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Local force constants of transition metal dopants in a nickel host: Comparison
to Mossbauer studies
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We have used the x-ray absorption fine-structure technique to obtain temperature-dependent mean-squared
relative displacements for a series of dopant atoms in a nickel host. We have studied the series Ti, V, Mn, Fe,
Nb, Mo, Ru, Rh, and Pd doped into Ni, and have also obtained such data for pure Ni. The data, if interpreted
in terms of the correlated Einstein model of Hung and Rehr, yield a ratio of a~host-host! to ~host-impurity!
effective force constant, where the effective force constant is due to a cluster of atoms. We have modified the
method of Hung and Rehr so that we obtain a ratio of near-neighbor single spring constants, rather than
effective spring constants. We find that the host to the 4d impurity force constant ratio decreases monotonically
as one increases the dopant atomic number for the series Nb, Mo, Ru, and Rh, but after a minimum at Rh the
ratio increases sharply for Pd. We have compared our data to Mossbauer results for Fe dopants in Ni, and find
qualitative disagreement. In Mossbauer studies, the ratio of the Ni-Ni to Fe-Ni force constant is found to be
extremely temperature dependent and less than one. We find the corresponding ratio, as interpreted in terms of
x-ray absorption spectra and the correlated Einstein model, to be greater than one, a result that is supported by
elastic constant measurements on NixFe(12x) alloys.
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I. INTRODUCTION

It would be of interest if a general method existed f
determining local force constants for dopants in dilute bin
alloys. For instance, force constants can be of use in c
structing local atomic potentials used in simulations.1 The
Mössbauer effect has been used extensively to measur
ratio r X of host-host to impurity-host local force constan
for dilute alloys,2 but is limited to cases for which the dopa
atomic species is Mossbauer active. X-ray absorption
structure~XAFS! can also be related to local force consta
ratios, and unlike the Mossbauer effect can be applied
wide variety of atomic types. The Mossbauer measurem
can be interpreted in terms of force constants using an
lytic result due to Mannheim that is exact, assuming cent
near-neighbor forces and a cubic host matrix.3 Temperature-
dependent x-ray extended fine-structure results can be re
to local force constants using the correlated Einstein mo
of Hung and Rehr;4 this is a simplified approach that consi
ers a single pair of vibrating atoms in a small cluster a
assumes a Morse potential. As in the Mossbauer theor
Mannheim, central forces are assumed. Despite these
proximations, the correlated Einstein model does yield
curve of mean-square relative displacement versus temp
ture that is in good agreement with experiment for pure c
per metal. We note that for several pure fcc metals, Da
et al.have shown that the slope of the linear portion of a p
of temperature versus XAFS-derived mean-squared rela
displacement~MSRD! may be expected to be approximate
proportional to a bulk shear modulus.5 These authors also
showed this relationship to be true experimentally. In
present study we analyze temperature-dependent XAFS
to obtain the ratio of pure host to dopant-host single spr
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force constants for an impurity atom in a fcc host matrix W
use an augmented version of the correlated Einstein mod
Van Hung and Rehr. We find that for the 4d impurities in Ni
there is a monotonic decrease in force constant ratio as
increases the dopant atomic number in going along the se
Nb, Mo, Ru, and Rh. However, for the case of Pd dopants
force constant ratio increases sharply relative to the cas
Rh dopants. These results are interpreted in terms of theo
of size difference—shear modulus relationships, as wel
the known shear moduli of the pure fcc metals Rh and
Finally, we compare Mossbauer and XAFS results for
host to impurity atom force constant ratio for Fe dopants
Ni.

We have made an experimental determination of
absorber–near-neighbor mean-squared relative displace
~MSRD! versus temperature for a systematic series of im
rity atoms in a nickel matrix. We performed experiments
3d dopants from Ti through Fe, alloyed into Ni, and on 4d
dopants from Nb through Pd also alloyed into Ni. In th
present work we consider the MSRD between the dop
whose absorption edge is measured, and the near-neig
host atom. The MSRD is related to the mean-squared
placement~MSD! by the following relationship:

MSRD5MSDIMPURITY1MSDNN HOST22~DCF!. ~1!

