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Nonperturbative renormalization-group approach to frustrated magnets
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This article is devoted to the study of the critical properties of classicalXY and Heisenberg frustrated
magnets in three dimensions. We first analyze the experimental and numerical situations. We show that the
unusual behaviors encountered in these systems, typicallynonuniversal scaling, are hardly compatible with the
hypothesis of a second order phase transition. Moreover, the fact that the scaling laws are significantly violated
and that the anomalous dimension is negative in many cases provides strong indications that the transitions in
frustrated magnets are most probably of very weak first order. We then review the various perturbative and
early nonperturbative approaches used to investigate these systems and argue that none of them provides a
completely satisfactory description of the three-dimensional critical behavior. We then recall the principles of
the nonperturbative approach—the effective average action method—that we have used to investigate the
physics of frustrated magnets and show how it enables to clarify most of the problems encountered in the
previous theoretical descriptions of frustrated magnets. First, we get an explanation of the long-standing
mismatch between different perturbative approaches which consists in a nonperturbative mechanism of anni-
hilation of fixed points between two and three dimensions. Secondly, we get a coherent picture of the physics
of frustrated magnets in agreement with the numerical and experimental results. The central feature that
emerges from our approach is the existence of scaling behaviorswithout fixed or pseudofixed point and that
relies on a slowing down of the renormalization group flow in awholeregion in the coupling constants space.
This phenomenon allow us to explain the occurrence ofgenericweak first order behaviors and to understand
the absence of universality in the critical behavior of frustrated magnets.

DOI: 10.1103/PhysRevB.69.134413 PACS number~s!: 75.10.Hk, 64.60.2i, 11.10.Hi
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I. INTRODUCTION

Understanding phase transitions and, specifically, crit
phenomena has been one of the central issues of statis
mechanics during these last decades1 and the field theoretica
renormalization-group~RG! approach to these phenome
has been one of the great successes of theoretical phy
This is so true that it is generally believed that, apart fro
specific problems—disordered and glassy systems,
instance—an almost complete understanding of the phy
occurring at a phase transition has been reached. This is
tainly due to the fact that it is indeed the case for all t
systems belonging to the so-called Wilson-Fisher univer
ity classes ofd-dimensional systems whose symmetry bre
ing scheme is given byO(N)→O(N21). In fact, although
they have become the archetype of systems displaying c
cal phenomena well described by perturbative field theor
cal approaches, theseO(N) symmetric systems turn out to b
exceptions rather than the rule. For most systems a quan
tive and, even sometimes, a qualitative description of
critical physics is either still lacking or very difficult to ob
tain by perturbative RG methods. This is the case, for
stance, in the Potts model,2,3 in magnetic systems with
disorder,4 in superconductors,5,6 in Josephson junction
arrays,7 in He3,8,9 in smectic liquid crystals,10 in electroweak
phase transitions11,12 and in frustrated magnets such as he
0163-1829/2004/69~13!/134413~53!/$22.50 69 1344
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magnets or geometrically frustrated magnets~triangular, for
instance! which are our main purpose in this article~see Ref.
13 for a review!.

Actually, it should not be surprising that a qualitative d
ference exists between the critical behaviors of systems
longing to theO(N) universality class and the others: amo
the systems where the order parameter hasN real compo-
nents, O(N) corresponds to the maximal symmetry an
thus, to the simplest situation. Think, for instance, at a u
norm constraint imposed on the microscopic degrees of f

dom (SW 251): the maximal symmetry compatible with it i
indeedO(N). From a perturbative point of view, this mean
that the Ginzburg-Landau-Wilson~GLW! Hamiltonian of an
O(N) symmetric model involves only one~marginal! inter-

action term, (fW 2)2, and thus, only one coupling constant. A
a consequence, the perturbative RG flow of the criti
theory takes place in a one-dimensional space of coup
constant and is thus simple. In particular, only one nontriv
perturbative fixed point can exist.14 On the contrary, the
Hamiltonian of systems having aN-dimensional order pa-
rameter and displaying a symmetry groupG smaller than
O(N) involves also terms thatexplicitly breakO(N). It thus
contains several interaction terms and, therefore, several
pling constants. The RG flow then takes place in a multi
mensional space and is thus far less simple: it can, in p
©2004 The American Physical Society13-1
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ticular, involve fluctuation-induced first order transitions
runaway in a region of instability—and several fixed poin
with different symmetries. Universality itself is not guara
teed in these systems since the basins of attraction of
fixed points can be highly nontrivial.

Of particular interest for us, it is generically observed
these systems that, by varyingN and/ord, the critical physics
changes qualitatively: low dimensions (d→2) and large
number of spin components (N→`) favor smooth fluctua-
tions and, thus, second order phase transitions, while la
dimensions (d→4) and smallN (N;1) favor larger fluctua-
tions and thus first order transitions.15 Therefore, in many
systems—and notably in frustrated systems—the critical
havior changes qualitatively~i! for the physically interesting
values ofN—N;1—when the dimension varies betweend
52 andd54, ~ii ! at fixed dimension when the numberN of
components varies betweenN5` andN;1. Thus, the dif-
ferent perturbative approaches are in the worst possible
sition: it is quite difficult to obtain definite conclusions ind
53 and forN;1 from extrapolations of perturbative resul
even if they are valid in the domains where they have b
established:d52 for the nonlinear sigma (NLs) model,d
54 for the GLW model and for largeN in a 1/N expansion.
This is one of the reasons why, after more than twenty fi
years of considerable efforts, the situation is still not clear
most three-dimensional systems that do not belong to
O(N)/O(N21) universality classes.

Let us now discuss two concrete problems encountere
the perturbative RG studies performed on the thr
dimensional systems we are interested in. First, the com
tational difficulties encountered in perturbation theory a
non-negligible. Within the NLs model approach, the serie
are generally considered as useless due to the lack of B
summability ~see, however Ref. 16!. Within the GLW ap-
proach, the perturbative computations almost always call
resummation procedures. In general, these procedures ar
as easy as they are in theO(N)/O(N21) models. The series
are either not proven to be Borel summable or are even
pected to be non Borel summable. This is the root of a lo
difficulties encountered in this approach~see Refs. 17–23
for a review in the case of the diluted Ising model, see R
24, for the presence of nonanalyticities in perturbative ser
see Refs. 25–28 and, for a general review, see Ref. 29!. The
second point is more conceptual: although it is generic
possible to perform a perturbative expansion of the criti
theory aroundd52—within the NLs model approach—and
aroundd54—within the GLW approach—it has not bee
possible to relate these two expansions within the usual fi
theoretical approach~except for large enoughN where the
1/N expansion allows us to recover, at leading orders,
perturbative results obtained in the NLs and GLW ap-
proaches!. From this point of view, even high-order pertu
bative calculations performed in the GLW model do not h
since the perturbative expansion cannot be extrapol
down tod52 for N>2. For instance, the critical exponentn
diverges ind52 when it is calculated as a power series
e542d. This fact, which is not crucial for systems who
critical behavior does not change qualitatively betweend
52 andd54 @e.g., theO(N)/O(N21) models# forbids for
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the others to obtain a completely coherent picture of
physics betweend52 andd54. Most of the time one of the
perturbative approach—usually the NLs one—is dismissed
without real justifications and the other is blindly truste
Since all the RG equations are smooth inN andd, it is not
clear if and also, why, this procedure is legitimate. It wou
of course, be much more satisfactory to have a unified
proach not linked to a particular value ofd or N and that
allows to interpolate between both approaches.

All these drawbacks of the usual perturbative RG meth
call for a nonperturbative approach. Such an approach is
fact, already known and its foundations go back to Kadan
and Wilson with the idea of block spin and effective, sca
dependent theory.1,30 It is sometimes called the exact reno
malization group method but we prefer to call it the nonp
turbative renormalization group~NPRG! method ~for
contributions of different authors to the early attempts to u
NPRG, see Refs. 31–34, for an exhaustive bibliography
the subject, see Ref. 35!. This idea has been turned into a
efficient computational tool during the last ten years, mai
by Ellwanger,36–40 Morris,41,42 and Wetterich.43–46 It has al-
lowed one to determine the critical exponents of theO(N)
models with high precision without having recourse to
summation techniques.46–51 It has also allowed one to
relate,52 for any N, the results of theO(N)/O(N21) model
obtained neard54 andd52, a fact of major importance fo
our purpose. Also important for the present purpose, it
allowed one to tackle with genuinely nonperturbative situ
tions. For instance, the Berezinskii-Kosterlitz-Thoule
phase transition53,54has been recovered directly from a stu
of the GLW model, i.e.,without introducing explicitly
the vortices.55,56 To cite just a few other successes
this method, let us mention low-energy quantu
chromodynamics,46 the Abelian Higgs model relevant fo
superconductivity,57 the study of the Gross-Neveu model
three dimensions,58,59phase transitions in He3,60 the study of
cubic anisotropy in all dimensions as well as the random
diluted Ising model,61 the two-dimensional Ising multicritica
points,62 etc.

In this article, we study by means of NPRG methods o
of the most famous systems exhibiting the changes of crit
behavior previously described: it is the system consisting
XY or Heisenberg spins on the triangular lattice~stacked tri-
angular ind53) with antiferromagnetic nearest-neighbor i
teraction~Sec. II!. This system is the archetype of frustrate
spin systems and is supposed to be in the same univers
class as another set of frustrated magnets: the helimag
Almost all these systems have been intensively studied b
numerically and experimentally these last twenty five ye
~see Sec. III!. However, their behavior remains unclear a
displays quite unconventional features. For instance, alm
all experiments exhibit scaling laws around the transit
temperature—which suggests a second-order ph
transition—but with critical exponents that depend on t
particular material studied, on microscopic details, e
which is incompatible with the standard phenomenology o
second-order phase transition. In some experiments or
merical simulations, the scaling laws are sometimes sign
cantly violated while the anomalous dimensionh is found
3-2
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negative, a fact forbidden by first principles if the theory
f4 GLW-like ~see the following!. The theoretical situation in
these systems is also not clear from the perturbative poin
view ~Secs. IV and V!: first, independently of the experimen
tal context, the results obtained within the usual perturba
approaches—in dimensionsd521e andd542e—conflict.
Second, neither the low-temperature expansion around
52 nor high-order weak-coupling calculations perform
aroundd54 or directly ind53 succeed in reproducing sa
isfactorily the phenomenology. We show, in this article, th
the NPRG approach~Sec. VI! to frustrated systems~Sec.
VII ! almost entirely clarifies the situation. First, it allows
to smoothly interpolate betweend52 and d54 and to
clarify the mismatch between these approaches. In partic
a mechanism of annihilation of fixed points, already iden
fied for a long time around 42e dimensions forN;21.8 is
shown to operate around two dimensions forN;3 nonper-
turbatively with respect to the low-temperature approach
the NLs model.63,64This explains the irrelevance ind53 of
the O(4) fixed point obtained within a low-temperature a
proach in d521e. Second, our approach provides a d
scription of the physics ind53, in terms of weakly first
order behaviors, compatible with the phenomenology~Secs.
VIII and IX !. In this respect, an important feature of o
work is that it explains the occurrence of scaling in frustra
magnetswithout fixed or pseudofixed65–67 point. This phe-
nomenon relies on a slowing down of the RG flow in
whole region in coupling constants space. This allows us
explain one of the most puzzling aspect of the critical ph
ics of these systems, i.e., the occurence of scalingwithout
universality. We discuss~Sec. X! possible experimental an
numerical tests of our scenario. We then comment~Sec. XI!
the consequences of our work for the perturbative
proaches that have been used to investigate the physic
frustrated magnets. Finally, we give our conclusions~Sec.
XII !.

II. THE STA MODEL AND GENERALIZATION

A. The lattice model, its continuum limit, and symmetries

We now describe the archetype of frustrated spin syste
the stacked triangular antiferromagnets~STA!. This system is
composed of two-dimensional triangular lattices which
piled up in the third direction. At each lattice site, there is
magnetic ion whose spin is described by a classical vec
The interaction between the spins is given by the usual
tice Hamiltonian

H5(̂
i j &

Ji j SW i .SW j , ~1!

where, depending on the anisotropies, theSW i ’s are two or
three-component vectors and the sum runs on all pair
nearest-neighbor spins. The coupling constantsJi j equalsJi
for a pair of sites inside a plane andJ' between planes.

The interactions between nearest-neighbor spins with
plane is antiferromagnetic, i.e.,Ji.0. This induces frustra-
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tion in the system and, in the ground state, gives rise to
famous 120° structure of the spins, see Fig. 1~a!. This non-
trivial magnetic structure is invariant under translations
lengthA3 times the initial lattice spacing. The magnetic ce
indexed byI, which is replicated all over the system, is
plaquette of three spinsSW 1

I , SW 2
I andSW 3

I , see Fig. 1~a!.
Note that the nearest-neighbor out-of-plane interactionJ'

is, depending on the compounds, ferromagnetic or antife
magnetic, but the two cases can be treated simultaneo
since no extra frustration appears through this interact
Finally, interactions between more distant spins~next-to-
nearest neighbors, etc.! also exist but are neglected in th
following since they are supposed to be irrelevant.

There have been numerous derivations of the lo
distance effective field theory supposed to describe the c
cal physics of this system.68–71We here sketch the derivatio
which is the most appropriate for our purpose. The Ham
tonian ~1! has the usual rotational symmetry acting on t
spin components:O(2) or O(3) for XYor Heisenberg spins
respectively. To identify the order parameter, it is also n
essary to consider the symmetry of the magnetic cell. For
triangular lattice, this is theC3v group that interchanges th
spins inside a plaquette.72

The identification of the order parameter is close in sp
to what is done in the nonfrustrated case, e.g., for the a
ferromagnets on a square lattice. At zero temperature,
sum of the three spins for a given plaquetteI:

SW I5SW 1
I 1SW 2

I 1SW 3
I ~2!

FIG. 1. The ground-state configurations~a! of the spins on the
triangular lattice and~b! of the order parameter made of two orth
normal vectors. The plaquettes, which constitute the magnetic
are indexed byI and are shaded.
3-3



l

te
e

rd
e

in

l

e

go

g-

it
t

e

an

he
a
in

it
as
up

-

tric
a

B. DELAMOTTE, D. MOUHANNA, AND M. TISSIER PHYSICAL REVIEW B69, 134413 ~2004!
is vanishing~Let us note thatSW I is analogous to the loca
magnetization of nonfrustrated antiferromagnets—SW I5SW 1

I

1SW 2
I in this last case—that also vanishes in the ground sta!.

In average, this is also the case at any finite temperatur
that the thermal average of

SW 5(
I

SW I , ~3!

where the sum runs on all plaquettes, cannot be an o
parameter: the associated modes are never critical. We th
fore replaceSW I by its average value

SW I→^SW I&50W ~4!

which is equivalent to freezing the fluctuations of the sp
inside each plaquette. The constraintSW I50W is called the ‘‘lo-
cal rigidity constraint.’’ Having eliminatedSW , we keep only
two vectors per plaquette (fW 1

I ,fW 2
I ) which represent the loca

order parameter. ForfW 2
I , we choose one of the spins of th

plaquette, see Figs. 1~a! and 1~b!. For the other,fW 1
I , we

choose the linear combination of the spins which is ortho
nal to fW 2

I and of unit norm, see Fig. 1~b!. The local order
parameter thus obeys on each plaquette

fW i
I .fW j

I5d i j with i , j P$1,2%. ~5!

The dihedral (fW 1
I ,fW 2

I ) plays a role analogous to the sta
gered magnetization in the nonfrustrated case.

As usual, once the model is reformulated in terms of
order parameter, the effective interaction—from plaquette
plaquette—becomes ferromagnetic, see Fig. 1~b!. By taking
the dihedral (fW 1

I ,fW 2
I ) on the center of the plaquetteI, we

indeed find that it interacts ferromagnetically with the dih
dral (fW 1

J ,fW 2
J) defined on the center of the plaquetteJ—the

plaquettesI and J being nearest neighbors—such thatfW 1
I

interacts only withfW 1
J andfW 2

I only with fW 2
J . A more detailed

analysis shows that the two vectorsfW 1
I andfW 2

I play symmet-
ric roles.69 As a consequence, the effective Hamiltoni
reads

H52J(
^I ,J&

~fW 1
I
•fW 1

J1fW 2
I
•fW 2

J! ~6!

with the same coupling constantJ.0 for the fW 1
I ’s and for

thefW 2
I ’s. Moreover, since the anisotropies resulting from t

stacked structure of the lattice are supposed to be irrelev
we take the same coupling constant for the interactions
side a plane and between the planes. The continuum lim
now trivial and proceeds as in the usual ferromagnetic c
The effective Hamiltonian in the continuum thus writes,
to constants,

H52E ddx$@]fW 1~x!#21@]fW 2~x!#2% ~7!
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with the constraint thatfW 1 and fW 2 are orthonormal. This
model is called the StiefelVN,2 model withN52 in theXY
case andN53 in the Heisenberg case. InVN,2 the index 2
means that we are consideringtwo orthonormal vectorsfW 1

andfW 2.
It is convenient to gather the vectorsfW 1 and fW 2 into a

rectangular matrix

F5~fW 1 ,fW 2! ~8!

and to rewriteH as

H52E ddx Tr@] tF~x!]F~x!# ~9!

where (tF) i j 5F j i . In the following two sections, we con
sider successively the case of Heisenberg andXY spins.

B. The Heisenberg case

In this case,H is invariant under the usual leftO(3) ro-
tation and inversion group acting on the spins

F85RF, RPO~3!. ~10!

It is also invariant under a rightO(2):

F85FU, UPO~2!. ~11!

This last symmetry encodes the fact thatfW 1 andfW 2 play the
same role which, itself, is reminiscent of theC3v symmetry
of the triangular plaquette. The system is thus symme
under G5O(3)3O(2). In the low-temperature phase,
typical ground state configuration is given by@see Fig. 1~b!#

F0}S 1 0

0 1

0 0
D . ~12!

It is symmetric under the diagonal group—O(2)diag—built
from the rightO(2) and from a particular leftO(2) in O(3):

F05S e cosu 2sinu 0

e sinu cosu 0

0 0 1
D F0S e cosu e sinu

2sinu cosu D ,

~13!

wheree561 encodes theZ2 part of O(2)diag. Apart from
the previousZ2 contained in theO(2)diag, anotherZ2 is also
left unbroken. It is the combination of aZ2 included into the
right O(2) of G, Eq. ~11!, and of a rotation ofp around the
x axis contained in the rotation groupSO(3) of G. Thus,G is
spontaneously broken down toH5Z23O(2)diag. As a con-
sequence, the symmetry breaking scheme reads
3-4
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G5O~3!3O~2!→H5Z23O~2!diag ~14!

which is often referred to, once all theZ2 groups have been
cancelled, as theSO(3)3SO(2)/SO(2) model.

Here the main feature of frustrated magnets appears:
SO(3) group is fully broken in the low-temperature phas
whereas it is only broken down toSO(2) in nonfrustrated
magnets. This has two important consequences that are a
very origin of the nontrivial critical behavior encountered
frustrated magnets.

First, there are three Goldstone modes in the broken ph
instead of two in the nonfrustrated case. This implies a ph
ics of spin waves different from that of theO(3)/O(2)
model. Second, the order parameter spaceSO(3) having a
nontrivial first homotopy group73

p1@SO~3!#5Z2 ~15!

there exist stable nontrivial topological configurations cal
vortices. Because of theZ2 homotopy group, only one kind
of vortex exists, contrarily to the well-known case ofXY
ferromagnets where there are infinitely many different kin
of vortices, each one being indexed by an integer, the w
ing number.

It has been established firstly by Kawamura a
Miyashita74 that the existence of vortices is important at
nite temperature in two dimensions. This has been larg
confirmed by subsequent works studying the temperature
pendence of thermodynamical quantities such as the cor
tion length, the spin-stiffness, etc.75–80 Actually, although
this has not been directly established, they certainly also p
an important role for the critical physics of the STA in thr
dimensions. A simple argument allows us to argue to t
end: let us go back on the lattice and introduce, on e
plaquetteI, together withfW 1

I andfW 2
I , a third vectorfW 3

I de-
fined by

fW 3
I 5fW 1

I `fW 2
I . ~16!

Let us then gather them into a 333 matrix

F I5~fW 1
I ,fW 2

I ,fW 3
I !. ~17!

Since (fW 1
I ,fW 2

I ,fW 3
I ) are three orthonormal vectors, one h

tF IF I51 and, therefore,F I is a SO(3) matrix. This allows
us to rewrite the Hamiltonian~6! on the lattice as

H52 (
^I ,J&

Tr~P tF I
•FJ!, ~18!

whereP is a diagonal matrix of coupling constants that ch
acterizes the interaction between thefW 1

I ’s, between thefW 2
I ’s

and between thefW 3
I ’s. One deduces from the microscop

derivation thatP5diag(J,J,0), i.e., that the interaction is th
same between thefW 1

I ’s and between thefW 2
I ’s and that there

is no interaction between thefW 3
I ’s. However, for the presen
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purpose, we consider, without loss of generality, the c
where the interaction is nonvanishing and identical betw
all vectors. One thus hasP5J1. Now, we use the decompo
sition of a rotation matrixF I of SO(3) in terms of a four-

componentunit vectorSĨ5(S0
I ,S1

I ,S2
I ,S3

I ):

Fkl
I 52S Sk

I Sl
I2

1

4
dklD12eklmS0

I Sm
I 12S S0

I 22
1

4D dkl .

~19!

In terms of the vectorSĨ , the Hamiltonian~18! writes

H524J(
^I ,J&

~SĨ
•SJ̃!2 ~20!

which is the Hamiltonian forfour-component nonfrustrated

spins with a particularity that each vectorSĨ appears qua-
dratically. Therefore, the Hamiltonian~20! is invariant under
a globalO(4) group and under alocal—gauge—Z2 group

that changesSĨ to 2SĨ . It corresponds to theRP3

5SO(4)/@SO(3)3Z2# model. Note that, had we kept th
microscopical coupling constants:P5diag(J,J,0), the
Hamiltonian~20! would be supplemented by terms breaki
the SO(4) global symmetry and leaving untouched theZ2
local symmetry which is the important point for our purpo
~see Ref. 80 for details!. For three-component spins, a
analogous Hamiltonian—theRP2 model—had been intro-
duced by Maier and Saupe81 and by Lebwohl and Lasher82 to
investigate the isotropic-nematic transition in liquid crysta
An extensive study of theRP2 model, as well as a detaile
investigation of the role of vortices in this transition, h
been performed by Lammertet al.83,84 These authors have
shown, in particular, that these nontrivial topological co
figurations favor the first order character of the transition.
the case of four-component spins, no such detailed ana
has been performed. However, theRPN5SO(N)/@SO(N
21)3Z2# models that generalizes Hamiltonian~20! to
N-component spins have been numerically studied in Ref
for 2<N<4. These systems have been shown to underg
first-order phase transition. Since the only difference
tween theRPN and theO(N)/O(N21)—or, equivalently,
SO(N)/SO(N21)—models lies in their topological proper
ties, one is naturally led to attribute the origin of the firs
order character of the phase transition in theRPN models to
theZ2 vortices. Finally, since the Hamiltonian~18!, relevant
to STA, can be mapped onto the Hamiltonian~20!—up to the
O(4)-breaking terms—one can expect that the topolog
configurations also favor first-order phase transitions in fr
trated magnets in three dimensions.

C. The XY case

In theXYcase, the Hamiltonian~9! is still invariant under
a right O(2) group, see Eq.~11!, while the left symmetry
group becomesO(2). In thelow-temperature phase, the ro
tational symmetry is broken and, since the spins are c
strained to be in a plane, the permutation symmetry betw
fW 1 andfW 2 is also broken. As a consequence, the symme
breaking scheme is
3-5
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G5O~2!3O~2!→H5O~2!diag. ~21!

This symmetry-breaking scheme is usually referred to
SO(2)3Z2→1. The Z2 degrees of freedom are known a
chirality variables.71,74,86,87

In this case, there also exist topological defects since

p1@SO~2!#5Z. ~22!

These defects are identical to those of the ferromagneticXY
model that drive the famous Berezinskii-Kosterlitz-Thoule
transition in two dimensions.53,54 However, in the frustrated
case, they very likely interact nontrivially with the chiralit
degrees of freedom which are critical ind53 at the same
temperature as the spin wave degrees of freedom. Th
apparent from the fact that one observes a unique phase
sition and not two distinct Ising-like andXY-like
transitions.88 As a consequence, one can expect, in the fr
trated case, a physics different and probably more com
cated than in the nonfrustratedO(2) model that undergoes
standard second-order phase transition in three dimensio

D. Generalization

For reasons that will become clear, we consider the g
eralization of Hamiltonian~1! to N-component spins. It is
straightforward to extend the previous considerations to
case. One finds the symmetry breaking scheme

G5O~N!3O~2!→H5O~N22!3O~2!diag. ~23!

In the following, we shall drop the ‘‘diag’’ index for sim-
plicity. Note that the previous Heisenberg andXY cases are
recovered trivially provided that we identifyO(0) with the
trivial group 1 andO(1) with Z2.

We now give a review of the experimental and numeri
results for both theXY and Heisenberg systems. We w
argue that a critical analysis of these results is crucia
understand that, up to now, the critical behavior of the
systems is still unexplained.

III. EXPERIMENTAL AND NUMERICAL SITUATIONS

A. Preliminaries

In this section, we analyze the experimental and num
cal results relevant to the physics of frustrated magnets.
aim is to show that these data are hardly compatible wit
second-order phase transition since, in particular, they s
that frustrated magnets display scalingwithout universality.
Moreover, we show that there are even some direct ind
tions for weak first-order behaviors in these systems.
recall that a phase transition is said to be weakly of first or
when, at the transition, the jump of the order paramete
small and the correlation length is large. Thus, scaling
haviors can be observed on a large range of temperature
that these transitions look similar to second-order phase t
sitions except very close to the critical temperature wh
scaling aborts.

We emphasize that, by itself, the analysis of the exp
mental and numerical results would not be sufficient
firmly conclude on the first-order nature of the transitions
13441
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has to be seen as one of the pieces of the argumentation
together with a theoretical analysis, will lead to a coher
picture of the critical physics of frustrated systems.

To perform this analysis we need, in our discussion,
compare experimental results among themselves, as we
with numerical and theoretical calculations. Let us expla
how we extract average values and error bars out of a se
experimental determinations of critical exponents. In the
perimental literature, only one error bar is quoted, wh
merges the systematic and statistical errors. Our firs
minimal—hypothesis is that error bars have a purely sta
tical origin ~no systematic error!. Under this assumption, we
can trivially compute the~weighted! average values of the
exponents together with their error bars. This is the mean
of the numbers we give in the following when we deal wi
average values of the critical exponents. It is clear that
hypothesis is too simple to be realistic since the experime
systematic errors cannot be neglected. Thus, the values
compute, especially the error bars, should be taken with c
tion. We, however, show in the course of this article that o
conclusions are robust to a possible underestimate of the
ror bars in our calculations, see Sec. V B 7.

