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This article is devoted to the study of the critical properties of classtdabnd Heisenberg frustrated
magnets in three dimensions. We first analyze the experimental and numerical situations. We show that the
unusual behaviors encountered in these systems, typizatiyniversal scalingare hardly compatible with the
hypothesis of a second order phase transition. Moreover, the fact that the scaling laws are significantly violated
and that the anomalous dimension is negative in many cases provides strong indications that the transitions in
frustrated magnets are most probably of very weak first order. We then review the various perturbative and
early nonperturbative approaches used to investigate these systems and argue that none of them provides a
completely satisfactory description of the three-dimensional critical behavior. We then recall the principles of
the nonperturbative approach—the effective average action method—that we have used to investigate the
physics of frustrated magnets and show how it enables to clarify most of the problems encountered in the
previous theoretical descriptions of frustrated magnets. First, we get an explanation of the long-standing
mismatch between different perturbative approaches which consists in a nonperturbative mechanism of anni-
hilation of fixed points between two and three dimensions. Secondly, we get a coherent picture of the physics
of frustrated magnets in agreement with the numerical and experimental results. The central feature that
emerges from our approach is the existence of scaling behawitirsut fixed or pseudofixed point and that
relies on a slowing down of the renormalization group flow wloleregion in the coupling constants space.

This phenomenon allow us to explain the occurrencgesfericweak first order behaviors and to understand
the absence of universality in the critical behavior of frustrated magnets.
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[. INTRODUCTION magnets or geometrically frustrated magngtgngular, for
instance which are our main purpose in this artickee Ref.
Understanding phase transitions and, specifically, criticall3 for a review.

phenomena has been one of the central issues of statistical Actually, it should not be surprising that a qualitative dif-
mechanics during these last decddmsd the field theoretical ference exists between the critical behaviors of systems be-
renormalization-grougRG) approach to these phenomenalonging to theO(N) universality class and the others: among
has been one of the great successes of theoretical physithe systems where the order parameter Ragal compo-
This is so true that it is generally believed that, apart fromnents, O(N) corresponds to the maximal symmetry and,
specific problems—disordered and glassy systems, fothus, to the simplest situation. Think, for instance, at a unit-
instance—an almost complete understanding of the physiagorm constraint imposed on the microscopic degrees of free-

occurring at a phase transition has been reached. This is celom (§2=1)' the maximal symmetry compatible with it is

tainly due to the fact that it is indeed the case for all the, . : ) .

. ' : . indeedO(N). From a perturbative point of view, this means
systems belonging to the so-called Wilson-Fisher unlversal,Eh t the Ginzburg-Landau-WilsiGLW) Hamiltoni f
ity classes ofi-dimensional systems whose symmetry break- at the >inzburg-Landau-wiis amiitonian or.an

ing scheme is given b@(N)— O(N—1). In fact, although O(N) symme}ric model involves only on@nargina) inter-
they have become the archetype of systems displaying critction term, )%, and thus, only one coupling constant. As
cal phenomena well described by perturbative field theoretia consequence, the perturbative RG flow of the critical
cal approaches, the§€iN) symmetric systems turn out to be theory takes place in a one-dimensional space of coupling
exceptions rather than the rule. For most systems a quantitaonstant and is thus simple. In particular, only one nontrivial
tive and, even sometimes, a qualitative description of theerturbative fixed point can exist. On the contrary, the
critical physics is either still lacking or very difficult to ob- Hamiltonian of systems having B-dimensional order pa-
tain by perturbative RG methods. This is the case, for infameter and displaying a symmetry gro@smaller than
stance, in the Potts modef, in magnetic systems with O(N) involves also terms thaixplicitly breakO(N). It thus
disorde in superconductors® in Josephson junction contains several interaction terms and, therefore, several cou-
arrays’ in Hes,®%in smectic liquid crystald? in electroweak  pling constants. The RG flow then takes place in a multidi-
phase transitiotd*?and in frustrated magnets such as heli-mensional space and is thus far less simple: it can, in par-
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ticular, involve fluctuation-induced first order transitions— the others to obtain a completely coherent picture of the
runaway in a region of instability—and several fixed pointsphysics betweed=2 andd=4. Most of the time one of the
with different symmetries. Universality itself is not guaran- perturbative approach—usually the Mlone—is dismissed
teed in these systems since the basins of attraction of thgithout real justifications and the other is blindly trusted.
fixed points can be highly nontrivial. Since all the RG equations are smoothNrandd, it is not

Of particular interest for us, it is generically observed incjear if and also, why, this procedure is legitimate. It would,
these systems that, by varyihgand/ord, the critical physics  of course, be much more satisfactory to have a unified ap-
changes qualitatively: low dimensionsi{-2) and large proach not linked to a particular value dfor N and that
number of spin componentdN(-) favor smooth fluctua-  ajlows to interpolate between both approaches.
tions and, thus, second order phase transitions, while larger A these drawbacks of the usual perturbative RG methods
dimensions §—4) and smalN (N~1) favor larger fluctua-  call for a nonperturbative approach. Such an approach is, in
tions and thus first order transitiofisTherefore, in many  fact, already known and its foundations go back to Kadanoff
systems—and notably in frustrated systems—the critical beand wilson with the idea of block spin and effective, scale-
havior changes qualitatively) for the physically interesting dependent theory*° It is sometimes called the exact renor-
values ofN—N~1—when the dimension varies betwe#n malization group method but we prefer to call it the nonper-
=2 andd=4, (i) at fixed dimension when the numb§rof  tyrbative renormalization group(NPRG method (for
components varies betwedi=2 andN~1. Thus, the dif-  contributions of different authors to the early attempts to use
ferent perturbative approaches are in the worst possible pg4PRG, see Refs. 31-34, for an exhaustive bibliography of
sition: it is quite difficult to obtain definite conclusions @ the subject, see Ref. R5This idea has been turned into an
=3 and forN~1 from extrapolations of perturbative results efficient computational tool during the last ten years, mainly
even if they are valid in the domains where they have beemy Ellwanger®=*° Morris ***? and Wetteric>~*° It has al-
establishedd=2 for the nonlinear sigma (N&) model,d  lowed one to determine the critical exponents of @N)
=4 for the GLW model and for largl in a 1N expansion. models with high precision without having recourse to re-
This is one of the reasons why, after more than twenty five&summation techniqué$=>! It has also allowed one to
years of considerable efforts, the situation is still not clear forrelate® for any N, the results of th@(N)/O(N—1) model
most three-dimensional systems that do not belong to thgbtained nead=4 andd=2, a fact of major importance for
O(N)/O(N—1) universality classes. our purpose. Also important for the present purpose, it has

Let us now discuss two concrete problems encountered isillowed one to tackle with genuinely nonperturbative situa-
the perturbative RG studies performed on the threetions. For instance, the Berezinskii-Kosterlitz-Thouless
dimensional systems we are interested in. First, the compyhase transitiot>*has been recovered directly from a study
tational difficulties encountered in perturbation theory areof the GLW model, i.e.,without introducing explicitly
non-negligible. Within the Nir model approach, the series the vortices®>®® To cite just a few other successes of
are generally considered as useless due to the lack of Borglis method, let us mention low-energy quantum
summability (see, however Ref. 36Within the GLW ap-  chromodynamicé® the Abelian Higgs model relevant for
proach, the perturbative computations almost always call fosuperconductivity, the study of the Gross-Neveu model in
resummation procedures. In general, these procedures are nfitee dimensiong*°phase transitions in H&*® the study of
as easy as they are in tl§N)/O(N— 1) models. The series cubic anisotropy in all dimensions as well as the randomly
are either not proven to be Borel summable or are even sustiluted Ising modef? the two-dimensional Ising multicritical
pected to be non Borel summable. This is the root of a lot oboints®? etc.
difficulties encountered in this approacsee Refs. 17-23; In this article, we study by means of NPRG methods one
for a review in the case of the diluted Ising model, see Refof the most famous systems exhibiting the changes of critical
24, for the presence of nonanalyticities in perturbative seriessehavior previously described: it is the system consisting of
see Refs. 25-28 and, for a general review, see RefT2® XY or Heisenberg spins on the triangular lattiséacked tri-
second point is more conceptual: although it is genericallyangular ind= 3) with antiferromagnetic nearest-neighbor in-
possible to perform a perturbative expansion of the criticateraction(Sec. I). This system is the archetype of frustrated
theory aroundi=2—within the NLo model approach—and  spin systems and is supposed to be in the same universality
aroundd=4—within the GLW approach—it has not been class as another set of frustrated magnets: the helimagnets.
possible to relate these two expansions within the usual fieldimost all these systems have been intensively studied both
theoretical approackexcept for large enough where the  numerically and experimentally these last twenty five years
1/N expansion allows us to recover, at leading orders, thésee Sec. I)l. However, their behavior remains unclear and
perturbative results obtained in the bdiLand GLW ap- displays quite unconventional features. For instance, almost
proaches From this point of view, even high-order pertur- all experiments exhibit scaling laws around the transition
bative calculations performed in the GLW model do not helptemperature—which  suggests a second-order phase
since the perturbative expansion cannot be extrapolateglansition—but with critical exponents that depend on the
down tod=2 for N=2. For instance, the critical exponent particular material studied, on microscopic details, etc.,
diverges ind=2 when it is calculated as a power series inwhich is incompatible with the standard phenomenology of a
e=4—d. This fact, which is not crucial for systems whose second-order phase transition. In some experiments or nu-
critical behavior does not change qualitatively betwekn merical simulations, the scaling laws are sometimes signifi-
=2 andd=4 [e.g., theO(N)/O(N—1) modelg forbids for  cantly violated while the anomalous dimensignis found

134413-2



NONPERTURBATIVE RENORMALIZATION-GROLUP . . . PHYSICAL REVIEW B 69, 134413 (2004

negative, a fact forbidden by first principles if the theory is
¢* GLW-like (see the following The theoretical situation in
these systems is also not clear from the perturbative point of
view (Secs. IV and V: first, independently of the experimen-
tal context, the results obtained within the usual perturbative
approaches—in dimensiods= 2+ € andd=4— e—conflict.
Second, neither the low-temperature expansion arodind
=2 nor high-order weak-coupling calculations performed
aroundd=4 or directly ind=3 succeed in reproducing sat-
isfactorily the phenomenology. We show, in this article, that
the NPRG approactiSec. V) to frustrated systemséSec.
VIl) almost entirely clarifies the situation. First, it allows us
to smoothly interpolate betweed=2 and d=4 and to
clarify the mismatch between these approaches. In particular,
a mechanism of annihilation of fixed points, already identi-
fied for a long time around 4 € dimensions foN~21.8 is
shown to operate around two dimensions ffor 3 nonper-
turbatively with respect to the low-temperature approach of
the NLo model®3%4This explains the irrelevance =3 of

the O(4) fixed point obtained within a low-temperature ap-
proach ind=2+e€. Second, our approach provides a de-
scription of the physics id=3, in terms of weakly first
order behaviors, compatible with the phenomenol@ggcs.

VIII and 1X). In this respect, an important feature of our
work is that it explains the occurrence of scaling in frustrated FIG. 1. The ground-state configuratiot@ of the spins on the
magnetswithout fixed or pseudofixé~®” point. This phe- triangular lattice andb) of the order parameter made of two ortho-
nomenon relies on a slowing down of the RG flow in anormal vectors. The plaquettes, which constitute the magnetic cell,
whole region in coupling constants space. This allows us t@re indexed by and are shaded.

explain one of the most puzzling aspect of the critical phys-

ics of these systems, i.e., the occurence of scalifthout tion in the system and, in the ground state, gives rise to the
universality. We discuséSec. X possible experimental and famous 120° structure of the spins, see Fi@).1This non-
numerical tests of our scenario. We then comni&efc. X)  trivial magnetic structure is invariant under translations of
the consequences of our work for the perturbative aptength+/3 times the initial lattice spacing. The magnetic cell,
proaches that have been used to investigate the physics gidexed byl, which is replicated all over the system, is a
frustrated magnets. Finally, we give our conclusidBec. plaquette of three Sp"@l, §2 andélg, see Fig. 1a).

XIr). Note that the nearest-neighbor out-of-plane interaclion
is, depending on the compounds, ferromagnetic or antiferro-
magnetic, but the two cases can be treated simultaneously
Il. THE STA MODEL AND GENERALIZATION since no extra frustration appears through this interaction.
Finally, interactions between more distant spimext-to-
) ) nearest neighbors, elcalso exist but are neglected in the
We now describe the archetype of frustrated spin systemsoliowing since they are supposed to be irrelevant.
the stacked triangular antiferromagnésdA). This system is There have been numerous derivations of the long-
composed of two-dimensional triangular lattices which aregjistance effective field theory supposed to describe the criti-
piled up in the third direction. At each lattice site, there is acg physics of this systeif-""We here sketch the derivation
magnetic ion whose spin is described by a classical vectojynichis the most appropriate for our purpose. The Hamil-
The interaction between the spins is given by the usual latygpian (1) has the usual rotational symmetry acting on the
tice Hamiltonian spin componentO(2) or O(3) for XY or Heisenberg spins,
respectively. To identify the order parameter, it is also nec-
. essary to consider the symmetry of the magnetic cell. For the
H :<i2> JiS S, 1) triangular lattice, this is th€;, group that interchanges the
: spins inside a plaquetf8.
) . ) R The identification of the order parameter is close in spirit
where, depending on the anisotropies, & are two Or ¢4 hat is done in the nonfrustrated case, e.g., for the anti-

three-component vectors and the sum runs on all pairs G&rromagnets on a square lattice. At zero temperature, the
nearest-neighbor spins. The coupling constdntequals);  gym of the three spins for a given plaqueitte
for a pair of sites inside a plane add between planes.
The interactions between nearest-neighbor spins within a P
plane is antiferromagnetic, i.e};>0. This induces frustra- 2 =5+5+5 @

A. The lattice model, its continuum limit, and symmetries
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is vanishing(Let us note thatt' is analogous to the local with the constraint thath; and ¢, are orthonormal. This
magnetization of nonfrustrated antiferromagne® =S,  model is called the Stiefe¥y , model withN=2 in the XY

+8), in this last case—that also vanishes in the ground state “*5€ andN=3 in the He|§enperg case. W, the |nde>§ 2
In average, this is also the case at any finite temperature $8€ans that we are considerifigo orthonormal vectorsp,

that the thermal average of and ¢,.
It is convenient to gather the vectogs, and ¢, into a
S-S 51 3 rectangular matrix
2 (3)
where the sum runs on all plaquettes, cannot be an order P=(d1,92) ®)

parameter: the associated modes are never critical. We there-d e
fore replacef ' by its average value and to rewritet as

3=(x)=0 @ H=—J A T 4 () 9D (x) )
which is equivalent to freezing the fluctuations of the spins
inside each plaquette. The constraift=0 is called the “lo-  where (qu)”. =®j; . In the following two sections, we con-
cal rigidity constraint.” Having eliminated, we keep only ~ Sider successively the case of Heisenberg dMapins.
two vectors per plaguette(; , #,) which represent the local
order parameter. FoLi;'2 we choose one of the spins of the

plaquette, see Figs.(d@ and ib). For the other,d}, we In this caseH is invariant under the usual le®(3) ro-
choose the linear combination of the spins which is orthogo!@tion and inversion group acting on the spins

nal to <Z>'2 and of unit norm, see Fig.(f)). The local order

B. The Heisenberg case

parameter thus obeys on each plaquette ¢’'=RP, ReO(3). (10
é! (Z}: & with i,je{1,2. (5) Itis also invariant under a righ(2):
The dihedral ¢},45) plays a role analogous to the stag- O'=dU, UeO(2). (11

gered magnetization in the nonfrustrated case.

As usual, once the mod.el is reforrr_1ulated in terms of itStpig |ast symmetry encodes the fact tatand &, play the
order parameter, the effective interaction—from plaquette tQame role which. itself. is reminiscent of tix, symmetry
plaqu_ette—beleorrjles ferromagnetic, see F{g).1By taking ¢ the triangular plaquette. The system is thus symmetric
the dihedral (;,¢) on the center of the plaquette we  ynder G=0(3)x0(2). In the low-temperature phase, a
indeed find that it interacts ferromagnetically with the dihe-typical ground state configuration is given fsee Fig. (b)]
dral (¢3,43) defined on the center of the plaquefte-the

plaquettesl and J being nearest neighbors—such thﬂ[ 1 0
interacts only withé? and &), only with ¢3 . A more detailed Dpx| 0 1. (12)
analysis shows that the two vecto§$ and <Z'2 play symmet- 0 0

ric roles®® As a consequence, the effective Hamiltonian

reads It is symmetric under the diagonal grougi{2)gi,g—built

from the rightO(2) and from a particular lef®(2) in O(3):
H=-32 ($1 d1+ Bz 62) (6)
{9 ecosfd —sinfd O

with the same coupling constadt-0 for the <Zl’s and for d,=| esing cosd O q)o(

the J)z’s. Moreover, since the anisotropies resulting from the 0 0 1
stacked structure of the lattice are supposed to be irrelevant, (13

we take the same coupling constant for the interactions in-

side a plane and between the planes. The continuum limit iwhere e= =1 encodes thé&, part of O(2)4je. Apart from
now trivial and proceeds as in the usual ferromagnetic casehe previous/, contained in theD(2) i, anotherz, is also
The effective Hamiltonian in the continuum thus writes, upleft unbroken. It is the combination of’4 included into the
to constants, right O(2) of G, Eq. (11), and of a rotation ofr around the
X axis contained in the rotation grog(3) of G. Thus,Gis

spontaneously broken down kb= 7,X O(2)gjag- AS a con-
sequence, the symmetry breaking scheme reads

ecosf esind
—sind cosh |’

He — f ([ Iy (x) 2+ [9o(x)]%) @)
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G=0(3)X0(2)—H=7X 0(2) giag (14) purpose, we consider, without loss of generality, the case
where the interaction is nonvanishing and identical between
which is often referred to, once all ti% groups have been all vectors. One thus ha8=Jl. Now, we use the decompo-
cancelled, as th8O(3)x SO(2)/SO(2) model. sition of a rotation matrix®' of SO(3) in terms of a four-
Here the main feature of frustrated magnets appears: theomponenunit vectorS =(S),S},S,,Sh):
SO(3) group isfully broken in the low-temperature phase
whereas it is only broken down t8Q(2) in nonfrustrated P |l | el i, 1
magnets. This has two important consequences that are at the D=2 S5~ Zﬁk' T 26amSoSn 2| S~ 4 O -
very origin of the nontrivial critical behavior encountered in (19
frustrated magnets. ~ o .
First, there are three Goldstone modes in the broken phad@ terms of the vecto6, the Hamiltonian(18) writes
instead of two in the nonfrustrated case. This implies a phys-
ics of spin waves different from that of th®(3)/0(2) H=-43Y (5.9 (20)
model. Second, the order parameter spa€¥3) having a (1.9)
nontrivial first homotopy groufd

which is the Hamiltonian fofour-component nonfrustrated

spins with a particularity that each vectst appears qua-
dratically. Therefore, the Hamiltoniai20) is invariant under

there exist stable nontrivial topological configurations called” global O(4) glroup angl under ical—gauge—, group
vortices. Because of thé, homotopy group, only one kind that changesS' to —S'. It corresponds to theRP®
of vortex exists, contrarily to the well-known case X~ =SO(4)/[SQ(3)X7,] model. Note that, had we kept the
ferromagnets where there are infinitely many different kindgmicroscopical coupling = constantsP=diag(J,J,0), the
of vortices, each one being indexed by an integer, the windtiamiltonian(20) would be supplemented by terms breaking
ing number. the SO(4) global symmetry and leaving untouched the

It has been established firstly by Kawamura andlocal symmetry which is the important point for our purpose
Miyashitd* that the existence of vortices is important at fi- (Sé€ Ref. 80 for details For three-component spins, an
nite temperature in two dimensions. This has been largeljn@logous Hamiltonian—th&P* model—had been intro-
confirmed by subsequent works studying the temperature déliced by Maier and Saufeand by Lebwohl and LasH&ro
pendence of thermodynamical quantities such as the correlfivestigate the isotropic-nematic transition in liquid crystals.
tion length, the spin-stiffness, ete:® Actually, although An extensive study of th& P> model, as well as a detailed
this has not been directly established, they certainly also plaijpvestigation of the role of vortices in this transition, has
an important role for the critical physics of the STA in three been performed by Lammett al**®* These authors have
dimensions. A simple argument allows us to argue to thafhown, in particular, that these nontrivial topological con-
end: let us go back on the lattice and introduce, on eacfigurations favor the first order character of the transition. In

s 7 7l : 7l 4o, the case of four-component spins, no such detailed analysis
frillnaeqducte)t;el, together withé, and ¢, a third vector; de has been performed. However, tfPN=SO(N)/[SO(N

—1)X7Z,] models that generalizes Hamiltoniai20) to
oL N-component spins have been numerically studied in Ref. 85
b5=/\ P (16)  for 2<N=4. These systems have been shown to undergo a
first-order phase transition. Since the only difference be-
Let us then gather them into a3 matrix tween theRPN and theO(N)/O(N—1)—or, equivalently,
SQO(N)/SO(N—1)—models lies in their topological proper-
cpuz(g)ll (le J)la) 17) ties, one is naturally led to attribute the origin of the first-
e order character of the phase transition in BEN models to
the Z, vortices. Finally, since the Hamiltonigd8), relevant
to STA, can be mapped onto the Hamilton{@0)—up to the
O(4)-breaking terms—one can expect that the topological
configurations also favor first-order phase transitions in frus-
trated magnets in three dimensions.

m[SA3)]=7, (19

Since (@).45,¢5) are three orthonormal vectors, one has
'd'd'=1 and, thereforedp' is aSO(3) matrix. This allows
us to rewrite the Hamiltoniaf6) on the lattice as

__ tp!
H= <%> TH(P"- 0, (18) C. The XY case
whereP is a diagonal matrix of coupling constants that char- !N the XY case, the Hamiltonia(®) is still invariant under

: : : Bl 21, a right O(2) group, see Eq(1l), while the left symmetry
acterizes the interaction between #gs, between thep)’s group become®(2). In thelow-temperature phase, the ro-

and between thejy’s. One deduces from the microscopic tational symmetry is broken and, since the spins are con-
derivation thatP=diag(J,J,0), i.e., that the interaction is the  strained to be in a plane, the permutation symmetry between

same between thé,’s and between the);'s and that there G, and ¢, is also broken. As a consequence, the symmetry
is no interaction between thg;'s. However, for the present breaking scheme is
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G=0(2)X0(2)—H=0(2) giag- (21) has to be seen as one of the pieces of the argumentation that,

. . ) together with a theoretical analysis, will lead to a coherent
This symmetry-breaking scheme is usually referred to aPicture of the critical physics of frustrated systems.

SQA(2) X Zp—1. Thle%%(a(gsgrees of freedom are known as "~ 14 perform this analysis we need, in our discussion, to
chirality variableg’: _ _ _ compare experimental results among themselves, as well as
In this case, there also exist topological defects since  ith numerical and theoretical calculations. Let us explain

_ how we extract average values and error bars out of a set of
mSA2)]1=2. (22 experimental determinations of critical exponents. In the ex-
These defects are identical to those of the ferromagnéfic perimental literature, only one error bar is quoted, which
model that drive the famous Berezinskii-Kosterlitz-Thoulessmerges the systematic and statistical errors. Our first—
transition in two dimension¥>** However, in the frustrated minimal—hypothesis is that error bars have a purely statis-
case, they very likely interact nontrivially with the chirality tical origin (no systematic errgr Under this assumption, we
degrees of freedom which are critical i3 at the same can trivially compute thgweighted average values of the
temperature as the spin wave degrees of freedom. This isxponents together with their error bars. This is the meaning
apparent from the fact that one observes a unique phase trapf the numbers we give in the following when we deal with
sition and not two distinct Ising-like andXY-like  average values of the critical exponents. It is clear that this
transitions®® As a consequence, one can expect, in the frushypothesis is too simple to be realistic since the experimental
trated case, a physics different and probably more complisystematic errors cannot be neglected. Thus, the values we
cated than in the nonfrustrat€(2) model that undergoes a compute, especially the error bars, should be taken with cau-
standard second-order phase transition in three dimensiongion. We, however, show in the course of this article that our
conclusions are robust to a possible underestimate of the er-
D. Generalization ror bars in our calculations, see Sec. VB 7.
For reasons that will become clear, we consider the gen- I.'et us also notiqe that a possible source of error in the
eralization of Hamiltonian(1) to N-con”lponent spins. It is estimate of the cr|t|gal exponents themselves cquld be the
. . : .existence of corrections to scaling that could bias all the
Tesults. As we now argue, we can, however, expect that these
effects are not dramatic. Let us consider the well-
G=0(N)X0(2)=H=0(N-2)XO(2)gag. (23 documented case of the fe_rromagnetic_ Ising modeldin_
=3. Most of the time corrections to scaling are not consid-
In the following, we shall drop the “diag” index for sim- ered in the determination of the critical exponents and the
plicity. Note that the previous Heisenberg aXdf cases are associated error bars. When they are taken into account, they
recovered trivially provided that we identif(0) with the  induce a tiny change in the critical exponents, i.e., at most of
trivial group 1 andO(1) with Z,. few percentgsee, for instance, Refs. 89 and 90 for a review
We now give a review of the experimental and numericallt is therefore reasonable to think that neglecting corrections
results for both theXY and Heisenberg systems. We will to scaling induce an error of few percents on the critical

argue that a critical analysis of these results is crucial t€xponents while this probably leads to largely underesti-
understand that, up to now, the critical behavior of thesenated error bars when those are announced to be of the order

case. One finds the symmetry breaking scheme

systems is still unexplained. of 1%2°
In the case of frustrated magnets, if we make the assump-
1. EXPERIMENTAL AND NUMERICAL SITUATIONS tion th{:lt the corrections to sc_allng are comparablle W|j[h those
o found in the ferromagnetic Ising model and bear in mind that
A. Preliminaries the error bars quoted in the literature are of the order of
In this section, we analyze the experimental and numeri®—10 %(see Tables I, II, and I\ we are led to the conclu-

cal results relevant to the physics of frustrated magnets. oution that corrections to scaling are significant neither for the
aim is to show that these data are hardly compatible with &xPonents nor for the error bars.

second-order phase transition since, in particular, they show

that frustrated magnets display scaliwithout universality. B. The XY systems

Moreover, we show that there are even some direct indica- Let us first discuss th&Y case since the experimental
tions for weak first-order behaviors in these systems. We P

recall that a phase transition is said to be weakly of first orde?Ituatlon is richer than in the He|senbgrg case. Also, t_he
when, at the transition, the jump of the order parameter iéymptoms of the existence of a problem in the interpretation

of the results are clearer than in this latter case for reasons

small and the correlation length is large. Thus, scaling be: ) S : . .
haviors can be observed on a large range of temperaturesrgfgat shall be explained in this article and particularly in Sec.

that these transitions look similar to second-order phase tran-"
sitions except very close to the critical temperature where
scaling aborts.