In the above, the DCF refers to the displacement correla
function ~DCF! as discussed, for instance, by Beni a
Platzman.6 Recently, Poiarkova and Rehr have develope
method for numerical computation of the MSRD for a
sumed local force constants.7 This method is not yet avail-
able for the general user. At present the best theoret
framework with which the experimentalist can relate for
©2004 The American Physical Society14-1
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constants to temperature-dependent XAFS is the correl
Einstein model.4

II. DISCUSSION OF THE CORRELATED EINSTEIN
MODEL: THEORETICAL BACKGROUND

Van Hung and Rehr use their correlated Einstein mode
compute an effective force constant for an absorbing atom
a small cluster of host atoms. The cluster consists of
absorber~impurity! atom, host near neighbors of the a
sorber atom, and host near neighbors of the near neighbo
the impurity atom.4 The effective force constant relates to t
normal mode for which the impurity atom~I! and one near
neighbor ~NN! vibrate back and forth about the commo
center of mass of theI and NN pair. In this model, all othe
atoms are assumed fixed in place. In the present applica
we assume an impurity atom doped into a fcc host latt
The calculated effective spring constantkEFF is related to an
effective potentialVE(x) by Eq. ~2!,

VE~x!;~1/2!kEFFx
21k3x31¯ , ~2!

where the ellipses indicate higher order terms. In Eq.~2!, x is
the deviation, from the equilibrium separation, of the bo
length between the two atoms vibrating in this normal mo
asbothatoms move relative to their common center of ma
and k3 is a cubic anharmonicity parameter. For the fcc l
tice, the motion of the two atoms in question is along t
@110# direction. The present study uses a range of temp
tures such that terms of higher order than quadratic inx are
negligible. The model of Van Hung and Rehr assumes cen
forces only, and assumes that only near-neighbor forces
significant.

We wish to relate our work to existing Mossbauer resu
The Mossbauer theory of Mannheim also assumes the v
ity of near-neighbor central forces and the harmo
approximation.3 The Mossbauer results are expressed
terms of a spring constant~restoring force per unit displace
ment! that is defined as ifonly the impurity atom were
moved along anarbitrary x direction, all other atoms fixed
and the restoring force is also alongx. The constantAXX(0,0)
for the pure host equals four times the single spring cons
between a particular pair of near-neighbor atoms. For a s
stitutional impurity atom at the origin, we defin
Axx IMPURITY(0,0) as the restoring force in thex direction per
unit displacement in thex direction of the impurity atom a
the origin, holding all other atoms fixed. The
Axx IMPURITY(0,0) is shown by Mannheim to be equal to fo
times the single spring constant between the impurity a
and a near-neighbor host atom. We define the single sp
force constant between the impurity atom and the host at
where the direction from the impurity to the host atom
@110#, to bekHI . We define the corresponding single spri
force constant between an atom in the pure host lattice a
near-neighbor host atom, to bekHH . These quantities are t
be determined from XAFS. Then one has the relationship
shown in Eq.~3!,

AXX~0,0!54kHH , AXX IMPURITY~0,0!54kHI . ~3!
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We define the ratior X to be equal tokHH divided by kHI .
Given the definitions outlined above it is clear that the ra
r X to be determined from the XAFS analysis is equal to
ratio l determined from Mossbauer experiments, as writ
in Eq. ~4!,

r X5kHH /kHI5AXX~0,0!/AXX IMPURITY~0,0!5l. ~4!

The effective force constant between the impurity atom an
near-neighbor host atom, in the atomic cluster used in
correlated Einstein model, is defined askEFF. The effective
spring constant between neighboring atoms in a pure h
lattice is denoted bykPURE EFF. Our first task is to obtain a
relationship that will enable us to determinekHI andkHH in
terms ofkEFF and kPURE EFFand relate the XAFS data to
quantity involving the spring constant ratior X . In Fig. 1 we
illustrate a section of the three-dimensional cluster used
discuss our derivation. LetxI be a displacement of the im
purity atom along the@110# axis toward the host atom. Le
xH be a displacement of the host atom along this same
toward the impurity atom. All other atoms are fixed. The
displacements are assumed to correspond to the nor
mode described above and, therefore, one has the rela
ship described in Eq.~5!,

~xI /xH!5~MH /MI !. ~5!