Let us also notice that a possible source of error in
estimate of the critical exponents themselves could be
existence of corrections to scaling that could bias all
results. As we now argue, we can, however, expect that th
effects are not dramatic. Let us consider the we
documented case of the ferromagnetic Ising model ind
53. Most of the time corrections to scaling are not cons
ered in the determination of the critical exponents and
associated error bars. When they are taken into account,
induce a tiny change in the critical exponents, i.e., at mos
few percents~see, for instance, Refs. 89 and 90 for a review!.
It is therefore reasonable to think that neglecting correcti
to scaling induce an error of few percents on the criti
exponents while this probably leads to largely undere
mated error bars when those are announced to be of the o
of 1%.91

In the case of frustrated magnets, if we make the assu
tion that the corrections to scaling are comparable with th
found in the ferromagnetic Ising model and bear in mind t
the error bars quoted in the literature are of the order
5–10 %~see Tables I, II, and IV!, we are led to the conclu
sion that corrections to scaling are significant neither for
exponents nor for the error bars.

B. The XY systems

Let us first discuss theXY case since the experiment
situation is richer than in the Heisenberg case. Also,
symptoms of the existence of a problem in the interpretat
of the results are clearer than in this latter case for reas
that shall be explained in this article and particularly in S
IX.

1. The experimental situation

Two classes of materials are supposed to be describe
the Hamiltonian~9!. The first one is made ofABX3 hexago-
nal perovskites—whereA is an alkali metal,B a transition
3-6



a-

l

ould-

li-
are
.
t
a-

will

the

far
two
y a

the
,
our

nd

NONPERTURBATIVE RENORMALIZATION-GROUP . . . PHYSICAL REVIEW B 69, 134413 ~2004!
metal, andX a halogen atom—which are physical realiz
tions of XY STA. The most studied ones are CsMnBr3 ,
CsCuCl3 , CsNiCl3, and CsMnI3. ~See Ref. 92 for a review
and Ref. 93 for RbMnBr3. We have excluded this materia

TABLE I. The critical exponents of theXY STA.

Compound Ref. a b g n

CsMnBr3 88 0.21~1!

94 0.24~2!

95 0.21~2! 1.01~8! 0.54~3!

96 0.25~1!

97 0.22~2!

98 0.39~9!

99 0.40~5!

99 0.44~5!

100 1.10~5! 0.57~3!

CsNiCl3 101 0.37~8!

101 0.37~6!

102 0.342~5!

103 0.243~5!

CsMnI3 101 0.34~6!

CsCuCl3 104 0.23–0.25~2!

93 0.35~5! 1st order

TABLE II. The critical exponents of theXY helimagnets.

Compound Ref. a b g n

Tb 105 0.20~3!

106 0.23~4!

107 0.21~2!

108 0.53

Ho 109 1st order
110 0.27~2!

98 0.10–0.22
111 0.30~10! 1.24~15! 0.54~4!

111 0.37~10!

112 0.39~3!

113 0.39~2!

114 0.39~4!

115 0.39~4!

115 0.41~4!

116 1.14~10! 0.57~4!

117 0.38~1!

Dy 118 0.335~10!

119 0.3920.02
10.04

113 0.38~2!

112 0.39~1!

116 1.05~7! 0.57~5!

120 0.24~2!
13441
since the measurement of its specific heat presents a sh
erlike anomaly nearTc which renders the determination ofa
andb doubtful.! The second one is made of rare earth he
magnets Ho, Dy, Tb. For most materials, the transitions
found continuous butnot with the same critical exponents
For CsCuCl3, the transition is found to be weakly of firs
order, i.e., with small discontinuities. The results are summ
rized in Tables I and II.

We highlight four striking characteristics121 of these data.
Their consequences for the physics of frustrated magnets
be discussed in more details in the following.

~i! There are two groups of incompatible exponents. In
following discussion, we mainly use the exponentb to ana-
lyze the results since, as seen in Tables I and II, it is by
the most precisely measured exponent. Clearly, there are
groups of materials, each of which being characterized b
set of exponents,b in particular.

In the first one—that we call group 1—made up of

group 1:CsMnBr3 ,CsNiCl3 ,CsMnI3 ,Tb ~24!

one has

b;0.237~4!. ~25!

Note that, as far as we know, there is no determination of
exponentb for CsMnI3 that, being given its composition
has been included in the group 1 of materials. Anyway,
conclusions are not affected by this fact.

In the second—group 2—made up of

group 2:Ho,Dy ~26!

one has

b;0.389~7!. ~27!

These exponents are clearly incompatible. Actually, we fi
for the average exponents of CsMnBr3 alone—the most and
best studied material of group 1—

TABLE III. Monte Carlo critical exponents ofXYsystems. Note
that the exponenth is computed fromg/n522h.

System Ref. a b g n h

STA 123,126 0.34~6! 0.253~10! 1.13~5! 0.54~2! 20.09~8!

127 0.46~10! 0.24~2! 1.03~4! 0.50~1! 20.06~4!

128 0.43~10! 0.48~2!

STA 129 1st order

STAR 130 1st order

V2,2 130 1st order

BCT 132 1st order

GLW 129 1st order
3-7
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b50.228~6!, n50.555~21!,

a50.416~33!, g51.075~42!. ~28!

If we consider all the materials of group 1~except Tb for
which the results are not fully under control, but perhapsb)
we find

b50.237~4!, n50.555~21!,

a50.344~5!, g51.075~42!. ~29!

For materials of group 2~Ho and Dy! we find

b50.389~7!, n50.558~25!, g51.10~5!. ~30!

We do not give a value fora which is poorly determined.
Let us indicate that the exponents vary much from co

pound to compound in group 1. Although less accurat
determined thanb, a is only marginally compatible betwee
CsNiCl3 and CsMnBr3. Note moreover that, even for th
same material, the data are not fully compatible amo
themselves:b in CsMnBr3 shows a somewhat too large di
persion.

~ii ! The anomalous dimensionh is negative for group 1
which is impossible. If we assume that the transition is
second order for group 1, we can use the scaling relation
computeh. In particular, the precise determination ofb al-
lows us to useh52b/n21 to determine rather accurate
h. The exponentn itself can be obtained directly from th
experiments or deduced using the scaling relation

n5~22a!/3. ~31!

The large number of experiments devoted to the determ
tion of a allows a precise determination ofn. By using the
scaling relation~31!, we find n50.528(11) if we consider
the experimental results for CsMnBr3 alone and n
50.552(2) if we consider CsMnBr3 , CsNiCl3, and CsMnI3.
By using the relationh52b/n21 together with Eq.~31! or
the relationh56b/(22a)21 and by considering the dat
of CsMnBr3 alone or the data of the materials of group
~except Tb for which it is not sure that the data are reliab!
we can obtain four determinations ofh. In the four cases, we
find h negative by at least 4.1 standard deviations and
probability to find it positive always less than 1025. In fact,
the most precise determination is obtained by combining
the data of group 1, Eq.~29!, and by using the relationh
56b/(22a)21. In this case, we obtainh520.141(14)
and thus a~almost! vanishing probability to find it positive
Note also that, althoughb andn are less accurately known i
Tb—for which experiments are anyway delicate—h is also
found negative.

However, we stress thath cannotbe negative in a true
second order phase transition. This is a general result, b
on first principles of field theory, thath is always positive if
the theory describing the transition is a unitary GLWf4-like
model122 as it is the case here~see Appendix A!.
13441
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~iii ! For group 2, the scaling relationg12b23n50 is
violated. From Eq.~30! it is possible to check the scalin
relations. We findg12b23n50.202(92) and thus a viola
tion by 2.2 standard deviations.

~iv! CsCuCl3 undergoes a weak first-order phase tran
tion. Until recently, CsCuCl3 was believed to undergo
second-order phase transition with exponents compat
with those of group 1, see Table I. It has been finally found
display a weak first-order phase transition.93

2. The numerical situation

Monte Carlo simulations have been performed on five d
ferent kinds of XY systems. The first one is the ST
itself.123–129 The second model is the STAR~where ‘‘R’’
stands for rigidity! which consists in a STA for which the
local rigidity constraint—Eq.~4!—has been imposed on eac
plaquette at all temperatures.130 The third model is the Stiefe
V2,2 model whose Hamiltonian is given by Eq.~6!.130,131This
is a hard spin, discretized version of the NLs model relevant
to frustrated magnets. Note that, for this last model, the
angular structure is irrelevant since the interaction is fer
magnetic; a cubic lattice can be chosen. Also a soft s
discretized version of the GLW model has recently be
studied by Itakura129 who also restudied the STA model fo
large sizes. Finally, a helimagnetic system defined on a bo
centered-tetragonal~BCT! lattice—the ‘‘BCT model’’—has
been investigated.132

Here, we emphasize that the local rigidity constraint~4! as
well as the manipulations that lead to the STAR, StiefelV2,2,
GLW, and BCT models only affect themassive—
noncritical—modes. Thus, all the STA, STAR, StiefelV2,2,
GLW, and BCT models have the samecritical modes, the
same symmetries and the same order parameter. There
one could expect a common critical behavior for all the
systems.

Let us comment the results of the simulations given
Table III. Note that, due to the its novel character, we sh
comment on the recent work of Itakura129 separately.

~i! For STA, scaling laws are found with exponents co
patible with those of group 1. Let us, however, notice th
similarly to what happens for the materials of group 1 the
exists, in the numerical simulations of STA, a rather lar
dispersion of the results. For instance, the two extreme
ues ofn differ by 2.1 standard deviations.

Let us make two other remarks. First, the good agreem
between the numerical results for STA and the experime
ones for materials of group 1 has been repeatedly interpr
in the literature as a proof of the existence of a second-o
transition and even as evidence of the existence of the ch
fixed point of the GLW model.71 We emphasize here that th
fact that a Monte Carlo simulation reproduces experimen
results only means that the Hamiltonian of the simula
system is a good approximation of the microscopic Ham
tonian describing the physics of real materials. However,
neither explains nor proves anything else—andcertainly not
the existence of a second-order phase transition—s
Monte Carlo simulations suffer from problems analogous
those encountered in experiments: a weakly first-order ph
3-8
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transition is very difficult to identify and to distinguish from
a second-order one.

Let us now come to our second remark. In a beaut
experiment, Plakhtyet al.88 have measured the so-called ch
ral critical exponents123 bc50.44(2), fc51.28(7) andgc
5fc2bc50.84(7) in CsMnBr3. They have found values
compatible with those found numerically in STA b
Kawamura:123 bc50.45(2), gc50.77(5), andfc5gc1bc
51.22(5) but in worse agreement with the results of Plum
and Mailhot:127 bc50.38(2), gc50.90(9), and fc5gc
1bc51.28(9). Let usemphasize, again, that this agreeme
simply means that the parameters characterizing the num
cal simulations are not too far from those associated with
experiments. By no means, it implies—or give a new in
cation of the existence of—a second-order transition. Le
notice thatbc has also been measured in Ho.117 The value
found bc50.90(3) completely disagrees with the res
found in STA and in CsMnBr3.

~ii ! The anomalous dimensionh is negative for STA. As
shown in Ref. 130,h is found negative using the two scalin
relationsh52b/n21 andh522g/n for the two simula-
tions where these calculations can be performed.

~iii ! The simulations performed on STAR,V2,2, and BCT
models give first-order transitions. Therefore, the modifi
tions in the microscopic details which change STA in
STAR, V2,2, and BCT drastically affect the scaling behavio

~iv! In a remarkable work, Itakura has recently perform
Monte Carlo and Monte Carlo RG approaches of the S
and its GLW model version that has led to a clear first-or
behavior129. Itakura has performed standard Monte Ca
simulations of the STA involving sizes up to 1263144
3126 leading to clear first-order transitions. In particular,
these lattice sizes, the double peak of the probability dis
bution of the energy at the transition is clearly identifie
Itakura has also used an improved Monte Carlo RG sim
tion of the STA and its GLW model version. One advanta
of this approach compared with previous RG Monte Ca
studies is that it allows one to reach the asymptotic criti
behavior using systems of moderately large lattice siz
Within this approach, Itakura has found evidence for a fir
order behavior with, notably, a runaway behavior of the R
flow and the absence of any nontrivial fixed point. This
sult, together with the proximity between the critical exp
nents computed numerically and those measured in CsMn3
suggests that this last material also undergoes, in fact, a
order phase transition.

3. Summary

We now summarize the results of our analysis of b
experiments and numerical simulations forXY frustrated
magnets.

~1! Scaling laws are found in STA and helimagnetic m
terials on a rather wide range of temperature. This is also
case within all—except for an important one129—numerical
simulations of the STA.

~2! There are two groups of systems that differ by th
critical exponents. The first one includes the group 1 of m
terials and the numerical STA model. The second one co
sponds to the group 2 of materials. One also observes v
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tions of critical exponents inside a given group of exponen
~3! The anomalous dimensionh is negative for the mate

rials of group 1 and for the numerical STA model. This
very significant from the experimental results, less from
numerical ones.

~4! For group 2, the scaling relations are violated by 2
standard deviations.

~5! CsCuCl3 is found to undergo a weak first-order tra
sition.

~6! STAR, V2,2, and BCT models undergo strong firs
order transitions.

~7! Recent Monte Carlo and Monte Carlo RG approach
of STA and the soft spin discretized version of the GL
model give clear indications of first-order behaviors.

4. Conclusion: five possible scenarios

Let us now propose five possible scenarios to explain
phenomenology ofXY frustrated systems.

Scenario I.This scenario is—together with the secon
one—the most often invoked: the critical behavior of fru
trated magnets, when they display scaling, is controlled b
uniquefixed point of the RG flow which is associated with
new universality class.68,69,71,125,126,133Although, from point
~1! above,XY frustrated magnets appear to display rath
generic scaling behaviors, the examination of the experim
tal and numerical data provides clear indications against
first scenario. Indeed, from point~2!, there is a manifest lack
of universality in the scaling behavior of frustrated magne
Also several points, from~3!–~7!, strongly militate in favor
of first-order behaviors.

Scenario II.In the second scenario, the two sets of exp
nents corresponding to groups 1 and 2 are, in fact, assoc
with two true second-order phase transitions from which
sult two distinct universality classes. This scenario is ru
out by the fact—see point~3!—that the anomalous dimen
sion h is negative for group 1 and for the numerical ST
model. Thus, provided~i! the quoted error bars in the litera
ture are reliable,~ii ! our hypothesis of a purely statistica
origin of the errors does not completely bias our analy
and,~iii ! corrections to scaling do not alter drastically all th
results, we are led to the conclusion that the behavior of
materials of group 1 and of the numerical STA modelcannot
be explained by the existence of a fixed point in the GL
model. In the simplest hypothesis, these systems must
dergo first-order phase transitions. This last hypothesis se
to be confirmed by several other facts. First, CsCuCl3, whose
exponents are close to those of group 1 has been fin
found to undergo first order phase transitions, see point~5! of
the summary. Secondly, point~6!, numerical models very
close to STA—STAR,V2,2, and BCT—also undergo first
order phase transitions. Finally, the hypothesis of a first-or
phase transition for STA itself is corroborated by the fa
point ~7!, that recent Monte Carlo and Monte Carlo R
simulations of this system predict a first-order pha
transition.129

Scenario III. In the third scenario, materials of group
undergo a second order phase transition—h is found positive
there—while those of group 1 as well as the numerical S
model all undergo weakly first-order phase transitio
3-9
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Within this scenario, the critical exponents of materials
group 1 should be considered as effective or pseudocri
exponents, characterizing the pseudoscaling observed,
for temperatures far enough from the critical temperatu
There is no direct and definitive argument against this s
nario. Of course, violation of the scaling relations for ma
rials of group 2, point~4!, makes doubtful a second orde
behavior. However, this violation is too small to definite
reject it. Actually, the drawback with this third scenario is
lack of naturalness. Indeed, it implies a very specific fin
tuning of the microscopical coupling constants—i.e., of t
initial conditions of the RG flow—for materials of group 1
Their representative points in the coupling constant sp
must lie outside the basin of attraction of the fixed po
governing the critical behavior of materials of group 2 b
very close to its border so that the transitions are weakly
first order.

Scenario IV.In the fourth scenario, all frustrated magne
undergo first-order phase transitions that almost generic
appear to be weak or very weak and are characterized
pseudoscaling and pseudocritical exponents. This fourth
nario, compared with the third one, could thus seem e
more unnatural. This is true, but only within the usual exp
nation of weak first-order phase transitions where the we
ness of the first-order transition is obtained by fine-tuning
parameters. Actually, we shall provide arguments in favor
the present scenario and shall show that the genericit
pseudoscaling has, in fact, a natural explanation relying
ther on the existence of a fixed point nor on a fine-tuning
parameters.

Scenario V.Finally, one can imagine several variants
these scenarios. For instance, we have adopted the sta
position that consists in associating a unique set of crit
exponents to a fixed point. On the contrary, Calabr
et al.134,135 have suggested that a unique fixed point co
lead to a whole spectrum of effective exponents. This s
nario, which would explain the occurence of a spreading
critical exponents in the experimental and numerical c
texts, will be discussed in details in the following. We no
review the experimental and numerical results obtained
the Heisenberg systems.

C. The Heisenberg systems

1. The experimental situation

Contrarily to theXYcase, there is no Heisenberg helima
nets~see, however, Ref. 68!. Therefore there remain,a pri-
ori, only the Heisenberg STA materials. In fact, theA/B
phase transition of He3 can be described by the same GL
Hamiltonian as the Heisenberg STA.8,9 It is thus a candidate
Unfortunately, the narrowness of the critical region of th
transition does not allow a reliable study of the critical b
havior of this system and there are no available data abou

Three classes of Heisenberg STA materials have b
studied. First, systems such as VCl2 , VBr2 ,
Cu(HCOO)22CO(ND2)22D2O, and Fe@S2CN(C2H5)2#2Cl
which are generically quasi-XY except in a particular rang
of temperature where their anisotropies are irrelevant. S
ond, those which become isotropic thanks to a magnetic fi
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that exactly counterbalances the anisotropies. This is the
of CsNiCl3 and CsMnI3 at their multicritical point. Finally,
those which become isotropic because they have been
pared in a fine-tuned stoichiometry such that the Ising-l
andXY-like anisotropies cancel each other to form an isot
pic material. This is the case of CsMn(Br0.19I0.81)3.

Let us comment the experimental results summarized
Table IV.

~i! As in the XY case, the Heisenberg materials fall in
two groups. The group 1, made up of

group 1: Cu~HCOO!22CO~ND2)22D2O,

Fe@S2CN~C2H5)2] 2Cl,

VCl2 ,VBr2 ~32!

is characterized by

b50.230~8! ~33!

while for group 2, made up of

CsNiCl3 ,CsMnI3 ,CsMn~Br0.19,I0.81)3 ~34!

one finds

b50.287~8!. ~35!

Note that, strictly speaking, the values ofb for VBr2 and for
CsMnI3 are not known and, thus, our classification is som
what improper. It seems however logical to suppose t

TABLE IV. The critical exponents of the Heisenberg STA. Th
abbreviationsA, B andC stand for Cu(HCOO)22CO(ND2)22D2O,
Fe@S2CN(C2H5)2#2Cl, and CsMn(Br0.19I0.81)3, respectively. The
data in brackets are suspected to be incorrect. They are given
completeness.

Compound Ref. a b g n

VCl2 136 0.20~2! 1.05~3! 0.62~5!

VBr2 137 0.30~5!

A 138 0.22~2!

B 89,139,140 0.24~1! 1.16~3!

141 0.244~5!

CsNiCl3 101,142 0.25~8!

102 0.23~4!

103 0.28~3!

CsMnI3 101 0.28~6!

C 143 0.23~7!

144 0.29~1! @0.75~4!# @0.42~3!#

145 0.28~2!
3-10
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TABLE V. Monte Carlo critical exponents of the Heisenberg systems.h is computed byg/n522h and,
apart in Refs. 123 and 131,a is computed by 3n522a.

System Ref. a b g n h

STA 123,133 0.240~80! 0.300~20! 1.170~70! 0.590~20! 0.020~180!
149 0.242~24! 0.285~11! 1.185~3! 0.586~8! 20.033~19!

150 0.245~27! 0.289~15! 1.176~26! 0.585~9! 20.011~14!

151 0.230~30! 0.280~15! 0.590~10! 0.000~40!

152 0.589~7!

STA 129 1st order

STAR 153 0.488~30! 0.221~9! 1.074~29! 0.504~10! 20.131~13!

V3,2 153 0.479~24! 0.193~4! 1.136~23! 0.507~8! 20.240~10!

131 0.460~30! 1.100~100! 0.515~10! 20.100~50!

V3,2 129 1st order

BCT 154 0.287~30! 0.247~10! 1.217~32! 0.571~10! 20.131~18!

GLW 129 1st order
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VBr2 is close to VCl2 and CsMnI3 close to CsNiCl3. Any-
way, it will be clear in the following that our analysis i
almost insensitive to this point.

For group 1, the average values of the critical expone
are given by

b50.230~8!, a50.272~35!,

n50.62~5!, g51.105~21!. ~36!

A very severe difficulty in the study of the materials of gro
1 is their two-dimensional character and Ising-like anisot
pies. The temperature range where the systems behave e
tively as three-dimensional Heisenberg systems is narr
This is the case of VCl2 where this range is less than tw
decades and where, closer to the critical temperature,
system becomes Ising-like. For this group of materials
exponentb is very small and the authors of Ref. 136 ha
noticed that such small values have also been found in
terials where dimensional crossover is suspected. Thus,
not clear whether the whole set of results really correspo
to a three-dimensional Heisenberg STA.

For group 2, the experimental situation seems to be be
under control. The average values of the critical expone
are given by

b50.287~9!, a50.243~3!,

n50.585~9!, g51.181~33!, ~37!

where the scaling relations have been used to computen and
g. Note that the values ofn andg thus obtained differ sig-
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nificantly from those of CsMn(Br0.19I0.81)3 whose critical be-
havior has been claimed to be perturbed by disorder~see,
however, Refs. 146–148!.

~ii ! For group 1, the anomalous dimensionh is signifi-
cantly negative. Using the two exponents that have b
measured at least twice in group 1—b andg—we can com-
pute the anomalous dimension from the scaling relationh
5(4b2g)/(2b1g). We find h520.118(25) which is
thus negative by 4.8 standard deviations.

~iii ! For group 2, the anomalous dimensionh is mar-
ginally negative. Using the critical exponents given
Eq. ~37!, one obtains, for the anomalous dimensio
h520.018(33). Thush is found negative but not signifi
cantly, contrarily to what happens in group 1.

~iv! For group 1, the scaling relationsg12b221a50
52b1g23n are violated. Indeed, g12b221a
520.135(56) and 2b1g23n520.29(15). Of course,
none of these violations is completely significant in its
because of the lack of experimental data. However, si
they are both independently violated it remains only a v
small probability that the scaling relations are actually sa
fied.

2. The numerical situation

In the Heisenberg case, as in theXY case, five different
kinds of systems: STA, STAR, Stiefel (V3,2 in this case!,
BCT, and GLW models have been studied. The results of
simulations are given in Table V.

Let us comment on them. Again, we put aside the work
Itakura.129

~i! For the STA, scaling laws are found with an expone
b close to that of group 2. The average values for the ex
nents of STA are
3-11
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b50.288~6!, g51.185~3!, n50.587~5!. ~38!

b is thus extremely close to the experimental value of gro
2 while n and g are extremely close to the experimen
values deduced from the scaling relations~37!. The scaling
relation g12b23n50 is very well verified sinceg12b
23n5102466.1022.

~ii ! For the STA,h is negative. Using the values ofb/n
and g/n obtained directly in the simulations, one can co
pute the average value ofh: 20.0182(89). The probability
of it to be positive is 0.02 and is thus small although n
vanishing.

~iii ! For the STAR,V3,2, and BCT models, the values o
b are all incompatible with that of STA~three standard de
viations at least! and are all incompatible among each othe
This has been interpreted as an indication of very weak fi
order phase transitions.153 This is to be compared with th
XY case, where the transitions for STAR and theV2,2 model
are strongly of first order.

~iv! For the BCT, STAR andV3,2 models,h is always
found significantly negative, see Table V, whereh has been
calculated fromg/n.

~v! The Monte Carlo and Monte Carlo RG approaches
the STA,V3,2, and GLW model performed by Itakura has le
to clear first-order behaviors.129 For Heisenberg STA, con
trarily to the XY case, even for the largest lattice sizes—
396384—the double peak of the probability distribution
the energy is not observed. However, theV3,2 model displays
a clear double peak. Moreover, for the STA and theV3,2
model, the RG flow clearly does not exhibit any fixed poi
Instead, a runaway of the RG flow toward the region
instability is found which indicates first-order transition
The transitions are thus—weakly—of first order. The tran
tion is also weaker of first order for Heisenberg than forXY
spins.

3. Summary

We now summarize the experimental and numerical s
ations for frustrated magnets with Heisenberg spins. H
the experimental situation is much poorer than in theXYcase
and is still unclear on many aspects. On the contrary,
numerical results are numerous and more precise than in
XY case.

~1! Scaling laws are found in STA materials on a rath
wide range of temperatures as well as in all Monte Ca
simulations—apart that based on Monte Carlo RG.

~2! There are two groups of materials that do not have
same exponents. The exponentb of the numerical STA
model agrees very well with that of group 2.

~3! The anomalous dimension is manifestly negative
group 1 and marginally negative for group 2. For the nume
cal STA model,h is found negative although not complete
significantly. For STAR,V3,2, and BCT,h is found signifi-
cantly negative.

~4! For group 1, the scaling relations are violated.
~5! STAR, V3,2, and BCT exhibit scaling behaviors with

out universality. Also, the results are incompatible with th
of the numerical STA model.
13441
p
l

-

t

.
t-

f

.
f

i-

-
e,

e
he

r
o

e

r
i-

t

~6! A Monte Carlo RG approach of the STA,V3,2 and
GLW models has led to clear first-order behaviors.

4. Conclusion

Let us now draw some conclusions about the Heisenb
case. The experimental and numerical data reveal the s
problems as those encountered in theXY case: the different
materials split into two groups, the anomalous dimension
found negative in many materials and in most numeri
simulations, the scaling relations are violated in some ma
rials and there is no universality in the exponents found
the simulations. The same kind of conclusion as in theXY
case follows~see Sec. III B 4!: the first scenario, that of an
explanation based on the existence of a unique fixed p
appears unlikely. There are also signs of first order behav
but less significantly than in theXYcase. Thus, at this stage
it is impossible from the experimental and numerical d
alone to discriminate between the different scenarios II,
IV, and V. It is therefore important to gain insight from th
theoretical side. Before discussing this, let us mention
other interesting numerical result.

D. The NÄ6 STA

Let us quote a simulation of the STA with six-compone
spins that has been performed by Loisonet al.23 The results
are given in Table VI. Six-component spins were chos
since it was expected that the transition was of second or
Loison et al. have clearly identified scaling laws at the tra
sition with a positive anomalous dimension. Let us emp
size that, even if the transition is actually of first order,
suggested by the recent results of Calabreseet al.,135 it
should be extremely weakly first order—see the followin
Thus, scaling laws should hold for all temperatures but th
very close toTc . In this respect, the exponents forN56 are
therefore very trustable so that reproducing them is a c
lenge for the theoretical approaches.