We emphasize that, by itself, the analysis of the experi- Two classes of materials are supposed to be described by
mental and numerical results would not be sufficient tothe Hamiltonian(9). The first one is made dABX; hexago-
firmly conclude on the first-order nature of the transitions. Itnal perovskites—wherd is an alkali metalB a transition

1. The experimental situation
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TABLE |. The critical exponents of thXY STA. TABLE Ill. Monte Carlo critical exponents oY systems. Note
that the exponeny is computed fromy/v=2- 7.
Compound  Ref. a B y v
CsMnBr, 88 0.211) System  Ref. a B vy v n
94 0.242) STA 123,126 0.3%) 0.25310) 1.135) 0.542) —0.098)
95 0.212) 1.048) 0.543) 127 0.4610) 0.242) 1.034) 0.501) —0.064)
96 0.281) 128 0.4310) 0.492)
97 0.222)
98  0.399) STA 129 Bt order
99 0.4@5)
99 0.445) STAR 130 Pt order
100 1.105 0.573)
Vs 130 15t order
CsNiCk 101 0.379)
101  0.376) BCT 132 Bt order
102 0.3425)
103 0.243(5) GLW 129 15t order

CsMnk 101  0.346) _ _ .
since the measurement of its specific heat presents a should-

erlike anomaly neaf . which renders the determination of
and B8 doubtful) The second one is made of rare earth heli-
magnets Ho, Dy, Th. For most materials, the transitions are
found continuous buhot with the same critical exponents.

metal, andX a halogen atom—which are physical realiza- For CsCuCj, the transition is found to be weakly of first
tions of XY STA. The most studied ones are CsMgBr order, i.e., with small discontinuities. The results are summa-
CsCuC}, CsNiCk, and CsMn4. (See Ref. 92 for a review fized in Tables | and II.

and Ref. 93 for RbMnBy. We have excluded this material  We highlight four striking characteristit’®d of these data.
Their consequences for the physics of frustrated magnets will

CsCuCh 104 0.23-0.28)
93 0.355) 1%t order

TABLE II. The critical exponents of th&Y helimagnets. be discussed in more details in the following.
(i) There are two groups of incompatible exponents. In the
Compound  Ref. a B % v following discussion, we mainly use the exponghto ana-
lyze the results since, as seen in Tables | and I, it is by far
Tb 105 0.2039) the most precisely measured exponent. Clearly, there are two
106 0.234) groups of materials, each of which being characterized by a
107 0.212) set of exponentsB in particular.
108 0.53 In the first one—that we call group 1—made up of
Ho 109  T'order group 1:CsMnBjg,CsNiCk,CsMnk, Th (24
110  0.272)
98  0.10-0.22 one has
111 0.30100 1.2415 0.544)
111 0.3710) B~0.2374). (25)
112 0.393)
113 0.392) Note that, as far as we know, there is no determination of the
114 0.394) exponentB for CsMnl; that, being given its composition,
115 0.394) has been included in the group 1 of materials. Anyway, our
115 0.414) conclusions are not affected by this fact.
116 1.1410) 0.574) In the second—group 2—made up of
117 0.381)
group 2:Ho,Dy (26)
Dy 118 0.33510)
119 039709 one has
113 0.382) B~0.3897). 27)
112 0.391)
116 1.0%7) 0.575) These exponents are clearly incompatible. Actually, we find
120 0.242) for the average exponents of CsMpBione—the most and

best studied material of group 1—
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B=0.2286), v»=0.55521), (iii) For group 2, the scaling relatiop+28—3v=0 is
violated. From Eq.30) it is possible to check the scaling
relations. We findy+28—3v=0.202(92) and thus a viola-
tion by 2.2 standard deviations.

(iv) CsCuC} undergoes a weak first-order phase transi-
tion. Until recently, CsCuGl was believed to undergo a
second-order phase transition with exponents compatible
with those of group 1, see Table I. It has been finally found to
display a weak first-order phase transitfon.

a=0.41633), y=1.07542). (28

If we consider all the materials of group (&xcept Tb for
which the results are not fully under control, but perhg@ps
we find

B=0.23714), v=0.55521),

2. The numerical situation
@=0.3445), y=1.07542). (29)
Monte Carlo simulations have been performed on five dif-
For materials of group 2Ho and Dy we find ferent kinds of XY systems. The first one is the STA
itself.22712° The second model is the STARvhere “R”
stands for rigidity which consists in a STA for which the
p=038497), »=0.55825, y=1105). (B0 |ocq rigidity constraint—Eq(4)—has been imposed on each

We do not give a value fow which is poorly determined. ~ Plaguette at all temperatur&®.The third model is the Stiefel

Let us indicate that the exponents vary much from com-V22Mmodel whose Hamiltonian is given by E@).*****'This
pound to compound in group 1. Although less accuratel;}s a hard spin, discretized version of the &model relevant
determined thaB, « is only marginally compatible between to frustrated magnets. Note that, for this last model, the tri-
CsNiCk and CsMnBs. Note moreover that, even for the @ngular structure is irrelevant since the interaction is ferro-
same material, the data are not fully compatible amongnagnetic; a cubic lattice can be chosen. Also a soft spin,
themselvesB in CsMnBr; shows a somewhat too large dis- discretized version of the GLW model has recently been
persion. studied by Itakuri® who also restudied the STA model for

(i) The anomalous dimension is negative for group 1 large sizes. Finally, a helimagnetic system defined on a body-
which is impossible. If we assume that the transition is ofcentered-tetragondBCT) lattice—the "BCT model"—has
second order for group 1, we can use the scaling relations t8€€n investigatetf . o
compute. In particular, the precise determination @fal- Here, we emphasize that the local rigidity constrédtas
lows us to usep=28/v—1 to determine rather accurately Well as the manipulations that lead to the STAR, Stisfg},
5. The exponent itself can be obtained directly from the GLW, and BCT models only affect themassive-

experiments or deduced using the scaling relation noncritical—modes. Thus, all the STA, STAR, Stieté},,
GLW, and BCT models have the samadtical modes, the
v=(2—a)l3. (31) same symmetries and the same order parameter. Therefore,

) . one could expect a common critical behavior for all these
The large number of experiments devoted to the determ'”as'ystems.

tion of « allows a precise determination of By using the Let us comment the results of the simulations given in
scaling relation(31), we find »=0.528(11) if we consider Taple III. Note that, due to the its novel character, we shall
the experimental results for CsMnBralone and v comment on the recent work of Itakdfaseparately.
=0.552(2) if we consider CsMnBr CsNiCk, and CsMng. (i) For STA, scaling laws are found with exponents com-
By using the relationy=2p/v—1 together with Eq(31) or  patible with those of group 1. Let us, however, notice that,
the relationn=6p/(2—a)—1 and by considering the data sjmilarly to what happens for the materials of group 1 there
of CsMnBi; alone or the data of the materials of group 1exists, in the numerical simulations of STA, a rather large
(except Tb for which it is not sure that the data are relinble gispersion of the results. For instance, the two extreme val-
we can obtain four determinations gf In the four cases, we yes ofy differ by 2.1 standard deviations.
find » negative by at least 4.1 standard deviations and the | et us make two other remarks. First, the good agreement
probability to find it positive always less than 10 In fact,  petween the numerical results for STA and the experimental
the most precise determination is obtained by combining albnes for materials of group 1 has been repeatedly interpreted
the data of group 1, E¢29), and by using the relatiom  in the literature as a proof of the existence of a second-order
=6p/(2—a)—1. In this case, we obtaim=—0.141(14) transition and even as evidence of the existence of the chiral
and thus aalmos} vanishing probability to find it positive. fixed point of the GLW modefi' We emphasize here that the
Note also that, although andv are less accurately known in fact that a Monte Carlo simulation reproduces experimental
Th—for which experiments are anyway delicatg—is also  results only means that the Hamiltonian of the simulated
found negative. system is a good approximation of the microscopic Hamil-
However we stress that) cannotbe negative in a true tonian describing the physics of real materials. However, this
second order phase transition. This is a general result, basegither explains nor proves anything else—aedainly not
on first principles of field theory, thay is always positive if  the existence of a second-order phase transition—since
the theory describing the transition is a unitary Glitlike ~ Monte Carlo simulations suffer from problems analogous to
modef?? as it is the case helsee Appendix A those encountered in experiments: a weakly first-order phase

134413-8



NONPERTURBATIVE RENORMALIZATION-GROLWP . . . PHYSICAL REVIEW B 69, 134413 (2004

transition is very difficult to identify and to distinguish from tions of critical exponents inside a given group of exponents.

a second-order one. (3) The anomalous dimension is negative for the mate-
Let us now come to our second remark. In a beautifulrials of group 1 and for the numerical STA model. This is

experiment, Plakhtgt al® have measured the so-called chi- very significant from the experimental results, less from the

ral critical exponent$® B.=0.442), ¢.=1.28(7) andy,  numerical ones.

= ¢.—B.=0.84(7) in CsMnBg. They have found values (4) For group 2, the scaling relations are violated by 2.2

compatible with those found numerically in STA by standard deviations.

Kawamurat?® 8,=0.452), y.=0.715), and ¢.= yc+ B¢ (5) CsCuC} is found to undergo a weak first-order tran-
=1.22(5) but in worse agreement with the results of Plumesition.
and Mailhot!?” B.=0.392), 7.=0.909), and ¢.= v, (6) STAR, V,,, and BCT models undergo strong first-

+ B.=1.289). Let usemphasize, again, that this agreementorder transitions.

simply means that the parameters characterizing the numeri- (7) Recent Monte Carlo and Monte Carlo RG approaches
cal simulations are not too far from those associated with thef STA and the soft spin discretized version of the GLW
experiments. By no means, it implies—or give a new indi-model give clear indications of first-order behaviors.

cation of the existence of—a second-order transition. Let us

notice thatB, has also been measured in H6.The value 4. Conclusion: five possible scenarios
found B.=0.90(3) completely disagrees with the result | et us now propose five possible scenarios to explain the
found in STA and in CsMnB. phenomenology oKY frustrated systems.

(if) The anomalous dimension is negative for STA. As Scenario 1. This scenario is—together with the second

shown in Ref. 1307 is found negative using the two scaling one—the most often invoked: the critical behavior of frus-
relations »=2p/v—1 and n=2—y/v for the two simula-  trated magnets, when they display scaling, is controlled by a
tions where these calculations can be performed. uniquefixed point of the RG flow which is associated with a

(ii) The simulations performed on STARj,, and BCT  new universality clas®®971125126.13|thoygh, from point
models give first-order transitions. Therefore, the modifica{1) above, XY frustrated magnets appear to display rather
tions in the microscopic details which change STA intogeneric scaling behaviors, the examination of the experimen-
STAR,V,,, and BCT drastically affect the scaling behavior. tal and numerical data provides clear indications against this

(iv) In a remarkable work, Itakura has recently performedfirst scenario. Indeed, from poif), there is a manifest lack
Monte Carlo and Monte Carlo RG approaches of the STAof universality in the scaling behavior of frustrated magnets.
and its GLW model version that has led to a clear first-ordelso several points, froni3)—(7), strongly militate in favor
behaviol?®. Itakura has performed standard Monte Carloof first-order behaviors.
simulations of the STA involving sizes up to 12844 Scenario Il.In the second scenario, the two sets of expo-
X126 leading to clear first-order transitions. In particular, fornents corresponding to groups 1 and 2 are, in fact, associated
these lattice sizes, the double peak of the probability distriwith two true second-order phase transitions from which re-
bution of the energy at the transition is clearly identified.sult two distinct universality classes. This scenario is ruled
ltakura has also used an improved Monte Carlo RG simulasut by the fact—see poin3)—that the anomalous dimen-
tion of the STA and its GLW model version. One advantagesion # is negative for group 1 and for the numerical STA
of this approach compared with previous RG Monte Carlomodel. Thus, providedi) the quoted error bars in the litera-
studies is that it allows one to reach the asymptotic criticature are reliable(ii) our hypothesis of a purely statistical
behavior using systems of moderately large lattice sizesprigin of the errors does not completely bias our analysis
Within this approach, Itakura has found evidence for a first-and, iii) corrections to scaling do not alter drastically all the
order behavior with, notably, a runaway behavior of the RGresults, we are led to the conclusion that the behavior of the
flow and the absence of any nontrivial fixed point. This re-materials of group 1 and of the numerical STA modahnot
sult, together with the proximity between the critical expo-be explained by the existence of a fixed point in the GLW
nents computed numerically and those measured in CsMnBmodel. In the simplest hypothesis, these systems must un-
suggests that this last material also undergoes, in fact, a firsttergo first-order phase transitions. This last hypothesis seems
order phase transition. to be confirmed by several other facts. First, CsGu@hose
exponents are close to those of group 1 has been finally
found to undergo first order phase transitions, see [b)ruf

We now summarize the results of our analysis of boththe summary. Secondly, poiri6), numerical models very
experiments and numerical simulations f&lY frustrated close to STA—STAR\V,,, and BCT—also undergo first-
magnets. order phase transitions. Finally, the hypothesis of a first-order

(1) Scaling laws are found in STA and helimagnetic ma-phase transition for STA itself is corroborated by the fact,
terials on a rather wide range of temperature. This is also thpoint (7), that recent Monte Carlo and Monte Carlo RG
case within all—except for an important dA&—numerical  simulations of this system predict a first-order phase
simulations of the STA. transition!?°

(2) There are two groups of systems that differ by their ~Scenario Ill.In the third scenario, materials of group 2
critical exponents. The first one includes the group 1 of maundergo a second order phase transitiopis-found positive
terials and the numerical STA model. The second one correghere—while those of group 1 as well as the numerical STA
sponds to the group 2 of materials. One also observes varianodel all undergo weakly first-order phase transitions.

3. Summary
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Within this scenario, the critical exponents of materials of TABLE IV. The critical exponents of the Heisenberg STA. The
group 1 should be considered as effective or pseudocritica@bbreviationsA, B andC stand for Cu(HCOQ)2 CO(ND;) 2 D,0,
exponents, characterizing the pseudoscaling observed, valft S;CN(C,Hs)2],Cl, and CsMn(Bgidog)s. respectively. The

for temperatures far enough from the critical temperaturedata in brackets are suspected to be incorrect. They are given for
There is no direct and definitive argument against this scetompleteness.

nario. Of course, violation of the scaling relations for mate-

rials of group 2, point4), makes doubtful a second order €ompound Ref. @ B Y v
behavior. However, this violation is too small to definitely \,cy, 136 0.202) 1.053) 0.625)
reject it. Actually, the drawback with this third scenario is its

lack of naturalness. Indeed, it implies a very specific ﬁne\/Br2 137 0.305)

tuning of the microscopical coupling constants—i.e., of the
initial conditions of the RG flow—for materials of group 1. A
Their representative points in the coupling constant space
must lie outside the basin of attraction of the fixed point
governing the critical behavior of materials of group 2 but
very close to its border so that the transitions are weakly of

138 0.222)

89,139,140 0.24) 1.163)
141  0.2445)

first order.
Scenario IVIn the fourth scenario, all frustrated magnets CsNiCl 101,142 0.2
undergo first-order phase transitions that almost generically 102 0.234)
appear to be weak or very weak and are characterized by 103 0.283)
pseudoscaling and pseudocritical exponents. This fourth sce-
nario, compared with the third one, could thus seem evefsMnk 101 0.286)
more unnatural. This is true, but only within the usual expla-
nation of weak first-order phase transitions where the weake 143 0.287)
ness of the first-order transition is obtained by fine-tuning of 144 0.291) [0.754)] [0.423)]
parameters. Actually, we shall provide arguments in favor of 145 0.282)

the present scenario and shall show that the genericity of

pseudoscaling has, in fact, a natural explanation relying nei-

ther on the existence of a fixed point nor on a fine-tuning ofthat exactly counterbalances the anisotropies. This is the case

parameters. of CsNiCk and CsMn} at their multicritical point. Finally,
Scenario VFinally, one can imagine several variants of those which become isotropic because they have been pre-

these scenarios. For instance, we have adopted the stand®@&@fed in a fine-tuned stoichiometry such that the Ising-like

position that consists in associating a unique set of criticaRndXY-like anisotropies cancel each other to form an isotro-

exponents to a fixed point. On the contrary, Calabres®ic material. This is the case of CsMn(BH ¢ g1

et al**13% have suggested that a unique fixed point could Let us comment the experimental results summarized in

lead to a whole spectrum of effective exponents. This sceTable IV.

nario, which would explain the occurence of a spreading of (i) As in the XY case, the Heisenberg materials fall into

critical exponents in the experimental and numerical coniwo groups. The group 1, made up of

texts, will be discussed in details in the following. We now

review the experimental and numerical results obtained for group 1: CYHCOO0),2CQAND,),2D,0,

the Heisenberg systems.

FES,CN(C;Hs),] »Cl,
C. The Heisenberg systems VCl,,VBr, (32)
1. The experimental situation is characterized by

Contrarily to theXY case, there is no Heisenberg helimag-
nets(see, however, Ref. 68Therefore there remairm, pri- B=0.2308) (33
ori, only the Heisenberg STA materials. In fact, tA¢B
phase transition of Hecan be described by the same GLW while for group 2, made up of
Hamiltonian as the Heisenberg SPAIt is thus a candidate.
Unfortunately, the narrowness of the critical region of this .
transition does not allow a reliable study of the critical be- CSNICl, CsMnk, CsMM(Bro.16,10.6) 3 (34)
havior of this system and there are no available data about it.
Three classes of Heisenberg STA materials have beel"
studied. First, systems such as VYCI VBr,, B3=0.2878). (35)
Cu(HCOO)2CO(ND,),2D,0, and FgS,CN(C,Hs),],Cl
which are generically qua3{Y except in a particular range Note that, strictly speaking, the values@for VBr, and for
of temperature where their anisotropies are irrelevant. Sed=sMnl; are not known and, thus, our classification is some-
ond, those which become isotropic thanks to a magnetic fielavhat improper. It seems however logical to suppose that

e finds
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TABLE V. Monte Carlo critical exponents of the Heisenberg systemis. computed byy/ v=2— 5 and,
apart in Refs. 123 and 13%, is computed by 3=2—«a.

System Ref. a B y v 7

STA 123,133 0.24@B0) 0.30020) 1.17Q70) 0.59020 0.020180
149 0.24224) 0.28511) 1.1853) 0.5868) —0.03319
150 0.24%27) 0.28915) 1.17626) 0.5859) —0.01114)
151 0.23030) 0.28015) 0.59010 0.00040
152 0.5897)

STA 129 Bt order

STAR 153 0.48830) 0.2219) 1.07429) 0.50410 —0.131(13

Vi3, 153 0.47924) 0.1934) 1.13623) 0.5078) —0.24Q10
131 0.46030) 1.100100 0.51510 —0.10050)

Va2 129 1t order

BCT 154 0.28730) 0.24710) 1.21732) 0.571(10) —0.13118)

GLW 129 St order

VBr, is close to VC} and CsMnj close to CsNiGJ. Any- nificantly from those of CsMn(By;d¢.g1) 3 Whose critical be-
way, it will be clear in the following that our analysis is havior has been claimed to be perturbed by disofdee,

almost insensitive to this point. however, Refs. 146—148
For group 1, the average values of the critical exponents (ii) For group 1, the anomalous dimensignis signifi-
are given by cantly negative. Using the two exponents that have been
measured at least twice in group 3-and y—we can com-
p=0.2308), a=0.27235), pute the anomalous dimension from the scaling relation
=(4B—y)I(2B+7y). We find »=-0.118(25) which is
v=0.625), vy=1.10521). (36)  thus negative by 4.8 standard deviations.

(iii) For group 2, the anomalous dimensignis mar-

Avery severe difficulty in the study of the materials of group 9inally negative. Using the critical exponents given in
1 is their two-dimensional character and Ising-like anisotro-Ed- (37), one obtains, for the anomalous dimension:
pies. The temperature range where the systems behave effég= —0.018(33). Thusy is found negative but not signifi-
tively as three-dimensional Heisenberg systems is narrovantly, contrarily to what happens in group 1.
This is the case of VGlwhere this range is less than two (i) For group 1, the scaling relations+28—2+a=0
decades and where, closer to the critical temperature, the28+y—3v are violated. Indeed, y+2B8-2+a
system becomes Ising-like. For this group of materials the= —0.135(56) and B+ y—3v=-0.29(15). Of course,
exponentg is very small and the authors of Ref. 136 havenone of these violations is completely significant in its_elf
noticed that such small values have also been found in mdecause of the lack of experimental data. However, since
terials where dimensional crossover is suspected. Thus, it 1€y are both independently violated it remains only a very
not clear whether the whole set of results really correspondgmall probability that the scaling relations are actually satis-
to a three-dimensional Heisenberg STA. fied.

For group 2, the experimental situation seems to be better
under control. The average values of the critical exponents 2. The numerical situation

are given b . . , .
g y In the Heisenberg case, as in th¥ case, five different

kinds of systems: STA, STAR, StiefeM§, in this case

B=0.2819), «a=0.2433), BCT, and GLW models have been studied. The results of the
simulations are given in Table V.

Let us comment on them. Again, we put aside the work of
Itakural?®

(i) For the STA, scaling laws are found with an exponent

where the scaling relations have been used to compated g close to that of group 2. The average values for the expo-
v. Note that the values of and y thus obtained differ sig- nents of STA are

»=0.5859), y=1.18133), (37)
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B=0.2886), y=1.1853), »=0.5875). (39 TABLE VI. Monte Carlo critical exponents for six-component
spins in the STA systeniRef. 23. Note that using the results of

. . Loison etal. and the relation »=2—+vy/v, one finds
B is thus extremely close to the experimental value of group_ 025(20) 7 vy 7

2 while v and y are extremely close to the experimental
values deduced from the scaling relatigq3). The scaling System
relation y+2B8—3v=0 is very well verified sincey+2p
—3y=10"%+6.10"2, N=6 STA —0.10033) 0.35914) 1.38336) 0.70Q11)
(ii) For the STA, 7 is negative. Using the values @f v

and y/v obtained directly in the simulations, one can com-
pute the average value of. —0.0182(89). The probabilty ~ (6) A Monte Carlo RG approach of the STA/;, and
of it to be positive is 0.02 and is thus small although notGLW models has led to clear first-order behaviors.

12 B b% v

vanishing. )
(iii) For the STARV3,, and BCT models, the values of 4. Conclusion
B are all incompatible with that of ST&hree standard de- Let us now draw some conclusions about the Heisenberg

viations at leagtand are all incompatible among each others.case. The experimental and numerical data reveal the same
This has been interpreted as an indication of very weak firstproblems as those encountered in ¥¥¢case: the different
order phase transitiort§? This is to be compared with the materials split into two groups, the anomalous dimension is
XY case, where the transitions for STAR and thg, model  found negative in many materials and in most numerical
are strongly of first order. simulations, the scaling relations are violated in some mate-
(iv) For the BCT, STAR andV/3, models, 7 is always rials and there is no universality in the exponents found in
found significantly negative, see Table V, whejéas been the simulations. The same kind of conclusion as in Xe
calculated frony/v. case follows(see Sec. Il B % the first scenario, that of an
(v) The Monte Carlo and Monte Carlo RG approaches ofexplanation based on the existence of a unique fixed point
the STA,V3,, and GLW model performed by Itakura has led appears unlikely. There are also signs of first order behaviors
to clear first-order behavior$® For Heisenberg STA, con- but less significantly than in th&Y case. Thus, at this stage,
trarily to the XY case, even for the largest lattice sizes—=84it is impossible from the experimental and numerical data
X 96X 84—the double peak of the probability distribution of alone to discriminate between the different scenarios I, lll,
the energy is not observed. However, g, model displays IV, and V. It is therefore important to gain insight from the
a clear double peak. Moreover, for the STA and Whg, theoretical side. Before discussing this, let us mention an-
model, the RG flow clearly does not exhibit any fixed point. other interesting numerical result.
Instead, a runaway of the RG flow toward the region of

instability is found which indicates first-order transitions. D. The N=6 STA
The transitions are thus—weakly—of first order. The transi- _ _ o
tion is also weaker of first order for Heisenberg than Yot Let us quote a simulation of the STA with six-component

spins that has been performed by Loisiral 22 The results

are given in Table VI. Six-component spins were chosen
since it was expected that the transition was of second order.
Loison et al. have clearly identified scaling laws at the tran-

We now summarize the experimental and numerical situsition with a positive anomalous dimension. Let us empha-
ations for frustrated magnets with Heisenberg spins. Heresize that, even if the transition is actually of first order, as
the experimental situation is much poorer than inXiecase  suggested by the recent results of Calabresal,*® it
and is still unclear on many aspects. On the contrary, thghould be extremely weakly first order—see the following.
numerical results are numerous and more precise than in thghus, scaling laws should hold for all temperatures but those
XY case. very close taT .. In this respect, the exponents fde=6 are

(1) Scaling laws are found in STA materials on a rathertherefore very trustable so that reproducing them is a chal-
wide range of temperatures as well as in all Monte Carldenge for the theoretical approaches.
simulations—apart that based on Monte Carlo RG.

(2) There are two groups of materials that do not have the
same exponents. The exponefit of the numerical STA
model agrees very well with that of group 2.

(3) The anomalous dimension is manifestly negative for Let us briefly review the most important theoretical devel-
group 1 and marginally negative for group 2. For the numeri-opments concerning this subject. The first microscopic deri-
cal STA model, is found negative although not completely vation and RG study—at one- and two-loop orderdis 4

spins.