In the above equation,MH andMI are the masses of the ho
and impurity atom, respectively. Then, in a straightforwa
but somewhat tedious and lengthy application of class
mechanics, we consider all out of plane and in plane fo
contributions and keep only quadratic contributions to
potentials. The total increase in potential of theI andH at-
oms due to a total change of amountx in near-neighbor bond
length is then given by Eq.~6!,

VE~x!5 1
2 $kHI~x22xI

2!13kHHxH
2 14kHIxI

2%. ~6!

In the derivation of Eq.~6! it is assumed that the atomi
displacements are sufficiently small relative to the int
atomic distances involved that the angle between the
placement of an atom and the directional vector to a part

FIG. 1. Schematic drawing of the cluster used in the correla
Einstein model of Hung and Rehr.
4-2
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lar near-neighbor atom does not change during t
displacement. The effective spring constant can then be
pressed in terms of single spring constants as in Eq.~7!,

kEFF53kHH@MI /~MH1MI !#
214kHI@MH /~MH1MI !#

2

1kHI$12@MH /~MH1MI !#
2%. ~7!

For the case of a pure material,MH5MI andkHH5kHI , and
one obtains an effective pure host spring constant that is
times the pure host single spring constant. This result ag
with the corresponding result of Van Hung and Rehr fo
pure material, obtained by those authors using a Mo
potential.4 For the case in which the ratio ofMH divided by
MI approaches infinity,kEFF approaches 4kHI . This corre-
sponds to the case in which the host atoms are motion
and the effective spring constant acting on the impurity
four times the near-neighbor single spring constantkHI , in
agreement with Eq.~3!. For the case in which the ratio ofMI
divided by MH approaches infinity,kEFF approacheskHI
13kHH .

We express ourexperimentalXAFS results in terms of a
ratio RX given by Eq.~8!, thus utilizing the correlated Ein
stein model of Van Hung and Rehr,

RX5kPURE EFF/kEFF. ~8!

We desire the ratio of near-neighbor single spring force c
stantsr X , a ratio that must be obtained from the experime
tal ratioRX , analyzed by the theory of Van Hung and Reh4

The ratio r X , determined from XAFS, corresponds to th
ratio as determined by the Mossbauer measurements.

We define the constantsC1 andC2 as follows:

C15@MI /~MH1MI !#
2, ~9!

C25@MH /~MI1MH!#2. ~10!

Then one obtains the single spring constant ratior X in terms
of the experimental ratioRX as expressed in Eq.~11!,

r X52RX~3C211!/~526C1RX!. ~11!

We consider some more limiting cases:~1! For the case in
which RX equals 1, and both atoms have the same massr X
also equals 1.~2! In the limit for which MH /MI goes to
infinity ~heavy host atom! RX approaches 0.625r X . One can
see that this last result is physically consistent with both
model of Hung and Rehr and the definition
AXX IMPURITY (0,0) used in Mannheim’s theory. The value
kPURE EFF equals 2.5kHH . On the other hand, if the ratio
MH /MI approaches infinity, then kEFF approaches
AXX IMPURITY (0,0) since now only the impurity atom move
Recall thatAXX IMPURITY54kHI . Then the ratioRX should
indeed approach~2.5/4! times r X , or 0.625 timesr X .

Hung and Rehr find that classical approximations, such
the equipartition of the energy theorem, are valid for te
peratures at or above the effective Einstein temperatu4

which Sevillanoet al. find to be about 2/3 the Debye tem
perature for fcc metals.8 Room temperature is close to two
thirds the Debye temperature for Ni metal. Thus, the conc
sions of Sevillanoet al. applied to our experiments indicat
13441
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that our data extend into a temperature region for which
MSRD is proportional to temperature and the equipartit
of energy theorem can be applied. In a later section of
paper we will justify the assumption that for our data we c
neglect the anharmonic terms in Eq.~2!. Assuming the va-
lidity of Eq. ~2!, but neglecting anharmonic terms, one h
from the equipartition of energy theorem Eq.~12!,

1
2 kEFFMSRDHOST-IMPURITY5 1

2 kBOLTZMANNT, ~12!

whereas for a pure host one has Eq.~13!, again using the
harmonic approximation,

1
2 kPURE EFFMSRDHOST-HOST5

1
2 kBOLTZMANNT. ~13!