IV. A BRIEF CHRONOLOGICAL SURVEY OF THE
THEORETICAL APPROACHES

Let us briefly review the most important theoretical dev
opments concerning this subject. The first microscopic d
vation and RG study—at one- and two-loop order ind54
2e—of the effective GLW model relevant for the STA—se
below—was performed for He3 by Joneset al. in 1976
~Ref. 8! and by Bailinet al. in 1977.9 The model was red-
erived and restudied in the context of helimagnets~for gen-
eral N) by several groups including Baket al. ~1976!,155

Garel and Pfeuty~1976!,68 and Barak and Walker~1982!.156

TABLE VI. Monte Carlo critical exponents for six-componen
spins in the STA system~Ref. 23!. Note that using the results o
Loison et al. and the relation h522g/n, one finds h
50.025(20).

System a b g n

N56 STA 20.100~33! 0.359~14! 1.383~36! 0.700~11!
3-12
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It was established at that time that, aroundd54, the transi-
tions for Heisenberg spin systems had to be of first ord
More precisely, these authors found that there exists a cri
value Nc(d) of the numberN of spin components abov
which the transition is of second order and below which i
of first order. They found8,9

Nc~d542e!54~31A6!24S 31
7

A6
D e1O~e2!

;21.8223.4e1O~e2!, ~39!

with e542d. A first large-N expansion was also studied,
particular ford53, by Bailin et al. in 1977.9

A group theoretical derivation of the GLW model releva
to the XY STA was performed by Yosefin and Domany
1985.69 They found the same Hamiltonian as for helima
nets. Between 1985 and 1988, Kawamura71,125,126,133has per-
formed this analysis forN-component STA. He has show
that the Hamiltonian is the same as for He3 or helimagnets,
the RG analysis giving obviously the same results. This
thor has also extrapolated the two-loop result forNc(d) of
Eq. ~39! in d53 and foundNc(d53),2. This led him to
conjecture the existence of a second-order phase trans
for frustrated magnets associated with a new universa
class. However, as is well known, this direct extrapolat
cannot be reliable since it is notorious that the perturba
series must be resummed.

In 1988, Dombre and Read70 derived, in the quantum
case, the Nonlinear Sigma (NLs) model relevant to frus-
trated magnets. In 1990, Azariaet al. studied the classica
version of this NLs model aroundd52. They found a fixed
point of the RG flow in a two-loop calculation for anyN
>3.157 For N53, they found the phenomenon of enlarg
symmetry: at the fixed point the symmetry becomesSO(3)
3SO(3);SO(4) instead ofSO(3)3SO(2). Thus, their
conclusion was that, if the transition is of second order, i
characterized byO(4)/O(3) critical exponents—at least fo
n. Another possibility proposed by these authors was that
transition could be also mean-field tricritical or of first orde
However,noneof the experimental or numerical results a
compatible with theO(4)/O(3) or mean-field tricritical ex-
ponents. Note finally that these authors supposed that, if
critical, the behavior at the transition should be mean-fi
tricritical in d53, something which is mandatory only fo
O(N)/O(N21) models, but not for more complex model

The first nonperturbative approach to frustrated magn
was performed by Zumbach in 1993.65–67He wrote down the
NPRG equations for the GLW models suited to the desc
tion of these systems. He studied them within the local
tential approximation ~LPA! of the Wilson-Polchinski
equation—analogous to the Wegner-Hought
approximation31—and foundNc(d53);4.7. Since he found
no fixed point forN52 andN53 he claimed that the tran
sition is of first order in these cases. In the caseN53, there
is a minimum in the RG flow, a pseudofixed point, that fak
a true fixed point~see below for details!. The transition was
thus conjectured to beweaklyof first order with pseudoscal
13441
r.
al

-

-

on
ty
n
e

s

e
.

ri-
d

ts

-
-

s

ing characterized by pseudocritical exponents. Note t
within the LPA, all derivative terms in the Hamiltonian ar
neglected so that the anomalous dimension is vanishing.
has two important consequences. First, the pseudocritica
ponents found by Zumbach were not very reliable and t
difficult to compare with the experimental and numerical
sults. Second, this approach neglects terms—the so-ca
current term~see below!—that are fundamental within the
perturbative approach of the NLs model performed around
two dimensions. Thus, within Zumbach’s approach, it w
not possible to match with these results. Finally note that
the N52 case,no minimum in the RG flow was found and
thus, no pseudocritical exponent was obtained, in contra
tion with the scaling behaviors observed in the experimen
and numerical contexts.

Then, three-loop calculations were performed by A
tonenkoet al. in 1994 and 1995 on the GLW model. Ind
53 this has led, after Pade´-Borel resummation, toNc(d
53)53.91.158 In d542e, they have determined the three
loop contribution—7.1e2—to Nc(d542e), see Eq.~39!.
This has led toNc(d53)53.39.159 These authors have men
tioned that, contrarily to theO(N) models, their three-loop
results were not well converged.

In 1996, Jolicœur and David studied a generalization
the Stiefel model that involvesN vectors with N
components.160 They showed within a mean-field approx
mation and a one-loop calculation performed ind521e that
a first-order line should appear in a nontrivial dimensi
above 2. It should isolate the chiral fixed point in the me
stability region in such a way that this point should no long
play any role. Above this dimension, the transition shou
therefore be of first order.

Between 1998 and 2001, Mudrov and Varnashev161–165

studied, in a series of articles, the so-calledMN model which
describesXYhelimagnets forM5N52. Their computations
at three and four-loop in 42e dimensions have led to th
conclusion of the absence of fixed point in these cases.

Then, in 2000–2002, using the technique of the effect
average action, including derivative terms, the present
thors performed a nonperturbative study of frustrated m
nets for any dimension between 2 and 4.63,64,121They recov-
eredall known perturbative results at one-loop in two a
four dimensions as well as forN→`. They determined
Nc(d) for all d and foundNc(d53)55.1. Accordingly, for
N56, they found a second-order phase transition. Their
ponents were in very good agreement with those found
merically. ForN53,64 they recovered Zumbach’s results—
the presence of a minimum in the RG flow—and improv
his approach: they found pseudocritical exponents in g
agreement withsomeexperimental realizations of frustrate
magnets.However, regarding the spreading of the expe
mental and numerical data, the recourse to a minimum, le
ing to auniqueset of pseudocritical exponents, was clea
not the end of the story. During the study of theN52
case,121 the present authors realized that the property of ps
doscaling and even more, generic pseudoscaling, does
rely on the concept of minimum of the flow. Pseudoscali
appears as a consequence of the existence of awhole region
in the flow diagram in which the flow is slow. This allowe
3-13
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them to account for thenonuniversal scalingthat occurs in
XY as well as in Heisenberg frustrated magnets. The pre
article accounts for these last developments.

In 2001, Varnashev investigated at four-loop directly
three dimensions the GLW model for frustrated magnets166

In the case ofXY and Heisenberg systems he foundno fixed
point. He also provided an estimate of the critical val
above which there is a stable fixed point:Nc(d53);6.5.

In 2001, Pelissettoet al.167 derived the six-loop series fo
the GLW model. They used sophisticated resummation m
ods in order to find the fixed points and to determine
critical exponents of the model. ForN*7, they found a fixed
point of the same nature as the one obtained at large-N and
in the 42e expansion. Thus, a second-order phase transi
is expected in this case. For 5&N&7, they considered tha
their resummed series were not well converged, the num
of fixed points depending strongly of the number of loo
considered. This led them to interpret this result as an in
cation thatNc(d53);6. Finally and surprisingly, forN
&5 and, in particular, for the physically relevant casesN
52 and N53, they found stable fixed points. More pr
cisely, they found zeroes of theb functions using different
approximants at three, four, five, and six loops for 15, 45,
and 95 %~respectively, 45, 70, 95, and 100 %! of the ap-
proximants in theXY~respectively, Heisenberg! case. Thus, a
second-order phase transition was also predicted in
physically relevant cases. However, the critical expone
found were far from all experimental and numerical data~see
the following!. Moreover, regarding again the spreading
these data, an interpretation in terms of a unique set of
ponents was clearly insufficient.

In another work,168 assuming thatNc(d52)52, Pelis-
settoet al. reformulated the three-loop version of the ser
of Eq. ~39!—see below—to make it compatible with this la
guess. The series seemed to have better converg
properties—see, however, below—and allowed Peliss
et al. to compute Nc(d). They found Nc(d53)55.3, in
good agreement with the value—Nc(d53)55.1—obtained
from the NPRG approach.121,64

Recent reinvestigations of the five- and six-loop pertur
tive series134,135 have led Calabreseet al. ~see also170! to
conjecture that the fixed point found by Pelissettoet al.—
that corresponds to afocus fixed point—could explain the
existence of the spreading of exponents encountered in
trated magnets. Indeed, they observed that, due to the
cific structure of the fixed point, the exponents display stro
variations along the RG trajectories that could explain
lack of universality observed experimentally and nume
cally. They have also given estimates of the critical num
of spin components for which there is a change of the or
of the phase transition. They have found that there is a fi
order phase transition in the whole domain 5.7(3),N
,6.4(4) and a second-order phase transition for the o
values ofN and, in particular, forN52 andN53.

Finally, a very recent computation of the five-loopb func-
tion of the GLW model in a 42e expansion has led to
novel estimate ofNc(d). Calabrese and Parruccini171 have
found the valueNc(d53)56.1(6) which is compatible with
the valueNc(d53)56.4(4) found within the six-loop com
13441
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putation performed in three dimensions.134,135Note also that,
using the pseudo-e-expansion technique on the six-loop s
ries, the same authors171 have obtained another compatib
estimate ofNc(d53)56.22(12). Since several aspects
the recent perturbative and nonperturbative approaches
fer, in particular in their interpretations of the origin of th
nonuniversal scaling found in frustrated magnets, we po
pone the detailed discussion of these last development
both methods to the following sections.

V. THE PERTURBATIVE SITUATION

Let us discuss in more detail the perturbative approac
that have been used to investigate frustrated magnets. T
are essentially two different methods to analyze the criti
behavior of the system described by the Hamiltonian~9!.
They correspond to two different methods to deal with t
constraints obeyed by the microscopic degrees of freed
~5!. They lead to the NLs and GLW models that have bee
both perturbatively analyzed around their respective criti
dimension as well as, for the GLW model, directly in thr
dimensions. Let us review the results of these approache

A. The nonlinear sigma „NLs… model approach

The idea underlying the construction of this model is
consider the system in its low-temperature—symme
broken—phase and to take into account small fluctuation
the fields around the direction of the order parameter. T
corresponding treatment is thus, by construction, a lo
temperature expansion. Its actual validity is in fact less st
gent than that: it is sufficient that the system islocally or-
dered and that the temperature is small. This explains w
this approach is valid even in two dimensions for syste
obeying the Mermin-Wagner theorem. Note that this a
proach applies—a priori ~see Sec. II B and the discussion
the end of this section!—only for N>3. Indeed, in theN
52 case, the low-temperature expansion of the NLs model
leads to a trivial result, i.e., the theory is perturbatively fre
This result is, however, not reliable since there exist to
logical as well as Ising-like degrees of freedom in theXY
frustrated case~see Sec. II!. These degrees of freedom, th
are completely missed within the low-temperature pertur
tive approach, drastically affect the physics at finite tempe
ture as in the famous Berezinskii-Kosterlitz-Thouless ph
transition.53,54

Within the NLs model approach, the partition function o
the SO(3)3SO(2)-symmetric model follows from the
Hamiltonian~7! together with the constraints of Eq.~5!:70

Z5E DfW 1DfW 2)
i< j

d~fW i .fW j2d i j !

3expS 2
1

2TE ddx@~]fW 1!21~]fW 2!2# D . ~40!

The delta functionals allow the integration of the three m
sive modes among the six degrees of freedom offW 1 andfW 2.
3-14
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Therefore, only the three—Goldstone—modespW remain, in
terms of which the partition function writes157,172,173

Z5E
upW u<1

DpW expS 2
1

2TE ddxgi j ~p!]p i]p j D . ~41!

Equation~41!, wheregi j (p) embodies the interaction, is th
suitable expression for a low-temperature expansion of
SO(3)3SO(2)/SO(2) NLs model.

The low-temperature expansion of such NLs models has
been studied in general but rather abstract terms
Friedan.172 The specific study of the SO(3)
3SO(2)/SO(2) model and its generalization t
N-component spins—theO(N)3O(2)/@O(N22)3O(2)#
model—has been performed by Azariaet al.157,173 ~see also
Ref. 168!. The RG analysis requires to consider the m
general Hamiltonian invariant underO(N)3O(2) and
renormalizable aroundd52. This Hamiltonian involves no
only the usual kinetic terms forfW 1 andfW 2, Eq.~40!, but also
a nontrivial derivative term, called the ‘‘current term,’’ whic
reads

E ddx~fW 1•]fW 22fW 2•]fW 1!2. ~42!

This term must be included in the model since it has the ri
symmetry, is power-counting renormalizable aroundd52
and is thus generated during the RG flow. The correct Ns
model—in the sense of stability under R
transformations—is given by~for any N>3):157

H5E ddxS h1

2
@~]fW 1!21~]fW 2!2#1S h2

8
2

h1

4 D
3~fW 1•]fW 22fW 2•]fW 1!2D , ~43!

where we have chosen to reparametrize the coupling c
stants in a way convenient for what follows. Now, the Ham
tonian of the naive continuum limit Eq.~40! is just the initial
condition of the RG flow corresponding toh15h2/251/T.
Note that we have included the temperature in the coup
constants.

For the special caseN53, it is convenient to rewrite the
model differently. We define, as in Eq.~16!, a third vectorfW 3
by

fW 35fW 1`fW 2 . ~44!

With this expression, it is easy to verify that the current-te
~42! is nothing but a linear combination of the kinetic term
of fW 1 , fW 2, andfW 3:

E ddx~fW 1•]fW 22fW 2•]fW 1!2

52E ddx@~]fW 1!21~]fW 2!22~]fW 3!2#. ~45!
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One can then gather the three vectorsfW 1 , fW 2, andfW 3 into a
333 matrix

F5~fW 1 ,fW 2 ,fW 3!. ~46!

Since (fW 1 ,fW 2 ,fW 3) are three orthonormal vectors, one h
tFF51 andF is therefore aSO(3) matrix.

The partition function thus reads

Z5E DFd~ tFF21!e2*ddx Tr(P] tF]F), ~47!

where P is a diagonal matrix of coupling constants:P
5diag(p15p25h2/4,p35h1/22h2/4).

It is easy to check on Eq.~47! that the model is invarian
under the right transformation:

F→FV ~48!

with V being the subset ofSO(3) matrices that commute
with P. When p3Þp1, i.e., h1Þh2 , V is isomorphic to
SO(2). WhenP is proportional to the identity,V is isomor-
phic to the wholeSO(3) group. In this last case, the high
temperature symmetry group isG5SO(3)3SO(3)
;SO(4). Note that this identity has to be understood at t
level of the Lie algebras sinceSO(3)3SO(3) andSO(4)
are locally isomorphic but differ globally and have differe
topological properties. This fact will be important in the fo
lowing.

The RG equations for theO(N)3O(2)/@O(N22)
3O(2)# model have been computed at two-loop order ind
521e.157,173We recall here the one-loop result that will b
useful in the following:

bh1
52~d22!h11N222

h2

2h1
,

bh2
52~d22!h21

N22

2 S h2

h1
D 2

. ~49!

A fixed point is found for anyN>3. For N53, it corre-
sponds top1

!5p3
!, i.e., h1

!5h2
! and, thus, to an enlarge

symmetry SO(3)3SO(3)/SO(3);SO(4)/SO(3). This
fixed point has only one direction of instability—the dire
tion of the temperature—and thus corresponds to a sec
order phase transition. Surprisingly, the critical behavior
thus predicted to be governed by the usual ferromagn
Wilson-Fisher fixed point with the subtlety that it corre
sponds tofour-componentspins. Note that this precisely co
responds to the particular case considered in Sec. II B.
other subtlety is that since, here, the order parameter
matrix instead of a vector—it is aSO(4) tensor—the anoma
lous dimension is different from the usual anomalous dim
sion of the four-component vector model. Only the expon
n is independent of the nature of the order parameter an
thus identical to the usual value ofn of the Wilson-Fisher
N54 universality class.157,173

In fact, it is easy to convince oneself that the fixed po
found exists to all order of perturbation theory. Actually, t
3-15
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crucial fact is that, ind521e, theperturbativeb functions
of a NLs model associated with the symmetry breaki
schemeG→H only depend on thelocal geometricalstruc-
ture of the manifoldG/H which is itself determined by the
Lie algebras ofG and H.157,173 Since the Lie algebras o
SO(3)3SO(3) and ofSO(4) are identical, the perturbativ
b function for the—remaining—coupling constant of th
model withp15p3 is identical at all orders to the perturba
tive b function of the usualSO(4)/SO(3) NLs model. The
existence of a fixed point for theSO(3)3SO(3)/SO(3)
NLs model at all order of perturbation theory follows fro
the fact that its existence makes no doubt for
SO(4)/SO(3) NLs model.

At the time of the first investigation of theO(N)
3O(2)/(O(N22)3O(2)) NLs model, the most natura
position was to extend this equivalencebeyondperturbation
theory and to assume that theSO(3)3SO(3)/SO(3) fixed
point exists everywhere between two and four dimensions
it is the case for theSO(4)/SO(3) fixed point. This was, in
particular, the position advocated by Azariaet al.157,173The
outstanding fact is that although theSO(4) behavior has
indeed been seen numerically ind52,76,80 it actually does
not exist far from two dimensions. This is clear sinceno such
fixed point is found ind542e and since, as already emph
sized, theSO(4) behavior is not seen in any numerical
experimental data ind53. It is thus extremely probable tha
either the fixed point disappears in a nontrivial dimens
smaller than 3 or it survives ind53 while being no longer
the usualN54 fixed point. Note that, in the first case, i
SO(4) nature can also change before it disappears. Anyw
this fixed point must disappear belowd54. The situation is
thus more involved than in the ‘‘usual’’SO(4)/SO(3)
model. There must exist nonperturbative reasons explain
the disappearance of the fixed point and/or the loss of
SO(4) character.

Actually, it is clear that the perturbative low-temperatu
expansion performed on the NLs model misses severa
nonanalytic terms inT—typically terms that behave a
exp(21/T)—that could be responsible for the disappeara
of the fixed point and/or its change of nature. There are
least, two origins for such terms.

~1! The first one consists in the nontrivial topologic
configurations—see the discussion in Sec. II B following E
~15!—that are completely neglected in the low-temperat
expansion of the NLs models. Indeed this expansion relie
by construction, on the local geometrical properties of
manifoldG/H and is insensitive to its global—topological—
structure. Thus it ignores vortexlike configurations that like
play an important role in three dimensions.

~2! The second origin of nonanalytic corrections to t
low-temperatureb function is more technical. The low
temperature expansion is performed in terms of
Goldstone—or pseudo-Goldstone ind52—modes that are
represented by fields constrained to have a modulus less
1, see Eq.~41!. This inequality cannot be taken into accou
in the perturbative treatment174 and is thus relaxed, leading t
neglect terms of order exp(21/T). All these terms are neg
ligible for the critical behavior when the critical temperatu
13441
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is very small, which is the case neard52. However, they
become important whenTc;1 which is typically the case in
d53. Only a nonperturbative treatment can take into
count these nonanalytic terms and thus allows to follo
when the dimension is increased, the fate of theO(4) fixed
point.

B. The Ginzburg-Landau-Wilson „GLW … model approach

The GLW model for the O(N)3O(2)/@O(N22)
3O(2)# model can be deduced from a generalization of E
~40! to N-component vectors, by replacing the function
delta-constraint by the most general potential that favors
field configurations obeying the initial constraint. For conv
nience, we choose to parametrize it by

)
i< j

d~fW i •fW j2d i j !→e2U ~50!

with

U5E ddxS r

2
~fW 1

21fW 2
2!1

l1m

16
~fW 1

21fW 2
2!2

2
m

4
~fW 1

2fW 2
22~fW 1•fW 2!2! D , ~51!

where, as usual,r is proportional to the reduced temperatu
while l andm aref4-like coupling constants.

All field-dependent terms in Eq.~51! can be rewritten in
terms of the rectangular matrixF defined in Eq.~8!. The
corresponding Hamiltonian then reads

H5E ddxS 1

2
Tr~] tF]F!1

r

2
r1

l

16
r21

m

4
t D ~52!

with r5Tr( tFF) andt5 1
2 Tr( tFF21r/2)2 being the only

O(N)3O(2) independent invariants that can be built out t
fields, see Appendix B. Note that minimizing the term
front of m corresponds to imposingtFF}1, i.e., to imposing
that fW 1 and fW 2 are orthogonal and of the same norm
agreement with the characteristics of the ground state of f
trated magnets, see Fig. 1~b!.

1. The RG flow

The RG equations for the coupling constants entering
Hamiltonian ~52! have been computed in th
e542d-expansion up to five-loop order171 and in a weak-
coupling expansion ind53 up to six-loop order.167We recall
here only the one-loop result of thee-expansion to discuss
qualitatively the flow diagram

bl52el1
1

16p2
@4lm14m21l2~N14!#

bm52em1
1

16p2
~6lm1Nm2!. ~53!
3-16
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As well known, for anyN.Nc(d542e)521.81O(e)
there exist four fixed points: the GaussianG, the vector
O(2N) V, and two others, called the chiralC1 and antichiral
C2 fixed points. Among these fixed points one,C1 , is stable
and governs the critical properties of the system and the
ers are unstable@see Fig. 2~a!#. When, at a given dimensio
d close to four,N is decreased,C1 and C2 move closer
together, coalesce atNc(d) and then disappear@see Fig.
2~b!#. More precisely, forN,Nc(d), the roots of theb func-
tions acquire an imaginary part. Since no stable fixed po
exists belowNc(d) and since the flow drives the system in
region of instability, it is believed that the transition is of fir
order. Note that forN,Nc8(d542e)52.21O(e), C1 and
C2 reappear but not in the physically relevant region to fr
trated magnets.

For completeness we give the exponentn at one-loop:

n5
1

2
1eS ~N23!~N14!A48224N1N2

8~144224N14N21N3!

1
N~481N1N2!

8~144224N14N21N3!
D ~54!

FIG. 2. Flow diagram for~a! N aboveNc(d) and ~b! N below
Nc(d). The fixed pointsC1 and C2 that exist aboveNc(d) coa-
lesce atNc(d) and then disappear.G and V are the Gaussian an
vectorO(2N) fixed points.
13441
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and recall that the anomalous dimension vanishes at this
der. Note that the square root becomes complex for 2.2,N
,21.8, which is reminiscent of the critical valuesNc(d) and
Nc8(d) of the number of spin components, see above.

2. The three and five-loop results in dÄ4Àe

In 42e dimensions, the critical valueNc(d) has been
computed at three-loop order159 and, very recently, at five-
loop order:171

Nc~d542e!521.7980223.4310e17.0882e220.0321e3

14.2650e41O~e5!. ~55!

In fact, as it is often the case within this kind of expansio
the series are not well behaved and it is difficult to obta
reliable results even after resummation.23,159,171 We, how-
ever, indicate the value found at three-loop order:159 Nc(d
53)53.39 and at five-loop order:171 Nc(d53)55.47(7).

3. The improved three and five-loop results

It has been conjectured by Pelissettoet al.168 that Nc(d
52)52, a result which is however somewh
controversial.171 It is possible to use this nonperturbative i
formation to reformulate the series obtained within the
2e expansion. Imposing the constraintNc(d52)52 to the
three-loop series, Pelissettoet al. have obtained:168

Nc~d542e!521~22e!~9.9026.77e10.16e2!1O~e3!.
~56!

Reformulated in this way, the coefficients of the series
crease rapidly. It is thus reasonable to use this expressio
estimateNc(d53). Pelissettoet al.have thus obtained:168

Nc(d53)55.3(2) where the error bar indicates howNc(d
53) varies from two to three loops. However, Calabrese a
Parruccini have shown that, extended to five loops, the s
series behaves badly:171

Nc~d542e!521~22e!a~e! ~57!

with

a~e!59.899026.7660e10.1611e210.0645e3

12.1648e41O~e5!. ~58!

In order to improve the convergence of the series~55! and
~57!, ~58! Calabrese and Parruccini have considered, fr
Eq. ~55!, the series:171

1/Nc~d542e!50.045910.0493e10.0381e210.0250e3

10.0056e41O~e5! ~59!

and, from Eq.~58!, the series:171

1/a~e!50.101010.0690e10.0456e210.0294e3

20.0032e41O~e5! ~60!

that, indeed, have a better behavior than Eqs.~55! and ~58!.
Using e51 without resummation Calabrese and Parrucc
obtain Nc(d53)56.1 from Eq.~59! and Nc(d53)56.136
3-17
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from Eqs.~57! and~60!. From this approach one is strong
tempted to conclude that, in the physical casesN52 andN
53, the transitions are of first order, even if it is impossib
to conclude about the strong or weak character of this tr
sition.

4. The three and four-loop results in dÄ3

A weak-coupling analysis has been performed by A
tonenko and Sokolov158 directly in d53 at three-loop order
This leads toNc(d53)53.91. However, as already emph
sized, this result is not well converged. Varnashev166 has per-
formed the computation at four-loop order with a critic
valueNc(d53)56.5.

5. The large-N results

The large-N expansion was first performed by Baili
et al.9 It was then reexamined by Kawamura71 and Pelissetto
et al.168 A fixed point is found within this expansion in a
dimensions between 2 and 4. The exponentsn and h have
been computed up to order 1/N2 in d53:168

n512
16

p2

1

N
2S 56

p2
2

640

3p4D 1

N2
1O~1/N3!,

h5
4

p2

1

N
2

64

3p4

1

N2
1O~1/N3!. ~61!

Aroundd54 andd52 the perturbative results of, respe
tively, the GLW and NLs models are recovered once th
limit N→` has been performed. This suggests that, at le
for sufficiently largeN, the two models belong indeed to th
same universality class in all dimensions. However, wit
this approach, noNc(d) line is found ~see, however, Ref
168!. It is thus impossible to extrapolate to finiteN the re-
sults obtained in this approach.

6. The six-loop results in dÄ3

In three dimensions, a six-loop computation has been
formed by Pelissettoet al.167 and reexamined by Calabres
et al.,134,135see below. The results are the following.

~1! For N sufficiently large—N.6.4(4)—there exist four
fixed points, one stable and three unstable, in agreement
the usual picture given above, see Fig. 2~a!. The transition is
thus of second order.

~2! For 5.7(3),N,6.4(4), there is no nontrivial fixed
point and the transition is expected to be of first order.

~3! For N,5.7(3) and, in particular, forN52 and N
53 a stable fixed pointis found and a second-order pha
transition is expected.

TABLE VII. The six-loop perturbative results ind53.

System Ref. a b g n

XY 167 0.29~9! 0.31~2! 1.10~4! 0.57~3!

Heis. 167 0.35~9! 0.30~2! 1.06~5! 0.55~3!
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n-

-

st

r-

ith

According to Pelissettoet al.,167,168the fixed points found
for N52 and N53 should be nonanalytically connecte
with those found in the 1/N and 42e approaches. Therefore
it should be impossible to obtain them by followin
smoothly those obtained at largeN or close tod54.

The critical exponents obtained by Pelissettoet al.are
given in Table VII. Note that the error bars are about t
times larger here than in the ferromagneticO(N)
models29,174 computed by the same method. This is an in
cation that the resummed perturbative series are conver
much slower than in the vectorial case. Let us now disc
these results.