3. Summary

IV. A BRIEF CHRONOLOGICAL SURVEY OF THE
THEORETICAL APPROACHES

significantly. For STARV3,, and BCT,» is found signifi-  — e—of the effective GLW model relevant for the STA—see
cantly negative. below—was performed for Heby Joneset al. in 1976
(4) For group 1, the scaling relations are violated. (Ref. 8 and by Bailinet al. in 1977° The model was red-

(5) STAR, V3,, and BCT exhibit scaling behaviors with- erived and restudied in the context of helimagnés gen-
out universality. Also, the results are incompatible with thateral N) by several groups including Baét al. (1976,
of the numerical STA model. Garel and Pfeuty1976,%¢ and Barak and Walke(1982.1%¢
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It was established at that time that, arouhed 4, the transi- ing characterized by pseudocritical exponents. Note that,
tions for Heisenberg spin systems had to be of first ordemithin the LPA, all derivative terms in the Hamiltonian are
More precisely, these authors found that there exists a criticaleglected so that the anomalous dimension is vanishing. This
value N.(d) of the numberN of spin components above has two important consequences. First, the pseudocritical ex-
which the transition is of second order and below which it isponents found by Zumbach were not very reliable and thus
of first order. They fount® difficult to compare with the experimental and numerical re-
sults. Second, this approach neglects terms—the so-called
current term(see beloyw—that are fundamental within the
3+ l e+0(€?) perturbative approach of the MLmodel performed around

J6 two dimensions. Thus, within Zumbach’s approach, it was

) not possible to match with these results. Finally note that, in

~21.8-23.4e+0(¢€%), (39 the N=2 caseno minimum in the RG flow was found and,
thus, no pseudocritical exponent was obtained, in contradic-

with e=4—d. Afirst largeN expansion was also studied, in tion with the scaling behaviors observed in the experimental
particular ford=3, by Bailinet al.in 1977° and numerical contexts.

A group theoretical derivation of the GLW model relevant  Then, three-loop calculations were performed by An-
to the XY STA was performed by Yosefin and Domany in tonenkoet al. in 1994 and 1995 on the GLW model. th
1985%° They found the same Hamiltonian as for helimag-=3 this has led, after Pae@orel resummation, tdN.(d
nets. Between 1985 and 1988, Kawamird>?®1%has per-  =3)=3.911%8|n d=4— ¢, they have determined the three-
formed this analysis foN-component STA. He has shown loop contribution—7.1e>—to N (d=4—¢€), see Eq.(39).
that the Hamiltonian is the same as forgH® helimagnets, This has led tdN.(d=3)=3.391*° These authors have men-
the RG analysis giving obviously the same results. This autioned that, contrarily to th©(N) models, their three-loop
thor has also extrapolated the two-loop result f(d) of  results were not well converged.

Eq. (39 in d=3 and foundN,(d=3)<2. This led him to In 1996, Jolicoeur and David studied a generalization of
conjecture the existence of a second-order phase transitiaRne Stiefel model that involvesN vectors with N

for frustrated magnets associated with a new universalitgomponent$® They showed within a mean-field approxi-
class. However, as is well known, this direct extrapolationmation and a one-loop calculation performediin 2+ € that
cannot be reliable since it is notorious that the perturbativex first-order line should appear in a nontrivial dimension
series must be resummed. above 2. It should isolate the chiral fixed point in the meta-

In 1988, Dombre and Re&lderived, in the quantum stability region in such a way that this point should no longer
case, the Nonlinear Sigma (M) model relevant to frus- play any role. Above this dimension, the transition should
trated magnets. In 1990, Azaret al. studied the classical therefore be of first order.
version of this Nlo model aroundi= 2. They found a fixed Between 1998 and 2001, Mudrov and Varnash&y®®
point of the RG flow in a two-loop calculation for arly  studied, in a series of articles, the so-callétl model which
=3.°" For N=3, they found the phenomenon of enlargeddescribesXY helimagnets foiM =N=2. Their computations
symmetry: at the fixed point the symmetry becor843(3)  at three and four-loop in 4 € dimensions have led to the
XSQ(3)~SO(4) instead of SO(3)XSO(2). Thus, their conclusion of the absence of fixed point in these cases.
conclusion was that, if the transition is of second order, itis Then, in 2000—2002, using the technique of the effective
characterized byD(4)/O(3) critical exponents—at least for average action, including derivative terms, the present au-
v. Another possibility proposed by these authors was that théhors performed a nonperturbative study of frustrated mag-
transition could be also mean-field tricritical or of first order. nets for any dimension between 2 ané*4*1?'They recov-
However,noneof the experimental or numerical results are eredall known perturbative results at one-loop in two and
compatible with theD(4)/O(3) or mean-field tricritical ex- four dimensions as well as foN—oc. They determined
ponents. Note finally that these authors supposed that, if triN.(d) for all d and foundN.(d=3)=5.1. Accordingly, for
critical, the behavior at the transition should be mean-fieldN=6, they found a second-order phase transition. Their ex-
tricritical in d=3, something which is mandatory only for ponents were in very good agreement with those found nu-
O(N)/O(N—1) models, but not for more complex models. merically. ForN= 3,5 they recovered Zumbach'’s results—

The first nonperturbative approach to frustrated magnetthe presence of a minimum in the RG flow—and improved
was performed by Zumbach in 1983.°"He wrote down the  his approach: they found pseudocritical exponents in good
NPRG equations for the GLW models suited to the descripagreement wittsomeexperimental realizations of frustrated
tion of these systems. He studied them within the local pomagnets.However regarding the spreading of the experi-
tential approximation (LPA) of the Wilson-Polchinski mental and numerical data, the recourse to a minimum, lead-
equation—analogous to the Wegner-Houghtoning to auniqueset of pseudocritical exponents, was clearly
approximatiofi—and foundN,(d=3)~4.7. Since he found not the end of the story. During the study of the=2
no fixed point forN=2 andN=3 he claimed that the tran- case'?’the present authors realized that the property of pseu-
sition is of first order in these cases. In the cBlse3, there  doscaling and even more, generic pseudoscaling, does not
is a minimum in the RG flow, a pseudofixed point, that fakesrely on the concept of minimum of the flow. Pseudoscaling
a true fixed poin{see below for detai)s The transition was appears as a consequence of the existencendfade region
thus conjectured to beeaklyof first order with pseudoscal- in the flow diagram in which the flow is slow. This allowed

N (d=4-¢)=4(3+6)—4
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them to account for th@onuniversal scalinghat occurs in  putation performed in three dimensiohi$:}**Note also that,
XY as well as in Heisenberg frustrated magnets. The presemnsing the pseude-expansion technique on the six-loop se-
article accounts for these last developments. ries, the same authdfd have obtained another compatible

In 2001, Varnashev investigated at four-loop directly inestimate ofN.(d=3)=6.22(12). Since several aspects of
three dimensions the GLW model for frustrated magh®s. the recent perturbative and nonperturbative approaches dif-
In the case oY and Heisenberg systems he foumalfixed  fer, in particular in their interpretations of the origin of the
point. He also provided an estimate of the critical valuenonuniversal scaling found in frustrated magnets, we post-
above which there is a stable fixed poiht;(d=3)~6.5. pone the detailed discussion of these last developments of

In 2001, Pelissettet al1®’ derived the six-loop series for both methods to the following sections.
the GLW model. They used sophisticated resummation meth-
ods in order to find the fixed points and to determine the
crl'FlcaI exponents of the model. Fbr=7, they found a fixed V. THE PERTURBATIVE SITUATION
point of the same nature as the one obtained at Ibrged
in the 4— € expansion. Thus, a second-order phase transition Let us discuss in more detail the perturbative approaches
is expected in this case. FoistN<7, they considered that that have been used to investigate frustrated magnets. There
their resummed series were not well converged, the numbere essentially two different methods to analyze the critical
of fixed points depending strongly of the number of loopsbehavior of the system described by the Hamiltoni@h
considered. This led them to interpret this result as an indiThey correspond to two different methods to deal with the
cation thatN.(d=3)~6. Finally and surprisingly, folN constraints obeyed by the microscopic degrees of freedom
=<5 and, in particular, for the physically relevant casés (5). They lead to the N and GLW models that have been
=2 andN=3, they found stable fixed points. More pre- both perturbatively analyzed around their respective critical
cisely, they found zeroes of th@ functions using different dimension as well as, for the GLW model, directly in three
approximants at three, four, five, and six loops for 15, 45, 80dimensions. Let us review the results of these approaches.
and 95 %(respectively, 45, 70, 95, and 100 %f the ap-
proximants in theXY (respectively, Heisenbergase. Thus, a A. The nonlinear sigma (NL o) model approach
second-order phase transition was also predicted in the , , , ) ,
physically relevant cases. However, the critical exponents |Ne idea underlying the construction of this model is to
found were far from all experimental and numerical date ~ consider the system in its low-temperature—symmetry
the following). Moreover, regarding again the spreading ofProken—phase and to take into account small fluctuations of

these data, an interpretation in terms of a unique set of exN€ fields around the direction of the order parameter. The
ponents was clearly insufficient. corresponding treatment is thus, by construction, a low-

In another worki®® assuming thaN (d=2)=2, Pelis- temperature expansion. Its actual validity is in fact less strin-

settoet al.reformulated the three-loop version of the seriesd€Nt than that: it is sufficient that the systemlasally or-
of Eq. (39—see below—to make it compatible with this last dgred and that the temperature is small. This explains why

guess. The series seemed to have better convergenfiS approach is valid even in two dimensions for systems
properties—see, however, below—and allowed Pelissettg2€Ying the Mermin-Wagner theorem. Note that this ap-
etal.to computeN,(d). They found N,(d=3)=5.3, in proach applies—& priori (see Sec. Il B and the discussion at

good agreement with the valueNg(d=3)=5.1—obtained the end of this sectigr—only for N=3. Indeed, in theN
from the NPRG approachiL6* =2 case, the low-temperature expansion of thes\Nthodel

Recent reinvestigations of the five- and six-loop perturba—le"",ds toa trjvial result, i.e., the .theory_is perturbativgly free.
tive serie$®1% have led Calabreset al. (see alst/® to This result is, however, not reliable since there exist topo-

conjecture that the fixed point found by Pelissettcal—  |0gical as well as Ising-like degrees of freedom in ¥
that corresponds to focusfixed point—could explain the frustrated casésee Sec. )l These degrees of freedom, that

existence of the spreading of exponents encountered in fru§r® completely miss_ed within the Iow-te.mpera'Fu_re perturba-
trated magnets. Indeed, they observed that, due to the sphi€ approach, drastically affect the physics at finite tempera-
ure as in the famous Berezinskii-Kosterlitz-Thouless phase

cific structure of the fixed point, the exponents display stron 5354

variations along the RG trajectories that could explain thé"ansition: y .
lack of universality observed experimentally and numeri- Within the NLo model approach, the partition function of

cally. They have also given estimates of the critical numbefn® SA(3)XSO(2)-symmetric model follows fror.nm the
of spin components for which there is a change of the ordeff@miltonian(7) together with the constraints of E(b):
of the phase transition. They have found that there is a first-
order phase transition in the whole domain 5.A3} _ g i3 s
<6.4(4) and a second-order phase transition for the other z D¢1D¢2£[j o bi-di— i)
values ofN and, in particular, foN=2 andN=3. 1
Finally, a very recent computation of the five-logdunc- % _ _j d 324 (9d)2
tion of the GLW model in a 4 ¢ expansion has led to a e~ o | dXL(9d) "+ (9¢2)7] . (40
novel estimate oN(d). Calabrese and Parruccifii have .
found the valueN.(d=3)=6.1(6) which is compatible with The delta functionals allow the integration of the three mas-

the valueN.(d=3)=6.4(4) found within the six-loop com- sive modes among the six degrees of freedor’rﬁpand <Z>2.
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Therefore, only the three—Goldstone—modesemain, in  One can then gather the three vectdis ¢,, andg; into a
terms of which the partition function writ&¥172173 3% 3 matrix

- L i D=(y, by, b3). 46
Z=f|_ Dwexp{—ﬁf ddxgij(ﬂ')&ﬂ' am|. (41 (¢1,¢2,%3) (46)

w‘Sl . S > -
Since (@1,¢,,¢3) are three orthonormal vectors, one has

Equation(41), whereg;;(7) embodies the interaction, is the ‘®®=1and® is therefore &5Q(3) matrix.
suitable expression for a low-temperature expansion of the 1h€ partition function thus reads
SO(3)x SO(2)/SO(2) NLo model.
The low-temperature expansion of suchdinodels has . — (d Tr(Pa DD
been studied in general but rather abstract terms by Z:f DO S('PP—1)e” [TXTPIDID), (47)
Friedant’> The specific study of the SO(3)

XS((2)/SO(2) model and its generalization 10 where P is a diagonal matrix of coupling constant®
N-component spins—th@(N) X O(2)/[O(N—-2)XO(2)]  =djag(p,=p,= 72/4.p3= 71/2— 1,14).

model—has been performed by Azagaal**"'" (see also It is easy to check on Eq47) that the model is invariant
Ref. 169. The RG analysis requires to consider the mostynder the right transformation:

general Hamiltonian invariant unde®©(N)XxO(2) and

renormalizable around=2. This Hamiltonian involves not oV (48
only the usual kinetic terms fap, and ¢,, Eq.(40), but also
a nontrivial derivative term, called the “current term,” which
reads

with V being the subset o§Q(3) matrices that commute
with P. When p3#pq, i.e., n1# 1,, V is isomorphic to
SO(2). WhenP is proportional to the identityy is isomor-
phic to the wholeSQ(3) group. In this last case, the high-
dy/ 37 T <2 temperature symmetry group isG=S0O(3)XSQ(3)
f A X( b1 0= b2 9¢1)" 42 ~S0(4). Note that this identity has to be understood at the
level of the Lie algebras sinc80(3)XSO(3) andSO(4)
This term must be included in the model since it has the rightire locally isomorphic but differ globally and have different
symmetry, is power-counting renormalizable aroutret2  topological properties. This fact will be important in the fol-
and is thus generated during the RG flow. The correctNL lowing.
model—in the sense of stability under RG The RG equations for theO(N)XxO(2)/[O(N—2)

transformations—is given bffor any N=3):1%7 X 0(2)] model have been computed at two-loop ordedin
=2+ ¢e.15"13We recall here the one-loop result that will be
R R useful in the following:
H= [ @] Ziog+ g1+ | 2 2
2 8 4 -
S Bnlz_(d_z)ﬂl‘H\'_Z—z—m,
X(1-dbo— o db1)?], (43
B, =—(d—2) +Né(ﬂ)2 (49)

where we have chosen to reparametrize the coupling con- 2 72 2 \nm) -

stants in a way convenient for what follows. Now, the Hamil- Lo .
tonian of the naive continuum limit Eg40) is just the initial A fixed p0|r1t 'S*fOL.Jnd fof a”i"\'%- ForN=3, it corre-
condition of the RG flow corresponding tg, = 7,/2=1/T. SSr%r;::trt;/)péZ(p;)’;gb( 7:7)’1) TSgga)ng(Zs)/St%g; en_:_artlrged
l;lé)rtgt;r:]?;we have included the temperature in the COUIOIIn%xed point has only one direction of instability—the direc-
For the special cassi=3, it is convenient to rewrite the 10N Of the temperature—and thus corresponds to a second-
model differently. We define, as in EEQL6), a third vectord order phase transition. Surprisingly, the critical behavior is
b : ’ ’ 3 thus predicted to be governed by the usual ferromagnetic
y Wilson-Fisher fixed point with the subtlety that it corre-
TN (44) sponds tdour-componenspins. Note that this precisely cor-
P3= 1/ \ 2. responds to the particular case considered in Sec. Il B. An-
With this expression, it is easy to verify that the current-termother subtlety is that since, here, the order parameter is a
(42) is nothing but a linear combination of the kinetic terms matrix instead of a vector—it is 80(4) tensor—the anoma-
of ¢,, by, and da: Iqus dimension is different from the usual anomalous dimen-
sion of the four-component vector model. Only the exponent
4o 3 .. + 5 v is independent of the nature of the order parameter and is
f d*X (1 - ddbo— - deh1) thus identical to the usual value of of the Wilson-Fisher
N=4 universality clasd®"1"3
In fact, it is easy to convince oneself that the fixed point
found exists to all order of perturbation theory. Actually, the

> f AX(3G0) 7+ (9h2)2— (9d)%].  (45)
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crucial fact is that, ird=2+ ¢, the perturbativeg functions  is very small, which is the case nedr-2. However, they

of a NLo model associated with the symmetry breakingP€come important whefi.~1 which is typically the case in
schemeG—H only depend on théocal geometricalstruc- d=3. Only a nonpertqrbatwe treatment can take into ac-
ture of the manifoldG/H which is itself determined by the count thesg nonqnal_ytl_c terms and thus allows tq follow,
Lie algebras ofG and H.15"172 Since the Lie algebras of when the dimension is increased, the fate of @&) fixed
SQO(3)XSO(3) and of SO(4) are identical, the perturbative point.

B function for the—remaining—coupling constant of the
model with p;=p5 is identical at all orders to the perturba-
tive B function of the usuabO(4)/SO(3) NLo model. The The GLW model for the O(N)XO(2)/[O(N-2)
existence of a fixed point for th&€O(3)X SO(3)/SO(3) X 0(2)] model can be deduced from a generalization of Eq.
NLo model at all order of perturbation theory follows from (400 to N-component vectors, by replacing the functional
the fact that its existence makes no doubt for thedelta-constraint by the most general potential that favors the
SO(4)/SO(3) NLo model. field configurations obeying the initial constraint. For conve-

At the time of the first investigation of the@(N)  hience, we choose to parametrize it by
X0O(2)/(O(N—2)X0O(2)) NLo model, the most natural
position was to extend this equivaleniseyondperturbation Sy iy
theory and to assume that tB(3) X SO(3)/SQ(3) fixed .l;[, i~ b= oy)—e (50
point exists everywhere between two and four dimensions, as
it is the case for th&O(4)/SO(3) fixed point. This was, in  Wwith
particular, the position advocated by Azagaal®* 13 The
outstanding fact is that although tt®0(4) behavior has N TN P T
indeed been seen numerically d=2,7%%0 it actually does U:f ddx(§(¢1+¢2)+w(¢l+ $2)°
not exist far from two dimensions. This is clear simzesuch
fixed point is found ind=4— € and since, as already empha-
sized, theSQ(4) behavior is not seen in any numerical or
experimental data id= 3. It is thus extremely probable that ) )
either the fixed point disappears in a nontrivial dimensionWhere, as usuat, is proportional to the reduced temperature
smaller than 3 or it survives id=3 while being no longer While A and w are ¢*-like coupling constants.
the usualN=4 fixed point. Note that, in the first case, its ~ All field-dependent terms in Ed51) can be rewritten in
SO(4) nature can also change before it disappears. Anywayerms of the rectangular matrie defined in Eq.(8). The
this fixed point must disappear belaw=4. The situation is ~ corresponding Hamiltonian then reads
thus more involved than in the “usual'SO(4)/SQ(3)
model. There must exist nonperturbative reasons explaining H :f ddx
the disappearance of the fixed point and/or the loss of its
SO(4) character.

Actually, it is clear that the perturbative low-temperatureWith p=Tr(‘®®) and 7= 3 Tr('®® —1p/2)* being the only
expansion performed on the ML.model misses several O(N) X O(2) independent invariants that can be built out the
nonanalytic terms inT—typically terms that behave as fields, see Appendix B. Note that minimizing the term in
exp(—1/T)—that could be responsible for the disappearancdront of x corresponds to imposifig® 1, i.e., to imposing
of the fixed point and/or its change of nature. There are, ahat ¢, and ¢, are orthogonal and of the same norm in
least, two origins for such terms. agreement with the characteristics of the ground state of frus-

(1) The first one consists in the nontrivial topological trated magnets, see Fig(blL
configurations—see the discussion in Sec. Il B following Eq.

(15—that are completely neglected in the low-temperature 1. The RG flow

expansion of the N& models. Indeed this expansion relies,
by construction, on the local geometrical properties of theH
manifold G/H and is insensitive to its global—topological—
structure. Thus it ignores vortexlike configurations that likely
play an important role in three dimensions.

(2) The second origin of nonanalytic corrections to the
low-temperatureB function is more technical. The low-
temperature expansion is performed in terms of the 1
Goldstone—or pseudo-Goldstone dh=2—modes that are _ - 2,42
represented by fields constrained to have a modulus less than A ent 2[4ML+4’M TANTA)]
1, see Eq(41). This inequality cannot be taken into account
in the perturbative treatmehif and is thus relaxed, leading to
neglect terms of order exp(/T). All these terms are neg- B,=—eu+
ligible for the critical behavior when the critical temperature a

B. The Ginzburg-Landau-Wilson (GLW) model approach

—%(&%&%—@1@2)), (51)

1_r . r A
E r(d'do )+§p+l—6p

2+ 21 52

The RG equations for the coupling constants entering in
amiltonian (52) have been computed in the
e=4—d-expansion up to five-loop ord€f and in a weak-
coupling expansion id=3 up to six-loop ordet®” We recall
here only the one-loop result of theexpansion to discuss
qualitatively the flow diagram

(6Ap+Nu?). (53

6’772

134413-16



NONPERTURBATIVE RENORMALIZATION-GROLUP . . . PHYSICAL REVIEW B 69, 134413 (2004

and recall that the anomalous dimension vanishes at this or-
der. Note that the square root becomes complex foxRI2
<21.8, which is reminiscent of the critical valubg(d) and

N/ (d) of the number of spin components, see above.

2. The three and five-loop results in€d4—e

In 4— € dimensions, the critical valudl (d) has been

computed at three-loop ordéf and, very recently, at five-

loop ordert’

A N (d=4—¢€)=21.7980- 23.431G + 7.0882°— 0.0321%°
+4.265¢*+ O(€°). (55)

In fact, as it is often the case within this kind of expansion,

the series are not well behaved and it is difficult to obtain
LA reliable results even after resummatfort®®1’*we, how-
ever, indicate the value found at three-loop ortférN,(d
=3)=23.39 and at five-loop ordéf! N.(d=3)=5.477).

3. The improved three and five-loop results

It has been conjectured by Pelissettibal 1°8 that N (d
=2)=2, a result which is however somewhat
controversial™ It is possible to use this nonperturbative in-
formation to reformulate the series obtained within the 4

Vv — e expansion. Imposing the constralt(d=2)=2 to the
A three-loop series, Pelisset al. have obtained®®

No(d=4—¢€)=2+(2—€)(9.90- 6.77+0.16¢%) + O( ).
(56)

Reformulated in this way, the coefficients of the series de-
FIG. 2. Flow diagram foa) N aboveN.(d) and(b) N below  crease rapidly. It is thus reasonable to use this expression to
Nc(d). The fixed pointsC, andC_ that exist aboveN (d) coa-  estimateN,(d=3). Pelissettoet al. have thus obtainetf®
lesce atN.(d) and then disappeaG andV are the Gaussian and N.(d=3)=5.3(2) where the error bar indicates hdvy(d
vectorO(2N) fixed points. =3) varies from two to three loops. However, Calabrese and
Parruccini have shown that, extended to five loops, the same
As well known, for anyN>Ng(d=4—¢)=21.8+O(e)  series behaves badlj
there exist four fixed points: the Gaussi&) the vector
O(2N) V, and two others, called the chir@l, and antichiral Ne(d=4—¢)=2+(2-€)ale) (57)
C_ fixed points. Among these fixed points o, , is stable  with
and governs the critical properties of the system and the oth-
ers are unstablsee Fig. 2a)]. When, at a given dimension a(e)=9.8990-6.766Q:+0.161%*+ 0.0645%>
d close to four,N is decreasedC, and C_ move closer 2 5
together, coalesce dtl.(d) and then disappedrsee Fig. +2.164&7+0(€”). (58
2(b)]. More precisely, foN<Nc(d), the roots of thes func- In order to improve the convergence of the set&% and

tions acquire an imaginary part. Since no stable fixed point57) (58) Calabrese and Parruccini have considered, from
exists belowN.(d) and since the flow drives the system in a g, (55), the seried?!

region of instability, it is believed that the transition is of first

order. Note that foN<N/(d=4-¢€)=2.2+0(e), C, and 1N (d=4—€)=0.045% 0.0493%+ 0.038%>+ 0.025G°

C_ reappear but not in the physically relevant region to frus- 4 5

trated magnets. +0.0056"+O(€”) (59)
For completeness we give the exponerdt one-loop: and, from Eq.(58), the series??

1/a(€)=0.1010+ 0.069G:+ 0.0456:>+ 0.0294°
—0.003Z*+0O( €% (60)

that, indeed, have a better behavior than E§S) and (58).
Using e=1 without resummation Calabrese and Parruccini
obtainN.(d=3)=6.1 from Eq.(59) andN.(d=3)=6.136

1 ((N=3)(N+4)48— 24N+ N?

v=—-+¢€

2 8(144— 24N+ 4N?+ N3)

N(48+ N+ N?)
8(144— 24N+ 4N?+ N3)

(59
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TABLE VII. The six-loop perturbative results id=3. According to Pelissettet al,®”1%8the fixed points found
for N=2 and N=3 should be nonanalytically connected
System Ref. a B Y v with those found in the N and 4— € approaches. Therefore,
XY 167 0.299) 0.312) 1.104) 0.573) it should be impossible to obtain them by following

smoothly those obtained at lardfeor close tod=4.

The critical exponents obtained by Pelisse#ibal.are
given in Table VII. Note that the error bars are about ten
times larger here than in the ferromagneti©(N)
tempted to conclude that, in the physical cases2 andN mo_del§9'174computed by the same method. This is an indi-
=3, the transitions are of first order, even if it is impossible €ation that the resummed perturbative series are converging
to conclude about the strong or weak character of this tranUch slower than in the vectorial case. Let us now discuss
sition. these results.