In an Einstein model, Knappet al. approximate
MSRDHOST-IMPURITY by the expression~14!,9

MSRDHOST-IMPURITY

5~\/2mvE H-I !coth@\vE H-I /2kBOLTZMANNT#, ~14!

wherem is the effective mass of the impurity-host pair. F
the case of MSRDHOST-HOSTone replaces 2m in Eq. ~14! by
MH . The Einstein temperatureQE is proportional to the Ein-
stein frequencyvE . From Eqs.~12! and ~13!, one obtains
Eq. ~15!, assuming the classical temperature regime and
harmonic approximation,

RX5@dT/d~MSRDHOST-HOST!#/@dT/d~MSRDHOST-IMPURITY!#.
~15!

In the high-temperature limit coth@\vE H-I /2kBOLTZMANNT#
approaches 2kBOLTZMANNT/\vE H-I . Also
coth@\vE/2kBOLTZMANNT# approaches
2kBOLTZMANNT/\vE HOST and one has

RX5@QE HOST/QE H-I #
2MH/2m. ~16!

Finally, combining Eqs.~11! and ~16!, one has the desired
result expressed in Eq.~17!,

r X52@QE HOST/QE H-I #
2~MH/2m!~3C211!/$5

26C1@QE HOST/QE H-I #
2~MH/2m!%. ~17!

We now show that we can neglect anharmonic terms
Eq. ~2! for our experiments performed for temperatures le
than 300 °C on Ni-based alloys. Hunget al. have recently
performed a detailed analysis of the anharmonic contri
tions to the XAFS for copper metal.10 They find that, in
terms of the MSRD, ‘‘the difference between the total a
harmonic values becomes visible at 100 K, but it is ve
small and can be important only from about room tempe
ture.’’ In the high-temperature limit, for the correlated Ei
stein model, the MSRD between near neighbors is given
the expression4

MSRD5kBOLTZMANNT/5Da2, ~18!

whereD anda are parameters characterizing a Morse pot
tial local to the pure host atom in the host matrix. In t
paper by Hung and Rehr,4 the effective spring constant, for
pure fcc material, is related to the Morse potential as follow
4-3
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M. DANIEL et al. PHYSICAL REVIEW B 69, 134414 ~2004!
K ~EFF PURE HOST!55Da2@12~3/2!aa#, ~19!

where ‘‘a’’ is a net thermal expansion. From Girafalco an
Weizer,11 a for Ni is 1.42 Å21. The nearest-neighbor distanc
in the fcc Ni lattice is close to 2.5 Å. From the known valu
of the thermal expansion coefficient of Ni metal12 of 12.5
31026, one deduces that to a very good approximation
room temperature, one can neglect the second term in
parentheses in the right side of Eq.~19!. We note that the
thermal expansion coefficients of Ni, Ti, V, Cr, Fe, Nb, M
Ru, Rh, and Pd are all less than Cu.13 One would therefore
expect the statement of Hunget al. that the anharmonic
terms are unimportant up to room temperature for Cu~Ref.
10! to holda fortiori for Ni-based alloys with small amount
of these dopants.~The listed thermal expansion coefficient
pure Mn exceeds that of copper. In pure form, this mate
has a large, complex unit cell relative to the other met
listed, and therefore the large thermal expansion for pure
is not characteristic of Mn in a fcc environment.!

It is relevant here to discuss again the high-tempera
results of Mannheim as applied to a determination of a ra
l of the host-host to impurity-host force constant2,3 using
Mossbauer data. The theory of Mannheim, for the MSD, a
the correlated Einstein model of Hung and Rehr, for
MSRD, are similar in that both assume central forces an
cubic lattice. The theory of Mannheim assumes a harmo
approximation, and relates experimental data and the pro
ties of the host phonon density of states to the ratio given
Eq. ~4!. Mannheim’s theory has been simplified by Gro
et al. Grow et al. show that one obtains the following rela
tionship in the high-temperature limit:2

MSD;~kBT/M !m~22!. ~20!