The XY case. First, one should indicate that the exponen
g andn computed from the six-loop approach compare r
sonably well with the data of group 1. However, as alrea
mentioned, the value ofh found by the scaling relations
must be positive when there exists a fixed point. One fin
with the data of Table VII,h;0.08 which is significantly
positive. Let us recall that this isnot the case for the experi
ments performed on the materials of group 1 and for
numerical simulations performed on STA. Note, moreov
that the value ofb found within the six-loop calculation, is
very far —around four theoretical error bars—from the a
erage experimental ones which areb50.228(6) for
CsMnBr3 alone,b50.237(4) for the whole group 1 and fa
from the numerical values obtained for STAb50.24
20.25. Thus, contrarily to what is asserted in Ref. 167
seems extremely improbable that the exponents found a
loops could fit with those of group 1 and those of the n
merical STA model. Actually, this is also the case for t
materials of group 2 for which the averageb equals
0.389~7!.

The Heisenberg case.First, one notes that the agreeme
between theg and n exponents obtained from the six-loo
approach and from the experimental or numerical data is
as good as it is in theXYcase. Concerningh, one finds, with
the data of Table VII,h;0.08. This has to be compared wit
the value ofh obtained~i! for the materials of group 1
which is significantly negative:h520.118(25),~ii ! for ma-
terials of group 2, which is marginally negative:h5
20.018(33), and~iii ! in the simulations of the STA which is
also negative although not completely significantly:h5
20.0182(89). The negativity ofh is an indication of a mis-
match between the six-loop results and the data for
Heisenberg systems even if it cannot be used as a defin
argument against a second-order phase transition. The e
nent g obtained from the numerical simulations of th
Heisenberg STA model provides further information. The a
erage value of this exponentg51.185(3) is rather far—2.5
theoretical error bars—from the six-loop results.175

Chiral critical exponents.Pelissettoet al.169 have also
computed the chiral critical exponents at six-loop order.
the XY case they have found

fc51.43~4!, bc50.28~10!, ~62!

where the last exponent is computed via the scaling rela
bc53n2fc . One has to compare these values to tho
measured by Plakhtyet al.88 for the XY material CsMnBr3 :
3-18
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fc51.28(7) andbc50.44(2). The agreement is not very
good contrarily to what is asserted in Ref. 169 This is a
the case when one compares the theoretical data~62! to the
numerical results:fc51.22(5) andbc50.45(2) obtained in
Ref. 123 orfc51.28(9) andbc50.38(2) obtained in Ref
127. The agreement between the predictions of Peliss
et al. and the numerical data is a little bit better in th
Heisenberg case for which they predict

fc51.27~4!, bc50.38~10! ~63!

to be compared withfc51.27(9) andbc50.55(4) obtained
in Ref. 123 orfc51.32(5) andbc50.50(2) obtained in
Ref. 149.

From the previous analysis one can conclude that,
such, the fixed point obtained within the six-loop approa
turns out to benot directly relevant to the phenomenology
XYmaterials or simulated systems. This seems to exclude
scenarios I, II, and III that all assume that, at least, a cer
number of compounds or systems are well described b
fixed point.

7. Critical remarks

As we mentioned at the beginning of our analysis of
experimental results, see Section III A, we have made
assumption on the nature of the experimental errors whic
not realistic: the systematic errors cannot be neglected.
now come back on this point and show that the conclusi
we have drawn from our analysis persist without this
sumption.

Let us consider theXY case, where the symptoms of
mismatch between the theoretical and experimental res
are the clearest. We concentrate on the materials of gro
and on the exponentb which is the best measured, see Tab
I. With our assumption, we have foundb50.228(6). Let us
suppose that, contrarily to our assumption, the system
error is large and dominates the total error. Let us take

b50.23~2! ~64!

so that all experimental and numerical results lie in the
terval of values, see Tables I and III. This estimate has to
compared with the six-loop result

b50.31~2!, ~65!

where, in this case, the authors indicate that they have b
very conservative in the estimate of the error bar.167 Al-
though it is difficult to get fully unambiguous conclusion
out of these numbers, it is clear that the agreement betw
them is not satisfactory. The same considerations on gro
of XY materials lead to suppose

b50.39~2! ~66!

which, again, is far from being in agreement with the s
loop result~65!.

It is also possible to test the negativity of the anomalo
dimensionh with our new assumption. In the same spir
one estimatesn50.555(30). We find, in this case,

20.28<h<20.048. ~67!
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Thus, h is again found negative even in the most extre
hypothesis. We thus conclude that, although it is—up
now—impossible to estimate rigourously the confiden
level of our analysis of the experimental data since only o
error bar is given in the literature, it appears to be very d
ficult to reconcile the experimental and numerical data w
the six-loop results.

8. The six-loop results in dÄ3 re-examined

In order to cope with the discrepancy between the s
loop results obtained by Pelissettoet al. and the experimen-
tal and numerical data, Calabreseet al. have reconsidered
the resummed six-loop series.134,135,170They claim that they
can account for the unusual properties of the critical ex
nents for XY and Heisenberg frustrated systems
d53—negative anomalous dimension and we
universality—by the fact that the RG trajectories around
stable—focus—fixed point found by Pelissettoet al. are
spiral-like. By integrating the resummedb functions for the
two coupling constants of the GLW model and computi
the effective exponentsh and n along the RG trajectories
they have found that these exponents display large variat
in a transient regime. These authors argue that the sca
properties of the system are governed, over several dec
of temperatures, by the preasymptotic regime so that the
fective exponents observed experimentally can differ sign
cantly from their asymptotic values, i.e., those defined at
fixed point. Let us underline here several drawbacks of eit
the scenario of Calabreseet al. itself or of the perturbation
theory.

First, the scenario of Calabreseet al. is based on the ex
istence of stable fixed points that are not related to any
ready known fixed point. In particular, the fixed points fou
for N52 and N53 within this computation ind53 are,
according to Pelissettoet al. and Calabreseet al. non ana-
lytically related to those found in the large-N as well as in
the 42e expansions. This means that there is no way
check their existence using these perturbative methods.
is specifically problematic in the context of frustrated ma
nets where the properties of the fixed points appear to
very unusual:~i! the existence of the stable fixed poin
strongly depends on the order of perturbation—they are
present at three-loop order and only show up with a sign
cant probability, see Sec. IV—at four-loop order,~ii ! the lo-
cation of the fixed points, asN and d are varied, seems to
have, in the (N,d) plane, a very particular structure since,
three dimensions, they only exist whenN is below another
critical value ofN—which is found to be equal to 5.7~3!. It
would be of great interest to follow the three dimension
picture up to four dimensions.

Second, it is very difficult, in the computation of Cala
breseet al., to relate—even in principle—the initial condi
tions of the RG flow to the microscopic characteristics of r
systems. This would require us to handle the infinity of co
pling constants entering into the microscopic Hamiltoni
obtained from the Hubbard-Stratonovitch transformatio
Obviously, this problem does not specifically rely on the s
nario of Calabreseet al. but is a general drawback of th
perturbation theory.
3-19
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Third, it is very difficult to account, in this framework, fo
the first order behavior deduced from several numer
simulations ofXY and Heisenberg systems.129,130 We have
also already noticed thatXY systems have a stronger te
dency to undergo first-order transitions than Heisenberg
tems. However, there is no natural explanation for this p
nomenon in the scenario of Calabreseet al.

Fourth, in this scenario, it is also very difficult to expla
why there is no physical system characterized by
asymptotic critical exponents, i.e., those corresponding to
fixed point found by Pelissettoet al. This seems to require
very unnatural experimental circumstances such that the
tial conditions of the flow corresponding to the physical
alizations of frustrated magnets are such that their long
tance properties arenevercontrolled by the nontrivial fixed
point. Finally, and this is again a general drawback of
weak-coupling approach, there is no possible explanatio
the breakdown of the NLs model predictions.

C. Conclusion

XY and Heisenberg frustrated systems exhibit the kind
problems we have described in the Introduction: the per
bative results obtained within a low-temperature expans
around two dimensions, within a weak-coupling expans
around four dimensions or within a large-N expansion fail to
describe their critical physics in three dimensions. Moreov
these different perturbative predictions are in contradict
with each other. Contrarily to theO(N) nonfrustrated case
there is no possible smooth interpolation of these results
tween two and four dimensions and, at fixed dimension,
tween N5` and N52,3. More surprisingly and, again i
contradiction with what happens in theO(N) nonfrustrated
case, high-order calculations performed directly ind53 also
fail to reproduce the phenomenology, at least when they
interpreted in the usual way. This situation reveals the d
culties of the conventional approaches to tackle with
physics of frustrated magnets. Only new interpretations
methods can allow one to shed light on the problems enco
tered here. We have presented the solution proposed by
labreseet al. on the basis of a high-order perturbative calc
lation and underlined its difficulties. We now present t
nonperturbative method we have used to explain the unu
behavior of frustrated magnets. This is the subject of the n
sections. We start by a methodological introduction to t
method and then apply it to the frustrated systems.

VI. THE EFFECTIVE AVERAGE ACTION METHOD

We now present the NPRG method we use: the effec
average action method.43–45,52,176The content of this section
is neither original nor exhaustive. There exist several w
documented reviews on the subject.35,46,177Our aim here is
only to provide some of the physical ideas underlying t
method—notably the block spin concept and its formulat
in the continuum—as well as its technical implementation
the simple example of theO(N) model.
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A. Block spin in the continuum

The effective average action method, as well as ma
other NPRG techniques, is based on the well-known conc
of ‘‘block spin’’: 30,178when dealing with any strongly corre
lated system, it is fruitful to integrate out the fluctuations st
by step and, more precisely, scale by scale. In practice,
first gathers the initial—microscopic—degrees of freedo
into small ‘‘blocks.’’ It is then possible, at least formally, t
integrate out, in the partition function of the system, the
ternal fluctuations of the blocks. This ‘‘decimation’’ is fol
lowed by a rescaling of length-scales, coupling constants
fields. In this way, starting from a ‘‘bare’’ GLW Hamiltonian
one gets an effective Hamiltonian for the block degrees
freedom, i.e., for the low-energy modes. By iterating th
procedure, one generates a sequence of—scale-depend
effective Hamiltonians, parametrized by a running scalek,
that all share the same long-distance physics. This sequ
defines a RG flow. At a fixed point of this flow the syste
displays scale invariance. This allows us to obtain the criti
quantities through an analysis of the neighborhood of
fixed point in the flow of effective Hamiltonians.1

To illustrate how this concept of block spin is imple
mented concretely in the continuum, we consider the cas
an Ising-like system, initially defined on a lattice which,
the continuum, is described by a scalar fieldz(x). If the
lattice spacing is given bya, the corresponding continuum
field theory is characterized by an overall momentum cut
L of ordera21. The partition function writes

Z5E Dze2(1/2)z•CL
21

•z2HL
int[ z] , ~68!

where HL
int@z# stands for the interacting part of the GLW

Hamiltonian and

z•CL
21

•z5E ddq

~2p!d
z~q!CL

21~q!z~2q! ~69!

corresponds to the cutoff kinetic part. In Eqs.~68! and ~69!,
CL(q) is an ultraviolet~UV! cutoff propagator that prevent
the propagation of unphysical modes with momentum hig
thanL. One writes it as

CL~q!5
Fk5L~q2!

q2
, ~70!

whereFk(q
2) is a function of the ratioz5q2/k2 that rapidly

decreases whenz→`. One also imposes toFk(q
2) to be

unity at the origin:Fk(q
250)51. A typical example of

functionF is Fk(q
2)5e2(q/k)2

but other forms can obviously
be considered.

In Fourier space, the idea of block spin is specified
separating the low- and high-momentum modes of the s
field z:

z~q!5z.~q!1z,~q!. ~71!

The fieldsz.(q) andz,(q) being unconstrained, the sep
ration between high- and low-momentum modes is actu
realized through their respective propagator. We thus wri
3-20



lo

b

n

c

ar

n
ite

e

the

all
e

in-

it is
e

on.

NONPERTURBATIVE RENORMALIZATION-GROUP . . . PHYSICAL REVIEW B 69, 134413 ~2004!
CL~q!5Ck~q!1@CL~q!2Ck~q!#5̂C,~q!1C.~q!,
~72!

wherek is the typical scale that separates the high and
momenta. In Eq.~72!, C.(q) @respectively,C,(q)# propa-
gates z. (respectively,z,), the high- ~respectively, the
low-! momentum degrees of freedom of the fieldz. This
comes from a property of the Gaussian integral that can
easily seen on a one-dimensional integral

E dzexpS 2
z2

2~a1b!
1 f ~z! D

}E dxdyexpS 2
x2

2a
2

y2

2b
1 f ~x1y! D . ~73!

This result is easily obtained by changing, in the right-ha
side of Eq.~73!, the integration variablesx,y, into z5x1y
and t5x2y and by integrating ont.

Thus from Eqs.~68!, ~71!, ~72!, and~73! one gets:

Z5E Dz,Dz.expS 2
1

2
z,•C,

21
•z,2

1

2
z.•C.

21
•z.

2HL
int@z,1z.# D . ~74!

The effective Hamiltonian Hk
int@z,# for the low-

momentum degrees of freedomz, is defined through the
integration over the high-momentum degrees of freedom
Eq. ~74!:

e2Hk
int[ z,]5̂E Dz.expS 2

1

2
z.•C.

21
•z.2HL

int@z,1z.# D .

~75!

Integrating out the internal degrees of freedom of a blo
spin between the scalesa and a8.a corresponds, in this
language, to the integration of the modesz. with momenta
betweenk5a21 and k85a821. Equation~75! implements
the block spin procedure in the continuum which is the st
ing point of any NPRG approach.

B. The Polchinski equation

The effective HamiltonianHk
int@z,# follows an exact

equation describing its infinitesimal evolution when the ru
ning scalek is lowered. To establish this equation we rewr
Eq. ~75! as

e2Hk
int[ z,]5E Dz expS2

1

2
~z2z,!•C.

21
•~z2z,!2HL

int@z# D
5expS 1

2

d

dz,
•C.•

d

dz,
De2HL

int[ z,] . ~76!

This last functional relation can be inferred from the on
dimensional identity
13441
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E dx expS 2
~x2y!2

2g
2 f ~x! D}e(g/2)(]2/]y2)e2 f (y).

~77!

By differentiating each side of Eq.~76! with respect tok we
obtain

2~]kHk
int!e2Hk

int
5

1

2 S d

dz,
•]kC.•

d

dz,
De2Hk

int

5
1

2 S dHk
int

dz,
•]kC.•

dHk
int

dz,

2
d2Hk

int

dz,dz,
•]kC.De2Hk

int
. ~78!

Finally, theexactevolution equation forHk
int , known as the

Polchinski equation179 ~see also Ref. 180!, writes explicitly

]kHk
int@z,#5

1

2E ddq

~2p!d
]kC.~q!S d2Hk

int

dz,~q!dz,~2q!

2
dHk

int

dz,~q!

dHk
int

dz,~2q!
D ~79!

or, in real space

]kHk
int@z,#5

1

2E ddxddy]kC.~x2y!

3S d2Hk
int

dz,~x!dz,~y!
2

dHk
int

dz,~x!

dHk
int

dz,~y!
D ~80!

with ]kC.(x2y)5*@ddq/(2p)d#]kC.(q)eiq(x2y). Note
that in the preceding equations we have improperly used
same notation for the fieldz, and regulatorC. and for their
Fourier transforms. Note also that, in the following, we sh
use the notationz for z, . A graphical representation of th
Polchinski equation is given in Fig. 3.

Let us first make some remarks about Eq.~79!. A first
feature we would like to emphasize is that this equation
volves the quantityHk

int which is the effective Hamiltonian
for the degrees of freedom that havenot yet been integrated
out, namelyz, . The drawback withHk

int is that it is an
abstract object that has no direct physical meaning since
a function of a fieldz, that eventually fully disappears in th
physical limit k→0, i.e., whenall fluctuations have been
integrated out. In particular, one should realize thatz, is not

FIG. 3. A graphical representation of the Polchinski equati
The crosses represent the cutoff factor]kC.(q). The black circles
with n-external legs correspond to thenth functional derivative of
Hk

int with respect to the field.
3-21
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a precursor of the order parameter, i.e.,not a local magneti-
zation at scalek. Indeed this magnetization should com
from a thermodynamical averageat scalek while z, is just a
stochastic variable that represents the low-momentum pa
the original spin field and is thus, roughly speaking, aspatial
averageof this field. Consequently, the effective Hamilto
nians by themselves do not contain all the information on
integration of the high-momentum degrees of freedomz. .
For instance, the computation of correlation functions for
high-energy fieldz. would require to first couple the syste
to a sourceJ—a magnetic field—by adding inZ a term
exp(Jz) and to follow the flow of this term in order to obtai
the full J dependence ofZ, a rather difficult task. Thus, Eq
~79! provides at best a flow of the running coupling consta
that parametrize the effective HamiltonianHk

int at scalek.
As shown mainly by Wilson, equations such as Eq.~79!

are, in principle, sufficient to compute the critical expone
once a fixed point HamiltonianHk

int* has been found. Actu
ally, even for the evaluation of the RG flow, Eq.~79! suffers
from an important difficulty: although this equation look
simple—its only nonlinearity is a term quadratic inHk

int—it
is nevertheless a functional-partial-integrodifferential eq
tion that has no known solution in general. Therefore,
order to render it manageable, one has to truncate the Ha
tonianHk

int .
Derivative expansion.A natural truncation consists in a

expansion of the effective Hamiltonian in powers of the d
rivatives of the field.42,45,181 For instance, for a one
component scalar field theory one has

Hk
int@z#5E ddxS Uk~z!1

1

2
Zk~z!~]z!21O~]4! D , ~81!

where Uk(z) stands for the potential—i.e., the derivativ
independent part—of the effective Hamiltonian andZk(z) is
the quadratic—field-dependent—field renormalization. W
such a truncation, one neglects higher-order derivative te
This is justified ~i! when one is interested in the long
distance, low-energy physics, since these higher-order
rivative terms should correspond to less important opera
and ~ii ! when there is no qualitative change of nature b
tween the microscopic and macroscopic degrees
freedoms—such as the appearance of bound states at a
scalek—that could induce non localities.182A practical guide
to evaluate the validity of the derivative expansion is t
value of the anomalous dimensionh. If this quantity is
small, one can expect that the inclusion of higher-order
rivative terms provides small corrections to the results.

At first order in the derivative expansion one setsZk(z)
50 in Eq. ~81! and derives an RG equation forUk(z) from
Eq. ~79!. This corresponds to the so-called local poten
approximation~LPA! which has been intensively explored
the past.34,183–185In particular, this kind of approach has bee
used by Zumbach to analyze the physics of frustrated m
nets in three dimensions.65–67 The problem with the LPA is
that, since by definition it neglects the field renormalizatio
it leads to a trivial—vanishing—anomalous dimension. Co
sequently:~i! this prohibits to compare the results obtain
within this approach to that of a standard perturbative
13441
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proach when this last one involves a nontrivial anomalo
dimension~this is, for instance, the case of the NLs model
aroundd52 already at one-loop!, ~ii ! this prevents an accu
rate evaluation of critical exponents for systems for wh
the anomalous dimension is not expected to be small. In
context of frustrated magnets, these drawbacks are ser
since we are precisely interested in relating the different p
turbative approaches and, to some extent, by a satisfac
determination of the critical exponents. We thus need
compute the field renormalization.

This kind of computation, however, encounters seve
difficulties. First, whereas the RG equation forUk(z) in the
LPA of the Polchinski equation is universal—cuto
independent—the RG equations derived forUk(z) andZk(z)
at second order in the derivative expansion explicitly depe
on the regulatorC.(q) chosen to separate the high- an
low-energy degrees of freedom in Eq.~72!.181,186 Another
related problem is that of reparametrization invariance. T
partition function~68! and, thus, the physical quantities su
as critical exponents, are invariant under a general chang
field of the kindz→z1G(z) whereG is an arbitrary func-
tion starting at orderz2. As a consequence of this invarianc
the normalization of the fieldZk(z50) in the Hamiltonian is
a priori an arbitrary parameter. Unfortunately, the repara
etrization invariance is broken as soon as one perform
truncation of the Hamiltonian. As a result the critical exp
nents and, in particularh, depend on the normalizatio
Zk(z50). It follows from these considerations that, in an
practical computation, one encounters the problem t
physical quantities depend on nonuniversal parameters
as cutoff functions and normalizations. Different techniqu
such as the principle of minimum sensitivity~PMS!, have
been used to decrease the dependence of the critical qu
ties on the cutoff function.186,187Also, some criterions have
been proposed to find the best normalization, i.e., to fin
valueZk(z50) such that the derivative expansion converg
the most rapidly.187 These considerations, having for aim
exploit the Polchinski equation at the next to leading orde
derivative expansion, have led to the determination of rat
satisfactory critical exponents.

At the same time, there has been a great activity devo
to the search of other formulations of the RG ideas that co
avoid some of the troubles encountered in the use of
Polchinski equation. The effective average action metho
the result of this search.

C. The effective average action method

The basic—and physically very appealing—idea of th
new formulation is to consider as the fundamental object,
the abstract effective HamiltonianHk

int@z#, functional of the
stochastic low-energy fieldz, but, rather, the Gibbs free
energyG—called effective action in field theory—functiona
of the order parameterf5^z&. To implement this idea in the
RG context, it is necessary to build a running Gibbs fr
energyGk for the high-energy modes that have already be
integrated out at this scalek. The argument ofGk is, there-
fore, the order parameter at this scale that eventually
comes, whenk→0, the true order parameter.
3-22
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These requirements imply several constraints on the d
nition of Gk . First, at the scale of the lattice spacing,k5L
5a21, Gk should correspond to the microscopical Ham
tonianH since no fluctuations have been taken into accou
Second, when the running scalek is lowered to 0,Gk , which
then includesall fluctuations, must identify with the standar
effective actionG from which all thermodynamical quanti
ties like magnetization, correlation length, etc., are co
puted. To summarize,Gk must respect the constraints

Gk5L5H, Gk505G ~82!

and has to interpolate smoothly between these two limits

1. Construction

Let us again consider, for simplicity, the case of a syst
described by a scalar fieldz(x). The construction of the
effective average action proceeds in two steps. First,
should decouple the low-energy modes—with momentaq2

.k2—in the partition function in order to get a theory in
volving only the high-energy ones that will be summed ov
Second, in this modified theory, one builds the Gibbs f
energy, as usual, by a Legendre transform. This givesGk .
Let us now study how this is implemented in practice.

The first step is conveniently implemented by chang
the partition functionZ into Zk for which a k-dependent
term, quadratic in the fields and thus analogous to a m
term is added to the microscopic Hamiltonian.44,45 With this
‘‘mass term,’’ the partition function in presence of a sourceJ
writes

Zk@J#5E Dz exp~2H@z#2DHk@z#1J•z! ~83!

with J•z5*ddqJ(q)z(2q) and

DHk@z#5
1

2E ddqddq8

~2p!2d
Rk~q,q8!z~q!z~q8! ~84!

5
1

2E ddq

~2p!d
Rk~q2!z~q!z~2q! ~85!

with Rk(q,q8)5(2p)dd(q1q8)Rk(q
2). In Eq.~85!, Rk(q

2)
is the cutoff function that controls the separation between
low- and high-energy modes. To decouple the low-ene
modes, it must act as a large-mass term for smallq whereas
it must vanish for largeq to keep unchanged the high-ener
sector of the theory. Thus

Rk~q2!;k2 for q2!k2 ~86!

and

Rk~q2!→0 when q2@k2. ~87!

The first constraint means that, for momenta lower thank,
Rk(q

2) essentially acts as a mass—i.e., an IR cutoff—wh
prevents the propagation of the low-energy modes. The
ond ensures that the high-energy modes are fully taken
account inZk@J# and thus in the effective average actio
Moreover, since we want to recover the original theory wh
13441
fi-

t.

-

e

r.
e

g

s-

e
y

h
c-
to
.
n

k→0, i.e., when all fluctuations have been integrated o
Rk(q

2) must vanish in this limit. Thus we require

Rk~q2!→0 identically when k→0 ~88!

which ensures thatZk50@J#5Z@J#. On the other hand
when k→L, i.e., when no fluctuation has been integrat
out, Gk should coincide with the microscopic Hamiltonia
This is achieved by requiring~see below for the proof!

Rk~q2!→` identically when k→L. ~89!

Note that, since we shall not be interested in the prec
relation between the microscopic characteristics—define
scaleL—of a given system and its critical or pseudocritic
properties, we setL5` in the following.

A widely used cutoff function is provided by:46

Rk~q2!5
Zq2

eq2/k2
21

, ~90!

whereZ is the field renormalization. Including it inRk allows
us to suppress the explicitZ dependence in the final RG
equations—see below. The cutoff functionRk(q

2) corre-
sponding to Eq.~90! is plotted on Fig. 4. Another usefu
cutoff function, called theta cutoff, has been proposed
Litim.188 It writes

Rk~q2!5Z~k22q2!Q~k22q2!, ~91!

whereQ is the usual step function.
The second step consists in defining the effective aver

action. The free energy at scalek is given—up to a factor
2kBT—by

Wk@J#5 ln Zk@J#. ~92!

From Eq. ~92!, one defines the order parameterfk(q) at
scalek as the average value of the microscopic fieldz(q) in
the modified theory

fk~q!5^z~q!&5
dWk@J#

dJ~2q!
. ~93!

Thanks to the properties ofRk(q
2), the contribution to the

average value in Eq.~93! coming from modes with moment
q2!k2 is strongly suppressed. Alsofk(q) identifies with the
true order parameter in the limitk→0. Note that, for sim-
plicity, we omit, in the following, the indexk to fk .

FIG. 4. A typical realization of the separation of high- and low
momentum modes provided by the cutoff functionRk(q

2). At low
momentum,Rk(q

2) acts as an effective mass of orderZk2 while the
high-momentum behavior is not modified.
3-23
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The effective average action is defined by:44

Gk@f#52Wk@J#1J•f2DHk@f#, ~94!

whereJ5J@f#, see Eq.~93!. ThusGk@f# essentially corre-
sponds to a Legendre transform ofWk@J# for the macro-
scopic fieldf—up to the masslike termDHk . The relation
~94! implies several unconventional relations. First, taking
derivative with respect tof(q) provides the relation be
tween the source andGk@f#:

J~2q!5
dGk

df~q!
1E ddq8

~2p!2d
Rk~q,q8!f~q8!. ~95!

Taking the derivative of this relation with respect tof(q8)
implies a second important relation189

Gk
(2)~q,q8!1

Rk~q,q8!

~2p!2d
5

dJ~2q!

df~q8!
~96!

5~2p!22dS d2Wk

dJ~q!dJ~q8!
D 21

,

~97!

whereGk
(2)(q,q8)5d2Gk /df(q)df(q8).

Let us now show that the definition ofGk , Eq. ~94!, en-
sures that it satisfies the requirements given in Eq.~82!, i.e.,
that it interpolates between the microscopic HamiltonianH
for k5` and the~true! effective actionG for k→0. This last
property follows directly from Eq.~94! and the fact that for
k50 the IR cutoffRk(q

2) identically vanishes. The fact tha
Gk identifies withH whenk→` can be shown in the follow-
ing way. One deduces from Eqs.~83!, ~92!, ~94!, and~95! the
functional identity

e2Gk[f]5E Dz expS 2H@z#1
dGk@f#

df
•~z2f!