The XY caseFirst, one should indicate that the exponents
v and v computed from the six-loop approach compare rea-
_ ) sonably well with the data of group 1. However, as already

A weak-coupling %na}lyas has been performed by An-mentioned, the value of, found by the scaling relations
tonenko and SokoldV® directly ind=3 at three-loop order. myst be positive when there exists a fixed point. One finds,
This leads taN(d=3)=3.91. However, as already empha- \yith the data of Table VII,»~0.08 which is significantly
sized, this result is not well converged. Varna§ﬁ_%has Per-  positive. Let us recall that this isot the case for the experi-
formed the computation at four-loop order with a critical pents performed on the materials of group 1 and for the

Heis. 167 0.3®) 0.3012) 1.065) 0.553)

from Eqgs.(57) and(60). From this approach one is strongly

4. The three and four-loop results in &3

valueN(d=3)=6.5. numerical simulations performed on STA. Note, moreover,
that the value of3 found within the six-loop calculation, is
5. The large-N results very far —around four theoretical error bars—from the av-

The largeN expansion was first performed by Bailin erage experimental ones which arg=0.228(6) for
et al? It was then reexamined by Kawam(tand Pelissetto  CsMnB alone,3=0.237(4) for the whole group 1 and far
et al!®® A fixed point is found within this expansion in all from the numerical values obtained for STE=0.24

dimensions between 2 and 4. The exponen@nd » have = —0.25. Thus, contrarily to what is asserted in Ref. 167 it
been computed up to orderN? in d=23:1%8 seems extremely improbable that the exponents found at six

loops could fit with those of group 1 and those of the nu-

16 1 56 640\ 1 merical STA model. Actually, this is also the case for the

Vzl__ZN_ "2 —2+O(1/N3), materials of group 2 for which the averageé equals
™ m 37 /N 0.3897).

The Heisenberg casé&irst, one notes that the agreement

41 64 1 5 between they and v exponents obtained from the six-loop
7= 2N 3.4 @+O(1/N ). (61)  approach and from the experimental or numerical data is not

as good as it is in th¥Y case. Concerning, one finds, with

the data of Table VII;~0.08. This has to be compared with
the value of» obtained(i) for the materials of group 1,
which is significantly negativep= —0.118(25),(ii) for ma-
$brials of group 2, which is marginally negativey=
—0.018(33), andiii) in the simulations of the STA which is
also negative although not completely significanthy=
—0.0182(89). The negativity of is an indication of a mis-
match between the six-loop results and the data for the
Heisenberg systems even if it cannot be used as a definitive
argument against a second-order phase transition. The expo-
nent v obtained from the numerical simulations of the

In three dimensions, a six-loop computation has been peHeisenberg STA model provides further information. The av-
formed by Pelissettet al'®” and reexamined by Calabrese erage value of this exponent=1.185(3) is rather far—2.5
et al,’**1%see below. The results are the following. theoretical error bars—from the six-loop resits.

(1) For N sufficiently large—N>6.4(4)—there exist four Chiral critical exponents.Pelissettoet al®® have also
fixed points, one stable and three unstable, in agreement witbmputed the chiral critical exponents at six-loop order. In
the usual picture given above, see Figg)2The transition is  the XY case they have found
thus of second order.

(2) For 5.7(3<N<6.4(4), there is no nontrivial fixed b.=1.434), B.=0.2810), (62)
point and the transition is expected to be of first order.

(3) For N<5.7(3) and, in particular, foN=2 and N where the last exponent is computed via the scaling relation
=3 astable fixed points found and a second-order phase 8.=3v—¢.. One has to compare these values to those
transition is expected. measured by Plakhtgt al® for the XY material CsMnBj:

Aroundd=4 andd=2 the perturbative results of, respec-
tively, the GLW and Nlo models are recovered once the
limit N—oco has been performed. This suggests that, at lea
for sufficiently largeN, the two models belong indeed to the
same universality class in all dimensions. However, within
this approach, ndN(d) line is found (see, however, Ref.
168. It is thus impossible to extrapolate to finikéthe re-
sults obtained in this approach.

6. The six-loop results in &3
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¢.=1.28(7) andB.=0.442). The agreement is not very Thus, » is again found negative even in the most extreme
good contrarily to what is asserted in Ref. 169 This is alschypothesis. We thus conclude that, although it is—up to
the case when one compares the theoretical @lato the = now—impossible to estimate rigourously the confidence
numerical resultsp.=1.22(5) and8.=0.45(2) obtained in level of our analysis of the experimental data since only one
Ref. 123 or¢.=1.28(9) andB.=0.38(2) obtained in Ref. error bar is given in the literature, it appears to be very dif-
127. The agreement between the predictions of Pelissettiicult to reconcile the experimental and numerical data with
et al. and the numerical data is a little bit better in the the six-loop results.

Heisenberg case for which they predict

$c=1.214), B.=0.3810) (63 In order to cope with the discrepancy between the six-
to be compared witlp.=1.27(9) and3.=0.55(4) obtained loop results obtained by Pelissettbal. and the experimen-
in Ref. 123 or¢.=1.32(5) andB.,=0.50(2) obtained in tal and numerical data, Calabreseal. have reconsidered
Ref. 149. the resummed six-loop seri&¥:131"%They claim that they
From the previous analysis one can conclude that, asan account for the unusual properties of the critical expo-
such, the fixed point obtained within the six-loop approachnents for XY and Heisenberg frustrated systems in
turns out to benot directly relevant to the phenomenology of d=3—negative anomalous dimension and weak
XY materials or simulated systems. This seems to exclude théniversality—by the fact that the RG trajectories around the

8. The six-loop results in & 3 re-examined

scenarios 1, 1I, and Il that all assume that, at least, a certaistable—focus—fixed point found by Pelissetét al. are
number of compounds or systems are well described by apiral-like. By integrating the resummegifunctions for the
fixed point. two coupling constants of the GLW model and computing
the effective exponentg and v along the RG trajectories,
7. Critical remarks they have found that these exponents display large variations

As we mentioned at the beginning of our analysis of theln @ tra_nsient regime. These authors argue that the scaling
experimental results, see Section Ill A, we have made aRroperties of the system are governed, over several decades

assumption on the nature of the experimental errors which iSf temperatures, by the preasymptotic regime so that the ef-
not realistic: the systematic errors cannot be neglected. WCtive exponents observed experimentally can differ signifi-
now come back on this point and show that the conclusion§2ntly from their asymptotic values, i.e., those defined at the
we have drawn from our analysis persist without this asfixed point. Let us underline he_re several drawbacks of_elther
sumption. the scenario of Calabrest al. itself or of the perturbation

Let us consider theXY case, where the symptoms of a theory. . .
mismatch between the theoretical and experimental results First; the scenario of Calabreseal. is based on the ex-
are the clearest. We concentrate on the materials of group 't€nce of stable fixed points that are not related to any al-
and on the exponerg which is the best measured, see Table"®ady known fixed point. In particular, the fixed points found
I. With our assumption, we have fourg=0.2286). Letus  foF N=2 andN=3 within this computation ind=3 are,
suppose that, contrarily to our assumption, the systemati@ccord'ng to Pelissettet al. and Calabreset al. non ana-

error is large and dominates the total error. Let us take  Ytically related to those found in the largéas well as in
the 4— e expansions. This means that there is no way to

B=0.232) (64) check their existence using these perturbative methods. This

so that all experimental and numerical results lie in the in is specifically problematic in the context of frustrated mag-
. . ‘nets where the properties of the fixed points appear to be
terval of values, see Tables | and Ill. This estimate has to b prop b bp

d with the six.| it gery unusual:(i) the existence of the stable fixed points
compared wi € Six-loop resu strongly depends on the order of perturbation—they are not
3=0.312), (65) present at three-loop order and only show up \_/_vith a signifi-
. cant probability, see Sec. IV—at four-loop ordér) the lo-
where, in this case, the authors indicate that they have beefation of the fixed points, all andd are varied, seems to
very conservative in the estimate of the error BarAl-  have, in the K,d) plane, a very particular structure since, in
though it is difficult to get fully unambiguous conclusions three dimensions, they only exist whahis below another
out of these numbers, it is clear that the agreement betweegtitical value ofN—which is found to be equal to 53). It
them is not satisfactory. The same considerations on group gould be of great interest to follow the three dimensional

of XY materials lead to suppose picture up to four dimensions.
_ Second, it is very difficult, in the computation of Cala-
£=0392) (66) breseet al, to relate—even in principle—the initial condi-
) p p
which, again, is far from being in agreement with the six-tions of the RG flow to the microscopic characteristics of real
loop result(65). systems. This would require us to handle the infinity of cou-

It is also possible to test the negativity of the anomalouspling constants entering into the microscopic Hamiltonian
dimension» with our new assumption. In the same spirit, Obtained from the Hubbard-Stratonovitch transformation.

one estimates=0.555(30). We find, in this case, Obviously, this problem does not specifically rely on the sce-
nario of Calabreset al. but is a general drawback of the
—0.28< < —0.048. (67)  perturbation theory.
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Third, it is very difficult to account, in this framework, for A. Block spin in the continuum
the fir;t order behavior .deduced from se\l/g%ral numerical Tphe effective average action method, as well as many
simulations ofXY and Heisenberg systert®S:'*°We have  other NPRG techniques, is based on the well-known concept
a|SO already noticed thdY SyStemS ha.Ve a Stronger ten- of “block Spin”: 30717swhen dea"ng with any Strong'y corre-
dency to undergo first-order transitions than Heisenberg sysated system, it is fruitful to integrate out the fluctuations step
tems. However, there is no natural explanation for this phepy step and, more precisely, scale by scale. In practice, one
nomenon in the scenario of Calabresteal. first gathers the initial—microscopic—degrees of freedom

Fourth, in this scenario, it is also very difficult to explain into small “blocks.” It is then possible, at least formally, to
why there is no physical system characterized by thentegrate out, in the partition function of the system, the in-
asymptotic critical exponents, i.e., those corresponding to theernal fluctuations of the blocks. This “decimation” is fol-
fixed point found by Pelissettet al. This seems to require lowed by a rescaling of length-scales, coupling constants and
very unnatural experimental circumstances such that the infields. In this way, starting from a “bare” GLW Hamiltonian,
tial conditions of the flow corresponding to the physical re-one gets an effective Hamiltonian for the block degrees of
alizations of frustrated magnets are such that their long disireedom, i.e., for the low-energy modes. By iterating this
tance properties aneevercontrolled by the nontrivial fixed Procedure, one generates a sequence of—scale-dependent—
point. Finally, and this is again a general drawback of theefféctive Hamiltonians, parametrized by a running sdale

weak-coupling approach, there is no possible explanation df!at all share the same long-distance physics. This sequence
the breakdown of the N& model predictions. defines a RG flow. At a fixed point of this flow the system

displays scale invariance. This allows us to obtain the critical
quantities through an analysis of the neighborhood of the
fixed point in the flow of effective Hamiltoniarls.
To illustrate how this concept of block spin is imple-
XY and Heisenberg frustrated systems exhibit the kind ofnented concretely in the continuum, we consider the case of
problems we have described in the Introduction: the perturan Ising-like system, initially defined on a lattice which, in
bative results obtained within a low-temperature expansiofthe continuum, is described by a scalar figlk). If the
around two dimensions, within a weak-coupling expansioriattice spacing is given by, the corresponding continuum
around four dimensions or within a largéexpansion fail to  field theory is characterized by an overall momentum cutoff
describe their critical physics in three dimensions. MoreoverA of ordera™!. The partition function writes
these different perturbative predictions are in contradiction
with each other. Contrarily to th©(N) nonfrustrated case, = f D ge—(llz)gAcglAg_Hk\t[ a 69
there is no possible smooth interpolation of these results be-
tween two and four dimensions and, at fixed dimension, beg hare H
tweenN=c and N=2,3. More surprisingly and, again in Hamilto
contradiction with what happens in tl@&(N) nonfrustrated

C. Conclusion

iX‘[g] stands for the interacting part of the GLW
nian and

case, high-order calculations performed directlgin3 also ddq

fail to reproduce the phenomenology, at least when they are -cit ng Za)Cyg)e(—q) (69
i i is situati ifi- (2m)¢

interpreted in the usual way. This situation reveals the diffi

culties of the conventional approaches to tackle with thegrresponds to the cutoff kinetic part. In E488) and (69),
physics of frustrated magnets. Only new interpretations OE, (q) is an ultraviolet(UV) cutoff propagator that prevents

methods can allow one to shed light on th_e problems encounye propagation of unphysical modes with momentum higher
tered here. We have presented the solution proposed by Cayan A. One writes it as

labreseet al. on the basis of a high-order perturbative calcu-

lation and underlined its difficulties. We now present the Froa(9d
nonperturbative method we have used to explain the unusual CA(Q)= > (70
behavior of frustrated magnets. This is the subject of the next aq

sections. We start by a methodological introduction to thisyhereF,(q?) is a function of the rati@=q%/k? that rapidly
method and then apply it to the frustrated systems. decreases when—«. One also imposes t6,(q?) to be
unity at the origin: F (q?=0)=1. A typical example of

functionF is F,(q2) = e~ (@ put other forms can obviously
VI. THE EFFECTIVE AVERAGE ACTION METHOD be considered.

We now present the NPRG method we use: the effective In Fourier space, the idea of block spin is specified by
average action methdd-455217The content of this section separating the low- and high-momentum modes of the spin-
is neither original nor exhaustive. There exist several wellfield £
documented reviews on the subjéet®!’’Our aim here is _
only to provide some of the physical ideas underlying this fa)=¢-(a)+i<(a). (7
method—notably the block spin concept and its formulationThe fields{~(q) and{.(q) being unconstrained, the sepa-
in the continuum—as well as its technical implementation orration between high- and low-momentum modes is actually
the simple example of th@(N) model. realized through their respective propagator. We thus write
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CA(9)=Cy(q) +[CA(q)—Ci(a)]=C-(q)+C=(q), ‘
A(@)=Cy(@)+[Ca(a)~Ci(q q D akH;c“‘:%)@—% < e

wherek is the typical scale that separates the high and low

momenta. In Eq(72), C.(q) [respectivelyC_(q)] propa- FIG. 3. A graphical representation of the Polchinski equation.
gates .. (respectively{.), the high- (respectively, the The crosses represent the cutoff factp€~(q). The black circles
low-) momentum degrees of freedom of the figld This with n-external legs correspond to ti¢h functional derivative of
comes from a property of the Gaussian integral that can bl with respect to the field.

easily seen on a one-dimensional integral

—v)2
deexp(—(x ) —f(x))oce(y/Z)(r'/Z/&yz)e—f(y)_

2
z 2
dzexp — ——+f(z Y
f p( 2(a+p) 2 (77)
X2 y2 Bv diff .. . .
Xy y differentiating each side of E¢76) with respect tdk we
ocJ dxdyex;{ 5w 2ﬂ+f(x+y) . (73 obtain
This result is easily obtained by changing, in the right-hand . w 1) 8 ) -
side of Eq.(73), the integration variables,y, into z=x+y —(akH'k”t)e‘Hk = §<¥ -0 C - f) e Mk
andt=x—y and by integrating on. < <
Thus from Eqgs(68), (71), (72), and(73) one gets: 1/8H iknt SH iknt
. . 2l e s
Z:f DL D ex ——§<'C;1'§<——{>~C;1~é’> S2Hint .
2 2 — X sc.|e ™. (79
S(-0L T '
—HM <+ ¢.]]. (74 i
Al > Finally, theexactevolution equation foH"™, known as the

_ Polchinski equatiol{® (see also Ref. 180writes explicitly
The effective Hamiltonian H'km[§<] for the low-

momentum degrees of freedoth is defined through the 1 ddq S2Hint
integration over the high-momentum degrees of freedom in ngL”t[§<]: _f —0kC>(Q)( K
Eq. (74): 2] (2m)¢ 0{-(q)8{-(—Qq)
_ 1 SHY'  SHY

e*H:(m[§<]: Dg ex __g C*l g _Hint[é/ _’_g ] - S _ (79)

= > 26> 6> ALS<T 61 {<(q) 6{(—q)

(75) .
or, in real space
Integrating out the internal degrees of freedom of a block
spin between the scales and a’>a corresponds, in this int Y
language, to the integration of the modes with momenta kM [{<1= 5 [ d'xd%ydCo.(x=y)
betweenk=a ! andk’=a’~!. Equation(75) implements it - -
the block spin procedure in the continuum which is the start- o 0°Hy _ OH dH (80)
ing point of any NPRG approach. 8L-(X)8L-(y) S8L-(X) 8L-(y)
B. The Polchinski equation with  3,C-(x—y)=[[d%/(27)?]5,C- ()€’ 9 ¥). Note

. o int that in the preceding equations we have improperly used the

The effective HamiltonianH, ¢ ] follows an exact  ggme notation for the field- and regulatoC-. and for their
equation describing its infinitesimal evolution when the run-gq yrier transforms. Note also that, in the following, we shall
ning scalek is lowered. To establish this equation we rewrite ;5q the notatior for ¢ . A graphical representation of the
Eq. (79 as Polchinski equation is given in Fig. 3.

Let us first make some remarks about Eg9). A first
feature we would like to emphasize is that this equation in-
volves the quantityH}" which is the effective Hamiltonian
for the degrees of freedom that havet yet been integrated
=exp<ii-c>- i e HITL] (76 out, namely{_. The drawback withH\" is that it is an

2 6« o< abstract object that has no direct physical meaning since it is
a function of a field, - that eventually fully disappears in the

This last functional relation can be inferred from the one-physical limit k—0, i.e., whenall fluctuations have been

dimensional identity integrated out. In particular, one should realize thats not

e‘“ik"t“<1=f2>§exr{—%@—z<>~0;1~<z—g<>—H‘E‘[z]
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a precursor of the order parameter, iref a local magneti- proach when this last one involves a nontrivial anomalous
zation at scalek. Indeed this magnetization should come dimension(this is, for instance, the case of the dlmodel
from athermodynamical averagat scalek while {_ isjusta  aroundd=2 already at one-logp(ii) this prevents an accu-
stochastic variable that represents the low-momentum part gate evaluation of critical exponents for systems for which
the original spin field and is thus, roughly speakingpatial  the anomalous dimension is not expected to be small. In the
averageof this field. Consequently, the effective Hamilto- context of frustrated magnets, these drawbacks are serious
nians by themselves do not contain all the information on thesince we are precisely interested in relating the different per-
integration of the high-momentum degrees of freedom turbative approaches and, to some extent, by a satisfactory
For instance, the computation of correlation functions for thedetermination of the critical exponents. We thus need to
high-energy field/~. would require to first couple the system compute the field renormalization.
to a sourceJ—a magnetic field—by adding i€ a term This kind of computation, however, encounters several
exp?) and to follow the flow of this term in order to obtain difficulties. First, whereas the RG equation fdg(¢) in the
the full J dependence of, a rather difficult task. Thus, Eq. LPA of the Polchinski equation is universal—cutoff
(79) provides at best a flow of the running coupling constantindependent—the RG equations derivedUig{) andZ,(¢)
that parametrize the effective Hamiltonibﬁft at scalek. at second order in the derivative expansion explicitly depend
As shown mainly by Wilson, equations such as Etf) on the regulatorC.(q) chosen to separate the high- and
are, in principle, sufficient to compute the critical exponentsow-energy degrees of freedom in E€2).181186 Another
once a fixed point HamiltoniaH L“‘* has been found. Actu- related problem is that of reparametrization invariance. The
ally, even for the evaluation of the RG flow, EF9) suffers  partition function(68) and, thus, the physical quantities such
from an important difficulty: although this equation looks as critical exponents, are invariant under a general change of
simple—its only nonlinearity is a term quadratic itf"—it ~ field of the kind{— {+G({) whereG is an arbitrary func-
is nevertheless a functional-partial-integrodifferential equation starting at ordet?. As a consequence of this invariance,
tion that has no known solution in general. Therefore, inthe normalization of the field,({=0) in the Hamiltonian is
order to render it manageable, one has to truncate the Hami® Priori an arbitrary parameter. Unfortunately, the reparam-
tonianHL’“. etrization invariance is broken as soon as one performs a
Derivative expansionA natural truncation consists in an truncation of the Hamiltonian. As a result the critical expo-

expansion of the effective Hamiltonian in powers of the de-n€nts and, in particulam, depend on the normalization
rivatives of the field24518 For instance. for a one- Zk({=0). It follows from these considerations that, in any

component scalar field theory one has practical computation, one encounters the problem that
physical quantities depend on nonuniversal parameters such
, 1 as cutoff functions and normalizations. Different techniques,
HLnt[é“]:f ddX<Uk(§)+ EZk(é)(3§)2+O(z94) , 81)  such as the principle of minimum sensitivitPMS), have
been used to decrease the dependence of the critical quanti-
where U,(¢) stands for the potential—i.e., the derivative- ties on the cutoff function®®8”Also, some criterions have
independent part—of the effective Hamiltonian ahd?) is been proposed to find the best normalization, i.e., to find a
the quadratic—field-dependent—field renormalization. WithvalueZ,({=0) such that the derivative expansion converges
such a truncation, one neglects higher-order derivative termghe most rapidly?” These considerations, having for aim to
This is justified (i) when one is interested in the long- exploit the Polchinski equation at the next to leading order in
distance, low-energy physics, since these higher-order delerivative expansion, have led to the determination of rather
rivative terms should correspond to less important operatorsatisfactory critical exponents.
and (ii) when there is no qualitative change of nature be- At the same time, there has been a great activity devoted
tween the microscopic and macroscopic degrees ofo the search of other formulations of the RG ideas that could
freedoms—such as the appearance of bound states at a finitéoid some of the troubles encountered in the use of the
scalek—that could induce non localitig§?A practical guide  Polchinski equation. The effective average action method is
to evaluate the validity of the derivative expansion is thethe result of this search.
value of the anomalous dimension. If this quantity is
small, one can expect that the inclusion of higher-order de-
rivative terms provides small corrections to the results.

At first order in the derivative expansion one s&{g?) The basic—and physically very appealing—idea of this
=0 in Eq.(81) and derives an RG equation for(¢) from  new formulation is to consider as the fundamental object, not
Eq. (79). This corresponds to the so-called local potentialthe abstract effective Hamiltoniad"[ ], functional of the
approximation(LPA) which has been intensively explored in stochastic low-energy field. but, rather, the Gibbs free
the past*183-189n particular, this kind of approach has been energyl'—called effective action in field theory—functional
used by Zumbach to analyze the physics of frustrated magpf the order parametes= (). To implement this idea in the
nets in three dimensiof3-%" The problem with the LPAis RG context, it is necessary to build a running Gibbs free
that, since by definition it neglects the field renormalization,energyl’ for the high-energy modes that have already been
it leads to a trivial—vanishing—anomalous dimension. Con-integrated out at this scale The argument of’y is, there-
sequently:(i) this prohibits to compare the results obtainedfore, the order parameter at this scale that eventually be-
within this approach to that of a standard perturbative apeomes, wherk—0, the true order parameter.

C. The effective average action method
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These requirements imply several constraints on the defi- Zk2
nition of I'y. First, at the scale of the lattice spacirgs A
=a !, T'y should correspond to the microscopical Hamil- Rk(qQ)

tonianH since no fluctuations have been taken into account.
Second, when the running sc&lés lowered to OI',., which
then includesll fluctuations, must identify with the standard |

effective actionI’ from which all thermodynamical quanti- 00 k2 9
ties like magnetization, correlation length, etc., are com- q
puted. To summarizd,, must respect the constraints

FIG. 4. Atypical realization of the separation of high- and low-
. . 2
Iv_r=H, Tw_,=T 82 momentum modes provided by the cutoff functigp(q<). At low
k=A k=0 82) momentumR,(g?) acts as an effective mass of ord&e while the
and has to interpolate smoothly between these two limits. high-momentum behavior is not modified.

1. Construction k—0, i.e., when all fluctuations have been integrated out,
2 . . . . . .
Let us again consider, for simplicity, the case of a systenf(d°) must vanish in this limit. Thus we require
described by a scalar field(x). The construction of the R(q2)—0 identically when k—0 89)

effective average action proceeds in two steps. First, one
should decouple the low-energy modes—with momegfta Wwhich ensures thatZ,_[J]=Z[J]. On the other hand,
>k?—in the partition function in order to get a theory in- whenk— A, i.e., when no fluctuation has been integrated
volving only the high-energy ones that will be summed over.out, I'y should coincide with the microscopic Hamiltonian.
Second, in this modified theory, one builds the Gibbs freeThis is achieved by requiringsee below for the propf
energy, as usual, by a Legendre transform. This givgs ) . )

Let us now study how this is implemented in practice. Ri(q%)—e identically when k—A. (89)

The first step is conveniently implemented by changing\ote that, since we shall not be interested in the precise
the partition functionZ into 2, for which a k-dependent relation between the microscopic characteristics—defined at
term, quadratic in the fields and thus analogous to a masgcaleA—of a given system and its critical or pseudocritical
term is added to the microscopic Hamiltonfdd®With this  properties, we set = in the following.