In the above equation,kB is Boltzmann’s constant,M is the
mass of the vibrating atom, andm~22! is a moment expan
sion. By manipulating an expression developed by Gr
et al., one can show that in the high-temperature limit o
obtains the following equation:

l5r X511~b22!$@m~22! IMPURITY /m~22!HOST#

3~MH /MI !21%, ~21!

where (b22) is a function of the host phonon density
states. By combining Eqs.~20! and~21! one obtains the fol-
lowing relationship forr X :

rX;11b22@$~DMSDIMPURITY /DT!/~DMSDHOST/DT!%21#.
~22!

In an Einstein model,b22 becomes unity2 andr X is equal to
the ratio of the high temperature slope of the impurity MS
versus temperature plot, divided by the high temperat
slope of the host MSD versus temperature plot. In an E
stein model; therefore, Eq.~22! reduces to the analogou
expression as is obtained in Eq.~15! for the quantityRX ,
where RX is equal to the ratio of slopes involving th
MSRDs.
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III. EXPERIMENTAL METHODS

A. Sample preparation

Dilute samples of Ni(12x)TMx (TM5Ti, V, Cr, Mn, Fe,
Nb, Mo, Ru, Rh, and Pd wherex50.01 or 0.02! were made
by melting in an arc melter with Ar back fill. The dopan
concentrations used were 1% for Ti, V, Cr, Mn, and Rh do
ants and 2% for Fe, Nb, Mo, Ru, and Pd dopants. Sev
remelts were made to assist in obtaining homogenous ing
To ensure minimal weight loss the samples were weig
before and after melting. The recovery turned out to
99.8% or better. The samples were given a homogeniza
anneal at 800 C for;100 h. Investigations by x-ray diffrac
tion revealed only fcc Ni peaks.

B. Data collection

The samples were mounted in a ‘‘displex’’ refrigerat
system. Using conventional fluorescence geometry,K-edge
dopant atom XAFS was collected at five different tempe
tures for each sample. The fluorescence signal from e
sample was monitored using an ion chamber filled with
ther argon or krypton gas. In order to minimize harmon
contamination, the monochromator was detuned by ab
40% for 3d dopants. For the 4d dopants, there was no nee
for detuning due to the higher energy at which these d
were collected. Data were obtained out to 1200 eV ab
threshold. The data were collected at the X-11A synchrot
line at the National Synchrotron Light Source~NSLS!. A
double crystal Si~111! monochromator was used.

We also obtained similar temperature-dependent XA
data for pure Ni, except the Ni data were taken in transm
sion so as to avoid the distortion effects that arise if fluor
cence XAFS is obtained on concentrated specimens. We
lyzed the pure Ni data in the manner to be described be
and obtained by our procedures the high-temperature s
of the linear region of a plot ofT versus MSRD. In a previ-
ous publication we have showed that one would expect s
a slope to be a linear function of the bulk shear modulus
pure fcc materials, and then demonstrated that this was
deed the case for a significant set of XAFS data in
literature.5 Our Ni data point fits quite well on this linea
plot. These results show the consistency of the XA
method, as applied here, between different investigators.
results for pure Ni also support the soundness of experim
tal and data analysis techniques used for our present m
surements for the alloys of doped TM’s in a Ni host. Oth
evidence supporting the soundness of our procedures ma
found in our results for dopant–near-neighbor distances
discussed in following sections.

C. Data analysis

Data was reduced by using the University of Washing
XAFS analysis package. The edge energy was chosen a
edge inflection point. When one uses gas-filled ion chamb
this produces an energy variation in fluorescence radia
detection efficiency. We corrected for this effect and then
XAFS was isolated from the background by subtracting
cubic polynomial spline. The unweighted XAFS for variou
4-4
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3d and 4d dopants in Ni obtained at room temperature~300
K! is shown in Figs. 2~a! and 2~b!. For comparison, the un
weighted XAFS of Ni foil is also displayed at the bottom
each figure. Using FEFFIT, data were fit to theoretical st
dards generated by FEFF6.14,15 Data were fit by assuming
fcc Ni near-neighbor environment with the coordinati
number fixed to 12. The inner potential shiftDE0 , the many-
body amplitude reduction factorS0

2, and the coordination
shell distance were allowed to vary but were constrained
be the same at all temperatures. Fourier transforms obta
for the cases of V and Nb dopants for different temperatu