2DHk@z2f# D . ~98!

In the limit k→`, Rk(q
2) goes to infinity. In this limit, the

mass-term exp(2DHk@z2f#) acts as a hard constraint on th
functional integration—exp(2DHk@z2f#).d @z2f#—so
that Gk5`@f#5H@f#. With these properties,Gk@f# has the
meaning of a coarse-grained Gibbs free energy at scalek21:
lowering k corresponds to including more and more fluctu
tions.

2. The equation

Let us now derive the exact RG equation forGk . We start
from the expression

eWk[J]5E Dz exp~2H@z#2DHk@z#1J•z! ~99!

which results from Eqs.~83! and ~92!. One first writes the
variation of exp(Wk@J#) with respect to the scalek
13441
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Wk[J]52E Dz~]kDHk@z#!exp~2H@z#2DHk@z#1J•z!

52S ]kDHkF d

dJG DeWk[J]

52
1

2E ddq

~2p!d S d

dJ~q!
]kRk~q2!

d

dJ~2q! DeWk[J]

~100!

from which follows

]kWk@J#52
1

2E ddq

~2p!d
]kRk~q2!S dWk@J#

dJ~q!

dWk@J#

dJ~2q!

1
d2Wk@J#

dJ~q!dJ~2q! D ~101!

which looks similar to the Polchinski equation~79!.
Let us now differentiate the expression~94! with respect

to k, at fixedf:

]kGk@f#52]kWk@J#uJ2
dWk@J#

dJ
•]kJ1~]kJ!•f

2]kDHk@f#52]kWk@J#2]kDHk@f#

~102!

sincef5dWk /dJ. Together with Eq.~101! this gives

]kGk@f#5
1

2E ddq

~2p!d
]kRk~q2!

d2Wk@J#

dJ~q!dJ~2q!
. ~103!

Using Eq. ~97! one obtains an equation involving onlyGk

and its second functional derivativeGk
(2) ~Refs. 37,41,44,45!

] tGk@f#5
1

2E ddq

~2p!d
Ṙk~q2!Tr@~2p!2dGk

(2)@f#1Rk#
21

3~q,2q! ~104!

with t5 ln k and Ṙk5] tRk . In Eq. ~104!, Tr must be under-
stood as a trace on internal indices—vectorial
tensorial—ifz spans a nontrivial representation of a grou

Let us finally give a form of Eq.~104! more convenient
for practical use190

] tGk@f#5
1

2~2p!d]̃ tTr$ ln@~2p!2dGk
(2)@f#1Rk#%, ~105!

where the ‘‘time derivative’’]̃ t only acts onRk , i.e., ]̃ t

5̂Ṙk]/]Rk and where the trace Tr now also means
momentum-integral*ddqddq8(2p)2dd(q1q8). Equation
~104! @or Eq. ~105!# controls the evolution ofGk with the
running scalek. According to the preceding discussion,
describes, whenk is lowered, how the running effective av
erage action is modified when more and more~low-energy!
fluctuations are integrated out.
3-24



er
ng

ne

in
ia

-

th

s
e
it
t

ak
he

in
e
re
r-
e
n
d
to
e

op
lc
ge

Eq

dr
in
n
to
s
ff

nce
p-
ap-

-
re-
into
ion

a-
all
ck

t to
iza-

ven
ers

d.
f

eld

—

ne

e
-

In
nd

-
n

NONPERTURBATIVE RENORMALIZATION-GROUP . . . PHYSICAL REVIEW B 69, 134413 ~2004!
3. Properties

We now give some important properties of Eq.~104!. The
reader interested in more details can consult Ref. 46.

~1! Eq. ~104! is exact. It thus contains all
perturbative191,192and nonperturbative features of the und
lying theory: weak-or strong-coupling behaviors, tunneli
between different minima,193 bound states,182,194topological
excitations,56 etc.

~2! While it has been derived here in the case of a o
component scalar field theory, Eq.~104! obviously holds for
any number of components and, more generally, for any k
of order parameter. The extension to fermions is also triv
~see Ref. 46, for instance!.

~3! With a cutoff functionRk(q
2) which meets the condi

tion ~86! or, more generally, with a finite limit when
q2→0, the integral in Eq.~104! is infrared~IR! finite for any
k.0. This IR finiteness is ensured by the presence of
mass termRk which makes the quantityGk

(2)@f#1Rk posi-
tive for k.0 evenat the critical temperature. This allows u
to explore the low-temperature phase even in presenc
massless—Goldstone—modes. From the UV side, the fin
ness of the integral in Eq.~104! is ensured by a requiremen
of fast decaying behavior ofṘk(q

2).
~4! One can give a graphical representation of Eq.~104!,

see Fig. 5. It displays aone-loopstructure. Obviously, this
one-loop structure must not be mistaken for that of a we
coupling expansion. Actually, the loop involves here t
full—i.e., field-dependent—inverse propagatorGk

(2)@f# so
that the graphical representation of Fig. 5 implicitly conta
all powers of the coupling constants entering in the mod
Note also that this one-loop structure automatically ensu
that all integrals over internal momenta involved in this fo
malism have a one-loop structure and are thus one dim
sional. Thus they can be easily evaluated numerically a
when some particular cutoff are used, analytically. This ra
cally differs from a weak-coupling expansion which leads
multiple loop diagrams and thus, multiple integrals. Anoth
important feature of Eq.~104! is that very simpleAnsätzeon
Gk allow to recover in a unique framework the one-lo
perturbative results obtained by standard perturbative ca
lations around two and four dimensions as well as in a lar
N expansion.

Let us make a final remark. The one-loop structure of
~104! contrasts with the Polchinski equation~79! which, in
addition to the loop term, involves a tree part~see Fig. 3!. An
interesting consequence of the structure of this ‘‘Legen
version’’ of the NPRG equation is that reparametrization
variance is preserved by the derivative expansion whe
power-law cutoff is used. This means that with such a cu
function, the anomalous dimension is no longer ambiguou
defined.195This would apparently select the power-law cuto

FIG. 5. A graphical representation of Eq.~104!. The cross rep-

resents the functionṘk and the line the propagator@Gk
(2)(f)

1Rk#
21.
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as the best one. The situation is, in fact, more involved si
the power-law cutoff is afflicted with bad convergence pro
erties when used within the derivative expansion. It has
peared that, for instance, the exponential cutoff@Eq. ~90!# or
the theta cutoff@Eq. ~91!# that do not respect the reparam
etrization invariance of the RG equation, lead to better
sults when optimization critera are used. We do not enter
more details in these problems of reparametrizat
invariance42,48,187,195 and optimization of the
results50,51,188,196–200and refer to the literature. The main re
son for this is that, as we shall see in the following, we sh
only deal with pseudocritical exponents that, given their la
of universality, i.e., their strong dependence with respec
the microscopic parameters, makes superfluous an optim
tion of the computations.

4. Truncations

As it is the case for the Polchinski equation~104! is too
complicated to be solved exactly. Its nonlinearities are e
worse than in the Polchinski case since it involves all pow
of Gk

(2) . As a consequence, the functionalGk has to be trun-
cated. Different kinds of expansions have been considere45

~1! Field expansion whereGk is expanded in powers o
the order parameterf. For a scalar field theory, one has

Gk@f#5 (
n50

`
1

n! E )
i 50

n

ddxif~x1!•••f~xn!Gk
(n)~x1, . . . ,xn!,

~106!

whereGk
(n)(x1, . . . ,xn) denotes thenth functional derivative

of Gk .
~2! Derivative expansion whereGk is expanded in powers

of the derivatives of the order parameter. For a scalar fi
theory, one has

Gk@f#5E ddxS Uk~f!1
1

2
Zk~f!~]f!21O~]4! D , ~107!

Uk(f) being the potential—i.e., derivative-independent
part of Gk while Zk(f) corresponds to the kinetic term.

~3! Combined derivative and field expansions where o
further expands in Eq.~107! the functionsUk(f) andZk(f)
in powers off around a given field configurationf0. Tech-
nically, this kind of approximation allows to transform th
functional equation~104! into a set of ordinary coupled dif
ferential equations for the coefficients of the expansion.
practice, it is interesting to consider an expansion arou
~one of! the field configurationf0 that minimizes the poten
tial Uk . For the simplest—Ising—model, this expansio
writes

Gk@f#5E ddxS 1

2
Uk9~ r̃0!~r2 r̃0!21

1

3!
Uk-~r̃0!~r2 r̃0!3

1•••1
1

2
Zk~ r̃0!~]f!2

1
1

2
Zk8~ r̃0!~r2 r̃0!~]f!21••• D , ~108!
3-25



t
m
he
rn

an
ie

a

m
s

gl
Eq
w
ie
rs

e

ni
G

iti

h
n
u
il
e
rs
ag

—

f
t

t.
r-

he
e
n

fie
or

b
ai

and

-
-
cal

ma-

y
-
the

ing

e-
ual
on-

-
a-
h-
eld
ial

ion
ts
ions

al
in

old
hat
as-

B. DELAMOTTE, D. MOUHANNA, AND M. TISSIER PHYSICAL REVIEW B69, 134413 ~2004!
wherer̃5 1
2 f2 and r̃05 1

2 f0
2, f0 being the magnetization a

scalek. The rational behind this choice is that the minimu
of Uk is physically the location that we want to describe t
best since thermodynamical quantities at vanishing exte
field are determined from the minimum ofGk at k50. The
relevance of such a parametrization is confirmed by m
works showing that the convergence of the critical quantit
when more and more powers of the fieldf are added in the
truncation, is improved when compared with the same c
culation performed with an expansion ofUk(f) andZk(f)
around thef50 configuration.201,202

The choice of a good truncation is a complex proble
One has to choose a manageable truncation that encode
relevant physics. In practice, it appears that, surprisin
even at low orders in powers of derivatives and fields,
~104! provides correct qualitative features of the RG flo
However, the precise determination of the critical quantit
requires one to push the expansion to rather large orde
the field and involves a heavy algebra.50,51

To illustrate how the technique works we now consid
the simplest case, i.e., the vectorialO(N) model. The
O(N)3O(2) model relevant to frustrated magnets is tech
cally more involved but the procedure to derive the R
equations follows the same steps. Details of the technical
in this latter case will be given in Sec. VII.

D. The O„N… model

We present here the effective average action approac
theO(N) model.45,203We essentially follow the presentatio
given, for instance, in Ref. 45 with some differences, ens
ing a self-contained presentation. We use a truncation sim
to the one we use to deal with frustrated magnets, i.e., wh
Gk is expanded both in derivatives and fields. Let us fi
consider the derivative expansion of the effective aver
action for theO(N) model at order]2:

Gk@fW #5E ddxS Uk~r!1
1

2
Zk~r!~]fW !21

1

4
Yk~r!~]r!2

1O~]4! D , ~109!

wherefW is a N-component vector field andr5fW 2/2. In Eq.
~109!, Uk(r) is the potential—i.e., derivative-independent
part of Gk while Zk(r) and Yk(r) correspond to kinetic
terms. These two last terms embody the renormalization
the Goldstone and massive fields, respectively. Note that
term proportional to (]r)2 is always absent from the GLW
action used for aperturbativeanalysis in coupling constan
The reason for this is that, in this context, it is powe
counting irrelevant. On the contrary, in the context of t
effective average action method, there is no perturbative
pansion and, thus, no power-counting argument works. O
however, expects that the terms of lowest degrees in the
~for d.2) and in the derivative are the most important f
the long-distance physics.

The caseZk(r)51 and Yk(r)50 in Eq. ~109! corre-
sponds to the LPA. A nontrivial anomalous dimension is o
tained by going beyond this simplest truncation. As s
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above, we use here a truncation that mixes the derivative
field expansions. We thus consider

Gk@fW #5E ddxS 1

2
Uk9~ r̃0!~r2 r̃0!21

1

3!
Uk-~r̃0!~r2 r̃0!3

1•••1
1

2
Zk~ r̃0!~]fW !21

1

2
Zk8~ r̃0!~r2 r̃0!~]fW !2

1•••1
1

4
Yk~ r̃0!~]r!21

1

4
Yk8~ r̃0!~r2 r̃0!~]r!2

1••• D , ~110!

where r̃05 1
2 fW 0

2 parametrizes thek-dependent field configu
ration that minimizesUk . Since our aim here is only peda
gogical and not devoted to the calculation of precise criti
quantities, we consider the followingAnsatzwhich is limited
to the smallest expression providing a nonvanishing ano
lous dimension:

Gk@fW #5E ddxS 1

2
Z~]fW !21

1

2
ũ2~r2 r̃0!2D , ~111!

where Z5̂Zk(r0) and ũ25̂Uk9( r̃0). This approximation
looks very much like the GLW Hamiltonian used to stud
perturbatively theO(N) model, up to a trivial reparametri
zation. There is, however, a major difference. Here
Ansatz~111! is not studied perturbatively in thefW 4 coupling
constantũ2. It is to be inserted in theexact RG equation
~104!.

Let us now establish the RG equations for the coupl
constants entering in Eq.~111!. The calculation proceeds in
four steps:

~i! We first define the running coupling constantsr̃0 , ũ2,
and Z from functional derivatives of theAnsatzof Gk , Eq.
~111!. This is analogous to imposing renormalization pr
scriptions for the renormalized coupling constants in us
perturbative calculations. As in this case, the coupling c
stants are defined as~combinations of! functional derivatives
of Gk—the ‘‘vertex functions’’—taken in a specific field con
figuration of the model. However, contrarily to the perturb
tive approach which is generally performed in the hig
temperature phase and thus, around a zero fi
configuration, we perform this expansion around a nontriv
running field configurationfW 0.

~ii ! We then apply the operator] t on these definitions.
This is implemented by the use of the evolution equat
~104! or ~105!. The flow equations for the coupling constan
are then expressed as traces of products of vertex funct
that are evaluated from theAnsatzEq. ~111!.

~iii ! The flow equations involve integrals over the intern
momentum. It is convenient to express these integrals
terms of dimensionless functions, known as thresh
functions.45 The properties of these functions are such t
they make explicit the phenomenon of decoupling of m
sive modes, see below.
3-26
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~iv! Also, as usual, one introduces dimensionless ren
malized quantities to study the scale invariant solutions
the RG equations.

1. Definition of the coupling constants

Let us first choose one of the uniform field configuratio
that minimize the effective average actionGk :

fW min~x!5S f0

0

A

0
D ~112!

or, equivalently,

f i
min~q!5~2p!df0d i1d~q!, ~113!

where f05(2r̃0)1/2 is a k-dependent quantity. Due to th
O(N) symmetry ofGk , which is preserved at anyt by the
RG flow Eq. ~104!, the choice of a particular direction fo
fW min is irrelevant and thus does not affect the RG equatio

Let us now define the coupling constants. To do this
introduce the notation

Gk $a1 ,p1%, . . . ,$an ,pn%
(n) 5

dnGk@f#

dfa1
~p1! . . . dfan

~pn!
. ~114!

As said above,r̃0 specifies the position of the—running—
minimum of Gk . It is implicitly defined by

Gk $a,0%
(1) umin50, ~115!

where the notation ‘‘min’’ refers to the configuration given
Eq. ~112!. Because of our particular choice offW min the pre-
vious equality is trivially satisfied fora52, . . . ,N and we
shall consider only the casea51 in the following.

The coupling constantũ2 is defined along the same line a

ũ25
~2p!d

2r̃0d~0!
Gk $1,0%,$1,0%

(2) umin . ~116!

Finally, thek-dependent field renormalizationZ is obtained
by considering the term quadratic in momentum of a m
mentum dependent configuration

Z5
~2p!d

d~0!
lim

p2→0

d

dp2
~Gk $2,p%,$2,2p%

(2) umin!. ~117!

In this last equation, the index 2 specifies a direction
thogonal to that defined by the minimum@see Eq.~112!#.
Note that one could have considered any of theN21 direc-
tions orthogonal to that defined by the minimum. Note
nally that thed(0) term appearing in Eqs.~116! and~117! is
proportional to the volume of the system and is present h
since Gk is an extensive quantity while the coupling co
stants are not.
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2. The t derivation

The flow equations for the coupling constantsr̃0 , ũ2 and
Z are obtained by derivating, with respect tot, the previous
definitions ~115!, ~116!, and ~117!. Let us start byr̃0. One
has to take care of thet dependence of bothGk $1,0%

(1) and its

argument, the configurationfW min—Eq. ~112!—which has a
nontrivial t dependence through that off0:

] t~Gk $a,0%
(1) umin!5] tGk $a,0%

(1) umin1Gk $a,0%,$1,0%
(2) umin

~2p!d] tr̃0

A2r̃0

50. ~118!

The RG flow for r̃0 follows from this equation, taken fo
a51:

] tr̃052
A2r̃0

~2p!dGk $1,0%,$1,0%
(2)

] tGk $1,0%
(1) umin . ~119!

In the same way, one obtains

] tũ25
~2p!d

2r̃0d~0!
] tGk $1,0%,$1,0%

(2) umin1
~2p!d] tr̃0

2r̃0d~0!

3S 2
1

r̃0

Gk $1,0%,$1,0%
(2) umin1

~2p!d

A2r̃0

Gk $1,0%,$1,0%,$1,0%
(3) uminD

~120!

and

] tZ5
~2p!d

d~0!
lim

p2→0

d

dp2 S ] tGk $2,p%,$2,Àp%
(2) umin

1
~2p!d] tr̃0

A2r̃0

Gk $2,p%,$2,2p%,$1,0%
(3) uminD . ~121!

The RG flows for the coupling constantsr̃0 , ũ2, and Z
involve successive functional derivatives of] tGk with re-
spect to differentf i(qj). These quantities are easily obtaine
from Eq. ~105!. Let us take its derivative with respect t
f i 1

(q1). Using

d

df i 1
~q1!

ln@~2p!2dGk
(2)1Rk#5~2p!2dGk $ i 1 ,q1%

(3)
•Pr ,

~122!

where we have introduced the notation

Pr5@~2p!2dGk
(2)1Rk#

21 ~123!

one obtains

] tGk $ i 1 ,q1%
(1) 5

~2p!d

2
]̃ tTr$Gk $ i 1 ,q1%

(3)
•Pr% ~124!
3-27
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for the one-point vertex function. Note that, in the right ha
side of the preceding expression, we have only specified
external indices$ i 1 ,q1% and omitted the integrated~or
summed over! variables. The dot is here to remind that the
integrations and summations have to be performed. Equa
~124! admits a graphical representation

~125!

In this representation, the external leg implicitly carri
an index of internal symmetryi 1 and a momentum
q1. Now taking the derivative of Eq.~124! with respect
to f i 2

(q2) and using

d

df i~q!
Pr52Pr•Gk $ i ,q%

~3!
•Pr , ~126!

one obtains

] tGk $ i 1 ,q1%,$ i 2 ,q2%
(2) 5

~2p!d

2
]̃ tTr$Gk $ i 1 ,q1%,$ i 1 ,q2%

~4!
•Pr

2Gk $ i 1 ,q1%
~3!

•P r•Gk $ i 2 ,q2%
~3!

•Pr%

~127!

which can be graphically represented by

~128!

3. The renormalization group flow

We now explicitly write the flow equations for the cou
pling constants. This requires to know the vertex functio
taken at the minimumGk $a1 ,p1%,$a2 ,p2%, . . . ,$an ,pn%

(n) umin appear-

ing in Eqs. ~119!, ~120!, and ~121!. To evaluate them, one
uses the truncation Eq.~111!. One obtains

Gk $ i 1 ,q1%
~1! umin50,

Gk $ i 1 ,q1%,$ i 2 ,q2%
~2! umin

5~Zq1
2d i 1i 2

12r̃0ũ2d i 11d i 21!
d~q11q2!

~2p!d
,

13441
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Gk $ i 1 ,q1%,$ i 2 ,q2%,$ i 3 ,q3%
~3! umin

5A2r̃0ũ2~d i 1i 2
d i 311d i 2i 3

d i 111d i 3i 1
d i 21!

3
d~q11q21q3!

~2p!2d
,

Gk $ i 1 ,q1%,$ i 2 ,q2%,$ i 3 ,q3%,$ i 4 ,q4%
~4! umin

5ũ2~d i 1i 2
d i 3i 4

1d i 1i 3
d i 2i 4

1d i 1i 4
d i 2i 3

!

3
d~q11q21q31q4!

~2p!3d
. ~129!

In this last set of equations,Gk $ i 1 ,q1%,$ i 2 ,q2%
(2) umin is of par-

ticular interest since its inverse provides the propagatorPr at
scalek and, thus, the spectrum of excitations of the theory
this scale. We easily get from Eq.~129!:

Pr $ i 1 ,q1%$ i 2 ,q2%umin

5~2p!dd~q11q2!

35
1

Zq1
21Rk~q1

2!
if i 15 i 251

1

Zq1
21Rk~q1

2!12r̃0ũ2

if i 15 i 2Þ1

0 if i 1Þ i 2 ,

~130!

where Rk(q1
2) is the contribution of the regulating term

~85!.
It is clear on the expression~130! that theN3N matrix

Pr $ i 1 ,q1%$ i 2 ,q2%umin is diagonal. This holds independently o

FIG. 6. Schematic description of the deformations of the vec

fW associated with the proper excitations of theO(N) model: dotted
arrows display the configuration chosen at the minimum ofGk and
plain arrows display the relevant deformations:~a! massive singlet,
~b! ‘‘Goldstone’’ (N21)-uplet.
3-28
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NONPERTURBATIVE RENORMALIZATION-GROUP . . . PHYSICAL REVIEW B 69, 134413 ~2004!
the kind of truncation used. The spectrum of excitatio
around the minimum, at scalek, is thus directly red on Eq
~130!. We find—up to theRk term—one massive mode o
squared mass 2r̃0ũ2 in the longitudinal direction andN21
massless modes in the directions orthogonal to the mag
zationfW 0. The deformations of the vectorfW associated with
these modes are represented in Fig. 6.

It is important to keep in mind that this spectrum corr
sponds to effective masses—at scalek—for which only
high-momentum fluctuations—higher thank—have been
considered. It is only in the limitk→0 that one retrieves the
physical spectrum. In particular, we stress that a qualita
change in the spectrum can occur whenk is varied. For in-
stance, the following situation can happen: for largek, the
minimum of Uk is nonvanishing so that, at this scale, t
system behaves as if it was in its broken phase. Howe
when k is decreased, the minimum moves toward zero a
eventually vanishes for somek.0. Thus, while the system
for k5L, looks as if it was in its broken phase, it is actual
i.e., for k50, in the high-temperature phase. This is wh
happens when the temperature lies between the true cr
and the mean-field critical temperature. Another subtlety
that, in order to analyze the critical behavior, we have
consider the dimensionless renormalized quantities. Ag
one has to be careful about the conclusions deduced from
behavior of these quantities. For instance, the dimension
renormalized position of the minimum atk50 can be non-
vanishing even at the critical temperature whereas the ‘‘tr
magnetization is, of course, vanishing atTc . This is possible
since the dimensionful quantities are the products of th
dimensionless counterparts and of positive powers ofk.

Using Eqs.~119!, ~120!, ~121!, ~124!, ~127!, and ~129!,
one obtains the flow forr̃0

] tr̃052
1

2
]̃ tE ddq

~2p!d S N21

Zq21Rk~q2!

1
3

Zq21Rk~q2!12r̃0ũ2
D , ~131!

for ũ2

] tũ252
ũ2

2

2
]̃ tE ddq

~2p!d S N21

@Zq21Rk~q2!#2

1
9

@Zq21Rk~q2!12r̃0ũ2#2D , ~132!

and for the field renormalizationZ

] tZ522r̃0ũ2
2 lim

p2→0

d

dp2 S ]̃ tE ddq

~2p!d

3
1

Zq21Rk~q2!

1

Z~p1q!21Rk~@p1q#2!12r̃0ũ2
D .

~133!
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The search for fixed point requires to introduce dimensi
less renormalized coupling constants. We define

r05Zk22dr̃0 , u25Z22kd24ũ2 . ~134!

These changes of variables are deviced so thatk andZ dis-
appear from the flow equations of the renormalized dim
sionless quantities.

The corresponding flow equations thus write

] tr052~d221h!r012vd~N21!l 1
d~0!16vdl 1

d~2u2r0!,

] tu25~d2412h!u212vd~N21!u2
2l 2

d~0!

118vdu2
2l 2

d~2u2r0! ~135!

that depend onZ only throughh, the running ‘‘anomalous
dimension’’

h52] tln Z. ~136!

In our truncation, it is given by

h5
16vd

d
u2

2r0m2,2
d ~2u2r0!. ~137!

The usual anomalous dimension is given by the fixed po
value of Eq.~137!. In Eqs.~135! and ~137!, we have intro-
duced the—dimensionless—threshold functionsl n

d andm2,2
d :

l n
d~w!52

Znk2d12n

4vd
]̃ tE ddq

~2p!d

1

@Zq21Rk~q2!1Zk2w#n

m22
d ~w!52

dZ2k62d

8vd
lim

p2→0

d

dp2

3S ]̃ tE ddq

~2p!d

1

Zq21Rk~q2!

3
1

Z~p1q!21Rk~@p1q#2!1Zk2w
D ~138!

with vd
2152d11pd/2G(d/2). Some properties of thes

threshold functions are provided in Appendix C. We conce
trate here on the main physical aspects of the threshold fu
tions.

~1! Note first that the arguments of the threshold functio
entering in Eqs.~135! and ~137! are either 0 or 2u2r0 that
are—up toRk(q

2)—the dimensionless renormalized squa
masses associated with the excitations around the minim

~2! The threshold functionsl n
d(w) and m2,2

d (w) decrease
as power-laws when their arguments increase:

l n
d~w!}w2n21, m22

d ~w!}w22 ~139!
3-29
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B. DELAMOTTE, D. MOUHANNA, AND M. TISSIER PHYSICAL REVIEW B69, 134413 ~2004!
for w@1. The RG equation~104! makes thus explicit the
phenomenon of decoupling of massive modes: if the ren
malized square massMk

2—here 2u2r0—of a massive mode
increases when the scalek is lowered, the contribution of this
mode to the flow becomes negligible below a scalekc de-
fined byMkc

;1.
~3! The threshold functions are nonpolynomial functio

of their arguments. Thus the flow equations~135! and ~137!
are nonperturbative with respect to the coupling constanu2
as well as to 1/r0 which, as we shall see, is proportional
the coupling constant—the temperatureT—that parametrizes
the perturbative expansion of the NLs model.

As we now show, the effective average action appro
allows to recover the perturbative results obtained at lo
temperature aroundd52, at weak coupling aroundd54,
and in a 1/N expansion.

4. The weak-coupling expansion around dÄ4

Just below four dimensions, the nontrivial fixed poi
governing the phase transition of theO(N) model is very
close to the Gaussian fixed point. This justifies to expand
RG flow equations~135! and~137! both in the coupling con-
stantu2 and ine542d. At lowest order, the functionh is
vanishing. Sincer0 remains finite, the quantity 2u2r0 is of
order e and one can perform a small mass expansion.
flows of the couplingu2 and of r0 are obtained using
l n
d(v). l n

d(0)2nv l n11
d (0) for v!1 and l 2

4(0)51. This
leads to

] tr052~22e!r01
~N12!