“mass term,” the partition function in presence of a soudce A widely used cutoff function is provided b:
writes
2

Zq

2y —
209)- | Drexa—HIO-AHI+0-0) 69 RO = e 0
with J-¢=[d%J(q)¢(—q) and whereZ is the field renormalization. Including it iR, allows
us to suppress the explick dependence in the final RG
1 didiq’ equations—see below. The cutoff functid®(q?) corre-
AH[{]= §J —— s R(a,9)¢(a)¢(a’) (84  sponding to Eq(90) is plotted on Fig. 4. Another useful
(2) cutoff function, called theta cutoff, has been proposed by
Litim. 88 It writes
i d
—zf 2mindad@d=a @9 R(0%)=Z(k?~q?) O (k*~g?), (o1)

; "n_ ' here® is the usual step function.

with R, (d,9")=(2m)*8(q+a)R(9?). In Eq.(85), Ri(@?) " ) anetor .

is the cutoff function that controls the separation between the '_I'he second step consists in d_efm_mg the effective average

low- and high-energy modes. To decouple the Iow-energ)?clz'on' The free energy at scatés given—up to a factor

modes, it must act as a large-mass term for simallhereas sT—by

it must vanish for large| to keep unchanged the high-energy Wl J1=1n 2 2

sector of the theory. Thus II=In 2 J]. 92
From Eg.(92), one defines the order parameigg(q) at

R(g?)~k* for g®<k? (86)  scalek as the average value of the microscopic fig{d) in
and the modified theory
2 Z>K2, oW, [ J]

The first constraint means that, for momenta lower than
R«(q?) essentially acts as a mass—i.e., an IR cutoff—whichThanks to the properties &,(q?), the contribution to the
prevents the propagation of the low-energy modes. The seaverage value in Eq93) coming from modes with momenta
ond ensures that the high-energy modes are fully taken intq?<k? is strongly suppressed. Alsp(q) identifies with the
account inZ[J] and thus in the effective average action. true order parameter in the limik—0. Note that, for sim-
Moreover, since we want to recover the original theory wherplicity, we omit, in the following, the indek to ¢.
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The effective average action is defined By: e
@M=~ | DL(aAH D exp —H[L]— AH{]+3-0)

Ll @]= =Wl J]+J- o= AH [ ¢], (94)
é
whereJ=J[ ¢], see Eq(93). ThusTI',[ ¢] essentially corre- =— ( 6’kAHk[§ )eWk“]
sponds to a Legendre transform Wf,[J] for the macro-
scopic field¢p—up to the masslike termH, . The relation 1 d’q 5
(94) implies several unconventional relations. First, taking its =_ _f —d<—akRk(q2) )ewk[J]
derivative with respect tap(q) provides the relation be- 2} (2m)?183(q) 63(—q)
tween the source and,[ ¢]: (100
Ty diq’ from which follows
J(—a)= +f Ri(a,0")é(q’). (99
S 2d
$(q) (2m) W [J]=—£f d% R 2)(5\Nk[3] SW[J]
Taking the derivative of this relation with respect ¢dq’) KTk 2] (2ma™ " PN "s3(q) s3(—q)
implies a second important relati$
AT ) (101)
F@(q.q) 1 Ra) _ ) . 63(a)53(-a)
K (27)%d op(q’) which looks similar to the Polchinski equatigi9).
Let us now differentiate the expressi¢®) with respect
» 2d< S2W, )—1 to k, at fixed ¢:
83(q)33(q") W[ J]
97 I\ 1= — W [J]];— T'akJJf(akJ)'(f’
wherel'{?)(q,q") = 8T/ 5¢(a) 5¢(a’). _ __ _
Let us now show that the definition &%, Eq. (94), en- HAHL 4] HWLI] = AAH{ &]
sures that it satisfies the requirements given in(B8), i.e., (102

that it interpolates between the microscopic Hamiltorttan  _. _ : P
for k=<0 and the(true) effective actionl” for k— 0. This last since = 6Wi /6. Together with Eq(10D) this gives

property follows directly from Eq(94) and the fact that for 1 g SW L]
k=0 the IR cutoffRy(q?) identically vanishes. The fact that 5,1 [ ¢]= = f 9 R(q) KT (103
I', identifies withH whenk— o can be shown in the follow- 2) (2m)d 6J(q)s8d(—q)

ing way. One deduces from Ed83), (92), (94), and(95) the

functional identity Using Eq.(97) one obtains an equation involving only,

and its second functional derivatitg? (Refs. 37,41,44,45

ol [ 4]
o¢

e‘rk[¢]=f1>§exp(—H[§]+ (= ¢) o

1 .
Ano1=3 | G RUET2mH)4Ry)

In the limit k—2, R (q?) goes to infinity. In this limit, the ~with t=Ink and R,=d;Ry. In Eq. (104, Tr must be under-
mass-term expf{ AH,[{— ¢]) acts as a hard constraint on the stood as a trace on internal indices—vectorial or
functional integration—expfAH,J - ¢])=5[{—p]—so  tensorial—if{ spans a nontrivial representation of a group.
thatT'y—..[ #]=H[ ¢]. With these propertied; [ ¢] has the Let us finally give a form of Eq(104) more convenient
meaning of a coarse-grained Gibbs free energy at $cale  for practical us&”

lowering k corresponds to including more and more fluctua-
i 1 -

fons AT 8= 5opmad TN 22T P11+ R}, (109
2. The equation

Let us now derive the exact RG equation fgr. We start "Yh.ere the “time derivative”s; only acts onR, i.e., d
from the expression =RydlIR, and where the trace Tr now also means a

momentum-integral fd%qdq’(27) ~96(q+q’). Equation
e (104 [or Eg. (105] controls the evolution of’, with the
e ]:j Diexp—H[{]=AH[{]+3-0) (99  running scalek. According to the preceding discussion, it
describes, whek is lowered, how the running effective av-
which results from Eqs(83) and (92). One first writes the erage action is modified when more and m@mv-energy
variation of exp{M[J]) with respect to the scale fluctuations are integrated out.
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as the best one. The situation is, in fact, more involved since
8T = 1 Q( the power-law cutoff is afflicted with bad convergence prop-
2 erties when used within the derivative expansion. It has ap-

peared that, for instance, the exponential cutgfi. (90)] or
the theta cutoff Eq. (91)] that do not respect the reparam-
etrization invariance of the RG equation, lead to better re-
sults when optimization critera are used. We do not enter into
more details in these problems of reparametrization
invariancd?48187.195  anq  optimization  of  the

We now give some important properties of E§04). The  result°51188.196-209n( refer to the literature. The main rea-
reader interested in more details can consult Ref. 46. son for this is that, as we shall see in the following, we shall

(1) Eqg. (104 is exact It thus contains all only deal with pseudocritical exponents that, given their lack
perturbativé®*9?and nonperturbative features of the under-of universality, i.e., their strong dependence with respect to
lying theory: weak-or strong-coupling behaviors, tunnelingthe microscopic parameters, makes superfluous an optimiza-
between different minim&? bound state$3****topological  tion of the computations.
excitations>® etc.

(2) While it has been derived here in the case of a one- 4. Truncations
component scalar field theory, E{.04) obviously holds for . L . .
any number of components and, more generally, for any kind As it is the case for the Polchinski equatiGiD4) is too

of order parameter. The extension to fermions is also triviaFomp“fﬁteq tc:hbepsclJl\;]e;d i?(actly. Ij[s nqrtﬂ.mee}rltles ﬁ\re even
(see Ref. 46, for instange worse than in the Polchinski case since it involves all powers

(2) i -

(3) With a cutoff functionR,(q?) which meets the condi- of I\ '_A‘S a consequence, the _functlorIaJ has to be t_run
tion (86) or, more generally, with a finite limit when cated. Different kinds of expansions have been consid&red.
q%—0, the integral in Eq(104) is infrared(IR) finite for any (1) Field expansion wheré is expanded in powers of
k>0. This IR finiteness is ensured by the presence of thé1€ order parametep. For a scalar field theory, one has
mass termR, which makes the quantity{?[ ¢]+ R posi- > e
tive for k>0 evenat the critical temperature. This allows us 1,1 4]="> _If H A9 (x1) - - - () T (X1, . . . X,
to explore the low-temperature phase even in presence of n=0N"J i=o0

FIG. 5. A graphical representation of E.04). The cross rep-

resents the functiorR, and the line the propagatdi(?(¢)
+R ]

3. Properties

massless—Goldstone—modes. From the UV side, the finite- (106
ness of the mtegral n I_EMQA') is ensured by a requirement whereF(k”)(xl, ... X,,) denotes theith functional derivative
of fast decaying behavior d®(q?). of T'y.

(4) One can give a graphical representation of 864, (2) Derivative expansion wherg, is expanded in powers

see Fig. 5. It displays ane-loopstructure. Obviously, this  f the derivatives of the order parameter. For a scalar field
one-loop structure must not be mistaken for that of a Weaktheory one has

coupling expansion. Actually, the loop involves here the
full—i.e., field-dependent—inverse propagafof’)[#] so 1
that the graphical representation of Fig. 5 implicitly contains L'kl ¢]:j ddX( Ui(¢) + Ezk(¢)(r9¢)2+ o |, (107
all powers of the coupling constants entering in the model.
Note also that this one-loop structure automatically ensureb(¢) being the potential—i.e., derivative-independent—
that all integrals over internal momenta involved in this for- part of I, while Z,(¢) corresponds to the kinetic term.
malism have a one-loop structure and are thus one dimen- (3) Combined derivative and field expansions where one
sional. Thus they can be easily evaluated numerically andurther expands in Eq107) the functionsU,(¢) andZ,(¢)
when some particular cutoff are used, analytically. This radiin powers of¢ around a given field configuratiof,. Tech-
cally differs from a weak-coupling expansion which leads tonically, this kind of approximation allows to transform the
multiple loop diagrams and thus, multiple integrals. Anotherfunctional equatior{104) into a set of ordinary coupled dif-
important feature of Eq(104) is that very simpleAnsdzeon  ferential equations for the coefficients of the expansion. In
I' allow to recover in a unique framework the one-loop practice, it is interesting to consider an expansion around
perturbative results obtained by standard perturbative calcyeone o) the field configurationp, that minimizes the poten-
lations around two and four dimensions as well as in a largetial U,. For the simplest—Ising—model, this expansion
N expansion. writes

Let us make a final remark. The one-loop structure of Eq.
(104 contrasts with the Polchinski equati¢i9) which, in _ d
addition to the loop term, involves a tree pe@te Fig. 3. An I'd qb]_J' d*x
interesting consequence of the structure of this “Legendre
version” of the NPRG equation is that reparametrization in-
variance is preserved by the derivative expansion when a
power-law cutoff is used. This means that with such a cutoff
function, the anomalous dimension is no longer ambiguously
defined"®® This would apparently select the power-law cutoff

1 "/~ ~ \2 1 m~ ~ \3
§Uk(po)(p—po) +§Uk(po)(p—po)

1 -
+ ... +§ZK(P0)(’?¢)2

1_ - ~
+§Z|’<(Po)(P_Po)(3¢)2+"' ; (108
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wherep=3¢? andpo=3¢3, ¢, being the magnetization at above, we use here a truncation that mixes the derivative and

scalek. The rational behind this choice is that the minimum field expansions. We thus consider
of Uy is physically the location that we want to describe the

best since thermodynamical quantities at vanishing external

field are determined from the minimum % atk=0. The Fk[fﬁ]:f d’x
relevance of such a parametrization is confirmed by many 1 1
works showing that the convergence of the critical quantities, T et N2 T T = 732
when more and more powers of the fieldare added in the Tt ZZk(pO)(aqs) i sz(pO)(p po)(99)

1 "/~ ~ N2 1 m~ ~ \3
SYk(Po)(p=po) +§Uk(Po)(P—P0)

truncation, is improved when compared with the same cal- 1 - 1 - ~
culation performed with an expansion 0§ (¢) and Z,(¢) Tt ZYk(Po)(ﬁP)ZJr ZfY;i(Po)(/D—Po)(ﬁp)2
around thep=0 configuratiorf®t:202

The choice of a good truncation is a complex problem. +... ) (110
One has to choose a manageable truncation that encodes the

relevant physics. In practice, it appears that, surprisingly,

even at low orders in powers of derivatives and fields, Eqwherep,= 3 ¢3 parametrizes thé-dependent field configu-
(104) provides correct qualitative features of the RG flow. ration that minimizedJ,. Since our aim here is only peda-
However, the precise determination of the critical quantitiesjogical and not devoted to the calculation of precise critical
requires one to push the expansion to rather large orders tuantities, we consider the followinnsatawhich is limited

the field and involves a heavy algefe* to the smallest expression providing a nonvanishing anoma-
To illustrate how the technique works we now consider|gus dimension:

the simplest case, i.e., the vectori@(N) model. The
O(N) X 0O(2) model relevant to frustrated magnets is techni- 1 '
cally more involved but the procedurg to derive th.e RG rk[(/,]:f ddx(EZ(&¢)2+ EUz(P—Po)z . (111
equations follows the same steps. Details of the technicalities
in this latter case will be given in Sec. VII.
where Z=Z,(p,) and U,=U}(po). This approximation
D. The O(N) model looks very much like the GLW Hamiltonian used to study

. . rturbatively theO(N) model, up to a trivial reparametri-
We present here the effective average action approach © y (N) b b

45203 : . ation. There is, however, a major difference. Here the
the O(N) model>“**We essentially follow the presentation . . : =g .
given, for instance, in Ref. 45 with some differences, ensurf\"Satz(111) is not studied perturbatively in thé” coupling
ing a self-contained presentation. We use a truncation similggonstantu,. It is to be inserted in thexactRG equation
to the one we use to deal with frustrated magnets, i.e., wherd 04).
T is expanded both in derivatives and fields. Let us first Let us now establish the RG equations for the coupling
consider the derivative expansion of the effective averagéonstants entering in Eq111). The calculation proceeds in
action for theO(N) model at orde®?: four steps: o
(i) We first define the running coupling constapts us,,
and Z from functional derivatives of thé&nsatzof I',, Eg.
(112). This is analogous to imposing renormalization pre-
scriptions for the renormalized coupling constants in usual
+O((94)), (109 perturbative calculations. As in this case, the coupling con-
stants are defined asombinations offunctional derivatives
Wherqu is aN-component vector field ana= (2,2/2_ In Eq.  of I't—the “vertex functions”—taken in a specific field con-
(109), U,(p) is the potential—i.e., derivative-independent— figuration of the model. However, contrarily to the perturba-
part of I'y while Z,(p) and Y,(p) correspond to kinetic tive approach which is generally performed in the high-
terms. These two last terms embody the renormalization fofemperature phase and thus, around a zero field
the Goldstone and massive fields, respectively. Note that theonfiguration, we perform this expansion around a nontrivial
term proportional to p)? is always absent from the GLW running field configurationZO.
action used for gerturbativeanalysis in coupling constant. (i) We then apply the operatatr, on these definitions.
The reason for this is that, in this context, it is power-This is implemented by the use of the evolution equation
counting irrelevant. On the contrary, in the context of the(104) or (105. The flow equations for the coupling constants
effective average action method, there is no perturbative exare then expressed as traces of products of vertex functions
pansion and, thus, no power-counting argument works. Onehat are evaluated from th&nsatzEq. (111).
however, expects that the terms of lowest degrees in the field (iii) The flow equations involve integrals over the internal
(for d>2) and in the derivative are the most important formomentum. It is convenient to express these integrals in
the long-distance physics. terms of dimensionless functions, known as threshold
The caseZ(p)=1 and Y,(p)=0 in Eq. (109 corre- functions® The properties of these functions are such that
sponds to the LPA. A nontrivial anomalous dimension is ob-they make explicit the phenomenon of decoupling of mas-
tained by going beyond this simplest truncation. As saidsive modes, see below.

" d 1 -, 1 )
Pd1= | 0% Vo) + 52010817+ Vi) 90)
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(iv) Also, as usual, one introduces dimensionless renor- 2. The t derivation
malized quantities to study the scale invariant solutions of

the RG equations. The flow equations for the coupling constapts u, and

Z are obtained by derivating, with respecttidhe previous
1. Definition of the coupling constants definitions (115), (116), and (117). Let us start byp,. One

(1) i
Let us first choose one of the uniform field com‘igurationshas to take care of thedependence of bothi’f, o, and its

that minimize the effective average actibp: argument, the configuratiop ™"—Eg. (112—which has a
nontrivial t dependence through that ¢f:

¢o

(2m)%9ipg
o 0 ﬁt(r(kl{)a,0}|min):atr(kl{)a,0}|min+F(kz{)a,o},{l,0}|min?
d™Mx)=| (112 200
0 =0. (118
The RG flow forpg follows from this equation, taken for
or, equivalently, a=1:
m(q)=(2m) $o8,18(q), (113 - N
dpo=— ——————3 M o1l mi (119
~ . ) tPo a(2) t4 k {10}/ min-
where ¢o=(2po)? is a k-dependent quantity. Due to the (2m) T 10y 410}

O(N) symmetry ofl'y, which is preserved at anyby the
RG flow Eq.(104), the choice of a particular direction for

$™" is irrelevant and thus does not affect the RG equations.

In the same way, one obtains

Let us now define the coupling constants. To do this we - (2m)° e - (2m)%po
introduce the notation tUs="2 thk {104,{10Hmin™ — =
2p5(0) 2po(0)
"'l 4] d
F(ﬂ)a Y - ) (114 1 (2mr)
Klar Pl Ao Pol = 5¢h, (P1) - . . O (Pr) X —Tr(kz){l,O},{l,O}|min+ —~F(k3%1,0},{1,0},{1,0}|min
Po V 2p0
As said abovep, specifies the position of the—running— (120
minimum of ', . It is implicitly defined by
" and
L' {a,0}|min:Or (119
where the notation “min” refers to the configuration given in 97— (2m)d i d AT @ |
Eq. (112. Because of our particular choice of"" the pre- =7 8(0) 2|m0dp2 t k {2p}{2,—p}Imin
vious equality is trivially satisfied foe=2,... N and we P
shall consider only the case=1 in the following. (277)‘15@0 @)
The coupling constant, is defined along the same line as + /_2~ I'lepnia- p},{1,0}|min - (12
Po
d -~ ~
ﬁzzﬂr(ﬁ{lo} {10}|min- (116) The RG flows for the coupling constantg, u,, andZ
2p6(0) o involve successive functional derivatives @fl", with re-

spect to differentp;(q;). These quantities are easily obtained
from Eq. (105. Let us take its derivative with respect to

“¢i,(q1). Using

Finally, the k-dependent field renormalizatiohis obtained
by considering the term quadratic in momentum of a mo
mentum dependent configuration

_emt. o d o 0
= 500) pZITod_pZ(Fk 120142}l min) - (117 3¢ (91)

In[(2m)29 TP+ R ] = (2m 2T ) 41 Pr.
(122

In this last equation, the index 2 specifies a direction or- ) )
thogonal to that defined by the minimufsee Eq.(112].  Where we have introduced the notation
Note that one could have considered any ofkhel direc- _ 2dp(2) 4. ~1
tions orthogonal to that defined by the minimum. Note fi- Pe=l2m 7T Rid (123
nally that thes(0) term appearing in Eq$116) and(117)is  one obtains
proportional to the volume of the system and is present here (270
sincel', is an extensive quantity while the coupling con- 1 _\em)~ (3)
stants ;re not. ity 00= 72 KTy ay P (124
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for the one-point vertex function. Note that, in the right hand
side of the preceding expression, we have only specified the
external indices{i;,q;} and omitted the integratedor
summed overvariables. The dot is here to remind that these
integrations and summations have to be performed. Equatiol
(124) admits a graphical representation

@ _ (em)? 4
Oy =5 O

In this representation, the external leg implicitly carries

(125

a) massive excitation

PHYSICAL REVIEW B69, 134413 (2004

A
4 +

b) N —1 “Goldstone” excitations

an index of internal symmetryi; and a momentum
g;. Now taking the derivative of Eq(124) with respect
to ¢i2(Q2) and using

FIG. 6. Schematic description of the deformations of the vector
J) associated with the proper excitations of @EN) model: dotted
arrows display the configuration chosen at the minimuni',pfind
plain arrows display the relevant deformatiofey: massive singlet,

(b) “Goldstone” (N—1)-uplet.

)
Pr=—P- T a1 P 126 (3)
Spi(q)’ " T kAT (126 ity b 2000 i3 g min
one obtains =V2poUz(8ii, 01,1t 81,011 6, 0i,1)
% o(q1+02+0s)
(27T)d~ (271.)2d
(2) - (4)
Il {ipahliza™ 2 HTHI'Y {il,ql},{i1,q2}~Pr
4. ) . _ )
T 0y P TR oy P K {1y bl b i Ggh i g min
(127 =Up(8i,i, 01,1 bii 6, T 6ii, 00,
; : o(q1+ 02t dstay)
which can be graphically represented by X (2% (129
v
@) @m)? 5 Q— - —Q In this last set of equation$,(?, . atlmin is of par-
0L’y {nmb{iz@} = "9 2 'k {ig,aq}dip.qp)imin

(128

3. The renormalization group flow

We now explicitly write the flow equations for the cou-
pling constants. This requires to know the vertex functions
taken at the minimuni (Y, .. o0 g oolmin @PPEAI-
ing in Egs. (119, (120, and(121). To evaluate them, one
uses the truncation Eq111). One obtains

l_‘E<l){i1 ,q1}| min="0,

(2)
1-‘k {il,ql},{iz,q2}|min

ticular interest since its inverse provides the propagBtaat
scalek and, thus, the spectrum of excitations of the theory, at
this scale. We easily get from E@L29):

Pr{il,ql}{iz,q2}|min

=(2m)95(0,+0y)
(
1
— if i=i,=1
Z29;°+ R (d,9)
1
X - i ij=ip#1
Zd,°+ Ry(d19) +2pguy
Lo it iy#i,
(130

where R, (q,?) is the contribution of the regulating term

(85).

~ ~ 8(d1+0p)
(7.2
=(201°6i,i,* 2poU26i,16i1) (2m)

It is clear on the expressiofi30 that theNX N matrix

Pr{il,ql}{i2,q2}|min is diagonal. This holds independently of
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the kind of truncation used. The spectrum of excitationsThe search for fixed point requires to introduce dimension-
around the minimum, at scale is thus directly red on Eq. less renormalized coupling constants. We define

(130. We find—up to theR, term—one massive mode of

squared mass;%ulz in thel Iongitudinal direction anéll—1 {_)O:Zkz—dﬁo' U,=2"2k4~40,. (134
massless modes in the directions orthogonal to the magneti-

zation ¢o. The deformations of the vect@r associated with  These changes of variables are deviced so khatd Z dis-

these modes are represented in Fig. 6. appear from the flow equations of the renormalized dimen-
It is important to keep in mind that this spectrum corre-sjonless quantities.
sponds to effective masses—at scé&le-for which only The corresponding flow equations thus write

high-momentum fluctuations—higher thaa—have been
considered. It is only in the limik— O that one retrieves the
physical spectrum. In particular, we stress that a qualitative
change in the spectrum can occur wHeis varied. For in- _ 21d
stancge, the follor\)/ving situation can happen: for lakydhe 9z = (d=4+27)Up+204(N=1)u3l5(0)
minimum of U, is nonvanishing so that, at this scale, the +1804u219(2u,p0) (135
system behaves as if it was in its broken phase. However,

whenk is decreased, the minimum moves toward zero an

eventually vanishes for somie>0. Thus, while the system, ‘fhat depend orZ only through .
for k= A, looks as if it was in its broken phase, it is actually,
i.e., fork=0, in the high-temperature phase. This is what
happens when the temperature lies between the true critical
and the mean-field critical temperature. Another subtlety is S
that, in order to analyze the critical behavior, we have toll Our truncation, it is given by

consider the dimensionless renormalized quantities. Again,

one has to be careful about the conclusions deduced from the 16vg , 4

behavior of these quantities. For instance, the dimensionless 7= g Y2PoMzA2Uzpo)- (137
renormalized position of the minimum &&=0 can be non-

vanishing even at the critical temperature whereas the “tru€The usual anomalous dimension is given by the fixed point

magnetization is, of course, vanishingTat This is possible | o e of Eq.(137. In Egs.(135 and (137), we have intro-
since the dimensionful quantities are the products of theify 1 ihe— dimensionless—threshold fuhctibﬁhandmd .
dimensionless counterparts and of positive powerk. of 2.2

Using EQgs.(119), (120), (121, (124, (127), and (129,

dipo=—(d—2+ 1) po+204(N—1)15(0)+ 6v 4l (2u,po),

the running “anomalous
dimension”

one obtains the flow fop, 19(w) = — an_d+2n~9 J d’q 1
" dug Y (2m)9 (2024 Re(9?) + ZKAwW]"
(9~ l.é f ddq ( N—1 [ q k(g ]
tP0~ T 50t
2 d 2 2
(277) Zq + Rk(q ) § B dZZk67d i d
3 B
|, (13D Po
Zg°+Ry(g°) +2pou; ddq 1
- X 5tf
for u (2m)® Z9*+R(9?)
~, g
~ u d%q N—1 1
duz=— ?Z’étf d ( 2 2112 X 2 2 2 (138
(2m)"\[Zg°+Ru(q9)] Z(p+a)“+R([p+q]9)+Zkw
n 9 (132 with v 1=29"17921'(d/2). Some properties of these
[Zg2+ Ry (g% + 25032]2 ' threshold functions are provided in Appendix C. We concen-
] o trate here on the main physical aspects of the threshold func-
and for the field renormalizatior tions.
s (1) Note first that the arguments of the threshold functions
7o T2 a [~ d°q entering in Eqs(135 and (137) are either 0 or B,p, that
to= T 2pollz 2|m dp2 t (2m)8 are—up toR,(q?)—the dimensionless renormalized square
p%—0 . . e ..
masses associated with the excitations around the minimum.
1 1 ) (2) The threshold functionl(w) and mj (w) decrease
X ~= |- as power-laws when their arguments increase:
Z9*+Ry(9?) Z(p+a)*+R([p+a]*)+2pous, P g
(133 Rwyoew™ "1 may(w)erw 2 (139
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for w>1. The RG equatior{104) makes thus explicit the The partition function of th@d(N) NLo model is given

phenomenon of decoupling of massive modes: if the renorby

malized square madd ﬁ—here 1,p—of a massive mode L

increases when the scalés lowered, the contribution of this _ e _ _f du/ 5 702

mode to the flow becomes negligible below a sdalede- z f Do 1)ex;< 2T dx(9¢) ) (142

fined byMkC~1. _ )
(3) The threshold functions are nonpolynomial functions L€t US rfaplace th.e.(-jel'ia-cqnstralnt by a soft constraint.

of their arguments. Thus the flow equatidi85 and(137)  Using the field redefinitions— ¢/T one obtains

are nonperturbative with respect to the coupling constant

as well as to I, which, as we shall see, is proportiopal to Z:f D exp{— EJ ddX[(&(Z)Z—)\((ZZT—l)Z]}

the coupling constant—the temperatlre-that parametrizes 2

the perturbative expansion of the dLmodel. (143

As we now show, the effective average action approactypare the delta-constraint is recovered whems. Com-

allows to recover thS perturbative resul_ts obtalned_at Iow’paring this expression with thansatz(111) and using the
temperature around=2, at weak coupling around=4, relation (134 one obtains the relation

and in a 1IN expansion.
1

=5 (144

4. The weak-coupling expansion around=el4 T

Just below four dimensions, the nontrivial fixed point
governing the phase transition of t@N) model is very As a consequence, the low-temperature one_—Ioop perturba-
close to the Gaussian fixed point. This justifies to expand thdVe results can be recovered from @dexpansion. In fact,

RG flow equationg135 and(137) both in the coupling con- since the dimensionless renormalized mass of the massive
stantu, and ine=4—d. At lowest order, the functioy is ~ M0des is given by @;p,, one has to perform a large-mass

vanishing. Sincep, remains finite, the quantity®py is of expansion. Physicglly, this corresponqls to the known fact
order € and one can perform a small mass expansion. Ththat, around two dimensions, the longitudinal modes of the

flows of the couplingu, and of p, are obtained using O('\:é Iinea[ ]Elnodel are frozen and ozly tEg—tLansverse—
19(0)=19(0)—nwl®, ,(0) for w=<1 and 13(0)=1. This Goldstone” fluctuations are activated. This phenomenon

leads to corresponds to the decoupling of massive modes. Techni-
cally, this is realized through the behavior of the threshold
functions. As already stated, the threshold functions decrease
as power laws for large argumer{ts39. As a consequence,
in the flow equationg135), the contribution of the massive
mode—which is proportional tbg(Zpo)\)—iS subdominant
N+8 compared with dthe contribution of the Goldstone modes—
FUr=— €eUy+ _2U§' (140 proportional tol ;(0). Now, using the large-mass expansion
6m md, %(w)=w 2+0(w %), one gets from Eq(137):

(N+2) ,
dpo=—(2—€)po+ WH(O)— g2 2P

At leading order, the roots of these equations are the Gauss- 1
ian fixed point—3=0 andp}=(N+2)I1(0)/327°>—and a
nontrivial fixed point obtained fou;=16m2¢/(N+8) and
pes=(N+2)I7(0)/3272. One easily deduces the critical ex- Using this expression of the anomalous dimension and the
ponentw from Egs.(140), linearized around the nontrivial valuelf(0)=1, one gets

fixed point

7= Grpo’ (149

N—2
1 eN+2 141 dpo="€pot A’
"= aN+e (140
202
It coincides with the one-loop expression obtained within a =~ 2Ux+ —— uzl3(0). (146
perturbative weak-coupling approach of the corresponding
GLW model ind=4—e. The flow equation fop, coincides exactly with the result
obtained in the one-loop low-temperature expansion of the

5. The low-temperature expansion around=e2 NLo model for the temperature—which is given by Eq.

Let us now show that Eq104) also allows us to recover (144). The fixed point coordinates are given = (N
the one-loop results obtained around two dimensions in a 2)/(4me) andu;=8=/[(N—1)I5(0)]. This leads to the
low-temperature expansion of the Mlmodel. We first make ~ critical exponents
contact between the parameters—essentially the
temperature—of th®©(N) NLo model and those of the ef- __€ 1 (147)
fective average actiofl11). T=N=2 €
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TABLE VIII. The critical exponents in three dimensions for the dipo=(2—d)po+2Nvyl%(0),

O(N) model.