FIG. 2. XAFSx(k) function at various~a! 3d dopantK edges
and ~b! 4d dopantK edges, taken at room temperature.
13441
-
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are shown in Figs. 3~a! and 3~b!. Real parts of these Fourie
transforms and fits for the first shell are shown in Figs. 4~a!
and 4~b!. The differences between the coordination shell d
tances and the near-neighbor distance in pure Ni, as d
mined from our fits, were compared to the data of Sche
et al.16 The trends of our interatomic distances as a funct
of dopant atom atomic number are in good agreement w
the previous results of Scheueret al. The MSRD’s for each
temperature were allowed to vary and the best MSRD’s
extracted from our fits. The differenceD MSRD between the
MSRD values at temperatureT and the best value at 40 K ar
plotted versus temperature for temperatures up to;300 K.
These results are shown in Figs. 5~a! and 5~b!. The error bars
on individual MSRD points were generated by FEFF6. T
Einstein temperatures were obtained by fitting theD MSRD
plots to Eq.~23!,

FIG. 3. k3-weighted Fourier transform for~a! V K-edge XAFS
in V1Ni99 and~b! K-edge XAFS in Mo2Ni98, taken at various tem-
peratures.
4-5
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FIG. 4. ~a! Real part of the Fourier transformed (k3-weighted! XAFS data and fit for V1Ni99. Transform range is 2.49–12.8 A21. The fit
range, 1.41–2.91 A, is indicated by the dashed vertical lines. Temperatures correspond to Fig. 3~a! and are from top to bottom 40, 105, 170
235, and 300 K. ~b! Real part of the Fourier transformed (k3-weighted! XAFS data and fit for Mo2Ni98. Transform range is 3.0–15 A21.
The fit range, 1.53–2.82 A, is indicated by the vertical dashed lines. Temperatures correspond to Fig. 3~b! and are from top to bottom 40
105, 170, 235, and 300 K.
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DMSRDHOST-IMPURITY5~\2/2mkFE H-I !@~cothFE H-I /2T!

2~cothFE H-I /80!#. ~23!

On the plots of experimentalDMSRD versusT points we
show the best fit Einstein temperature, an error bar on
Einstein temperature that represents plus or minus twice
standard error for the fit of Eq.~23! to the data points, and
solid line representing a plot of a theoreticalDMSRD versus
T curve resulting from plotting Eq.~23! using the best-fit
value of the Einstein temperature. Although the system c
sisting of Cr doped into Ni was part of our investigation,
13441
e
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n-

this case the error bar for the best-fit Einstein tempera
was quite large, and the plot ofDMSRD points versusT did
not show the shape predicted by Eq.~23!. Perhaps there is
some temperature-dependent effect specific to Cr dopan
Ni that is showing up; however, as far as this particular stu
is concerned the Cr in Ni data is not shown in Figs. 5~a! and
5~b! nor analyzed further.

The force constant ratios were extracted from the data
described in a previous section, using Eq.~17!. Our plots of
force constant versus atomic number are displayed in F
6~a! and 6~b!. These error bars are computed by starting w
4-6
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FIG. 5. ExperimentalDMSRD values versus temperature plot for~a! 3d dopants and~b! 4d dopants in Ni.
ig

al

rply
ch
d we
e
ar
lso
the error bars on the Einstein temperatures shown in F
5~a! and 5~b!, and propagating the error through Eq.~17! for
r X by standard methods.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

For the 4d dopants in Ni, the value ofr X systematically
decreases as one increases the dopant atomic number
13441
s.

ong

the series Nb, Mo, Ru, and Rh, but the ratio increases sha
for Pd. Although there is no other quantitative result to whi
we can compare our data, we argue that the general tren
observe is reasonable. Danielet al.have shown that the slop
of the temperature versus the MSRD graph will be line
with shear modulus for pure fcc materials, and have a
shown this relationship is true experimentally.5 For the alloy
4-7
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case, Johnson has argued that for a solid solution of
metals having large differences in elemental atomic size,
solid solution will tend to exhibit a decreasing shear modu
with increasing supersaturation, leading to instability to f
mation of an amorphous phase.17 Furthermore, even if the
size difference is less than this critical value, according to
and Johnson, fcc random solid solutions tend to exhibit
creasing local tetragonal shear modulus18 as a dopant of large
size difference is alloyed at increasing concentration into
host matrix. From our results, and those of Scheuer and L
geler, the deviation from pure host near-neighbor dista
due to doping shows a lattice expansion surrounding all
4d dopants. This increase is largest for Nb dopants, whe
reaches 0.07 A, and also the ratior X is largest for Nb dopants
among the 4d systems we study. The local size differenc
observed by Scheuer and Lengeler and us drop to less
0.02 A for Mo dopants and rises again for Pd dopants
nearly 0.06 A. However, we do not find a simple size re
tionship for the trends ofr X since the lattice expansion w
observe for Mo, Ru, and Rh dopants are all between ab
0.02 A and 0.035 A. We note that Growet al. show in their
review of Mossbauer results that the force constant betw
near neighbors in pure Mo, Nb, and Pd are significan
larger than the corresponding Fe-host force constant in