16p2
l 1
4~0!2

3

8p2
u2r0 ,

] tu252eu21
N18

16p2
u2

2 . ~140!

At leading order, the roots of these equations are the Ga
ian fixed point—u2

!50 andr0
!5(N12)l 1

4(0)/32p2—and a
nontrivial fixed point obtained foru2

!516p2e/(N18) and
r0

!5(N12)l 1
4(0)/32p2. One easily deduces the critical e

ponentn from Eqs. ~140!, linearized around the nontrivia
fixed point

n5
1

2
1

e

4

N12

N18
. ~141!

It coincides with the one-loop expression obtained within
perturbative weak-coupling approach of the correspond
GLW model ind542e.

5. The low-temperature expansion around dÄ2

Let us now show that Eq.~104! also allows us to recove
the one-loop results obtained around two dimensions i
low-temperature expansion of the NLs model. We first make
contact between the parameters—essentially
temperature—of theO(N) NLs model and those of the ef
fective average action~111!.
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The partition function of theO(N) NLs model is given
by

Z5E DfW d~fW 221!expS 2
1

2TE ddx~]fW !2D . ~142!

Let us replace the delta-constraint by a soft constra
Using the field redefinitionfW →fW AT one obtains

Z5E DfW expF2
1

2E ddx@~]fW !22l~fW 2T21!2#G ,
~143!

where the delta-constraint is recovered whenl→`. Com-
paring this expression with theAnsatz~111! and using the
relation ~134! one obtains the relation

T5
1

2r0
. ~144!

As a consequence, the low-temperature one-loop pertu
tive results can be recovered from a 1/r0 expansion. In fact,
since the dimensionless renormalized mass of the mas
modes is given by 2u2r0, one has to perform a large-mas
expansion. Physically, this corresponds to the known f
that, around two dimensions, the longitudinal modes of
O(N) linear model are frozen and only the—transverse
‘‘Goldstone’’ fluctuations are activated. This phenomen
corresponds to the decoupling of massive modes. Tec
cally, this is realized through the behavior of the thresh
functions. As already stated, the threshold functions decre
as power laws for large arguments~139!. As a consequence
in the flow equations~135!, the contribution of the massive
mode—which is proportional tol n

d(2r0l)—is subdominant
compared with the contribution of the Goldstone modes
proportional tol n

d(0). Now, using the large-mass expansio
m22

d52(v)5v221O(v23), one gets from Eq.~137!:

h.
1

4pr0
. ~145!

Using this expression of the anomalous dimension and
value l 1

2(0)51, one gets

] tr0.2er01
N22

4p
,

] tu2.22u21
N21

4p
u2

2l 2
2~0!. ~146!

The flow equation forr0 coincides exactly with the resul
obtained in the one-loop low-temperature expansion of
NLs model for the temperature—which is given by E
~144!. The fixed point coordinates are given byr0

!5(N
22)/(4pe) and u2

!58p/@(N21)l 2
2(0)#. This leads to the

critical exponents

h5
e

N22
, n5

1

e
~147!
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which identify with those given by the low-temperature pe
turbative expansion of the NLs model at one loop.174

Note that the perturbativeb function foru2—Eq. ~140!—
and forr—Eq. ~146!—areuniversal, i.e., independent of the
cutoff function Rk(q). Indeed, theseb functions only de-
pend on the values of the threshold functionsl n

2n(v) at v
50 and onm22

d52(v) at largev that, as shown in Appendix
C3, do not depend on the cutoff functionRk(q). The match-
ing with the perturbative results obtained aroundd52 and
d54 is a very important feature of the effective avera
action method. First, it allows us to interpolate smooth
between two and four dimensions in a unified framewo
Second, it suggests that it is possible to reliably explore
behavior of the system in any dimensiond and, in particular
in d53, see below.

6. The large-N analysis

The flow equations~135! and ~137! can easily be ex-
panded in the large-N limit. The leading contributions come
from the Goldstone modes, which appear with a multiplic
tive factorN. Theb functions then read

TABLE VIII. The critical exponents in three dimensions for th
O(N) model.

N n h

1 0.520a 0.6290~25! g 0.057a 0.036~5! g

0.688b 0.6304~13! h 0.038b 0.0335~15! h

0.635c 0.056c

0.635d 0.058d

0.6307e 0.0467e

0.632f 0.033f

2 0.613a 0.6680~35! g 0.058a 0.038~5! g

0.722b 0.6703~15! h 0.038b 0.0354~25! h

0.683c 0.054c

0.666d 0.055d

0.666e 0.049e

3 0.699a 0.7045~55! g 0.051a 0.0375~45! g

0.756b 0.7073~35! h 0.035b 0.0355~25! h

0.726c 0.051c

0.712d 0.048d

0.704e 0.049e

aThe truncation where only the flow of$Z,r0 ,u2% is considered.
bOne addsu3.
cOne adds$u3 ,u4 ,Y(r0)%.
dOne adds$u3 ,u4 ,Y0 ,Z8(r0)%.
eTakes into account the full dependence ofUk , Zk and Yk in the
field ~Ref. 56!.

fThe order]4 terms of the derivative expansion have been includ
~Ref. 51!.

gCorresponds to the five-loop resummed perturbative results
2e ~Ref. 204!.

hSeven-loop perturbative results in three dimensions~Ref. 204!.
13441
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] tr05~22d!r012Nvdl 1
d~0!,

] tu25~d24!u212Nvdu2
2l 2

d~0!, ~148!

where we have anticipated that the anomalous dimen
vanishes at leading order, see below. The fixed point s
tions are easily found to ber0

!52Nvdl 1
d(0)/(d22) andu2

!

5(d24)/@2vdNl2
d(0)#. From these results, we check th

the anomalous dimension behaves as 1/N and thus gives sub
dominant corrections to theb functions. We can, finally,
compute the critical exponents by diagonalizing the stabi
matrix. We then findn51/(d22), in agreement with the
standard leading order result of the 1/N expansion. We now
check that the effective average action method provides
able results in three dimensions.

7. The critical exponents in three dimensions

One of the main interest of the effective average act
method is its ability to tackle with the physics in a nonpe
turbative regime, precisely when there is no small parame
as it is the case in three dimensions. We provide, in Ta
VIII, the critical exponentsn and h obtained with this
method, as functions of the order of the derivative and fi
expansions ofUk(r), Zk(r), andYk(r) @see Eq.~110!#. We
have also included the results of high-order perturbative
pansion for comparison. The exponentn is rather poorly de-
termined with our simple truncation~111!. However, the pre-
cision improves rapidly when more terms are added to
Ansatzfor Gk . For the best truncation,n is determined at
less than one percent compared with the world best e
mates. Although we shall not be concerned in the followi
in truncations using thefull potentialUk(r) and thefull ki-
netic termsZk(r) andYk(r) entering in Eq.~109!, we have
indicated, in Table VIII, the critical exponents compute
with suchAnsätze. One notes thatn is in very good agree-
ment with seven-loop resummed series204 while the anoma-
lous dimension is less precisely determined until the orde]4

terms of the derivative expansion have been included in
Ansatz, see Ref. 51.

8. The XY and multicritical Ising models in two dimensions

Let us close this section devoted to the analysis of
O(N) model by a discussion of the results obtained ind
52 for theXYand Ising models. These are, in fact, two of
most spectacular successes because they correspond to
nonperturbative systems.

As well known, the physics of theXY model at finite
temperature is governed by topologically nontrivi
configurations—vortices—which are not taken into acco
in a low-temperature treatment. According to Eq.~146!, the
flow for r0—or T—vanishes identically ind52 andN52
so that the theory is free. However, as well known, the mo
actually exhibits a phase transition at a finite temperat
TBKT—the Berezinskii-Kosterlitz-Thouless phas
transition—induced by the deconfinement of the vortices,
Refs. 53,54. Remarkably, the simplest RG equations~135!
and ~137! already allow to obtain the correct qualitative b
havior of theXY model at finite temperature: a very smallb

d

4
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function of T is found betweenT50 and a finiteTBKT .55

Recently, treating the full field-dependence ofUk , Zk and
Yk , von Gersdorff and Wetterich56 have recovered the cor
rect behavior for the correlation length of theXY model
aroundTBKT :

j.expS Cte

~T2TBKT!tD . ~149!

The exact results aret51/2 andh51/4 for the anomalous
dimension atTBKT ~Refs. 54,205! while von Gersdorff and
Wetterich have foundt50.502 andh50.287. This shows
that the physics of topological excitations is captured by
lowest orders of the derivative expansion, without includi
explicitly these degrees of freedom in the manner
Villain.206

As for the Ising model, it is known that, in two dimen
sions, it can undergo infinitely many nontrivial kinds
phase transitions associated with infinitely many multicriti
fixed points207. It is shown in Ref. 14 that they all correspon
to strong coupling fixed points. They are therefore very d
ficult to study by perturbative means. By a systematic sea
of fixed points in the two-dimensional scalar field theo
using an order]2 truncation of the derivative expansion
Morris62 has been able to find explicitly the first ten fixe
points of this series. He has also shown that no other fi
point exists but the multicritical fixed points.

9. A difficulty related to the field expansion

Let us finally mention a difficulty linked to the field ex
pansion of the potentialUk showing up, for instance, whe
the stable fixed point of theO(N) model is followed from
d54 down tod52. When the simplestf4 truncation~111!,
is used no problem occurs: one can smoothly follow
stable—critical—fixed point fromd54, where it identifies
with that found in a weak coupling expansion of the GL
model, down tod52, where it coincides with that obtaine
within a low-temperature expansion of the NLs model, Eq.
~146!. However, once thef6 term is added, a new nontrivia
fixed point emerges from the Gaussian fixed point ind53.
This is a tricritical fixed point, i.e., a fixed point with tw
directions of instabilities. Asd is lowered, the critical and
tricritical fixed points move closer together and eventua
coalesce in a dimension 2,d,3. Actually, they both be-
come complex. Note that whend is further lowered, the two
fixed points become again real. Ind521e, the stable fixed
point can be identified with that found within the low
temperature expansion of the NLs model with thef4 trun-
cation. Thus, there exists a small region betweend52 and
d53 where one fails to correctly describe the fate of t
stable fixed point of the model using thef6 truncation. How-
ever, this is just an artifact of the field expansion, not of
method. To show this, let us describe what happens when
orderp of the truncation is increased. First, when including
new monomial fp in the effective potential, a new—
multicritical—fixed point emerges from the Gaussian fix
point in the dimension 2p/(p22). Again the stable fixed
point coalesces with one of these multicritical points a
13441
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reappears close tod52. Second, asp increases, the coales
cence of the stable fixed point occurs at smaller and sma
dimensions. Thus, one recovers a better and better des
tion when increasing the order of the truncation. Also, it h
been checked that when the full field dependence of the
tential is kept, the problem fully disappears and the sta
fixed point can be followed smoothly betweend54 andd
52.208 Finally, it is important to indicate that, in the whol
range of dimensions where the stable fixed point ex
within a field expansion, the critical exponents found with
this approach at sufficiently large orderp (p>10) and those
found within a full potential computation are very close. T
artifact of the field expansion described here can be bypa
using either a full potential computation or using a field e
pansion at sufficiently high order. Actually, it is not surpri
ing that difficulties occur with the field expansion at lo
dimensions since the engineering dimension of the field v
ishes asd→2. This strongly suggests that no power of t
field can be safely discarded inUk whend→2. This is con-
firmed by the fact that the effective potential, which is e
actly known atN5` for d53 andd52, is respectively a
polynomial of order six and an infinite series.

E. Conclusion

We have described, in this section, the main features
the effective average action method. We now summa
them.

~1! The effective average action method allows us to tri
ally recover the perturbative results around the upper—d
54—and lower—d52—critical dimensions and thus t
make contact with these approaches.

~2! The results obtained via this method are nonpertur
tive in the different parameters: coupling constant and te
perature. In this sense, it provides an alternative approac
the usual perturbative methods. This is of great interest,
pecially when one suspects that the perturbative series c
be not reliable as it is the case for frustrated magnets.

~3! Even with a very simple truncation of the effectiv
average action, it is possible to capture some genuine n
perturbative features—such as nontrivial topologic
configurations—that are unreachable from a conventio
low-temperature expansion. This aspect is particularly
portant in the context of frustrated magnets since one kn
that the low-temperature expansion performed ind521e
does not provide the correct physics ind53, a possible ex-
planation being the presence of vortexlike configurations
these systems.

VII. THE O„N…ÃO„2… MODEL

We now come back to the study of frustrated magnets.
derive the flow equations relevant to the study of frustra
magnets. The derivation follows the same lines as in
O(N) case~see Sec. VI D above!.

A. Truncation procedure

As emphasized previously, since the NPRG equat
~105! cannot be solved exactly, a truncation forGk is needed.
3-32
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We consider here a truncation involving only terms having
most two derivatives. At this order, the most general form
the O(N)3O(2) effective average action writes

Gk@fW 1 ,fW 2#5EddxS Uk~r,t!1
1

2
Zk~r,t!@~]fW 1!21~]fW 2!2#

1
1

4
Yk

(1)~r,t!~fW 1•]fW 22fW 2•]fW 1!2

1
1

4
Yk

(2)~r,t!~fW 1•]fW 11fW 2•]fW 2!2

1
1

4
Yk

(3)~r,t!@~fW 1•]fW 12fW 2•]fW 2!2

1~fW 1•]fW 21fW 2•]fW 1!2# D . ~150!

We recall thatfW 1 andfW 2 are the twoN-component vectors
that constitute the order parameter, Eq.~8! while r

5Tr( tFF) and t5 1
2 Tr( tFF21r/2)2—with F5(fW 1 ,fW 2)

—are the two independentO(N)3O(2) invariants~see Ap-
pendix B for a more detailed discussion!. The truncation
~150! is the analog of Eq.~109!, in the case of matrix fields
Here Uk(r,t) is the potential part of the effective averag
action while Zk(r,t) and Yk

( i )(r,t), i 51,2,3, are kinetic
functions.

At this level of approximation, the RG analysis requires
specify the five functionsUk , Zk , andYk

( i ) , i 51,2,3. This is
to say an infinite number of coupling constants. As in t
case of the vectorialO(N) model, we further simplify the
Ansatzby expanding these functions in powers of the fiel
Again, we choose to expand around a nonvanishing fi
configuration which minimizesGk . This constraint is satis
fied whenfW 1 and fW 2 are orthogonal, with the same norm
We choose

Fmin~x!5Ak̃S 1 0

0 1

0 0

A A

0 0

D ~151!

the physical results being independent of this particu

choice. The quantityAk̃ entering in Eq.~151! is analogous
to the quantityf0 in the O(N) case, see Eq.~112! and we
refer to it in the following as the magnetization.

While studying the critical properties of the system, w
have considered various truncations differing by the num
of monomials inr andt included in the field expansion. Ou
largest truncations consist either in keeping all terms inUk
up to the eighth power of the fields and all terms inZk and in
the Yk

( i )’s including four powers of the fields or all terms i
Uk up to the tenth power of the fields and the first term of
expansions ofZk and of Yk

(1) . With these truncations, we
13441
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have verified that our results are stable with respect to a
tion of higher powers of the fields. However, in order to ke
our presentation concise, we have chosen here to consid
reduced truncation that already enables us to recover the
ferent perturbative results—in 42e, 21e and 1/N—in their
respective domains of validity. Within this truncation, w
expandUk up to terms containing four powers of the field
and keep only the leading terms ofZk and Yk

(1) . We also
completely discard the two other functionsYk

(2) and Yk
(3) .

This choice is motivated by the fact that, as we will see
the next section, only the functionYk

(1) contributes directly to
the physics of the Goldstone modes and is thus impor
around two dimensions. Since one of our aims is to reco
the results obtained around two dimensions, we keep
term in ourAnsatz. We are then led to the simple truncatio

Gk@fW 1 ,fW 2#5E ddxS Z

2
@~]fW 1!21~]fW 2!2#1

ṽ

4
~fW 1•]fW 2

2fW 2•]fW 1!21
l̃

4 S r

2
2k̃ D 2

1
m̃

4
t D . ~152!

Let us now discuss the different terms appearing in this
pression. The coupling constantsl̃ andm̃ have been already
introduced in the GLW approach@see Eq.~51!#. The cou-
pling constantk̃ describes the position of the minimum o
the potential and appears in the truncation because we
pandGk around the nonvanishing field configurationFmin.
As in theO(N) case,Z corresponds to the field renormaliza
tion. Finally, the unusual kinetic term with couplingṽ cor-
responds to the current term of Eq.~42! introduced in the
discussion of the NLs model approach. This term is irrel
evant by power counting around four dimensions since
is quartic in the fields and quadratic in derivatives. Howev
its presence isnecessaryaround two dimensions to recove
the results of the low-temperature approach of the Ns
model since it contributes to the field renormalization of t
Goldstone modes. As the NPRG method does not rely
usual power counting arguments one includes this term in
Ansatz.

The above effective action has all the ingredients to
scribe accurately the physics at low-temperature around
dimensions as well as at weak-coupling regime around f
dimensions. We can therefore anticipate that this simple tr
cation is actually rich enough to recover the perturbative
sults aroundd52 andd54. Of course, since our main goa
is to go beyond the usual perturbative expansion, we h
studied larger truncations and have controlled the conv
gence of our results.

The spectrum. We now discuss the spectrum of excitatio
around the minimum~151!. The spectrum is given by the
eigenvalues and eigenvectors of the mat
d2Gk /df i

jdfk
l —where i ,kP$1,2% and j ,l P$1, . . . ,N%

—evaluated in the configuration~151!. We find that the 2N
degrees of freedom of the order parameterF divide in four
types that are described in Fig. 7.
3-33



es

ns

ing

n-

e
ator
re-
-

re

de
th

B. DELAMOTTE, D. MOUHANNA, AND M. TISSIER PHYSICAL REVIEW B69, 134413 ~2004!
~1! A family of 2N24 massless—Goldstone—mod
which correspond to rotating rigidly the dihedral (fW 1 ,fW 2) by
keeping eitherfW 1 or fW 2 unchanged, see Fig. 7~a!.

FIG. 7. Schematic description of the deformations of (fW 1 ,fW 2)
associated with the four types of proper excitations of the mo
The dotted arrows display the ground state configuration and
plain arrows display the relevant deformations:~a! massless (2N
24)-uplet, ~b! massless singlet,~c! massive singlet,~d! massive
doublet.
13441
The four remaining modes correspond to the situatio
where the two vectors (fW 1 ,fW 2) remain in the same plane:

~2! A massless—Goldstone—singlet mode correspond
to rotating the dihedral within its plane, see Fig. 7~b!. To-
gether with the 2N24 other ones, this gives the 2N23
Goldstone modes of the model.

~3! A massive singlet of square massl̃k̃ corresponding to
a dilation of the two vectors, see Fig. 7~c!.

~4! A massive doublet of square massm̃k̃ corresponding
to fluctuations of each vector of the dihedral, with the co
straint that the sum of the lengths of the vectorsuf1

W u1uf2
W u

remains unchanged, see Fig. 7~d!.
In practice, it is very useful to work in the basis of th

proper excitations of the model since then, as the propag
is diagonal, the calculations are greatly simplified. We the
fore introduce 2N directions in the internal space, corre
sponding to the 2N proper excitations of the model. They a
given by

d1,p5
1

A2
S d

df1
1~p!

1
d

df2
2~p!

D ,

d2,p5
1

A2
S d

df1
1~p!

2
d

df2
2~p!

D ,

d3,p5
1

A2
S d

df2
1~p!

1
d

df1
2~p!

D ,

d4,p5
1

A2
S d

df1
2~p!

2
d

df2
1~p!

D ,

d5,p5
d

df1
3~p!

, d6,p5
d

df2
3~p!

, . . . ,

d2N21,p5
d

df1
N~p!

, d2N,p5
d

df2
N~p!

. ~153!

l.
e

In this basis, the two-point vertex function, i.e., the inverse propagator—up to theRk term—has the form

G$i,q1%,$ j ,q2%
(2) umin5

d~q11q2!

~2p!d 1
Zq1

21l̃k̃

Zq1
21m̃k̃ 0

Zq1
21m̃k̃

~Z1ṽk̃ !q1
2

Zq1
2

0 �

Zq1
2

2 . ~154!
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In the matrix~154!, the first three lines correspond to th
massive modes and the last 2N23 to the massless mode
Note that a nonstandard kinetic term appears on the fo
line through an additional field renormalizationṽk̃ for the
Goldstone singlet. Let us add that if one keeps, in the tr
cation ~152!, contributions from the functionsY(2) andY(3)

@see Eq.~150!#, the field renormalizations in the first thre
lines get extra contributions similar to what is obtained in
fourth line. Note thatY(2) and Y(3) affect only the field
renormalization of massive modes. It is therefore not nec
sary to take them into account in order to retrieve the lead
order behavior in a low-temperature expansion aroundd
52 which is entirely governed by Goldstone modes. This
why we do not keep them in our simplest truncation~152!.

B. The flow equations

We now display the flow equations for the coupling co
stants entering in the truncation~152!. We recall the four
major steps of this procedure~see Sec. VI D!.

~i! The running coupling constants are defined as fu
tional derivatives of theAnsatzof Gk , Eq. ~152!.

~ii ! The operator] t is then applied on these definitions. B
making use of the NPRG equation~105!, flow equations for
the coupling constants are obtained as traces of vertex f
tions. These expressions are evaluated by using the trunc
form of Gk , Eq. ~152!.

~iii ! The flow equations are expressed in terms of thre
old functions.

~iv! Dimensionless renormalized quantities are int
duced.

1. Definition of the coupling constants

As in the vectorial model, the coupling constants are
fined as values of the vertex functions in the specific c
figuration Fmin around which is made the field expansio
~151!. Let us start with the definition ofk̃. This coupling
constant parametrizes the ground state configurationFmin.
One has, as in theO(N) case, an implicit definition ofk̃:

da,p50Gkumin50 ~155!

with da,p given by Eq.~153!. In the following, as in the
O(N) case, we shall consider only the casea51.

The other coupling constants are defined using the t
point vertex function in different directions

l̃5
~2p!d

k̃d~0!
d1,0d1,0Gkumin ,

m̃5
~2p!d

k̃d~0!
d2,0d2,0Gkumin . ~156!

These two definitions come directly from the study of t
spectrum discussed previously@see Eq.~154!#.
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We finally define the coupling constants associated w
the momentum-dependent part of our truncation~152!, i.e.,
the field renormalization factorZ and the current-term cou
pling constantṽ:

Z5
~2p!d

d~0!
lim

p2→0

d

dp2
~d5,pd5,2pGkumin!,

ṽ5
~2p!d

k̃d~0!
lim

p2→0

d

dp2
~d4,pd4,2pGkumin!2

Z

k̃
. ~157!

2. The t derivation and the flow equations

We now apply the operator] t to the definitions~155!–
~157!. In order to derive the flow equations, we have to co
pute the functional derivatives of] tGk with respect to the
fields. This is similar to what has been done previously in
context of theO(N) model ~see Sec. VI D 2 above!, except
that the tensorial structure in the internal space is more
volved so that the computation of the traces is more cumb
some. We do not give the details here. We now introduce
dimensionless renormalized quantities defined as

k5Zk22dk̃, l5Z22kd24l̃,

m5Z22kd24m̃, v5Z22kd22ṽ ~158!

as well as the threshold functions which are defined and
cussed in Appendix C. We then get the following flo
equations:121

dk

dt
52~d221h!k14vdF1

2
l 01
d ~0,0,kv!

1~N22!l 10
d ~0,0,0!1

3

2
l 10
d ~kl,0,0!

1S 112
m

l D l 10
d ~km,0,0!1

v

l
l 01
21d~0,0,kv!G , ~159a!

dl

dt
5~d2412h!l1vd@2l2~N22!l 20

d ~0,0,0! ~159b!

1l2l 02
d ~0,0,kv!19l2l 20

d ~kl,0,0!

12~l12m!2l 20
d ~km,0,0!14lv l 02

21d~0,0,kv!

14v2l 02
41d~0,0,kv!],

dm

dt
5~d2412h!m22vdmF2

2

k
l 01
d ~0,0,kv!

1
3~2l1m!

k~m2l!
l 10
d ~kl,0,0!1

8l1m

k~l2m!
l 10
d ~km,0,0!

1m l 11
d ~km,0,kv!1m~N22!l 20

d ~0,0,0!G , ~159c!
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h52
d ln Z

dt
52

vd

dk
@~42d!kv l 01

d ~0,0,kv!12k2v2l 02
21d~0,0,kv!12m02

d ~0,0,kv!24m11
d ~0,0,kv!

12~221d!kv l 10
d ~0,0,0!12m20

d ~0,0,kv!12k2l2m22
d ~kl,0,0!14k2m2m22

d ~km,0,0!14kvn02
d ~0,0,kv!

28kvn11
d ~0,0,kv!14kvn20

d ~0,0,kv!#, ~159d!

dv

dt
5~d2212h!v1

4vd

dk2 FkvH ~42d!

2
l 01
d ~0,0,kv!1

~d216!

2
l 01
d ~kl,0,kv!1kv l 02

21d~0,0,kv!23kv l 02
21d~kl,0,kv!

1~d22!l 10
d ~0,0,0!2~d28!l 10

d ~kl,0,0!18kl l 11
d ~kl,0,kv!12kv l 20

21d~km,0,0!12kv~N22!l 20
21d~0,0,0!J

1m02
d ~0,0,kv!2m02

d ~kl,0,kv!22m11
d ~0,0,kv!12m11

d ~kl,0,kv!1m20
d ~0,0,kv!2m20

d ~kl,0,kv!1k2l2m22
d ~kl,0,0!

12k2m2m22
d ~km,0,0!12kvn02

d ~0,0,kv!24kvn02
d ~kl,0,kv!24kvn11

d ~0,0,kv!18kvn11
d ~kl,0,kv!

12kvn20
d ~0,0,kv!24kvn20

d ~kl,0,kv!G . ~159e!
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VIII. TESTS OF THE METHOD AND FIRST RESULTS

This section is devoted to all possible tests of our meth
in the O(N)3O(2) case. We show, in particular, how th
various perturbative results are recovered as it was alre
the case in theO(N) model. We also give our determinatio
of Nc(d) which is compared with the five-loop improve
perturbative computation. Finally, we give our determinat
of the exponents in theN56 case and we compare the
with those of the Monte Carlo simulation.

A. The weak-coupling expansion arounddÄ4

Around d54, we expect a nontrivial fixed point close t
the gaussian. One can expand the flow equations at lea
order in the quartic coupling constants and ine, as we did in
the O(N) case~see Sec. VI D 4!. As expected from powe
counting, we find that the fixed point value of the coupli
constantv associated with the current term is vanishing
leading order. This is also the case ofh. As in the O(N)
case, the square masseslk andmk are of ordere so that the
threshold functions can be expanded in powers of their a
ments. Once this expansion is performed one recovers
standard one-loopb-functions for the coupling constantsl
andm given in Eq.~53! that we recall here

bl52el1
1

16p2
@4lm14m21l2~N14!#,

bm52em1
1

16p2
~6lm1Nm2!. ~160!