N V ) A= (d—4)u,+ 2Nv4ul9(0), (148)

1 0.5207 0.629G25) 9 0.0572 0.0365) 9 where we have anticipated that the anomalous dimension
0.688" 0.630413) " 0.038° 0.033515) " vanishes at leading order, see below. The fixed point solu-
0.635° 0.056° tions are easily found to bﬁSzZNvdI‘i(O)/(d—Z) andu}
0.635¢ 0.058¢ =(d—4)/[2v4NI9(0)]. From these results, we check that
0.6307° 0.0467¢ the anomalous dimension behaves a¢ dnd thus gives sub-
0.632' 0.033' dominant corrections to thg functions. We can, finally,

compute the critical exponents by diagonalizing the stability

2 0.613% 0.66835) 9 0.0582 0.0385) 9 matrix. We then findv=1/(d—2), in agreement with the

standard leading order result of theNléxpansion. We now

0.722° 0.670315)" 0.038° 0.035425)" . . . .
19 429 check that the effective average action method provides reli-

0.683° 0.054° bl Its in th di .
0.666¢ 0.055¢ able results in three dimensions.
e e

0.666 0.049 7. The critical exponents in three dimensions

3 0.699% 0.704555) 9 0.0512 0.037545) 9 One qf Fhe m.a}in interest of Fhe effectivg average action
0.756° 0.707335) h 0.035° 0.035525) h methqd IS ItSf ability tq tackle with the phySICS In a nonper-
0.726° 0.051° turbative regime, precisely when there is no small parameter,
0.712¢ 0.048¢ as it is the case in three dimensions. We provide, in Table
0.704¢ 0.049° VI, the critical exponentsy and 7 obtained with this

method, as functions of the order of the derivative and field
3The truncation where only the flow ¢%,p,,u,} is considered. expansions oby(p), Z(p), andY,(p) [see Eq(110]. We

®One addsus. have also included the results of high-order perturbative ex-
“One addgus,u,,Y(po)}. pansion for comparison. The exponenis rather poorly de-
dOne addqus,us,Yo,Z' (po)}- termined with our simple truncatioii1l). However, the pre-
®Takes into account the full dependencelbf, Z, andY, in the  cision improves rapidly when more terms are added to the
field (Ref. 56. Ansatzfor I',. For the best truncatiory is determined at
"The orders” terms of the derivative expansion have been includedess than one percent compared with the world best esti-
(Ref. 51). mates. Although we shall not be concerned in the following
9Corresponds to the five-loop resummed perturbative results in 4n truncations using thé&ull potentialU,(p) and thefull ki-

— € (Ref. 209. netic termsZ,(p) andY,(p) entering in Eq(109), we have
"Seven-loop perturbative results in three dimensidRet. 204. indicated, in Table VIII, the critical exponents computed

with suchAnsdze One notes that is in very good agree-
ment with seven-loop resummed seffésvhile the anoma-
lous dimension is less precisely determined until the osder
terms of the derivative expansion have been included in the
Ansatz see Ref. 51.

which identify with those given by the low-temperature per-
turbative expansion of the Nt model at one loop’*

Note that the perturbativg function foru,—Eq. (140—
and forp—Eq. (146)—areuniversal i.e., independent of the
cutoff function Ry(q). Indeed, theseg functions only de- g The Xy and multicritical Ising models in two dimensions
pend on the values of the threshold functidﬁ%(w) at w
=0 and onmgfz(w) at largew that, as shown in Appendix
C3, do not depend on the cutoff functi®y(q). The match-

Let us close this section devoted to the analysis of the
O(N) model by a discussion of the results obtaineddin
=2 for theXYand Ising models. These are, in fact, two of its

ing with the perturbative results obtained arouhd2 and o5t spectacular successes because they correspond to truly
d=4 is a very important feature of the effective averagenonperturbative systems.

action method. First, it allows us to interpolate smoothly  aq \vell known. the physics of th&Y model at finite
between two and four dimensions in a unified framework'temperature is governed by topologically nontrivial

Second, it suggests that it is possible to reliably explore the ,nfi rations—vortices—which are not taken into account
behavior of the system in any dimensidrand, in particular ;, 5 low-temperature treatment. According to Ef46), the

in d=3, see below. flow for p—or T—vanishes identically id=2 andN=2
so that the theory is free. However, as well known, the model
6. The large-N analysis actually exhibits a phase transition at a finite temperature
Tgkr—the Berezinskii-Kosterlitz-Thouless phase

The flow equationg135 and (137) can easily be ex- transition—induced by the deconfinement of the vortices, see
panded in the largét limit. The leading contributions come Refs. 53,54. Remarkably, the simplest RG equatidrgb
from the Goldstone modes, which appear with a multiplica-and (137) already allow to obtain the correct qualitative be-
tive factorN. The B functions then read havior of theXY model at finite temperature: a very small
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function of T is found betweeriT=0 and a finiteTgcr.>®  reappears close w=2. Second, ap increases, the coales-
Recently, treating the full field-dependence Wf, Z, and  cence of the stable fixed point occurs at smaller and smaller
Y, von Gersdorff and Wetterich have recovered the cor- gimensions. Thus, one recovers a better and better descrip-
rect behavior for the correlation length of th€¥ model  tion when increasing the order of the truncation. Also, it has

aroundTpgyr ! been checked that when the full field dependence of the po-
tential is kept, the problem fully disappears and the stable
Cte fixed point can be followed smoothly betwedr-4 andd
&= (TTBKT)T : (149 —2 28 jpally, it is important to indicate that, in the whole

range of dimensions where the stable fixed point exists
The exact results are=1/2 and »=1/4 for the anomalous within a field expansion, the critical exponents found within
dimension afTg«; (Refs. 54,205 while von Gersdorff and this approach at sufficiently large orde(p=10) and those
Wetterich have found=0.502 and»=0.287. This shows foqnd within a_fuII potenugl computation are very close. The
that the physics of topological excitations is captured by thétifact of the field expansion described here can be bypassed
lowest orders of the derivative expansion, without including!Sing either a full potential computation or using a field ex-

explicitly these degrees of freedom in the manner 0fpansion at_ s_uffigiently high (_)rder. Ac_tually, it is n_ot surpris-
Villain. 206 ing that difficulties occur with the field expansion at low

As for the Ising model, it is known that, in two dimen- Qimensions since.the engineering dimension of the field van-
sions, it can undergo infinitely many nontrivial kinds of iShes asd—2. This strongly suggests that no power of the
phase transitions associated with infinitely many multicriticalfield can be safely discarded Wy whend—2. This is con-
fixed point8””. It is shown in Ref. 14 that they all correspond firmed by the fact that the effective potential, which is ex-
to strong coupling fixed points. They are therefore very dif-actly known atN=c for d=3 andd=2, is respectively a
ficult to study by perturbative means. By a systematic searcROlynomial of order six and an infinite series.
of fixed points in the two-dimensional scalar field theory,
using an orders? truncation of the derivative expansion, E. Conclusion
Morris®? has been able to find explicitly the first ten fixed \ye have described, in this section, the main features of
points of this series. He has also shown that no other fixeghe effective average action method. We now summarize

point exists but the multicritical fixed points. them.
o _ _ (1) The effective average action method allows us to trivi-
9. A difficulty related to the field expansion ally recover the perturbative results around the uppeér—

Let us finally mention a difficulty linked to the field ex- =4—and lower—d=2—critical dimensions and thus to
pansion of the potentidll, showing up, for instance, when make contact with these approaches.
the stable fixed point of th©(N) model is followed from (2) The results obtained via this method are nonperturba-
d=4 down tod=2. When the simplesp* truncation(111),  tive in the different parameters: coupling constant and tem-
is used no problem occurs: one can smoothly follow thePerature. In this sense, it provides an alternative approach to
stable—critical—fixed point fromd=4, where it identifies the usual perturbative methods. This is of great interest, es-
with that found in a weak coupling expansion of the GLW pecially when one suspects that the perturbative series could
model, down tad=2, where it coincides with that obtained be not reliable as it is the case for frustrated magnets.
within a low-temperature expansion of the dlmodel, Eq. (3) Even with a very simple truncation of the effective
(146). However, once the® term is added, a new nontrivial average action, it is possible to capture some genuine non-
fixed point emerges from the Gaussian fixed pointiin3.  Perturbative features—such as nontrivial topological
This is a tricritical fixed point, i.e., a fixed point with two configurations—that are unreachable from a conventional
directions of instabilities. Agl is lowered, the critical and |Ow-temperature expansion. This aspect is particularly im-
tricritical fixed points move closer together and eventuallyPortant in the context of frustrated magnets since one knows
coalesce in a dimension<2d<3. Actually, they both be- that the low-temperature expansion performeddin2+ e
come complex. Note that whehis further lowered, the two ~does not provide the correct physicsdrr3, a possible ex- -
fixed points become again real. th=2+ €, the stable fixed planation being the presence of vortexlike configurations in
point can be identified with that found within the low- these systems.
temperature expansion of the Mlmodel with the¢* trun-
cation. Thus, there exists a small region betwden2 and VII. THE O(N)XO(2) MODEL

d=3 where one fails to correct!y describe thE." fate of the We now come back to the study of frustrated magnets. We
stable f|.xe.d point of thg model using the truncation. How- derive the flow equations relevant to the study of frustrated
ever, this is just an artifact of the field expansion, not of themagnets The derivation follows the same lines as in the
method. To show this, let us describe what happens when th@(N) caée(see Sec. VI D above

orderp of the truncation is increased. First, when including a '
new monomial P in the effective potential, a new—
multicritical—fixed point emerges from the Gaussian fixed
point in the dimension g/(p—2). Again the stable fixed As emphasized previously, since the NPRG equation

point coalesces with one of these multicritical points and(105 cannot be solved exactly, a truncation fgris needed.

A. Truncation procedure
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We consider here a truncation involving only terms having athave verified that our results are stable with respect to addi-
most two derivatives. At this order, the most general form oftion of higher powers of the fields. However, in order to keep
the O(N) X O(2) effective average action writes our presentation concise, we have chosen here to consider a
L reduced truncation that already enables us to recover the dif-
- = n n ferent perturbative results—in4e, 2+ e and 1N—in their
Fk[(j’l’(bﬂzfddx(uk(p’THEzk(p’T)[(a¢l)2+(a¢2)2] respec?ive domains of validity. Within this truncation, we
expandU, up to terms containing four powers of the fields
1o S and keep only the leading terms & and Y{*. We also
+ Y (P ) (1 da— ¢ I 1) completely discard the two other functioi§? and Y{*).
This choice is motivated by the fact that, as we will see in
1 o the next section, only the functiof!) contributes directly to
+ ZY(kZ)(p,r)(¢l~a¢l+ by Iby)? the physics of the Goldstone modes and is thus important
around two dimensions. Since one of our aims is to recover
the results obtained around two dimensions, we keep this

1 e . . ; . .
i ZY(ks)(va)[(d’l' Ib1— o Iby)? term in ourAnsatz We are then led to the simple truncation
2 .7 7 a3 g o o0 2 7.2 o .
+(by- 0ot by ddb1)?]]. (150 Ll i da]= | dX| 501"+ (92) "1+ 4 (19,
We recall thatq?l and &2 are the twoN-component vectors ~ 5 o~
that constitute the order parameter, E(B) while p _552.(9(51)2+% g_; +%T . (152
=Tr(‘®®) and =13 Tr(*d D —1p/2)>—with d= (1, d,)

—are the two independe@(N) X O(2) invariants(see Ap-
pendix B for a more detailed discussjorThe truncation Let us now discuss the different terms appearing in this ex-

(150 is the analog of E¢(109), in the case of matrix fields. pression. The coupling constantsand iz have been already
Here Uk(p,T) is the potentlal part of the effective average introduced in the GLW approac[see Eq(51)] The cou-

: i 0 i ot h
action while Z(p,7) and Yi'(p,7), i=1,2,3, are kinetic iy constanfx describes the position of the minimum of

functions. o _ _ the potential and appears in the truncation because we ex-
At this level of approximation, the F?S':‘ analysis requires t0pand 1, around the nonvanishing field configuratidr™.
specify the five function8)y, Z,, andY;’, i=1,2,3. Thisis  agin theO(N) caseZ corresponds to the field renormaliza-

to say an infinite number of coupling constants. As in thet
case of the vectoriaD(N) model, we further simplify the

Ansatzby expanding these functions in powers of the fields.
Again, we choose to expand around a nonvanishing fiel vant by power counting around four dimensions since it

c_onflguratlgn wh|ct1 minimize', . This <_:onstra|nt Is satis- is quartic in the fields and quadratic in derivatives. However,

fied when¢, and ¢, are orthogonal, with the same norm. jis presence imecessarnaround two dimensions to recover

We choose the results of the low-temperature approach of theoNL
model since it contributes to the field renormalization of the

ion. Finally, the unusual kinetic term with coupling cor-
responds to the current term of E@2) introduced in the
iscussion of the Nz model approach. This term is irrel-

10 Goldstone modes. As the NPRG method does not rely on
0 1 usual power counting arguments one includes this term in the

q)min(x) — \/i 0

The above effective action has all the ingredients to de-
scribe accurately the physics at low-temperature around two
0 0 dimensions as well as at weak-coupling regime around four
. . . . . dimensions. We can therefore anticipate that this simple trun-
the physical results being independent of this particulaiation s actually rich enough to recover the perturbative re-
choice. The quantity/; entering in Eq.(15]) is analogous  sults aroundi=2 andd=4. Of course, since our main goal
to the quantity¢, in the O(N) case, see Eq112) and we s to go beyond the usual perturbative expansion, we have
refer to it in the following as the magnetization. studied larger truncations and have controlled the conver-
While studying the critical properties of the system, wegence of our results.
have considered various truncations differing by the number The spectrumwe now discuss the spectrum of excitations
of monomials inp and included in the field expansion. Our around the minimum(151). The spectrum is given by the
largest truncations consist either in keeping all term&Jjn  eigenvalues and  eigenvectors of the  matrix
up to the eighth power of the fields and all term&jnand in  §°T' /¢! §p—where i,ke{1,2 and j,le{l,...N}
the Y(k')’s including four powers of the fields or all terms in —evaluated in the configuratioid51). We find that the Rl
U\ up to the tenth power of the fields and the first term of thedegrees of freedom of the order paramebedivide in four
expansions ofZ, and of Y(kl). With these truncations, we types that are described in Fig. 7.
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The four remaining modes correspond to the situations

where the two vectorsJ(l,JSz) remain in the same plane:
(2) A massless—Goldstone—singlet mode corresponding
to rotating the dihedral within its plane, see Figb)7 To-
R gether with the RI—4 other ones, this gives theN2-3
"1 Goldstone modes of the model.
(3) A massive singlet of square mass corresponding to
a dilation of the two vectors, see Fig(cJ.

\ (4) A massive doublet of square magx corresponding
to fluctuations of each vector of the dihedral, with the con-

straint that the sum of the lengths of the vectiaps| +| ¢,
remains unchanged, see Figd)/

In practice, it is very useful to work in the basis of the
proper excitations of the model since then, as the propagator
is diagonal, the calculations are greatly simplified. We there-

““““ > fore introduce A directions in the internal space, corre-
o1 sponding to the R proper excitations of the model. They are

b) Massless singlet c) Massive singlet given by

—

1

1

-
1\

h

e

\

!
\

-

7 N =

\ ! ¢
- @9

a) Massless (2N-4)-uplet

fog

e = == =

1
V2 ( 5¢>1(p) 5¢2(p)

1
V2

d) Massive doublet

FIG. 7. Schematic description of the deformations @f (¢,)
associated with the four types of proper excitations of the model.
The dotted arrows display the ground state configuration and the
plain arrows display the relevant deformatioria: massless (R

( S1(p) 5¢2(p))
1( o
V2 5¢z(p) S¢3(p)

5¢1(p) 5¢2(p)

—4)-uplet, (b) massless singlefc) massive singlet(d) massive 8sp= f . Bep= f o
doublet. 843(p) 3¢3(p)
(1) A family of 2N—4 massless—Goldstone—modes 5 5
which correspond to rotating rigidly the dihedral{, ¢,) by o 1p= i Sonp= (153
keeping eitherd, or ¢, unchanged, see Fig(aJ. od1(P) o (P)

In this basis, the two-point vertex function, i.e., the inverse propagator—up tB,tberm—has the form
29,2+ Nk
20,2+ mk 0
29,2+ nk
F%Z,cil},{i,qzﬂmin:% (Z+0K)q,° - (159
Zq;

Zq,
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In the matrix(154), the first three lines correspond to the ~ We finally define the coupling constants associated with
massive modes and the lasti2 3 to the massless modes. the momentum-dependent part of our truncati®g2), i.e.,
Note that a nonstandard kinetic term appears on the fourtthe field renormalization factaf and the current-term cou-
line through an additional field renormalizatianx for the  pling constanto:

Goldstone singlet. Let us add that if one keeps, in the trun-
cation (152, contributions from the function¥(® andY(®)

d

[see Eq.(150], the field renormalizations in the first three 7= (2m) I|m d (5 85— o Tl min)

? . L .. . . . 5(0) 5p¢5,—pt kimin

lines get extra contributions similar to what is obtained in the

fourth line. Note thatY(® and Y® affect only the field

renormalization of massive modes. It is therefore not neces-

sary to take them into account in order to retrieve the leading ~ (27T)d 58 z 15

order behavior in a low-temperature expansion arodnd w== K5(0) od ~—(3apda—p Ll min) = K- (157)
p —

=2 which is entirely governed by Goldstone modes. This is

why we do not keep them in our simplest truncatidb?2). 2. The t derivation and the flow equations
We now apply the operata#; to the definitions(155—

_ _ _ (157). In order to derive the flow equations, we have to com-
We now display the flow equations for the coupling con-pute the functional derivatives ofI' with respect to the

stants entering in the truncatiqd52. We recall the four fields. This is similar to what has been done previously in the

B. The flow equations

major steps of this procedufsee Sec. VID. context of theO(N) model(see Sec. VI D 2 aboyeexcept
~ (i) The running coupling constants are defined as functhat the tensorial structure in the internal space is more in-
tional derivatives of théAnsatzof Iy, Eq. (152). volved so that the computation of the traces is more cumber-

(i) The operatop, is then applied on these definitions. By some. We do not give the details here. We now introduce the
making use of the NPRG equatioh05), flow equations for  dimensionless renormalized quantities defined as
the coupling constants are obtained as traces of vertex func-
tions. These expressions are evaluated by using the truncated k=Zk2 9, A=Z"2k94,
form of I', Eq.(152.

(iii) The flow equations are expressed in terms of thresh- u=2z" % 0=Z"2%9"2 (158
old functions.

(iv) Dimensionless renormalized quantities are intro-as well as the threshold functions which are defined and dis-
duced. cussed in Appendix C. We then get the following flow

equations?!

2kd 4

1. Definition of the coupling constants

As in the vectorial model, the coupling constants are de- d_K: —(d=2+n)k+4vg
fined as values of the vertex functions in the specific con-
figuration ®™" around which is made the field expansion

b 3
(151). Let us start with the definition ok. This coupling +(N-2)1{4(0,0,0+ 5 5l
constant parametrizes the ground state configurafdt.

One has, as in th®(N) case, an implicit definition ok:

1
EI 01(0,0kw)

194(k\,0,0)

+ 1+2 lO(KM00)+—|2+d(o,0,;<w), (1593

5a,p=0rk|min:0 (155

dA
with &, , given by Eq.(153. In the following, as in the a:(d—4+277)7\+vd[27\ (N—2)1540,0,0) (159
O(N) case, we shall consider only the case 1.
The other coupling constants are defined using the two-

2|d 2d
point vertex function in different directions A0 0,05c@) 9N 501X, 0,0)

+2(N+2) 219y k2,0,0) + 4N w1 25 90,0 k)

- (2m)¢
)\Zm 100100 klmin» +4w 2|4+d(o Okw)],
Ko 2 4
4 —t—(d_4+277),u~_20d# — —101(0,0k)
2T ST (156) )
M }5(0) 2,092,01 klmin- 3(2N+ ) ; 8\ + u ;
+ﬁl 10(kN,0,0) + O )|10(K,LLOO)

These two definitions come directly from the study of the
spectrum discussed previousgkee Eq(154)]. + w4k, 0,k 0) + w(N—2)1940,0 0)} (15909
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B dinz
(T

+2(—2+d)kwl§4(0,0,00+ 2m3(0,0 k®) + 2>\ ?M( kX ,0,0) + 4 k2 My k 2,0,0) + 4k N 0,0 k)

v
= 2ﬁ[(4— d) k@l 3,(0,0 k) +2k2w?135 40,0 k) +2mI(0,0 k@) — 4m$;(0,0 k)

—8kwni (0,0kw)+4xwn3y0,0kw)], (1590
P 4y 4—d d—16
E:(d—2+27])w+d—g Kw[%lgl(o,omw( 5 )|81(K)\,O,Kw)+Ka)|g;d(0,0,Kw)—3Ka)|g;d(K)\,O,Kw)
K

+(d—2)19,0,0,0— (d—8)I{y(k\,0,0) + 8k, (k\,0,kw) + 2k wl 53 (K 42,0,0) + 2k (N —2)154 4(0,0,0)

+ ng(0,0,Kw) — mgz( kN, 0kw)— 2m'i'1(0,0,1<w) + mel( k\,Okw)+ mgo(0,0,Kw) — mgo( kN, 0kw)+ szzmgz( k\,0,0)

+ 22 uPmy(k,0,0) + 2k w3y 0,0 k) — 4k NIy kN, 0,k 0) — 4k wny(0,0 k@) + 8k wndy(k\,0.kw)

+2kwndy0,0kw) —4kwn3y kN, 0.kw) |. (1590
|
VIIl. TESTS OF THE METHOD AND FIRST RESULTS 4
3 17(0) VITAREECTON
This section is devoted to all possible tests of our method Be=—(2=e)rt 87 N-+1 N 162

in the O(N)X0O(2) case. We show, in particular, how the

various perturbative results are recovered as it was already K
the case in th®©(N) model. We also give our determination T
of N.(d) which is compared with the five-loop improved 87

perturbative Computation. Fina”y, we give our determinationfrom which we can deduce the expressionmat ordere,

of the exponents in thél=6 case and we compare them which coincide with the one-loop result of E¢4).
with those of the Monte Carlo simulation.