FIG. 6. Force constant ratior x for ~a! 3d dopants as determine
from XAFS and~b! 4d dopants as determined from XAFS.
13441
o
e
s
-

i
-

e
n-
e
e
it

s
an
o
-

ut

en
y
e

corresponding Fe doped alloy.2 These Mossbauer finding
are consistent both with our results and the size differe
model of Li and Johnson18 since doping a 4d host with a
smaller Fe dopant, as well as doping a Ni host with a lar
4d dopant, should both decrease the local dopant shea
sistance relative to the pure host case.

We also point out that among the 4d impurities studied
here only Rh and Pd stabilize in the fcc structure. It is then
be noted that elemental Rh, according to band-struc
calculations,19 has the highest shear modulus among thed
metals, whereas in contrast, elemental Pd has a low s
modulus about the same as copper, a noble metal.5 The
above argument is also consistent with the general tren
our data for 4d dopants, in that ther X value is found to be
larger for Pd than for Rh.

We next discuss relevant Mossbauer results. For the c
of Fe dopants in Cu and Al hosts, recent resonant nuc
inelastic scattering results of Setoet al. also give force con-
stant ratios.20 Setoet al. find a value of the force constan
ratio for the case of Fe in an Al host which is in disagreem
with the results reported by Growet al. Whereas the ratio
(1/r X) reported by Growet al. is 0.625, Setoet al. find a
value of 1.1. On the other hand, the value of the force c
stant ratio of Fe in Cu obtained by Setoet al., reproduces the
corresponding data point of Growet al. well.20 With these
comparisons among results obtained by different Mossba
related methods in mind, we now consider the 3d dopants
and compare our results for Fe dopants in Ni with the fin
ings of Mössbauer spectroscopy. In their review, Growet al.
show a plot of the ratio of the impurity-host to the host-ho
force constant for a number of systems.2 ~Note that this ratio
is the inverseof r X) The only specific alloy our XAFS in-
vestigation has in common with Mo¨ssbauer studies is th
system of Fe doped into Ni. There is disagreement betw
the Mössbauerr X and our XAFSr X for Fe in Ni. In the
temperature range between 77 and 1345 K, Janotet al. find
that the value ofr X is of order 0.33 to 0.5.21 For the tem-
perature range just above the Ni Curie temperature, How
et al. find a value ofr X of <.7.22 For temperature range
from and above room temperature, Growet al. find a value
of r X of ;0.8360.065.2 Our value ofr X , based on XAFS
and the correlated Einstein model, for data taken for te
peratureup to room temperature, is 1.30. The case of
dopants in Ni is the one situation, amongst the systems
have studied, for which the local lattice is not expanded
the dopant. Therefore, the size difference argument canno
used in this case to help explain the fact that our value ofr X
is greater than one. Howardet al. state that the temperature
dependent results of Mo¨ssbauer experiments for Fe in N
hosts may imply ‘‘an anomalously large anharmonicity p
rameter in this system.’’22