One can also expand theb function for k, Eq. ~159a!:
13441
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bk52~22e!k1
l 1
4~0!

8p2 S N111
2m

l D2
3kl

16p2

2
km

8p2 S 11
2m

l D ~161!

from which we can deduce the expression ofn at ordere,
which coincide with the one-loop result of Eq.~54!.

B. The low-temperature expansion arounddÄ2

As explained in the context of theO(N) model~see Sec.
VI D 5!, in order to recover the NLs model results, we need
to expand the flow equations at large masses. Using the
havior of the threshold functions for large arguments~see
Appendix C!, we get64

dk

dt
52~d221h!k1

N22

2p
1

1

4p~11kv!
,

dv

dt
5~221d12h!v

1
11kv1~N21!k2v21~N22!k3v3

2pk2~11kv!
,

h5
314kv12k2v2

4pk~11kv!
. ~162!

By making the change of variables

h152pk, h254pk~11kv! ~163!

we recover theb functions found in the framework of the
NLs model at one-loop order@see Eq.~49!#.
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C. The large-N expansion indÄ3

As in the O(N) case~see Sec. VI D 6!, our equations
allow us to recover the critical exponents at leading orde
1/N. We have computedh andn for a large range of value
of N and have compared our results with those calcula
perturbatively at order 1/N2, Eq. ~61!. We find an excellent
agreement—better than 1%—forn, for all N.10, see Fig. 8,
a domain of values ofN where one expects the 1/N2 results
to be very close to the exact values. We also quote in Ta
IX our results and those obtained by the six-loop calculat
for N516 andN532.

D. The determination of Nc„d…

Let us now interpolate between the results we have
tained aroundd52 andd54 and discuss, in particular, th
curve Nc(d) that separate the regions of first and seco
order. We have computedNc(d) with our best truncation and
with the cutoff function~91!. In Fig. 9, we give our result
~crosses! from d54 down tod52.7. We also indicate the
improved five-loop results given by Eq.~57! together with
Eq. ~60! for comparison@we indicate that the curve provide
by Eq.~57! together with Eq.~60! and the curve provided by
Eq. ~59! merge together#. The two curves in Fig. 9 have
roughly the same shape but differ quantitatively. In thr
dimensions for instance, the NPRG method leads toNc(d
53).5.1 and the improved five-loop resultNc(d53)
.6.1. Let us emphasize that, within the NPRG method,
quantity Nc(d) is very sensitive to the order of th
truncation,61 much more than the critical exponents. Th
means that one probably should not consider our resul
very reliable. In this respect, we recall the results obtaine
six loop in d53 by Calabreseet al.135 Nc(d53)56.4(4).
We also recall the result obtained by Calabrese
Parruccini171 by means of a pseudo-e expansion at six loop
in d53: Nc(d53)56.22(12). All the values ofNc(d53)
obtained by means of high-order perturbative approaches
close together and are very probably a correct estimat
this quantity.

Let us finally mention that, for the reason already e
plained in Sec. VI D 9, the field expansion we have p
formed at orderf10 forbids us to follow the chiral fixed poin
C1 in dimensions typically betweend52.5 andd52.1 and
thus to determine reliably the curveNc(d) in these dimen-
sions. As in theO(N) case, this artifact could be overcom
by keeping the full field dependence of the effective poten
Uk(r,t).

E. The critical exponents for NÄ6

As already said, forN56, the transition is either of sec
ond order or extremely weakly of first order. In both cas
scaling should exist on a large domain of temperature.
critical exponents obtained with our best truncation are gi
in Table X. Note thatn andh are computed directly whileg,
b anda are computed using the scaling relations. Our res
agree very well with the numerical ones.23 In particular, the
error onn, which is as usual the best determined exponen
13441
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only 1%. This constitutes a success of the NPRG appro
from the methodological point of view.

F. Conclusion

Our method has successfully passedall possible tests.
This gives us a great confidence in the reliability and
convergence of our results. We are now in a position to
plore the physics of frustrated magnets in three dimensio

FIG. 8. The exponentsh andn as functions ofN in d53. The
crosses represent our results and the full line the values obta
from the 1/N expansion~61!. The circles and error bars are th
Monte Carlo results obtained forN56 ~Ref. 23!.

TABLE IX. Exponentsn andh computed from the 1/N expan-
sion ~Ref. 168!, by our method~NPRG!, and from the six-loop
calculation~Refs. 135,167!.

N Method n h

16 1/N ~Ref. 168! 0.885 0.0245
NPRG 0.898 0.0252

six-loop 0.858~4! ~Ref. 167!,
0.863~4! ~Ref. 135!

0.0246~2!
~Ref. 135!

32 1/N ~Ref. 168! 0.946 0.0125
NPRG 0.950 0.0134

six-loop 0.936~2! ~Ref. 167!,
0.936~1! ~Ref. 135!

0.01357~1!
~Ref. 135!
3-37
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IX. THE PHYSICS IN dÄ3

We now tackle the physics in three dimensions. Bef
embarking in this discussion, two points need to be clarifi
The first concerns the existence of a fixed point forN
,Nc(d53). The second one concerns the situation just
low Nc(d53).

A. The search of fixed points forNËNc„d…

Let us first discuss the search, within the NPRG meth
of fixed points ind53 and forN,Nc(d53).5.1. We re-
call that, for this critical value ofN, the two fixed pointsC1

andC2—see Fig. 2—coalesce. This means that these fi
points—that can be followed smoothly in the (d,N) plane
from the gaussian ind54—cease to be real below th
value. However, this does not imply the absence of other
fixed points. One has to test the existence of fixed po
nontrivially connected withC1 and C2 , as advocated by
Pelissettoet al.167 We have thus searched such fixed poi
both by directly looking for zeroes of theb-functions and by
integrating numerically the RG flow—see below. After a
intensive search, we have foundno such fixed point. This
result and its relation with that of Pelissettoet al. will be
discussed in the following.

B. The physics indÄ3 just below Nc„d…: scaling with a
pseudo-fixed point and minimum of the flow

In a fixed dimensiond, the disappearance of the nontrivi
fixed pointsC1 andC2 , whenN crossesNc(d), could seem
to be an abrupt process: the two fixed points collapse
disappear. Actually, when extended to the space of com

FIG. 9. The full line represents the curveNc(d) obtained from
the five-loop results improved by the constraintNc(d52)52, Eq.
~57!, and Eq.~60!. The crosses represent our calculation.

TABLE X. The exponents forN56 obtained from the NPRG
first line, and from the Monte Carlo~MC! simulation, second line.

Method a b g n h

NPRG 20.121 0.372 1.377 0.707 0.053
MC
~Ref. 23!

20.100~33! 0.359~14! 1.383~36! 0.700~11! 0.025~20!
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coupling constants, this process is continuous since the
change is that, when going fromN.Nc(d) to N,Nc(d), the
fixed points acquire a small complex part. This continuo
character manifests itself as smooth changes of the RG
that can be explained thanks to continuity arguments.

To understand the evolution of the RG flow asN is de-
creased, we need to consider the space ofall coupling con-
stants, i.e., the space such that to each point correspon
microscopic Hamiltonian of a system. In this space, we fo
on the subspaceE containing the representative points, atT
5Tc , of STA, STAR,VN,2 , BCT, and of all real materials
studied experimentally and, more generally, of all systems
physical interest. Let us now describe qualitatively t
change of the RG trajectories asN crossesNc(d).

~i! WhenN is larger thanNc(d), there exists a true stabl
fixed point of the RG flow so that all trajectories emergi
from E eventually end on this fixed point, see Fig. 10. A
systems exhibit scaling around the transition and universa
holds.

~ii ! As already stated, whenN is decreased slightly below
Nc(d), the fixed pointC1 gets complex coordinates an
loses its direct physical meaning. In particular, the flow
longer stops at a point, see Fig. 10~b!. Consequently, the
correlation lengths of systems inE do not diverge atTc .
Strictly speaking, all systems undergo first-order phase tr
sitions. However two facts must be noted. First, all the t
jectories emerging fromE are attracted toward a small regio
in coupling constant space, denoted byE8 in Fig. 10~b!. Sec-
ondly, the flow inE8 is very slow.

From the second observation, we deduce that for all s
tems inE the correlation lengths at the transition are ve
large—although finite—since they typically behave as
exponential of the RG time spent aroundE8, which is large.
Therefore, the transitions are all extremely weakly first ord
for systems inE. We thus expect scaling behaviors wi
pseudocritical exponents for all physical quantities, with t
subtlety that this scaling aborts very close toTc where the
true first order nature of the transitions shows up.

As for the first observation—i.e., all trajectories are a
tracted toward a small regionE8—it allows us to conclude
that all phase transitions are governed by a small region
coupling constant space and that, therefore, universality
most holds. In particular, the pseudocritical exponents sho
be roughly the same for all systems whose microsco
Hamiltonian corresponds to a point inE.

Let us study in greater detail the case whereN is just
below Nc(d53). For such values ofN, it is reasonable to
approximateE8 by a point. The best approximation is clear
to choose the point inE8 that mimics best a fixed point, i.e
the point where the flow is the slowest: the minimum of t
flow.66 To determine this so-called ‘‘pseudofixed point
Zumbach66 has proposed to introduce a norm for the flo
and to determine the point where the norm is minimum.
has performed this approach in the context of a NPRG eq
tion ~LPA of the Polchinski equation! where he has built the
needed mathematical structures. He has shown that, wh
minimum exists, pseudocritical exponents characteriz
pseudoscaling can be associated with the pseudofixed p
3-38
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FIG. 10. Schematic representation of the flow~a! for N aboveNc(d) and ~b! for N just belowNc(d). For the sake of clarity, we have
representedE8 outsideE while it can be included in it.
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in the same way that true exponents are associated w
true fixed point~see Appendix D for more details!.

A natural assumption to explain the pseudoscaling beh
iors observed in real systems is that the minimum of the
flow mimics a true fixed point even for values ofN not very
close toNc(d53). For the Heisenberg systems, this positi
has been advocated by Zumbach66 and by the presen
authors.64

Within our present approach we have confirmed the e
tence of a minimum of the flow, for values ofN just below
Nc(d53), leading to pseudoscaling and pseudounive
ality.64 By following this minimum we have confirmed that
persists down toN53 and have computed the associat
pseudocritical exponents, see Table XI. We also give in
table the exponents found by Zumbach within the LPA of
Polchinski equation for the same model66 and recall those
found within the six-loop approach of Pelissettoet al.167

The values that we have obtained within our calculat
for the critical exponents are not too far from—some of
those found experimentally for group 2 of materials, see
~37!, as well as those found numerically for the STA, Tab
V. As usual, our truncation overestimatesh and thus, at fixed
b, underestimatesn. It is remarkable that the values of th
pseudocritical exponents we have found at the minimum
in good agreement with those obtained within the six-lo
approach. This strongly suggests that there is a common
gin to these two sets of critical exponents. We shall co
back on this point later.

C. Scaling with or without pseudo-fixed point: the Heisenberg
and XY cases

Let us now argue that the preceding analysis, based so
on the notion of minimum, is too naive to give an explan
tion of the pseudocritical behaviors in the physically inte
13441
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esting cases. Let us also give a qualitative picture t
supplements the concept of minimum.

We have found that, whenN is lowered belowN53, the
minimum of the flow is less and less pronounced and th
for some value ofN between 2 and 3, it completely disap
pears. Since severalXYsystems exhibit pseudoscaling in e
periments or in numerical simulations, this means that
concept of minimum of the flow does not constitute the d
finitive explanation of scaling in absence of a fixed poi
One encounters here the limit of the concept of minimum
the flow. First, it darkens the important fact that the noti
relevant to scaling is not the existence of a minimum but t
of a whole region in coupling constant space in which t
flow is slow, i.e., theb functions are small. Put it differently
the existence of a minimum does not guarantee that the
is sufficiently slow to produce large correlation lengths. R
ciprocally, one can encounter situations where the RG flow
slow, i.e. the correlation length is large, so scaling occ
even in the absence of a minimum. The existence of a m
mum is thus neither necessary nor sufficient to explain ps
doscaling. Second, even when the minimum exists, reduc
the regionE8 to a point rules out the possibility of testing th
violation of universality. For instance, one knows that f

TABLE XI. The critical and pseudocritical exponents forN
53. a, b, and g have been computed assuming that the sca
relations hold. The first line corresponds to our nonperturbative
proach, the second to Zumbach’s work. In the third line, we ha
recalled the six-loop results of Pelissettoet al. for comparison.

Method Ref. a b g n h

NPRG 64 0.38 0.29 1.04 0.54 0.072
LPA 66 0.11 0.31 1.26 0.63 0.0
Six-loop 167 0.35~9! 0.30~2! 1.06~5! 0.55~3! 0.08
3-39
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FIG. 11. Schematic representation of the flow~a! for N belowNc(d)—N.3—and~b! for N well belowNc(d)—N.2. For the sake of
clarity, we have representedE8 outsideE while it can be included in it.D andR are represented in gray. In~a!, D5E andR5E8.
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N53 universality is, in fact, violated, see Table V, while
minimum of the RG flow is found. This feature cannot
reproduced by the unique set of exponents computed a
minimum. The opposite assumption, done first by Zumbac66

and by the present authors,64 was thus unjustified.
Thus, even for very weak first order transitions, the be

tiful simplicity of second order transitions is lost and th
finite extend of the attractive regionE8 has to be taken into
account. To be precise, one needs to define two subsetsE
andE8: D which is the region inE leading to pseudoscalin
andR, the subset ofE8 which is the image ofD in the RG
flow, see Figs. 11~a! and 11~b!. Let us now consider the
characteristics of the flow whenN is varied.

Since for N.Nc(d53) all the systems inE undergo a
second-order phase transition, one expects—thanks to c
nuity arguments—that forN slightly below Nc(d53), all
systems inE exhibit pseudoscaling and thus thatD5E. At
the same time,E8, the image ofE is almost pointlike—see
Fig. 10~b!—and universality holds.

As N is decreased belowNc(d), two phenomena occur.
~i! While D remains equal toE, the domainE8, which is

initially pointlike, grows, see Fig. 11~a!. This means that
while pseudoscaling should be generically observed, uni
sality starts to be significantly violated: a whole spectrum
exponents should be observed, the size ofE8 providing a
measure of this violation of universality.

~ii ! For low values ofN, the regionD leading to pseudo-
scaling become smaller thanE, see Fig. 11~b!. For systems
defined by initial conditions inD, the correlation lengths ar
still relatively large but the pseudocritical exponents can v
from system to system according to the size ofR. For sys-
tems defined by initial conditions inE but not inD, the RG
flow is always fast, producing small correlation lengths
Tc . The corresponding systems undergo strong first-or
phase transitions. Moreover, asN decreases, the flow inE8
should become more and more rapid so that, for system
E, the correlation lengths at the phase transitions should
13441
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crease. The transitions are thus expected to become m
strongly of first-order for lowerN.

The precise values ofN for which these changes of be
haviors occur as well as the shapes and extents ofD, R, and
E8 can only be obtained from a detailed analysis of both
microscopic Hamiltonian and of the RG flow. However, i
dependently of the details of the model under study, of
precise value ofNc(d), etc., one expects the following be
havior: asN is decreased, a system that undergoes at largN
a second order transition undergoes, forN just smaller than
Nc(d), a very weak first-order transition governed by t
minimum. Then, it should undergo a weak first-order tran
tion where the notion of minimum is no longer relevant a
for which universality does not hold anymore. Finally,
should undergo a strong first order phase transition. In
spectrum of models studied numerically, it is easy to see
the STAR,VN,2 , and BCT models withXY and Heisenberg
spins nicely obey this prediction. ForN53, they all show
scaling and the phase transitions should be very weakly
first order. However, their exponents are clearly incompati
with those of STA and with those associated with the mi
mum, see Tables V and XI. The RG trajectories associa
with these systems are thus expected to pass throughR, but
far from the minimum. One thus naturally expects that, wh
N is decreased down toN52, no scaling behavior is ob
served for these systems. This is indeed what is found
numerical simulations, see Table III. This strongly sugge
that D has shrinked betweenN53 and N52 and thatN
53 corresponds to Fig. 11~a! andN52 to Fig. 11~b!.

D. The integration of the RG flow for Heisenberg and XY
systems

In the previous section we have shown that the notion
minimum—or pseudofixed point—in the RG flow is neith
sufficient nor necessary to explain the existence of sca
without a fixed point. For this reason, one has to resort
3-40
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another method to study the physics ofXY and Heisenberg
frustrated magnets. In practice, we integrate numerically
RG flow around the transition temperatureTc and determine
the behavior of the physical quantities such as the correla
length, the susceptibility and the ‘‘magnetization’’—define

asAk̃, see Eq.~151!—as functions of the reduced temper
ture t r5(T2Tc)/Tc .

1. Three difficulties

Let us mention three difficulties encountered during
integration of the flow. First, in principle, in the absence
universality, we should study each system independentl
the others. Thus, to correctly specify the initial conditions
the RG flow, we should also keep all the microscopic inf
mation relevant to the description of a given material. T
program remains, in the most general case, a difficult c
lenge since this would consist in keeping track of the latt
structure as well as of the infinite number of coupling co
stants involved in the microscopic Hamiltonian. Howev
this is, in principle, possible. Actually, this has been do
with much success for certain classes of magnetic syst
and fluids described byO(N) models49 mostly within the
LPA.209,210Our truncations—even the best one—are too
stricted approximations to reach this goal since this would
least require to keep thefull field dependence of the potenti
Uk(r,t). We have thus used our flow equations to expl
the generic occurrence of pseudoscaling in frustrated sys
without trying to describe the behavior of a specific syste
In practice, we have computed the correlation length, m
netization and susceptibility using a simplified version of o
truncation keeping only the potential part expanded up
order eight in the fields, a field-independent field renorm
ization and discarding all the current-terms involving fo
fields and two derivatives. We have checked that thisAnsatz
leads to stable results with respect to the addition of hig
powers of the fields and inclusion of current terms.

Second, the truncations we have considered do not a
us to determine accurately the critical temperature. Indeed
our approach we perform a local description of the poten
around the nontrivial minimum Eq.~151!. For a second-
order phase transition this does not matter since the n
trivial minimum, when it exists, is always the true one. Ho
ever, for a first-order transition, the zero-field configuratio
i.e., with fW 15fW 250W , plays a crucial role. In effect, in this
case, the transition temperature precisely coincides with
temperature at which the energy at the nontrivial minim
and at the zero-field configuration are equal. Since we can
expect that our truncation describes accurately the pote
around the zero-field configuration, we are not able to co
pare the energy of this configuration with the energy of
nontrivial minimum and to determine the transition tempe
ture accurately. We discuss in more details this point in A
pendix E and show that, for aweakfirst order transition, this
fact should not bias significantly our analysis.

The third difficulty encountered in the integration of th
flow is that, in the absence of universality, the temperat
dependence of the physical quantities relies on the pre
temperature dependence of the microscopic coupling c
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stants. We have used severalAnsätze for the temperature
dependence of the coupling constants and have obse
that, although it could be important for the details of t
results, it does not affect much the general conclusio
Thus, we illustrate our results with the simplestAnsatzcon-
sisting in fixing all the couplings to temperature-independ
values and by taking a linear temperature dependence fk
at the lattice scale

kk5L5a1bT. ~164!

For each temperature, we have integrated the flow equat
and have deduced thet r dependence of the physical quan
ties, such as the ‘‘magnetization,’’ the correlation length, e
aroundTc . The different coupling constants parametrizin
the initial condition of the flow have been varied to test t
robustness of our conclusions. This has allowed us to es
lish the following facts.

2. The Heisenberg case

For N53, we can find initial conditions of the flow suc
that for a wide range of reduced temperatures—up to f
decades—the physical quantities behave as power la
From an experimental viewpoint, this is all what is need
since scaling has been found on temperature ranges tha
even smaller. The kind of pseudocritical behaviors we find
illustrated on Fig. 12.

Varying the initial conditions of the flow, we observe th
this phenomenon happens in a wide domain of the coup
constant space. This corresponds to the domainD previously
defined, see Fig. 11~a!.

Within D, the pseudocritical exponents vary smoothly:b
varies typically between 0.27 and 0.42 andn between 0.56
and 0.71. These are only typical values since it has b
impossible to explore the whole space of coupling consta
Since for b.0.27 one can findn.0.56, the exponents o
group 2 are satisfactorily reproduced, see Tables IV and
This shows in particular that there exists, inD, a set of
‘‘microscopic’’ coupling constants that lead to the behav
observed in group 2.

It is easy to find initial conditions leading to pseudocri
cal exponents in good agreement with those obtained in
six-loop calculation, see Table VII. Actually, a whole set
initial conditions lead to exactly the same~pseudo! critical
exponents as those found at six-loopb50.30(2), n
50.55(3). This corresponds to the region of the minimum
the flow, see Table XI.

In contrast, we have not found initial conditions of the R
flow reproducing correctly the critical exponents of group
of STAR, V3,2, and BCT as well as negative values forh.
This can originate~i! in the overestimate ofh produced by
our truncation ofGk in powers of the derivatives at order]2,
Eq. ~150!, ~ii ! in the impossibility to sample the whole cou
pling constant space,~iii ! in the too simple temperature de
pendence ofkL that we have considered, see Eq.~164!.

For a given value of one exponent, it is possible to fi
several values for the other exponents. Thus we expec
find systems sharing for instance almost the sameb but hav-
ing quite different values forn andg.
3-41
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At the border ofD, the temperature ranges over whic
power laws hold become smaller and smaller. In a log-
plot, thet r-dependence becomes less and less linear and
pseudocritical exponents more and more sensitive to
choice ofTc made for the fit. Finally, outsideD, no more
power-law behavior is observed.

When we go fromN53 to N54, we have observed, a
expected, thatD becomes far wider and that the power law
hold generically on larger temperature ranges. This is con
tent with our discussion of Sec. IX C. Reciprocally, and
also expected, when going fromN53 to N52, D becomes
much smaller and the power laws hold generically on sma
temperature ranges. Let us discuss this point in greater d
now.

3. The XY case

For N52, one observes qualitatively the same type
behaviors as forN53. However, as predicted above,D is
smaller and the power laws hold at best only on two deca
of reduced temperature, which is consistent with what is
served experimentally. This is illustrated in Fig. 13 where
have represented log-log plots of the magnetization and
relation length as functions of the reduced temperature. N
also the surprising behavior of the correlation length t
increases at small reduced temperature~see Appendix E for
an explanation of this phenomenon.!.

Within D the exponents vary on the intervals 0.25,b
,0.38 and 0.47,n,0.58.

We find initial conditions leading to exponents close
those of group 2~for Ho and Dy, see Table II!: b50.38, n

FIG. 12. Log-log plot of the magnetizationm and of the corre-
lation lengthj for N53 as functions of the reduced temperaturet r .
The straight lines correspond to the best power law fit of the d
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50.58, g51.13. These results are quite stable with resp
to changes of microscopic parameters. This is in agreem
with the stability ofb in group 2. Interestingly, these initia
conditions correspond to smallm̃ in our truncation~152!,
i.e., to initial conditions close theO(4)-invariant line m̃
50, see Fig. 2, where theO(4) fixed point is denoted by
V.211 Thus, during a large part of the flow, the trajecto
remains close to theO(4) fixed point before bifurcating
away from this point. This is perhaps the reason why
value ofb for materials of group 2 is close to that associat
with anO(4) behavior—bO(4)50.382—a fact that has bee
repeatedly noticed by experimentalists. Note, however,
the other exponents are not close to theO(4) valuesnO(4)
50.738,gO(4)51.449.

We also easily find initial conditions leading tob50.25,
corresponding to group 1, essentially composed of STA s
tems. The power laws then hold on smaller ranges of te
peratures and the critical exponentb is more sensitive to the
determination ofTc and to the initial conditions. For suc
values ofb, we find thatn varies between 0.47 and 0.49
which is somewhat below the value found for CsMnBr3, see
Table I.

The two previous points suggest that both helimagnet
such as Ho or Dy—and STA—such as CsMnBr3—can be
described by the same field theory but with exponents at
two ends of the spectrum. It is actually also possible t

a.

FIG. 13. Log-log plot of the of the magnetizationm and of the
correlation lengthj for N52 as functions of the reduced temper
ture t r . The straight lines correspond to the best power law fit of
data. The power-law behavior observed far from the critical te
perature breaks down for smallt r . The behavior of the correlation
length at smallt r is an artifact of our truncation, see Appendix E
3-42
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helimagnets display a different kind of physics because
the presence of long range interactions or because of
presence of surface effects.212

As in theN53 case, we can easily find initial condition
leading to pseudocritical exponents close to those foun
the six-loop calculation, Table VII. For instance, for initi
conditions leading tob50.33, we typically findn50.56 and
g51.07.

As in the Heisenberg case, we have not been able to
initial conditions of the RG flow leading to negative valu
of h.

Let us now comment our results.

4. Comments

The main feature of the physics of Heisenberg andXY
frustrated magnets—scaling behaviorswithout univers-
ality—is reproduced, at least qualitatively and, to some
tent, quantitatively. This behavior finds anatural explana-
tion: there exists a whole domainD in the space of coupling
constants such that the RG trajectories starting inD are ‘‘at-
tracted’’ toward a regionR where the RG flow is slow so
that there is pseudoscaling. SinceR is not reduced to a point,
there exists a whole spectrum of exponents and not aunique
set. The occurence of strong first-order phase transitions,
are observed in some materials and simulated system
explained by the RG trajectories starting out ofD.

Let us now stress that since universality is lost, the de
mination of the precise pseudocritical exponents associ
with a given material or system is obviously more difficu
than the determination of the usual—universal—critical e
ponents characterizing a second-order phase transition
already said, computing them would indeed require us
know precisely the microscopic structure of the materials
systems studied—providing the initial conditions of the R
flow—and to take into account the full field dependence
the potentialUk(r,t).

X. POSSIBLE TESTS OF OUR SCENARIO

There are several tests that can be performed both ex
mentally and numerically to confirm our proposals. Let
start with the Heisenberg case.

It is not clear, up to now, whether the materials of gro
1—VCl2 and VBr2—are really three-dimensional Heise
berg STA’s, at least for a temperature range wide enoug
measure exponents. It would be very interesting to rest
these materials and to measure all exponents for eac
them. This could allow to confirm experimentally the a
sence of universality.

Since we predict that they can be violated, there is clea
a need to check the scaling relations as well as the negat
of h. The experimental determination of the exponentsg
and n for the two groups of Heisenberg materials is s
much too poor. It is also necessary to have an estimat
both the systematic and statistical errors to strengthen
conclusion on the negativity ofh. Let us, however, recal
that the first-order nature of the transitions in Heisenb
systems is likely to be much weaker than inXY systems.
Thus the violations of both the scaling relations and the p
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tivity of h should be much more difficult to prove exper
mentally in this case.

It remains mysterious why, in CsMn(Br0.19I0.81)3, such
strange values of the exponentsg andn have been found, se
Table IV. As we have already discussed in point~i! of Sec.
III C 1, we find unconvincing the arguments proposed in R
144 to explain them. Remeasuring these exponents c
provide accurate results forg andn from which universality
and the negativity ofh could be tested.

Most probably STAR and theV3,2 model undergo both
first order transitions sinceh is found negative for these
models. It would be extremely interesting to study a s
quence of models that interpolate between STA and STAR
see how the effective exponents change with the deforma
of the model.