2u

N (1671

B. The low-temperature expansion aroundd=2

A. The weak-coupling expansion aroundd=4 As explained in the context of th@(N) model(see Sec.
Aroundd=4, we expect a nontrivial fixed point close to VI D 5), in order to recover the Nk model results, we need
the gaussian. One can expand the flow equations at leaditg§ €xpand the flow equations at large masses. Using the be-
order in the quartic coupling constants anckjras we did in ~havior of the threshold functions for large argume(gse

the O(N) case(see Sec. VID % As expected from power Appendix O, we gef
counting, we find that the fixed point value of the coupling

constantw associated with the current term is vanishing at d_K: —(d—2+ ) k+ N-2 + 1
leading order. This is also the case of As in the O(N) dt 27 An(lt ko)’
case, the square masses and u« are of ordere so that the

threshold functions can be expanded in powers of their argu- do

ments. Once this expansion is performed one recovers the E:(_2+d+277)‘”

standard one-loogB-functions for the coupling constanis

and . given in Eq.(53) that we recall here . 1+ kw+(N—1)k2w?+(N-2)k30®
27Kk (1+ kw) ’
1
Br=—€ex+ —2[4)\,(L+4,U,2+)\2(N+4)], 3+4kw+2k’w?
16m n=——F"""" (162
dak(l+kw)
1 By making the change of variables
= — _|_ + 2 .
Bu i 16772(6)\'u N&® (160 m=2mk, n=4mk(l+kw) (163
we recover theB functions found in the framework of the
One can also expand th& function for x, Eq. (1593: NLo model at one-loop orddisee Eq(49)].
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C. The largeN expansion ind=3 0.06 (

As in the O(N) case(see Sec. VID § our equations 0.05 L
allow us to recover the critical exponents at leading order in

1/N. We have computeg and v for a large range of values 0.04 |-

of N and have compared our results with those Calculated77
perturbatively at order N?, Eq. (61). We find an excellent 0.03
agreement—Dbetter than 1%—foy for all N>10, see Fig. 8,

a domain of values o where one expects theN? results 0.02
to be very close to the exact values. We also quote in Table 0.01 -
IX our results and those obtained by the six-loop calculation i
for N=16 andN=232. 0 ' ' L L ' ' J
D. The determination of N.(d)
Let us now interpolate between the results we have ob- 1r
tained aroundl=2 andd=4 and discuss, in particular, the
curve N¢(d) that separate the regions of first and second 09

order. We have computed,(d) with our best truncation and
with the cutoff function(91). In Fig. 9, we give our result
(crossep from d=4 down tod=2.7. We also indicate the vV g}
improved five-loop results given by E¢57) together with

Eq. (60) for comparisorjwe indicate that the curve provided
by Eq.(57) together with Eq(60) and the curve provided by 0.7
Eqg. (59 merge togethdr The two curves in Fig. 9 have

roughly the same shape but differ quantitatively. In three

0.6 | | 1 1 1 I |

dimensions for instance, the NPRG method lead®N{¢d 6 10 15 20 25 30 35
=3)=5.1 and the improved five-loop resull (d=3) N
=6.1. Let us emphasize that, within the NPRG method, the b) v as a function of N

quantity N.(d) is very sensitive to the order of the

truncation?® much more than the critical exponents. This  FIG. 8. The exponenty and v as functions oN in d=3. The
means that one probably should not consider our result agosses represent our results and the full line the values obtained
very reliable. In this respect, we recall the results obtained gfom the 1N expansion(61). The circles and error bars are the
six loop ind=3 by Calabreset al13® N.(d=3)=6.4(4). Monte Carlo results obtained fdf=6 (Ref. 23.

We also recall the result obtained by Calabrese and

Parruccint’* by means of a pseude-expansion at six loop only 1%. This constitutes a success of the NPRG approach
in d=3: N.(d=3)=6.22(12). All the values oN,(d=3)  from the methodological point of view.

obtained by means of high-order perturbative approaches are
close together and are very probably a correct estimate of
this quantity.

Let us finally mention that, for the reason already ex- Our method has successfully passaltl possible tests.
plained in Sec. VID 9, the field expansion we have per-This gives us a great confidence in the reliability and the
formed at ordeg'° forbids us to follow the chiral fixed point convergence of our results. We are now in a position to ex-
C. in dimensions typically betweeti=2.5 andd=2.1 and  plore the physics of frustrated magnets in three dimensions.
thus to determine reliably the cunié.(d) in these dimen-
sions. As in theO(N) case, this artifact could be overcome  TABLE IX. Exponentsy and 7 computed from the N expan-
by keeping the full field dependence of the effective potentiakion (Ref. 168, by our method(NPRG, and from the six-loop

F. Conclusion

Uk(p,7). calculation(Refs. 135,16).
N Method v n

E. The critical exponents forN=6 16 IN (Ref. 169 0.885 0.0245
As already said, foN=6, the transition is either of sec- NPRG 0.898 0.0252
ond order or extremely weakly of first order. In both cases six-loop 0.8584) (Ref. 167, 0.02462)
scaling should exist on a large domain of temperature. The 0.8634) (Ref. 135 (Ref. 135
critical exponents obtained with our best truncation are givergo IN (Ref. 169 0.946 0.0125
in Table X. Note thaw and» are computed directly while, NPRG 0.950 0.0134
B anda are computed using the scaling relations. Our results six-loop 0.9362) (Ref. 167, 0.013571)
agree very well with the numerical on&sln particular, the 0.9361) (Ref. 135 (Ref. 135

error onv, which is as usual the best determined exponent, is
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22 coupling constants, this process is continuous since the only

20 change is that, when going frohli>N,(d) to N<N(d), the

18 fixed points acquire a small complex part. This continuous

16 character manifests itself as smooth changes of the RG flow
N. i;‘ that can be explained thanks to continuity arguments.

10 To understand the evolution of the RG flow ldsis de-

creased, we need to consider the spacallo€oupling con-
stants, i.e., the space such that to each point corresponds a
microscopic Hamiltonian of a system. In this space, we focus
L L L L L L on the subspacé containing the representative points,Tat
2.8 3 3.2 34 3.6 3.8 4 =T., of STA, STAR,Vy,, BCT, and of all real materials

d studied experimentally and, more generally, of all systems of

physical interest. Let us now describe qualitatively the
FIG. 9. The full line represents the curi&(d) obtained from  change of the RG trajectories BiscrossedN (d).

the five-loop results improved by the constraMid=2)=2, Eq. (i) WhenN is larger tharN¢(d), there exists a true stable
(57), and Eq.(60). The crosses represent our calculation. fixed point of the RG flow so that all trajectories emerging
from £ eventually end on this fixed point, see Fig. 10. All
systems exhibit scaling around the transition and universality

We now tackle the physics in three dimensions. Beforéwl‘_j_s- ) _
embarking in this discussion, two points need to be clarified. (i) As already stated, wheN is decreased slightly below
The first concerns the existence of a fixed point for Nc(d), the fixed pointC. gets complex coordinates and
<N¢(d=3). The second one concerns the situation just beloses its direct physical meaning. In particular, the flow no
low N.(d=3). longer stops at a point, see Fig. (D Consequently, the
correlation lengths of systems ifi do not diverge afT,.
Strictly speaking, all systems undergo first-order phase tran-
sitions. However two facts must be noted. First, all the tra-

Let us first discuss the search, within the NPRG methodjectories emerging frorff are attracted toward a small region
of fixed points ind=3 and forN<N.(d=3)=5.1. We re-  in coupling constant space, denoteddyin Fig. 1Qb). Sec-
call that, for this critical value oN, the two fixed point< | ondly, the flow in&’ is very slow.
andC_—see Fig. 2—coalesce. This means that these fixed From the second observation, we deduce that for all sys-
points—that can be followed smoothly in thd,N) plane tems in& the correlation lengths at the transition are very
from the gaussian ird=4-—cease to be real below this |large—although finite—since they typically behave as the
value. However, this does not imply the absence of other realxponential of the RG time spent aroufid which is large.
fixed points. One has to test the existence of fixed pointgherefore, the transitions are all extremely weakly first order
nontrivially connected withC, andC_, as advocated by for systems in£. We thus expect scaling behaviors with
Pelissettoet al'®" We have thus searched such fixed pointspseudocritical exponents for all physical quantities, with the
both by directly looking for zeroes of the-functions and by  subtlety that this scaling aborts very closeTtp where the
integrating numerically the RG flow—see below. After an true first order nature of the transitions shows up.

IX. THE PHYSICS IN d=3

A. The search of fixed points forN<N_(d)

intensive search, we have foums such fixed point. This As for the first observation—i.e., all trajectories are at-
result and its relation with that of Pelissettd al. will be tracted toward a small regiofi —it allows us to conclude
discussed in the following. that all phase transitions are governed by a small region in
coupling constant space and that, therefore, universality al-
B. The physics ind=3 just below N(d): scaling with a most holds. In particular, the pseudocritical exponents should
pseudo-fixed point and minimum of the flow be roughly the same for all systems whose microscopic

. . . . _ . Hamiltonian corresponds to a point én
In a fixed dimensiom, the disappearance of the nontrivial | ot s study in greater detail the case whétds just

fixed pointsC, andC_, whenN crosses\ (d), could seem  heioy N_(d=3). For such values o, it is reasonable to
to be an abrupt process: the two fixed points collapse angpproximatél by a point. The best approximation is clearly
disappear. Actually, when extended to the space of compley) -1oose the point i’ that mimics best a fixed point, i.e.,
the point where the flow is the slowest: the minimum of the
flow.®® To determine this so-called “pseudofixed point,”
Zumbach?® has proposed to introduce a norm for the flow
and to determine the point where the norm is minimum. He

TABLE X. The exponents foN=6 obtained from the NPRG,
first line, and from the Monte CarlMC) simulation, second line.

Method @ P Y v n has performed this approach in the context of a NPRG equa-
NPRG —-0.121 0.372 1.377 0.707 0.053 tion (LPA of the Polchinski equatignvhere he has built the

MC —0.10033) 0.35914) 1.38336) 0.70411) 0.02520) needed mathematical structures. He has shown that, when a
(Ref. 23 minimum exists, pseudocritical exponents characterizing

pseudoscaling can be associated with the pseudofixed point,
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a) N > Nc(d) b) N just below N¢(d)

FIG. 10. Schematic representation of the fl@ay for N aboveN.(d) and(b) for N just belowN.(d). For the sake of clarity, we have
represented’ outside& while it can be included in it.

in the same way that true exponents are associated with esting cases. Let us also give a qualitative picture that
true fixed point(see Appendix D for more detaljls supplements the concept of minimum.

A natural assumption to explain the pseudoscaling behav- We have found that, wheN is lowered belowN= 3, the
iors observed in real systems is that the minimum of the RGninimum of the flow is less and less pronounced and that,
flow mimics a true fixed point even for values Mfnot very  for some value olN between 2 and 3, it completely disap-
close toN.(d=3). For the Heisenberg systems, this positionpears. Since severaly systems exhibit pseudoscaling in ex-
has been advocated by Zumb&ttand by the present periments or in numerical simulations, this means that the
authors’* concept of minimum of the flow does not constitute the de-

Within our present approach we have confirmed the exisfinitive explanation of scaling in absence of a fixed point.
tence of a minimum of the flow, for values of just below  One encounters here the limit of the concept of minimum of
N.(d=3), leading to pseudoscaling and pseudouniversthe flow. First, it darkens the important fact that the notion
ality.®* By following this minimum we have confirmed that it relevant to scaling is not the existence of a minimum but that
persists down toN=3 and have computed the associatedof a whole region in coupling constant space in which the
pseudocritical exponents, see Table XI. We also give in thiglow is slow, i.e., thed functions are small. Put it differently,
table the exponents found by Zumbach within the LPA of thethe existence of a minimum does not guarantee that the flow
Polchinski equation for the same motfeand recall those is sufficiently slow to produce large correlation lengths. Re-
found within the six-loop approach of Pelisseétbal 16’ ciprocally, one can encounter situations where the RG flow is

The values that we have obtained within our calculationslow, i.e. the correlation length is large, so scaling occurs
for the critical exponents are not too far from—some of—even in the absence of a minimum. The existence of a mini-
those found experimentally for group 2 of materials, see Eqmum is thus neither necessary nor sufficient to explain pseu-
(37), as well as those found numerically for the STA, Tabledoscaling. Second, even when the minimum exists, reducing
V. As usual, our truncation overestimatesand thus, at fixed the regionf’ to a point rules out the possibility of testing the
B, underestimates. It is remarkable that the values of the violation of universality. For instance, one knows that for
pseudocritical exponents we have found at the minimum are
in good agreement with those obtained within the six-loop TABLE XI. The critical and pseudocritical exponents fbf
approach. This strongly suggests that there is a common ori=3. a, 8, and y have been computed assuming that the scaling
gin to these two sets of critical exponents. We shall comeelations hold. The first line corresponds to our nonperturbative ap-
back on this point later. proach, the second to Zumbach’s work. In the third line, we have

recalled the six-loop results of Pelisse&bal. for comparison.

C. Scaling with or without pseudo-fixed point: the Heisenberg ~ Method ~ Ref. B Y v 7
and XY cases NPRG 64 038 029 104 054 0.072
Let us now argue that the preceding analysis, based solelyra 66 0.11 0.31 1.26 0.63 0.0

on the notion of minimum, is too naive to give an explana-six-loop 167 0.38) 0.302) 1.065 0.553) 0.08
tion of the pseudocritical behaviors in the physically inter-
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a) N below Nc(d) b) N well below N¢(d)

FIG. 11. Schematic representation of the fl@vfor N below N (d)—N=3—and(b) for N well below N.(d)—N=2. For the sake of
clarity, we have representet] outside& while it can be included in itD and'R are represented in gray. (@), D=¢& andR=¢".

N=3 universality is, in fact, violated, see Table V, while a crease. The transitions are thus expected to become more
minimum of the RG flow is found. This feature cannot be strongly of first-order for lowei.
reproduced by the unique set of exponents computed at the The precise values dfl for which these changes of be-
minimum. The opposite assumption, done first by ZumPach haviors occur as well as the shapes and extenf3, 62, and
and by the present authd¥swas thus unjustified. &' can only be obtained from a detailed analysis of both the
Thus, even for very weak first order transitions, the beaumicroscopic Hamiltonian and of the RG flow. However, in-
tiful simplicity of second order transitions is lost and the dependently of the details of the model under study, of the
finite extend of the attractive regiafi has to be taken into precise value ofN(d), etc., one expects the following be-
account. To be precise, one needs to define two subséts ofhavior: asN is decreased, a system that undergoes at Idrge
and&’: D which is the region ir€ leading to pseudoscaling a second order transition undergoes, Kbjust smaller than
andR, the subset of’ which is the image oD in the RG  N.(d), a very weak first-order transition governed by the
flow, see Figs. 1) and 11b). Let us now consider the minimum. Then, it should undergo a weak first-order transi-
characteristics of the flow wheN is varied. tion where the notion of minimum is no longer relevant and
Since forN>N.(d=3) all the systems irf undergo a for which universality does not hold anymore. Finally, it
second-order phase transition, one expects—thanks to conshould undergo a strong first order phase transition. In the
nuity arguments—that foN slightly below N.(d=3), all  spectrum of models studied numerically, it is easy to see that
systems in€ exhibit pseudoscaling and thus tHat=E. At the STAR,Vy,, and BCT models wittXY and Heisenberg
the same time£’, the image off is almost pointlike—see spins nicely obey this prediction. Fdé=3, they all show
Fig. 10b)—and universality holds. scaling and the phase transitions should be very weakly of
As N is decreased below,(d), two phenomena occur. first order. However, their exponents are clearly incompatible
(i) While D remains equal t&, the domaing’, which is  with those of STA and with those associated with the mini-
initially pointlike, grows, see Fig. 14). This means that mum, see Tables V and XI. The RG trajectories associated
while pseudoscaling should be generically observed, univemwith these systems are thus expected to pass thr&ygbut
sality starts to be significantly violated: a whole spectrum offar from the minimum. One thus naturally expects that, when
exponents should be observed, the sizefbfproviding a N is decreased down thl=2, no scaling behavior is ob-
measure of this violation of universality. served for these systems. This is indeed what is found in
(it) For low values of\, the regionD leading to pseudo- numerical simulations, see Table Ill. This strongly suggests
scaling become smaller thah see Fig. 1(b). For systems that D has shrinked betweeN=3 andN=2 and thatN
defined by initial conditions irD, the correlation lengths are =3 corresponds to Fig. 14 andN=2 to Fig. 11b).
still relatively large but the pseudocritical exponents can vary
from system to system according to the sizeJaf For sys-
tems defined by initial conditions iéi but not inD, the RG
flow is always fast, producing small correlation lengths at
T.. The corresponding systems undergo strong first-order In the previous section we have shown that the notion of
phase transitions. Moreover, &sdecreases, the flow ié’ minimum—or pseudofixed point—in the RG flow is neither
should become more and more rapid so that, for systems isufficient nor necessary to explain the existence of scaling
&, the correlation lengths at the phase transitions should dewithout a fixed point. For this reason, one has to resort to

D. The integration of the RG flow for Heisenberg and XY
systems
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another method to study the physics XY and Heisenberg stants. We have used severahsdze for the temperature
frustrated magnets. In practice, we integrate numerically thelependence of the coupling constants and have observed
RG flow around the transition temperatdrg and determine that, although it could be important for the details of the
the behavior of the physical quantities such as the correlatioresults, it does not affect much the general conclusions.
length, the susceptibility and the “magnetization”—defined Thus, we illustrate our results with the simplésisatzcon-
as\x, see Eq(151)—as functions of the reduced tempera- Sisting in fixing all the couplings to temperature-independent
turet, = (T—To)/T.. values and by taking a linear temperature dependence for
at the lattice scale

1. Three difficulties Kep=a+DbT. (164

Let us mention three difficulties encountered during theF h h . d the f .
integration of the flow. First, in principle, in the absence of or each temperature, we have integrated the flow equations

universality, we should study each system independently ofind have deduced the dependence of the physical quanti-

the others. Thus, to correctly specify the initial conditions oftes: such as the “_magneUzann,” the correlation Iengthz gtc.,
the RG flow, we should also keep all the microscopic infor_arounch. The different coupling constants parametrizing

mation relevant to the description of a given material. Thisthe initial condition of the flow have been varied to test the

program remains, in the most general case, a difficult Cha|;obustness of_our conclusions. This has allowed us to estab-
lenge since this would consist in keeping track of the lattice!Sh the following facts.

structure as well as of the infinite number of coupling con-
stants involved in the microscopic Hamiltonian. However
this is, in principle, possible. Actually, this has been done For N=3, we can find initial conditions of the flow such
with much success for certain classes of magnetic systenthat for a wide range of reduced temperatures—up to four
and fluids described by(N) modelé® mostly within the  decades—the physical quantities behave as power laws.
LPA.2992100yr truncations—even the best one—are too refFrom an experimental viewpoint, this is all what is needed
stricted approximations to reach this goal since this would asince scaling has been found on temperature ranges that are
least require to keep tHell field dependence of the potential even smaller. The kind of pseudocritical behaviors we find is
Uy(p,7). We have thus used our flow equations to explainillustrated on Fig. 12.

the generic occurrence of pseudoscaling in frustrated systems Varying the initial conditions of the flow, we observe that
without trying to describe the behavior of a specific systemthis phenomenon happens in a wide domain of the coupling
In practice, we have computed the correlation length, mageonstant space. This corresponds to the dorfapmeviously
netization and susceptibility using a simplified version of ourdefined, see Fig. 14).

truncation keeping only the potential part expanded up to Within D, the pseudocritical exponents vary smoothdy:
order eight in the fields, a field-independent field renormalvaries typically between 0.27 and 0.42 andetween 0.56
ization and discarding all the current-terms involving fourand 0.71. These are only typical values since it has been
fields and two derivatives. We have checked that flisatz  impossible to explore the whole space of coupling constants.
leads to stable results with respect to the addition of higheBince for 8=0.27 one can find’=0.56, the exponents of
powers of the fields and inclusion of current terms. group 2 are satisfactorily reproduced, see Tables IV and V.

Second, the truncations we have considered do not allowhis shows in particular that there exists, T a set of
us to determine accurately the critical temperature. Indeed, ifmicroscopic” coupling constants that lead to the behavior
our approach we perform a local description of the potentiabbserved in group 2.
around the nontrivial minimum Eq(151). For a second- It is easy to find initial conditions leading to pseudocriti-
order phase transition this does not matter since the noreal exponents in good agreement with those obtained in the
trivial minimum, when it exists, is always the true one. How- six-loop calculation, see Table VII. Actually, a whole set of
ever, for a first-order transition, the zero-field configuration,initial conditions lead to exactly the santpseudo critical
i.e., with ¢,=,=0, plays a crucial role. In effect, in this exponents as those found at six-logp=0.30(2), v
case, the transition temperature precisely coincides with the 0.553). This corresponds to the region of the minimum of
temperature at which the energy at the nontrivial minimumthe flow, see Table XI.
and at the zero-field configuration are equal. Since we cannot In contrast, we have not found initial conditions of the RG
expect that our truncation describes accurately the potentidlow reproducing correctly the critical exponents of group 1,
around the zero-field configuration, we are not able to comof STAR, V3,, and BCT as well as negative values fgr
pare the energy of this configuration with the energy of theThis can originatdi) in the overestimate ofy produced by
nontrivial minimum and to determine the transition tempera-our truncation ofi", in powers of the derivatives at ordef,
ture accurately. We discuss in more details this point in Ap-Eq. (150), (ii) in the impossibility to sample the whole cou-
pendix E and show that, foraeakfirst order transition, this  pling constant spaciii ) in the too simple temperature de-
fact should not bias significantly our analysis. pendence ok, that we have considered, see Ef64).

The third difficulty encountered in the integration of the  For a given value of one exponent, it is possible to find
flow is that, in the absence of universality, the temperaturseveral values for the other exponents. Thus we expect to
dependence of the physical quantities relies on the precidind systems sharing for instance almost the sghteit hav-
temperature dependence of the microscopic coupling coring quite different values for and vy.

2. The Heisenberg case
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FIG. 12. Log-log plot of the magnetizatian and of the corre- FIG. 13. Log-log plot of the of the magnetizatiomand of the
lation length for N=3 as functions of the reduced temperatyre ~ correlation lengthf for N=2 as functions of the reduced tempera-
The straight lines correspond to the best power law fit of the dataturet, . The straight lines correspond to the best power law fit of the

data. The power-law behavior observed far from the critical tem-

At the border ofD, the temperature ranges over which perature breaks down for smajl. The behavior of the correlation
power laws hold become smaller and smaller. In a log-logength at smalt, is an artifact of our truncation, see Appendix E.
plot, thet,-dependence becomes less and less linear and the
pseudocrmcal exponents more and more sensitive to the

choice of T, made for the fit. Finally, outsid®, no more —0.58, y=1.13. These results are quite stable with respect

power-law behavior is observed. to changes of microscopic parameters. This is in agreement
When we go fromN=3 to N=4, we have observed, as with the stability of 8 in group 2. Interestingly, these initial

expected, thaD becomes far wider and that the power Jawsconditions correspond to smafl in our truncation(152,

hold generically on larger temperature ranges. This is consis-e., to initial conditions close th@©(4)-invariant line x

tent with our discussion of Sec. IX C. Reciprocally, and as=0, see Fig. 2, where th®(4) fixed point is denoted by

also expected, when going froM=3 to N=2, D becomes V.?!! Thus, during a large part of the flow, the trajectory

much smaller and the power laws hold generically on smalleremains close to th@©(4) fixed point before bifurcating

temperature ranges. Let us discuss this point in greater detalvay from this point. This is perhaps the reason why the

now. value of 8 for materials of group 2 is close to that associated

with anO(4) behavior—844)=0.382—a fact that has been

3. The XY case repeatedly noticed by experimentalists. Note, however, that

For N=2, one observes qualitatively the same type ofthe other exponents are not close to Dg4) valuesvgs)

behaviors as foN=3. However, as predicted abov®,is  =0.738y0(s)=1.449.

smaller and the power laws hold at best only on two decades We also easily find initial conditions leading f®=0.25,

of reduced temperature, which is consistent with what is obcorresponding to group 1, essentially composed of STA sys-

served experimentally. This is illustrated in Fig. 13 where wetems. The power laws then hold on smaller ranges of tem-

have represented log-log plots of the magnetization and coperatures and the critical exponghis more sensitive to the

relation length as functions of the reduced temperature. Notdetermination ofT, and to the initial conditions. For such

also the surprising behavior of the correlation length thawvalues of3, we find thaty varies between 0.47 and 0.49,

increases at small reduced temperatisee Appendix E for which is somewhat below the value found for CsMgBsee

an explanation of this phenomengn. Table I.
Within D the exponents vary on the intervals 028 The two previous points suggest that both helimagnets—
<0.38 and 0.4%¥ »<<0.58. such as Ho or Dy—and STA—such as CsMgBican be

We find initial conditions leading to exponents close todescribed by the same field theory but with exponents at the
those of group 4for Ho and Dy, see Table )}l 8=0.38, v  two ends of the spectrum. It is actually also possible that
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helimagnets display a different kind of physics because ofivity of z should be much more difficult to prove experi-
the presence of long range interactions or because of thmentally in this case.
presence of surface effects. It remains mysterious why, in CsMn(Bfdgg1)3s, Such

As in theN=3 case, we can easily find initial conditions strange values of the exponentsndv have been found, see
leading to pseudocritical exponents close to those found iffable IV. As we have already discussed in pdintof Sec.
the six-loop calculation, Table VII. For instance, for initial 11l C 1, we find unconvincing the arguments proposed in Ref.
conditions leading t@g=0.33, we typically findv=0.56 and 144 to explain them. Remeasuring these exponents could
y=1.07. provide accurate results far and v from which universality

As in the Heisenberg case, we have not been able to findnd the negativity ofy could be tested.
initial conditions of the RG flow leading to negative values Most probably STAR and th&;, model undergo both

of 7. first order transitions sincey is found negative for these
Let us now comment our results. models. It would be extremely interesting to study a se-
guence of models that interpolate between STA and STAR to
4. Comments see how the effective exponents change with the deformation
The main feature of the physics of Heisenberg and  ©Of the model. _ _
frustrated magnets—scaling behaviomithout univers- We have already noticed that the exponents found in the

ality—is reproduced, at least qualitatively and, to some exSix-loop calculation are very close to the pseudocritical ex-
tent, quantitatively. This behavior finds reatural explana- ~Ponents found at the minimum of the RG flow in our ap-
tion: there exists a whole domai in the space of coupling prqaqh. It is important to know if this is just an gcmdental
constants such that the RG trajectories startin@iare “at- ~ coincidence or if they correspond to the same fixed point,
tracted” toward a regiorR where the RG flow is slow so €@l in one approach complex in the other. _ _

that there is pseudoscaling. SirRds notreduced to a point, Let us now discuss th&Y case. Most of the points dis-
there exists a whole spectrum of exponents and notique cussed in the Heisenberg case can be transposed here: neces-
set. The occurence of strong first-order phase transitions, th&fty {0 check the scaling relations and the positivity zaf

are observed in some materials and simulated systems, ROSSibility to interpolate between the STA and STAR. Here,
explained by the RG trajectories starting outaf however, we are in a better position to obtain conclusive

Let us now stress that since universality is lost, the deterpesults since the transition is expected to be more strongly of

mination of the precise pseudocritical exponents associatddSt order. o _
with a given material or system is obviously more difficult A better determination oi in CsMnBg would help to
than the determination of the usual—universal—critical ex-confirm that is indeed negative. We also expect to have a

ponents characterizing a second-order phase transition. A¥eaker universality and thus a faster change of the exponents
already said, computing them would indeed require us t&S the microscopic details of the model are varied. In particu-
know precisely the microscopic structure of the materials of@f, @ precise determination ef in the different materials of

systems studied—providing the initial conditions of the RG9roup 1 could lead to incompatible exponents—they are up

flow—and to take into account the full field dependence oft0 Now only marginally compatible—and would give a direct
the potentiall(p, 7). proof of the lack of universality.

