byHext1Hsh ; Square, experimental data~Refs. 11
and 12!.
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field that will be added toHext in Eq. ~19!. Evidently, the
agreement between our results and the experimental da
excellent.11,12

Next we compare the ratio of the dwell times of antipa
allel and parallel states for a fixed magnetic field. Aga
from Eq. ~17!, we have

ln~ f 0tP!

ln~ f 0tAP!
5

S 12
Hext

Hs
D 1.5S 12

I

I c
PD

S 11
Hext

Hs
D 1.5S 12

I

I c
APD . ~20!

In Fig. 4, we show the ratio of the dwell times for a fixe
magnetic field as a function of the spin torque by using
same set of experimental parameters as in Fig. 3. The re
are consistent with experimental data~however, the data
points in Refs. 11 and 12 are rather scattered so that we
not include those data in the figure!.

Up till now, we have studied the thermal activation b
abruptly introducing an external field and a STT att50. In
experiments, there are ramping times, e.g., STT is gradu
increasing at rate of, say 1025 Oe/ms ~Ref. 13! and care
must be taken when one compares our theory, Eq.~17!, with
experiments. In the current ramping period,aJ is not a con-
stant and thus the activation energy, Eq.~18!, varies with
time. In this case, one should utilize the differential form
the switching probability instead ofP(t)512exp(2t/t),

dP~ t !

12P~ t !
5

dt

t~ t !
. ~21!

By assuming a linear ramping of STT, i.e.,C5daJ /dt is a
constant and by placing Eqs.~17! and~18! into Eq. ~21!, we
integrate Eq.~21! from t50 to t5t0 and find the average
switching STTac(T,C)[aJ(t0)

ac~T,C!>acF12
kBT

Eb
lnS f 08kBTac

EbC D G , ~22!

where f 0852 f 0ln@12P(t0)#. The variance of the switching
STT is found as

FIG. 4. Ratio of the relaxation times ln(f0tP)/ln(f0tAP). The pa-
rameters are same as those in Fig. 3.
6-5
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sa>ac

kBT

Eb
. ~23!

These relations, Eqs.~22! and ~23!, are consistent with ear
lier studies on the similar energy barrier formalism for a ve
different physical system.18

Numerically, the finite ramping rate can be rather eas
handled. In determiningac(T,C) at finite temperature, we
rampaJ with a fixed rate. At a certain time, the magnetiz
tion vector switches and we record the value ofaJ . By re-
peating the above procedure 800 times, we are able to e
lish the switching aJ histograms from which the mea
switching ac(T,C) and its standard deviationsa are ob-
tained. At temperature between 100 K and 300 K, we ca
lated the mean and standard deviation of the distribution
a sweeping rate between 0.001 Oe/ns and 0.1 Oe/ns. As
pected for a thermally activated process,ac(T,C) increases
with decreasing temperature and with increasing sweep
rate. Figure 5 shows temperature and sweeping rate de

FIG. 5. Dependence ofac(T,C) on the sweeping rateC at finite
temperature. Inset:ac(T,C) andsa as a function of temperature fo
the sweeping rate of STT at 0.01 Oe/ns.
n,

J.

C.

nd

e
,

13441
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dence ofac(T,C) and sa . A logarithmic dependence o
ac(T,C) on the sweeping rate has been found, which is i
good agreement to Eq.~22!. Moreover, the inset of Fig. 5
describes the temperature dependence ofac(T,C) and sa .
We have verified that the temperature dependence ofsa is a
linear relationship andac(T,C) monotonically decrease
with increasingT.

Myers et al.13 have discovered that the thermal activati
driven by spin torque is qualitatively different from tha
driven by the magnetic field. They have suggested an act
tion energy whose form is similar to ours, except that th
have postulated an arbitrary exponent, i.e.,dW}(1
2aJ /ac)

j. Although they have stated thatj might be 1.5,
most of experimental data shown in their paper can be u
to determine the value ofj. One set of data, Fig. 1~d! of Ref.
13, shows thatac(T,C) linearly increases with lnC as pre-
dicted by our Eq.~22!. If one uses different scaling relation
e.g., dW}(12aJ /ac)

1.5, one would obtain ac(T,C)
}(ln C)2/3 that would disagree with the experimental da
Therefore, the existing data support the linear scaling
tween the activation energy and the spin torque.

VI. CONCLUSIONS

In summary, we have extended the law of thermal ag
tion to include the spin-transfer torque driven by the sp
polarized current in magnetic multilayers. Although the co
cept of the energy barrier or the temperature in the Ne´el-
Brown formula breaks down in the presence of the sp
transfer torque, we are able to reestablish the Ne´el-Brown
formula by properly introducing an activation energy or
effective temperature to replace the true energy barrie
true lattice temperature. Our formalism is further suppor
by numerical solutions and is in agreement with experim
tal results.
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