We have already noticed that the exponents found in
six-loop calculation are very close to the pseudocritical
ponents found at the minimum of the RG flow in our a
proach. It is important to know if this is just an accident
coincidence or if they correspond to the same fixed po
real in one approach complex in the other.

Let us now discuss theXY case. Most of the points dis
cussed in the Heisenberg case can be transposed here: n
sity to check the scaling relations and the positivity ofh,
possibility to interpolate between the STA and STAR. He
however, we are in a better position to obtain conclus
results since the transition is expected to be more strongl
first order.

A better determination ofn in CsMnBr3 would help to
confirm thath is indeed negative. We also expect to have
weaker universality and thus a faster change of the expon
as the microscopic details of the model are varied. In parti
lar, a precise determination ofa in the different materials of
group 1 could lead to incompatible exponents—they are
to now only marginally compatible—and would give a dire
proof of the lack of universality.

On the numerical side, the sequence of models interpo
ing between STA and STAR should lead to rapidly varyi
exponents. Thus the lack of universality in this case sho
be much simpler to prove numerically than in the Heisenb
case. For STA, it would also be extremely interesting to
termine h independently by the two scaling relationsh
52b/n21 and h522g/n. As far as we knowh has
mainly been determined usingg/n. According to our sce-
nario the two determinations should not coincide. Howev
they are probably both negative.

XI. CONSEQUENCES FOR PERTURBATION THEORIES

Frustrated magnets represent a unique controversial
ample of systems for which almost all the possible pertur
tive and nonperturbative approaches have been used, s
times with a very high precision. This allows us to dra
several conclusions about the relative predictive power
these different methods. First, it appears that thelow-order
results obtained within the NLs or GLW models fail to cor-
rectly describe the physics in three dimensions. Indeed,
recall that the one-loop result of the NLs model predicts a
second order phase transition with aO(4) behavior while the
3-43
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GLW approach leads to first-order phase transitions for
values ofN smaller than 21.8. Secondly, frustrated magn
probably provides the first example where high-order per
bative results are questionable. We shall now discuss the
tus of the various perturbative approaches in light of o
results.

A. The NLs model approach

Let us first consider the NLs model approach, focusing
on the Heisenberg case since it is notorious that this
proach does not work forXYspins. The very likely existence
of a lineNc(d) going fromd52 to d54 confirms what has
been already anticipated in Sec. V: the predictions based
this approach are incorrect as for the physics ind53. In-
deed, the shape of this line implies that theO(4) fixed point
predicted in the Heisenberg case—that likely exists at
orders of perturbation theory—very probably disappears
tween two and three dimensions. Actually, following th
fixed point, that we callC1 for an obvious reason, fromd
52 with the simplestf4-like truncation, we have found sev
eral interesting features. First, infinitesimally close tod52,
we find thatC1 is characterized by an exponentn of the
O(4) universality class. Second, asd is increased, the expo
nentn associated withC1 becomes more and more differe
from that characterizing anO(4) transition. Third, we find
that an unstable fixed pointC2 shows up in a dimensiond
.2. As the dimension is further increased, the fixed poi
C1 andC2 get closer together and eventually coalesce i
dimension less than three. This phenomenon is illustrate
Fig. 14 in the case of theO(3)3O(3) model at the lowes
order in the field expansion.63

The collapse of the fixed points for different values ofN
generates the curveNc(d). This curve is well known from
the perturbative expansion performed around four dim
sions. Within our approach, this curve can be followed wh
the dimension is lowered down tod52. There, for a given—
low—value of N, the curveNc(d) provides the value of
dc(N) for which the stable fixed point obtained within th
NLs model approach collapses with another—unstabl
fixed point. Since this unstable fixed point isnot found in the
low-temperature perturbative expansion we therefore ob
here a nonperturbative solution to the breakdown of the Ns
model approach. ForN53, one getsdc.2.8. Note that ob-
taining an accurate determination of the dimensiondc where
the fixed points collapse would require us to consider be
truncations in fields ofGk than those we have considere
However, as already explained in theO(N) case, see
Sec.VI D 9, the stable fixed point coalesces in this case w
one of the multicritical points. Thus it is impossible, with
our truncation, to follow it smoothly for 2.1&d&2.5. With
our best truncation, we are anyway able to give an estim
of this dimension:dc.2.622.7 which fits well with the re-
sults of Pelissettoet al.,168 see Fig. 9.

Frustrated magnets thus provide a situation where the
a manifest breakdown of the low-temperature expansion
the NLs model. This is not the first occurence of such
breakdown. The case of the two-component nonfrustra
O(2) system has already exemplified the inadequacy of
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low-temperature expansion to explain the existence o
phase transition for these systems in two dimensions,
Berezinskii-Kosterlitz-Thouless phase transition.53,54 There
is however an important difference between the case ofXY
nonfrustrated spins and that of Heisenberg frustrated sp
Indeed, in the former case, the low-temperature expan
performed on the correspondingO(2) NLs model leads to a
free theory to all orders in the temperatureT in d>2. This
result is, however, known to be incorrect forXY spins them-
selves or for the systems that belong to the same univers
class—such as4He—that both undergo a phase transition
d>2. In this case, the unability of the low-temperature e
pansion to correctly describe the physics makes no doubt
one is invited to turn to other methods: Coulomb-gas206 or
spin-vortices53,54 formulations in two dimensions or GLW
model approach in three dimensions. On the contrary, in
case of Heisenberg frustrated spins, the low-temperature
pansion leads to a nontrivial behavior—due to the no
Abelian character of theSO(3) group—so that the inad
equacy of the low-temperature perturbation theory is not
obvious.

It remains to understand the very origin of this failure
the low-temperature perturbation theory. In the case ofXY
nonfrustrated spins, it clearly lies in the existence of no
trivial topological configurations, called vortices, that are n
taken into account in a low-temperature expansion. In
case of Heisenberg frustrated magnets, the influence of n
trivial topological configurations on the phase transition
three dimensions has also been invoked~see Sec. V A!. It
remains, however, to confirm that these configurations
deed play a fundamental role and to know, for instance
they are responsible for the first order character of the tr
sitions in three dimensions.

This is a delicate question. Indeed, whereas the pertu
tive approach to the NLs model misses topologically non
trivial configurations, the GLW and effective average acti
approaches are very likely sensitive to such vortices. In
fect, both approaches correctly reproduce the physics
three-dimensionalXY nonfrustrated spin systems at the tra

FIG. 14. The stable (C1) and unstable (C2) fixed points as
functions of the dimensiond. The fixed points are parametrized b
the quantityk r* which is proportionnal to the inverse temperature
the NLs model. The fixed pointC2 appears in a dimension 8/3 an
collapses with the stable fixed pointC1 in d.2.83.
3-44
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sition which is very likely driven by vortices.213,214However,
within these approaches, it is still not clear how the vortic
are taken into account. Therefore, disentangling vortices
spin-waves and understanding the respective role of e
kind of excitation within the phase transition remains a th
oretical challenge.

B. The GLW model approach vs the NPRG approach

We now discuss the relationship between the we
coupling results obtained within the GLW mod
approach—in particular, the six-loop computation—and o
results. A natural question arises: how is it possible to rec
cile these results together and what does this imply for
different approaches?

We have noted an important fact: the critical expone
found for N53 in the six-loop calculation and in ou
approach—at the minimum of the flow—are very close~see
Secs. IX B and IX D!. We have also found very close exp
nents forN52 ~see Sec. IX D! with the only difference that
there is no minimum in the flow in this case. This is a rath
strong indication that the two sets of exponents have a c
mon origin. This leads us to formulate some proposals
reconcile the two approaches.

The first one is that the fixed point that appears as rea
the six-loop calculation and complex in our approach is,
tually, a complex one. This would mean that the compu
tions of Pelissettoet al. and Calabreseet al. is, actually, not
converged as for the nature—real or complex—of this fix
point whereas it is almost converged as for the expone
We shall not speculate too much about the origin of this
hypothetical—failure of the weak-coupling approach. Let
mention again, however, that the perturbative series obta
in the case of frustrated magnets appear to be rather par
lar since the six-loop results has been obtained in a reg
where the perturbative expansions arenot Borel
summable.167 It is clear that this question deserves furth
investigations. Frustrated magnets could appear as the
example of a breakdown of a weak-coupling perturbat
analysis.

The second proposal is that, reciprocally, within t
NPRG method, the lack of fixed point in theXYand Heisen-
berg cases is due to artifacts of the truncation in fields an
derivatives. Only the recourse to other kinds of expansi
of the effective actionGk—involving either thefull function
Uk(r,t) or the full momentum dependence—could lead
unambiguous statements. In this respect, we however re
that the LPA approach of Zumbach, that involves the f
field dependence of the potential, has led to no fixed po
for N52 andN53.

XII. CONCLUSION AND PROSPECTS

On the basis of their specific symmetry breaking sche
it has been proposed68,69,71,125,126,133that the critical physics
of XYand Heisenberg frustrated systems in three dimens
could be characterized by critical exponents associated
a newuniversality class. From this point of view, the study
frustrated magnets has been rather disappointing, the ex
13441
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mental and numerical contexts excluding such an hypothe
At the same time, the phenomenology of frustrated magn
has displayed a novel kind of critical behavior—generic
scaling without universality121—requiring the use of new
theoretical approaches.

High-order perturbative calculations ind53 ~Refs.
134,135,167! provide an explanation to the lack of unive
sality in frustrated magnets: the focus character of the fi
point induces spiral-like RG trajectories from which, accor
ing to Calabrese et al.,135 follows varying effective
exponents.134,135We have, however, underlined several dra
backs of this explanation. The major one lies in its lack
naturalness: a fine-tuning of initial conditions seems to
necessary to match with the phenomenology. Another dr
back of the perturbative approach is that, being restricted
investigate the physics in three dimensions, it cannot prov
a general picture of what happens between two and f
dimensions. In particular it provides no explanation to t
failure of the NLs model approach.

Within the framework of a NPRG approach, the gene
and nonuniversal scaling finds a natural explanation in te
of the slowness and ‘‘geometry’’ of the flow. This metho
also explains the mismatch between the different pertur
tive approaches by means of a mechanism of annihilation
fixed points in a dimension between 2 and 3 that invalida
the low-temperature perturbative approach performed fr
the NLs model. As said along this article, more work,
particular the recourse toAnsatz involving the full field-
dependence or full momentum dependence of the effec
action, is probably necessary to completely understand
situation. This includes the clarification of the relation b
tween our approach and the six-loop results. However,
main features of frustrated magnets appear now to be
described.

The main result of this article is the explanation of t
generic character of weak first-order phase transitions
frustrated magnets. Given the closeness between these
tems and others systems—see the Introduction—it is nat
to speculate about the degree of generality of this phen
enon.

Within our approach, the generic character of the we
first-order phase transition appear to be strongly related
the proximity of the number of componentsN of the system
under study withNc(d53). For frustrated systems, it ap
pears that this value is of the same order than the physic
relevant values ofN, N52, andN53. This could be a very
specific property of the frustrated systems. We now arg
that, on the contrary, this property is likely to be common
many other systems.

Let us recall that the lineNc(d) corresponds to the col
lapse of two fixed points, one of them governing the pha
transition. This phenomenon cannot happen in theories w
only onef4 coupling constant@i.e., in O(N) models# since,
in this case, there is only one fixed point apart from t
gaussian. However, for theories withc coupling constants,
we expect 2c perturbative—real or complex—fixed points i
d542e since, at one loop, theb functions are quadratic in
the coupling constants. When the number of component
the field is varied, these fixed points move in the coupli
3-45
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constant space and it is generically observed that they m
and collapse for some critical valueNc(d). Many examples
are now known in the literature. Let us review some of the

Let us first consider the generalization of the model st
ied in this article consisting inP orthonormalN-component
vectors. It has aP-dependent critical value ofN given at one
loop by66 Nc;10P. For P53, one finds at two loop order168

Nc~42e!532.49233.72e. ~165!

In the Abelian Higgs model coupled to aN-component scala
field, relevant to superconductors,Nc(d) is found at two-
loop order to be5,215,216

Nc~d542e!5182.92242.7e. ~166!

In a SU(2) gauge model coupled to bosons, it is given
two loop order by216

Nc~d542e!57182990.8e. ~167!

In a O(p) gauge theory coupled toN scalar fields~in the
vector representation! it is given at one-loop by217 Nc
;40p.

In all these examples, we observe thatNc(d) decreases
very steeply whend decreases. This is in line with our ex
pectation that largeN and smalld favor continuous phase
transitions. In particular, as far as we know, in all NLs mod-
els relevant to systems whose order parameter is continu
a stable fixed point is found ind521e for all N.2. This is
in particular the case for the NLs model supposed to de
scribe the physics of the Abelian Higgs model ind5211,218.
This suggests thatNc(d52) is always smaller or equal to 2
It is interesting to notice that this bound is probably reach
in frustrated systems,168 see Sec. V B 3. It is thus extreme
probable that in many systems the curveNc(d) has a similar
shape as the one found in frustrated systems, see Fig. 9.
suggests that many systems could exhibit weakly first-or
transitions in d53 without any fine-tuning of
parameters.219,220 The effective average action metho
should be ideally suited to study these situations.
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APPENDIX A: THE POSITIVITY OF THE ANOMALOUS
DIMENSION

In this appendix, we sketch the proof showing that t
anomalous dimensionh must be positive in a second-ord
phase transition if the underlying theory is given by a us
f4-like GLW theory. This excludes, for instance, theori
involving gauge fields or replica field theories of disorder
systems using the formalN→0 limit. The argument goes a
follows. On one hand, using the Ka¨llen-Lhemann decompo
sition, it is possible to prove that the field renormalizationZ
is positive and less or equal to 1: 0<Z<1.122 On the other
hand, using the RG equations, it is possible to show t
around the fixed point describing the second order ph
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transition,Z behaves with the RG scalem as

Z~m!;mh ~A1!

when m→0, which corresponds to the long distance—i.
critical—physics. By combining these two results we fin
h>0.

APPENDIX B: THE INVARIANTS OF THE SYMMETRY
GROUP

We show, in this appendix, that all field combinatio
invariant underO(N)3O(2) can be rewritten in terms of th
two invariantsr andt introduced in Eq.~52! and given by
r5Tr( tFF) andt5 1

2 Tr( tFF21r/2)2. This property isa
priori nontrivial since we can easily build an infinite numb
of invariants by considering, for instance, Tr(tFF)n for any
value of n or det(tFF). The result is easily obtained b
using the properties of the characteristic polynomial of
square matrixX:

PX~l!5det~X2l1!. ~B1!

In the case of a two by two matrix, the characteristic po
nomial reads

PX~l!5l22l Tr X1detX. ~B2!

The Cayley-Hamilton theorem states that any matrix is a r
of its characteristic polynomial

PX~X!50. ~B3!

Applying this last result to the two by two matrixtFF we
get

~ tFF!22 tFF Tr~ tFF!1det~ tFF!50. ~B4!

By taking the trace of this equation, we see that det(tFF)
5r2/42t. Moreover, if we multiply Eq.~B4! by tFF and
take the trace of this equation, we observe that Tr(tFF)3

can be expressed in terms of Tr(tFF)2, Tr( tFF), and
det(tFF) which, themselves, can be expressed in terms or
and t. By iteration, we can show that allO(N)3O(2) in-
variants can be expressed in terms ofr andt. This property
can be generalized to theO(N)3O(P) model ~with N
>P), which admitsP independent invariants.

APPENDIX C: THE THRESHOLD FUNCTIONS

We discuss in this appendix the different threshold fun
tions l, m andn appearing in the flow equations, which e
code the nonperturbative properties of the theory. We c
sider here a general case, where the threshold funct
depend on three arguments. For particular truncations—
instance that discussed in theO(N) vectorial model—it may
happen that some of these arguments are vanishing. In
case, we do not write the associated argument so that
instance,l n,0

d (w,0,0) is denoted byl n
d(w).

1. Definitions

The threshold functions are defined as
3-46
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l n1 n2

d ~w1 ,w2 ,a!52
1

2E0

`

dyyd/221]̃ t

3H 1

~P11w1!n1~P21w2!n2
J ~C1a!

mn1 n2

d ~w1 ,w2 ,a!52
1

2E0

`

dyyd/221]̃ t

3H y~]yP1!2

~P11w1!n1~P21w2!n2
J , ~C1b!

nn1 n2

d ~w1 ,w2 ,a!52
1

2E0

`

dyyd/221]̃ t

3H y]yP1

~P11w1!n1~P21w2!n2
J , ~C1c!

where we have introduced

P15P1~y,a!5y@11r ~y!1a#,

P25P2~y!5y@11r ~y!# ~C2!

with r (y) being the dimensionless cutoff:

r ~y!5
Rk~yk2!

Zyk2
. ~C3!

We recall that the tilde in]̃ t means that only thet depen-
dence of the functionRk is to be considered. As a cons
quence, we should not consider thet-dependence of the cou
pling constants to perform this derivative. Therefore, in
preceding equations

]̃ tPi5
]Rk

]t

]

]Rk
Pi ~C4!

52y@hr ~y!12yr8~y!#. ~C5!

Now, threshold functions can be expressed as explicit in
grals if we compute the action of]̃ t . To this end, it is inter-
esting to notice the equality:]y]̃ tPi5 ]̃ t]yPi , so that

]̃ t]yr ~y!52h@r ~y!1yr8~y!#22y@2r 8~y!1yr9~y!#.
~C6!

We then get

l n1 n2

d ~w1 ,w2 ,a!52
1

2E0

`

dyyd/2
hr ~y!12yr8~y!

~P11w1!n1~P21w2!n2

3S n1

P11w1
1

n2

P21w2
D , ~C7!
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nn1 n2

d ~w1 ,w2 ,a!

52
1

2E0

`

dyyd/2
1

~P11w1!n1~P21w2!n2

3H y@11a1r ~y!1yr8~y!#@hr ~y!12yr8~y!#

3S n1

P11w1
1

n2

P21w2
D2h@r ~y!1yr8~y!#

22y@2r 8~y!1yr9~y!#J , ~C8!

mn1 n2

d ~w1 ,w2 ,a!

52
1

2E0

`

dyyd/2
11a1r ~y!1yr8~y!

~P11w1!n1~P21w2!n2

3H y@11a1r ~y!1yr8~y!#@hr ~y!12yr8~y!#

3S n1

P11w1
1

n2

P21w2
D22h@r ~y!1yr8~y!#

24y@2r 8~y!1yr9~y!#J . ~C9!

Once a regulatorr (y) has been chosen, the threshold fun
tions can be computed numerically and, in some cases,
lytically.

2. Substitution rules

We give here the rules which relate the different integr
appearing in the calculation to the threshold functions. Wh
calculating the flow equation for the coupling constants
lated to the potential part, only thel functions appear:

]̃ tE ddq

~2p!d
@Rk~q2!1~Z1A!q21W1#2n1

3@Rk~q2!1Zq21W2#2n2

524vdZ2n12n2kd22(n11n2)l n1 n2

d S W1

Zk2
,

W2

Zk2
,
A

ZD .

~C10!

For the coupling constants associated with the deriva
terms, two more functions appear:
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d

dp2
]̃ tE ddq

~2p!d
qa$Rk~@p1q#2!1~Z1A!~p1q!21W1%

2n1

3@Rk~q2!1Zq21W2#2n2

5
4vdn1

d
Z2n12n2kd1a22(n11n211)

3H 2ann111n2

d1a22S W1

Zk2
,
W2

Zk2
,
A

ZD
12n2Fmn111n211

d1a S W1

Zk2
,

W2

Zk2
,
A

ZD
2

A

Z
nn111n211

d1a S W1

Zk2
,

W2

Zk2
,
A

ZD G J , ~C11!

d

dp2
]̃ tE ddq

~2p!d
p•q qa

3$Rk~@p1q#2!1~Z1A!~p1q!21W1%
2n1

3@Rk~q2!1Zq21W2#2n2

5
8vdn1

d
Z2n12n2kd1a22(n11n2)nn111n2

d1a

3S W1

Zk2
,

W2

Zk2
,
A

ZD . ~C12!

Notice that the powers ofk andZ appearing in the precedin
expressions are chosen so that when the flow equations
reexpressed in terms of dimensionless renormalized qu
ties, there is no explicit dependence on these parameter

3. Universal values of the threshold functions

For particular arguments, the threshold functions take v
ues independent of the choice of the regulating funct
r (y). This is particularly important when we extract the fir
coefficients of the perturbativeb functions out of the non-
perturbative ones, since the former are universal. From
~C7! we can compute the value ofl n,0

2n (0,0,a) which enters in
the b function for the coupling constant of the GLW mod
around four dimensions

l n0
2n~0,0,a!52nE

0

`

dy
r 8~y!

@11a1r ~y!#n11

5$@11a1r ~y!#2n%0
`5

1

~11a!n
. ~C13!

The last equality follows from the asymptotic behaviors
r (y) that are given by Eqs.~86! and ~87!:

lim
y→`

r ~y!50, lim
y→0

yr~y!51 ~C14!
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and are independant of the actual form chosen forr (y).
Similarly, one finds

l 0n
2n~0,0,a!51. ~C15!

Also, the threshold functionm2,2
d (w,0,0) takes a universa

form for large argumentv, which enters in theb function of
the temperature in the NLs model around two dimensions
Using Eq.~C7!, one gets

lim
w→`

w2m22
2 ~w,0,0!5E

0

`

dy]yS 11r ~y!1yr8~y!

11r ~y! D 2

51,

~C16!

where, again, we have used the asymptotic behaviors
r (y), Eq. ~C14!.

4. Threshold functions from the theta cutoff

For certain regulating functionsr (y), it is possible to
compute analytically the threshold functions. Using su
regulating functions is very helpful in practice and simplifi
considerably the numerical procedures. In this section,
give the threshold functions associated with the theta cut
see Eq.~91!. One has, fora50

l n1 n2

d ~w1 ,w2,0!5
2

d S 12
h

d12D 1

~11w1!n1~11w2!n2

3S n1

11w1
1

n2

11w2
D , ~C17!

m22
d ~w1 ,w2,0!5

1

~11w1!n1~11w2!n2
. ~C18!

APPENDIX D: THE MINIMUM OF THE RG FLOW

In this appendix, we describe in more details the notio
of pseudo-fixed point and of minimum of the flow. We the
explain how these ideas have been implemented in prac
to determine effective exponents for very weakly first-ord
phase transitions.

As described previously, the RG flow equations for S
with a large number of spin components@N.Nc(d)# admit
two fixed points. WhenN is decreased slightly belowNc(d),
the two fixed points acquire a small complex part and lo
their direct physical relevance. Strictly speaking, there is
more attractor in the real coupling constant space but
flow remains sensitive to the presence of complex fix
points. Zumbach65–67 proposed that a particular point, th
minimum of the flow, should mimic to some extent the b
havior of an attractor. This point is defined as the location
coupling constant space, where the flow is the slowest
the quantity

A~$gi%!5
1

2 (
i

b i
2 ~D1!
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—where b i are theb functions for the different coupling
constantsgi—is minimum. Let us stress on few properties
the minimum of the flow.

When a true fixed point exists,A($gi
!%)50 and, in this

case, the minimumis a fixed point.
When two fixed points annihilate, we are left with a sing

minimum of the flow sitting right at the position where th
fixed points have collapsed.

For trajectories getting close to the minimum, the R
time spent in its vicinity is large and so is the correlati
length.

We therefore see that a minimum shares some feat
with a true fixed point. One easily obtains the equation ch
acterizing a minimum

]A

]gi
5(

j
M i , jb j50 ~D2!

with

Mi , j5
]b j

]gi
. ~D3!

Under the assumption that the minimum of the flow mi
ics correctly the attractor of the trajectories, it is natural
compute the critical pseudocritical exponents in the stand
way. The anomalous dimension is obtained by evalua
h($gi%) at the minimum of the flow andn by diagonalizing
the matrixMi , j at this point. It is important to notice that th
pseudocritical exponents thus obtained are invariant un
reparametrization of coupling constants, as it should
since Eq.~D2! transforms as components of a vector.

APPENDIX E: THE DISCONTINUOUS CHARACTER OF
THE PHASE TRANSITION

In this appendix, we discuss in more details the proble
that we encounter in our description of the first-order ph
transition that occurs in frustrated magnets. We also exp
the surprising increase of the correlation length observe
small reduced temperatures@see Fig. 13~b!#.

To this end, let us discuss the following toy model of fir
order phase transition. We consider a scalarZ2-invariant

FIG. 15. Shape of the potential~E1! for different temperatures
i.e., different values of the parameterr. The plain lines correspond
to r 5r c and r 5r !, while the dotted lines correspond to differe
generic values orr.
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model characterized by one fieldf and by a ‘‘f42f6’’ po-
tential

U~f!5r
f2

2
2

f4

2
1

f6

6
. ~E1!

As usual, we assume thatr varies linearly with the tempera
ture.

For low reduced temperatures—smallr—the potential
has a local minimum forf50 and a global minimum for

@fmin~r !#2511A12r ~E2!

so that the system exhibits a spontaneous magnetization
Fig. 15. When the temperaturer is increased, the energ
difference between the configurationsf50 and f
5fmin(r ) decreases and eventually vanishes forr 5r c53/4
which defines the critical temperature. Forr larger thanr c ,
the ground state of the system is given by the configura
f50 so that the system has no more spontaneous mag
zation. Therefore, when one crosses the critical temperat
ones observes a jump of the magnetization fromfmin(r c) to
0, which is the consequence of the competition between
minima of the potential, see Fig. 15.

For r .r c , the field configurationfmin(r ) which is no
longer the ground state becomes a metastable state. One
from Eq. ~E2! that, for r .r !51, this metastable state dis
appears and we are left withf50 as the only physically
relevant state, see Fig. 15. Finally, it must be noted that,
r 5r !, the curvature of the potential at the configurati
fmin(r !) vanishes:U9@fmin(r !)#50. This means that the
susceptibility in the metastable state diverges atr 5r !. Simi-
larly, one can show that the correlation length in the me
stable state also diverges.

Let us now come back to the NPRG method. In the tru
cation of the effective average action that we use—an exp
sion in powers of the fields of the form Eq.~152!—we retain
only local informations on the potential around its nontrivi
minimum—which is equivalent to the configurationfmin(r )
discussed above. In particular we do not accurately desc
the physics around the zero-field configurationfW 15fW 250W .
We are thus unable to compare the energies of different lo
minima and to determine the temperature of transition
which the energies of the two minima are equal. Also, in
small domain of temperatures—equivalent here tor c,r
,r !—the configuration that we probe corresponds actua
to the metastable state and not to the true equilibri
state. However, these phenomena should not induce a l
bias in our analysis as long as the transition isweakly of
first order since, in this case, the temperature range wh
metastable states exist is very small. This means that
error induced on the determination of the critical temperat
is very small too.

Moreover in our study, as in the toy model above, w
should observe whenr reachesr !—the temperature at which
the metastable state must disappear—the associated d
gence of the correlation length discussed previously. Thi
3-49
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precisely what we found in frustrated magnets for small
duced temperature—see Fig. 13~b!.

Note that this increase of the correlation length as wel
the error associated with our determination of the criti
temperature both rely on the truncation that we have con
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