We are certain from our XAFS results that the local en
ronment around our Fe sites is fcc. The XAFS measu
ments, however, cannot rule out some kind of Fe fcc clus
ing, although as far as dopant near neighbors are concer
we contend clustering is unlikely. For the Ni-rich region
the Fe-Ni phase diagram, the only ordered compound
ported to tend to form is Ni3Fe.23 The Fe in such a com
pound has all Ni near neighbors. Jianget al.have carried out
4-8
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a thorough study of local atomic order in Fe46.5Ni53.5 and
Fe22.5Ni77.5 by diffuse x-ray scattering. These samples we
close to random solid solutions. Our fit result for Fe-Ni i
teratomic distances, 2.484~2! Å, is close to the Fe-Ni bond
length obtained by Jianget al.24 ~2.507 Å! for Ni77.5Fe22.5.
We note that Scheueret al. in their early XAFS work on
dilute binary alloys obtain an Fe-Ni bond length of 2.490~3!
Å.16 This value is in excellent agreement with our Fe-
bond distances. On the other hand, Jianget al. find that the
average Fe-Fe near-neighbor distance in both alloys stu
is 2.564~2! Å, significantly greater than the average Fe-
distance derived from the lattice spacing or the value of ne
neighbor distance derived from our data. Thus, these diff
scattering results argue against significant Fe clustering
ing place in our Fe-doped Ni alloy.

There are existing elastic constant measurements
NixFe(12x) alloys that support our XAFS results for Fe
doped Ni, and are evidence that the Mossbauer result o
increased local force constant, for Fe dopants relative to
pure Ni case, is incorrect.25 Single alloy crystal force con
stant measurements have been made for the elastic cons
C11, C12, andC44. All these force constants systematica
decreaseas the Fe concentration in the fcc Ni lattice i
creases. We have used these force constants to compu
upper and lower bounds on the shear modulusG for a poly-
crystalline alloy, using the Hashin-Shtrikman limits.26,27 The
results are plotted in Fig. 7. We do not at present hav
theoretical framework to relate quantitatively our XAFS r
sults for an alloy with the measured elastic constant d
The quantitative connection between a single spring b
strength ratio for an alloy and shear modulus of a pure m
terial has not been explored theoretically, to our knowled
However, Danielet al. have shown an excellent correlatio
between shear modulus and the slope ofT versus MSRD for
pure fcc metals,5 and therefore the fact that alloying with F
systematically decreases the alloy shear modulus supp
our qualitative finding that the near-neighbor single spr

FIG. 7. Shear modulus of NixFe(12x) alloys as a function ofx.
The error bars are the upper and lower bounds determined from
Hashin-Shtrikman limits.
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constant is decreased for Fe sites relative to Ni sites.
Mossbauer results, for the Fe-doped Ni system, are not
ported by the elastic constant measurements.

As far as the other 3d dopants are concerned, with th
exception of V, the force constant ratios, shown in Fig. 6~a!,
are about the same for different members of the 3d series we
have studied. There is no clear picture or correlation to
drawn. In their elemental form, however, none of the 3d
impurities stabilize in the fcc structure. We note that the ra
r X has a sharp maximum forV impurities, and that theV
impurity moment in this alloy is known to be aligned an
parallel to the host Ni magnetic moment.28

We feel that the use of XAFS is promising as a means
map out systematics for local impurity force constants a
function of Periodic Table position. One could search
correlations with a number of aspects of dilute alloy physi
such as virtual bound state theories, local magnetic mome
cohesive energy measurements, and atomic simulations.
on-going development of computational methods for relat
MSRD results to force constants may eventually make
possible to avoid approximations such as assuming cen
forces, thus increasing the accuracy of the results.

On the one hand, the discrepancy between the Mossb
and XAFS results for the case of Fe dopants in nickel mi
be attributable to the approximations in the correlated E
stein model used to interpret the XAFS. The theory of Ma
nheim used for interpreting the related Mossbauer result
the more exact theory, although neither theory takes nonc
tral forces into account. We also point out that the XAF
measurements are sensitive to forces parallel to the~110!
direction between nearest neighbors; this might be signific
if there are force anisotropies.

On the other hand, there is no straightforward way
reconcile the elastic constant measurements with the M
bauer results. Also, one of the intriguing aspects of this to
is the dramatic temperature dependence in the force con
ratios for Fe dopants in Ni as measured by several differ
investigators using the Mossbauer method. The combi
XAFS, elastic constant, and Mossbauer results hint at an
fect such that the ratio of host-host to iron-host force co
stant decreases with temperature.

We consider the discrepancy between Mo¨ssbauer mea-
surements, on the one hand, versus XAFS and elastic
stant measurements, on the other hand, for the Fe doped
the Ni system to be an important aspect of this subject,
aspect which needs to be investigated further.
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