On the numerical side, the sequence of models interpolat-
ing between STA and STAR should lead to rapidly varying
exponents. Thus the lack of universality in this case should

There are several tests that can be performed both expette much simpler to prove numerically than in the Heisenberg
mentally and numerically to confirm our proposals. Let uscase. For STA, it would also be extremely interesting to de-
start with the Heisenberg case. termine 7 independently by the two scaling relationg

It is not clear, up to now, whether the materials of group=28/v—1 and n=2—y/v. As far as we known has
1—VCl, and VBr—are really three-dimensional Heisen- mainly been determined using/v. According to our sce-
berg STAs, at least for a temperature range wide enough toario the two determinations should not coincide. However,
measure exponents. It would be very interesting to restudihey are probably both negative.
these materials and to measure all exponents for each of
them. This _could gllow to confirm experimentally the ab- XI. CONSEQUENCES FOR PERTURBATION THEORIES
sence of universality.

Since we predict that they can be violated, there is clearly Frustrated magnets represent a unique controversial ex-
a need to check the scaling relations as well as the negativitgmple of systems for which almost all the possible perturba-
of 7. The experimental determination of the exponepts tive and nonperturbative approaches have been used, some-
and v for the two groups of Heisenberg materials is still times with a very high precision. This allows us to draw
much too poor. It is also necessary to have an estimate afeveral conclusions about the relative predictive power of
both the systematic and statistical errors to strengthen ouhese different methods. First, it appears that ltve-order
conclusion on the negativity ofy. Let us, however, recall results obtained within the Nt or GLW models fail to cor-
that the first-order nature of the transitions in Heisenbergectly describe the physics in three dimensions. Indeed, we
systems is likely to be much weaker than XY systems. recall that the one-loop result of the MLmodel predicts a
Thus the violations of both the scaling relations and the posisecond order phase transition witldé4) behavior while the

X. POSSIBLE TESTS OF OUR SCENARIO
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GLW approach leads to first-order phase transitions for all 6 T l T ,
values ofN smaller than 21.8. Secondly, frustrated magnets E |
probably provides the first example where high-order pertur- an | 1
bative results are questionable. We shall now discuss the ste .
tus of the various perturbative approaches in light of our * i l =
results. s ! \
K. 8n : 7
A. The NL o model approach 2 \| 1
Let us first consider the Nk model approach, focusing L @ \\ &

on the Heisenberg case since it is notorious that this ap- T \\* N7 i
proach does not work foXY spins. The very likely existence o e . — e
of a lineN.(d) going fromd=2 to d=4 confirms what has 5 25 24 26 8/3 28
been already anticipated in Sec. V: the predictions based ol d
this approach are incorrect as for the physicglin3. In-
deed, the shape of this line implies that B¢4) fixed point FIG. 14. The stable,) and unstable ¢_) fixed points as

predicted in the Heisenberg case—that likely exists at alfunctions of the dimensiod. The fixed points are parametrized by
orders of perturbation theory—very probably disappears pethe quantityx; which is propertlonnal to the_ inverse temperature of
tween two and three dimensions. Actually, following this "€ NLo model. The fixed poinC_ appears in a dimension 8/3 and
fixed point, that we calC, for an obvious reason, fromd  collapses with the stable fixed poidt, in d=2.83.

=2 with the simplest*-like truncation, we have found sev- |ow.temperature expansion to explain the existence of a
we find thatC, is characterized by an exponentof the  Berezinskii-Kosterlitz-Thouless phase transitidi* There
O(4) universality class. Second, dss increased, the expo- is however an important difference between the cas¥\of
nenty associated witlC, becomes more and more different nonfrustrated spins and that of Heisenberg frustrated spins.
from that characterizing a®(4) transition. Third, we find |ndeed, in the former case, the low-temperature expansion
that an unstable fixed poif@_ shows up in a dimensiod  performed on the correspondi®(2) NLo model leads to a
>2. As the dimension is further increased, the fixed point§ree theory to all orders in the temperatifén d=2. This
C, andC_ get closer together and eventually coalesce in gesult is, however, known to be incorrect ¥ spins them-
dimension less than three. This phenomenon is illustrated i§e|ves or for the systems that be|0ng to the same uni\/ersa”ty
Fig. 14 in the case of th®(3) X O(3) model at the lowest class—such a§He—that both undergo a phase transition in
order in the field expansidH. d=2. In this case, the unability of the low-temperature ex-
The collapse of the fixed points for different valuesNof  pansion to correctly describe the physics makes no doubt and
generates the curvilc(d). This curve is well known from  gne is invited to turn to other methods: Coulomb?§&sr
the perturbative expansion performed around four dimenspin-vortices®** formulations in two dimensions or GLW
sions. Within our approach, this curve can be followed whermmodel approach in three dimensions. On the contrary, in the
the dimension is lowered down tb=2. There, for a given—  case of Heisenberg frustrated spins, the low-temperature ex-
low—value of N, the curveN¢(d) provides the value of pansion leads to a nontrivial behavior—due to the non-
dc(N) for which the stable fixed point obtained within the Apelian character of th&§O(3) group—so that the inad-

NLo model approach collapses with another—unstable—equacy of the low-temperature perturbation theory is not so
fixed point. Since this unstable fixed pointisetfound in the  gpvious.

low-temperature perturbative expansion we therefore obtain |t remains to understand the very origin of this failure of
here a nonperturbative solution to the breakdown of the'NL the low-temperature perturbation theory. In the caséef
model approach. FAI=3, one getsl,=2.8. Note that ob- nonfrustrated spins, it clearly lies in the existence of non-
taining an accurate determination of the dimensignwhere trivial topological configurations, called vortices, that are not
the fixed points collapse would require us to consider bettetaken into account in a low-temperature expansion. In the
truncations in fields of", than those we have considered. case of Heisenberg frustrated magnets, the influence of non-
However, as already explained in th®(N) case, see trivial topological configurations on the phase transition in
Sec.VI D 9, the stable fixed point coalesces in this case withhree dimensions has also been invoKede Sec. VA It
one of the multicritical points. Thus it is impossible, within remains, however, to confirm that these configurations in-
our truncation, to follow it smoothly for 22d=<2.5. With  deed play a fundamental role and to know, for instance, if
our best truncation, we are anyway able to give an estimatthey are responsible for the first order character of the tran-
of this dimensiond,=2.6—2.7 which fits well with the re- sitions in three dimensions.
sults of Pelissettet al,'®® see Fig. 9. This is a delicate question. Indeed, whereas the perturba-
Frustrated magnets thus provide a situation where there itve approach to the Nkt model misses topologically non-
a manifest breakdown of the low-temperature expansion ofrivial configurations, the GLW and effective average action
the NLo model. This is not the first occurence of such aapproaches are very likely sensitive to such vortices. In ef-
breakdown. The case of the two-component nonfrustratetect, both approaches correctly reproduce the physics of
0(2) system has already exemplified the inadequacy of thénree-dimensionaXY nonfrustrated spin systems at the tran-
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sition which is very likely driven by vortices:>?**However, mental and numerical contexts excluding such an hypothesis.
within these approaches, it is still not clear how the vorticesAt the same time, the phenomenology of frustrated magnets
are taken into account. Therefore, disentangling vortices antlas displayed a novel kind of critical behaviogeneric

spin-waves and understanding the respective role of eacktaling without universality*—requiring the use of new
kind of excitation within the phase transition remains a thetheoretical approaches.

oretical challenge. High-order perturbative calculations imi=3 (Refs.
134,135,16Y provide an explanation to the lack of univer-
B. The GLW model approach vs the NPRG approach sality in frustrated magnets: the focus character of the fixed

} ) ] point induces spiral-like RG trajectories from which, accord-
We now discuss the relationship between the weaking to Calabrese et al,'®® follows varying effective

coupling results obtained within the GLW model gxponentd3*1%We have, however, underlined several draw-
approach—in particular, the six-loop computation—and ouhacks of this explanation. The major one lies in its lack of
results. A natural question arises: how is it possible to reconystyralness: a fine-tuning of initial conditions seems to be
cile these results together and what does this imply for th%ecessary to match with the phenomenology. Another draw-
different approaches? - back of the perturbative approach is that, being restricted to

We have noted an important fact: the critical exponentspyestigate the physics in three dimensions, it cannot provide
found for N=3 in the six-loop calculation and in our 5 general picture of what happens between two and four
approach—at the minimum of the flow—are very clésee  gimensions. In particular it provides no explanation to the
Secs. IXB and IX D. We have also found very close expo- tajlure of the NLo model approach.
nents forN=2 (see Sec. IX Dwith the only difference that  \wjithin the framework of a NPRG approach, the generic
there is no minimum in the flow in this case. This is a ratherang nonuniversal scaling finds a natural explanation in terms
strong indication that the two sets of exponents have a comsf the slowness and “geometry” of the flow. This method
mon origin. This leads us to formulate some proposals tQyso explains the mismatch between the different perturba-
reconcile the two approaches. _tive approaches by means of a mechanism of annihilation of

The first one is that the fixed point that appears as real ifixed points in a dimension between 2 and 3 that invalidates
the six-loop calculation and complex in our approach is, acthe ow-temperature perturbative approach performed from
tually, a complex one. This would mean that the computaihe NLs model. As said along this article, more work, in
tions of Pelissett@t al. and Calabreset al. is, actually, not articular the recourse ténsatzinvolving the full field-
converged as for the nature—real or complex—of this fixetyependence or full momentum dependence of the effective
point whereas it is almost converged as for the exponentgction, is probably necessary to completely understand the
We shall not speculate too much about the origin of this—s;tation. This includes the clarification of the relation be-
hypothetical—failure of the weak-coupling approach. Let usyyeen our approach and the six-loop results. However, the
mention again, however, that the perturbative series obtaineg\ain features of frustrated magnets appear now to be well
in the case of frustrated magnets appear to be rather particgascribed.
lar since the six-loop results has been obtained in a region The main result of this article is the explanation of the
where thg perturbative  expansions areot Borel  generic character of weak first-order phase transitions in
summablé®’ It is clear that this question deserves further sy strated magnets. Given the closeness between these sys-
investigations. Frustrated magnets could appear as the_fir{gmS and others systems—see the Introduction—it is natural
example of a breakdown of a weak-coupling perturbativeq speculate about the degree of generality of this phenom-
analysis. enon.

The second proposal is that, reciprocally, within the \ithin our approach, the generic character of the weak
NPRG method, the lack of fixed point in theér and Heisen- first-order phase transition appear to be strongly related to
berg cases is due to artifacts of the truncation in fields and/gj,e proximity of the number of componerisof the system
derivatives. Only the recourse to other kinds of expansiongnqer study withN.(d=3). For frustrated systems, it ap-
of the effective actiod”,—involving either thefull function pears that this value is of the same order than the physically
Ui(p,7) or thefull momentum dependence—could lead 10 ejevant values o, N=2, andN=3. This could be a very
unambiguous statements. In this respect, we however recngeciﬁc property of the frustrated systems. We now argue

that the LPA approach of Zumbach, that involves the fullihat, on the contrary, this property is likely to be common to
field dependence of the potential, has led to no fixed poinfyany other systems.

for N=2 andN=3. Let us recall that the lind.(d) corresponds to the col-
lapse of two fixed points, one of them governing the phase
transition. This phenomenon cannot happen in theories with
only one¢* coupling constanfi.e., in O(N) modeld since,

On the basis of their specific symmetry breaking schemen this case, there is only one fixed point apart from the
it has been propos&t®71:125126134hat the critical physics gaussian. However, for theories withcoupling constants,
of XY and Heisenberg frustrated systems in three dimensionse expect 2 perturbative—real or complex—fixed points in
could be characterized by critical exponents associated witt=4— € since, at one loop, thg functions are quadratic in
anewuniversality class. From this point of view, the study of the coupling constants. When the number of components of
frustrated magnets has been rather disappointing, the expethe field is varied, these fixed points move in the coupling

XIl. CONCLUSION AND PROSPECTS
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constant space and it is generically observed that they meé&tansition,Z behaves with the RG scaje as

and collapse for some critical valié¢.(d). Many examples

are now known in the literature. Let us review some of them. Z(p)~p” (A1)
Let us first consider the generalization of the model stud

ied in this article consisting if? orthonormalN-component

vectors. It has #-dependent critical value df given at one

when u—0, which corresponds to the long distance—i.e.,
critical—physics. By combining these two results we find

=0.
loop by?® N~ 10P. ForP=3, one finds at two loop ord&#
N.(4— €)=32.49- 33.7%. (165 APPENDIX B: THE INVARIANTS OF THE SYMMETRY
GROUP
In the Abelian Higgs model coupled taNxcomponent scalar o . _ o
field, relevant to superconductori(d) is found at two- We show, in this appendix, that all field combinations
loop order to b&?1>216 invariant undeO(N) X O(2) can be rewritten in terms of the
two invariantsp and 7 introduced in Eq(52) and given by
N.(d=4—€)=182.9-242.%. (166  p=Tr('®d) and =13 Tr('®P —1p/2)%. This property isa

o priori nontrivial since we can easily build an infinite number
InaSu(2) gauge model coupled to bosons, it is given atof invariants by considering, for instance, TH®)" for any
two loop order b§* value of n or det(®®). The result is easily obtained by
using the properties of the characteristic polynomial of the
No(d=4—€)=718990.&. (167) Squa?re ma‘iri)o'[(’: poly

In a O(p) gauge theory coupled td scalar fieldg(in the
vector representationit is given at one-loop K}’ N,
~40p. In the case of a two by two matrix, the characteristic poly-

In all these examples, we observe tii(d) decreases nomial reads
very steeply wherd decreases. This is in line with our ex- 5
pectation that largeN and smalld favor continuous phase Px(M)=\"=\Tr X+detX. (B2)
transitions. In particular, as far as we know, in alldmod-  The Cayley-Hamilton theorem states that any matrix is a root
els relevant to systems whose order parameter is continuougs its characteristic polynomial
a stable fixed point is found id=2+ € for all N>2. This is
in particular the case for the Nt model supposed to de- Px(X)=0. (B3)
scribe the physics of the Abelian Higgs modeldr: 211218 _ _
This suggests that (d=2) is always smaller or equal to 2. APPIYIng this last result to the two by two matri & we
It is interesting to notice that this bound is probably reached®t
in frustrated system®8 see Sec. V B 3. It is thus extremely ({DD)2—DD Tr('DD) +de('dD)=0.  (BA)
probable that in many systems the cuNgd) has a similar '
shape as the one found in frustrated systems, see Fig. 9. THyy taking the trace of this equation, we see that detb)
suggests that many systems could exhibit weakly first-ordes p2/4— 7. Moreover, if we multiply Eq(B4) by '‘®® and
transitons in d=3 without any fine-tuning of take the trace of this equation, we observe thatdrp)?
parameterd!®??° The effective average action method can be expressed in terms of TH®)?, Tr(‘®®d), and

Py(N)=de(X—\1). (B1)

should be ideally suited to study these situations. det(*®d) which, themselves, can be expressed in terms of
and . By iteration, we can show that aD(N)XO(2) in-
ACKNOWLEDGMENTS variants can be expressed in termsadnd 7. This property

) , can be generalized to th©(N)XO(P) model (with N
We thank D. Loison for useful remarks and J. Vidal for a > p) \hich admitsP independent invariants.

careful reading of manuscript and helpful remarks.

APPENDIX C: THE THRESHOLD FUNCTIONS
APPENDIX A: THE POSITIVITY OF THE ANOMALOUS

DIMENSION We discuss in this appendix the different threshold func-
) ) . tions |, m andn appearing in the flow equations, which en-

In this appendix, we sketch the proof showing that the;oge the nonperturbative properties of the theory. We con-
anomalous dimensioly must be positive in a second-order gijer here a general case, where the threshold functions
phase transition if the underlying theory is given by a usuayepend on three arguments. For particular truncations—for
¢*-like GLW theory. This excludes, for instance, theoriesjnstance that discussed in taN) vectorial model—it may
involving gauge fields or replica field theories of disorderedhappen that some of these arguments are vanishing. In such

systems using the formal_—>0 limit. The argument goes as ¢ase we do not write the associated argument so that, for
follows. On one hand, using the Ken-Lhemann decompo- instanceldo(w 0,0) is denoted byd(w)
n, (] n .

sition, it is possible to prove that the field renormalizatibn
is positive and less or equal to 1==<1.1?20On the other
hand, using the RG equations, it is possible to show that,
around the fixed point describing the second order phase The threshold functions are defined as

1. Definitions

134413-46



NONPERTURBATIVE RENORMALIZATION-GROLUP . . . PHYSICAL REVIEW B 69, 134413 (2004

1= o~ nd (wy,w,,a)
Iﬂlnz(wl,wz,a)=—§fo dyy¥?- 15, nyny\ W12
1= 1
1 :__J d /2
yy*
X[(pl+wl)”1(P2+W2)”2] (C1a 2Jo (P1+wq)"(Py+w,)"2
1 (= ~ ’ ’
M, 0 (W Wz, 2)=— 5 fo dyy?2 13, X {y[1+atr(y)+yr (ILory) +2yr ()]
y(3,P1)? Ny n,
X ,  (Clb X + (V) v
|(P1+W1)n1(P2+Wz)n2 (1D Pitw;  Prtw, ry)+yre)]
1 ~ ’ "
nglnz(WLWZya):_EJO dyy??~ 15, —2y[2r'(y)+yr (y)]], (C9)
X YoyP , (C10 mglnz(WLWz,a)
(P1+wq)"(Py+wy)"2
where we have introduced _ Ef“d " 1+a+r(y)+yr'(y)
2Jo (Py+wy)"(Py+wy)"2
P1=Pi(y,a)=y[1+r(y)+a],
P,=P,y(y)=y[1+r(y)] (C2 ><|y[1+a+r(y)+yr’(y)][nr(y)+2yr’(y)]
with r(y) being the dimensionless cutoff:
ng 2
+ —2qr(y)+yr'(y)]
Ru(yK? P+ Pyt 7
r(y):M (C3) 1TWq 2T W
Zyk®
We recall that the tilde iriﬁt means that only thedepen- —ay[2ri(y)+yr (y)]]. (C9

dence of the functiorR, is to be considered. As a conse-
guence, we should not consider theependence of the cou-
pling constants to perform this derivative. Therefore, in th
preceding equations

Once a regulator(y) has been chosen, the threshold func-
€ions can be computed numerically and, in some cases, ana-
lytically.

- R 9

IPi=—r (9_Rkpi (CH

2. Substitution rules
We give here the rules which relate the different integrals
=—y[gr(y)+2yr'(y)]. (C5  appearing in the calculation to the threshold functions. When

i _ .. calculating the flow equation for the coupling constants re-
Now, threshold functions can be expressed as explicit intepteq to the potential part, only tHefunctions appear:

grals if we compute the action 5{ To this end, it is inter-
esting to notice the equalityl,d,P;=,d,P; , so that

- ddq .
atf (Zw)d[Rk(q2)+(Z+A)q2+Wﬂ 1

X[R(g%) +Zg?+W,] "2

Gyt (y)=—nlr(y)+yr'(y)1=2y[2r'(y)+yr"(y)].
(Co)

We then get W, W, A
1

—.—=.5
19 o (Wy,W a)=_£rgdyy“”2 7r(y)+2yry) ZKe’zKe’ Z
nyny 1,2, 0 (P1+Wl)n1( P2+W2)n2 (Clo)

— —nqy—ny,d—2(n{+ny)d
= —4pgZ Mk 2L

2

Ny Ny

% + (C7) For the coupling constants associated with the derivative
Pi+w;  Pytw,y)’

terms, two more functions appear:
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d._ ddq and are independant of the actual form choserr{g).
—atf qYR([p+a1D)+(Z+A)(p+q)2+W,;} ™ Similarly, one finds
dp? "/ (2m)¢
2 -
X[Rk(q2)+zq2+W2]*n2 IO[?(O’Oa)_l (Cla
_ 4Udn1Z—nl—Hde+a—2(n1+ﬂz+l) Also, the threshold functiomg,gw,0,0) takes a universal

form for large argumend, which enters in thes function of
the temperature in the NL model around two dimensions.

dra_o| Wi W2 A Using Eq.(C7), one gets
el zezez L+r(y)+yr'(y))?
: * +r(y)+yr'(y
lim w?m2,(w,0,0 =J dyo —) =1,
song|mpre [ W2 A A0 o Y T )
2| g +1n,+1 Zk2 ’ Zk2 4 (C16)
A e W, W, A where, again, we have used the asymptotic behaviors of
Tzt Z120 5120 7 ) | [ (C1D  ((y), Eq.(C14.
4. Threshold functions from the theta cutoff
d~ ddq W For certain regulating functions(y), it is possible to
Fﬁt (277)dp'q a compute analytically the threshold functions. Using such
P regulating functions is very helpful in practice and simplifies
X{R([p+q]2)+(Z+A)(p+q)2+ Wy} M considerably the numerical procedures. In this section, we
give the threshold functions associated with the theta cutoff,
X[Re(q2) +Zq2+W,] "2 see Eq.(91). One has, fom=0
SUdnl np—npd+a—2
= —ny— a=2(n+ny)qd+a 2 1
Z M2k 1PN s, |g ) (W1,W2,0)2_<1_ Y
L di™ A2/ 1+wy)"(1+wy)"™
x( Wy We A (C12 n n
T 5 1 2
2’ 2’ +
ASASE (1+W1 1+w,)’ (€17
Notice that the powers & andZ appearing in the preceding
expressions are chosen so that when the flow equations are g
reexpressed in terms of dimensionless renormalized quanti- Moo W1, W5,0)= T W wane’ (C19
ties, there is no explicit dependence on these parameters. (1+wy)™(1+wy)
3. Universal values of the threshold functions APPENDIX D: THE MINIMUM OF THE RG FLOW

For particular arguments, the threshold functions take val- In this appendix, we describe in more details the notions
ues independent of the choice of the regulating functiorof pseudo-fixed point and of minimum of the flow. We then
r(y). This is particularly important when we extract the first explain how these ideas have been implemented in practice
coefficients of the perturbativg functions out of the non- to determine effective exponents for very weakly first-order
perturbative ones, since the former are universal. From Eghase transitions.

(C7) we can compute the value tﬁf‘o(o,Oa) which enters in As described previously, the RG flow equations for STA
the B function for the coupling constant of the GLW model with a large number of spin componefts>N.(d)] admit
around four dimensions two fixed points. Whem is decreased slightly beloi.(d),
the two fixed points acquire a small complex part and lose
% r'(y) their direct physical relevance. Strictly speaking, there is no
lﬁS(0,0a)=—nf dy ——— more attractor in the real coupling constant space but the
o “[1+a+r(y)]"

flow remains sensitive to the presence of complex fixed

points. Zumbac# %’ proposed that a particular point, the
(C13  minimum of the flow, should mimic to some extent the be-
(1+a)" havior of an attractor. This point is defined as the location, in

] ) ) coupling constant space, where the flow is the slowest and
The last equality follows from the asymptotic behaviors of e quantity

r(y) that are given by Eq486) and (87):

={[1+a+r(y)] "=

imr(y)=0, limyr(y)=1 (C14 Algh=3 S £ (1)
y—o y—0 [
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—where B; are theB functions for the different coupling model characterized by one fieltl and by a “¢p*— ¢°” po-
constantg;—is minimum. Let us stress on few properties of tential
the minimum of the flow.

When a true fixed point exist#\({g;'})=0 and, in this ) 4 6
case, the minimunis a fixed point. U(¢>)=r¢—— ¢;+ ‘ﬂ (E1)

When two fixed points annihilate, we are left with a single 2 2 6
minimum of the flow sitting right at the position where the
fixed points have collapsed.

For trajectories getting close to the minimum, the RG
time spent in its vicinity is large and so is the correlation
length. ha

We therefore see that a minimum shares some features

with a true fixed point. One easily obtains the equation char- .
acterizing a minimum [¢™(r)]P=1+ 1T (E2)

As usual, we assume thatvaries linearly with the tempera-

For low reduced temperatures—smal—the potential
s a local minimum fogp=0 and a global minimum for

IA so that the system exhibits a spontaneous magnetization, see
(9—gi=§j: M;;Bj=0 (D2)  Fig. 15. When the temperaturreis increased, the energy
difference between the configurationgg=0 and ¢
with =¢"™"(r) decreases and eventually vanishesrfer .=3/4
which defines the critical temperature. Rolarger thanr .,
9B, the ground state of the system is given by the configuration
i'j_a_g;i' (D3) ¢=0 so that the system has no more spontaneous magneti-
zation. Therefore, when one crosses the critical temperature,
Under the assumption that the minimum of the flow mim-0nes observes a jump of the magnetization figf(r.) to
ics correctly the attractor of the trajectories, it is natural to0, which is the consequence of the competition between two
compute the critical pseudocritical exponents in the standarninima of the potential, see Fig. 15. o
way. The anomalous dimension is obtained by evaluatin? For r>r., the field configuration™"(r) which is no
7({g;}) at the minimum of the flow and by diagonalizing onger the ground state becomes a metastable state. On_e sees
the matrixM, ; at this point. It is important to notice that the from Eq. (E2) that, forr>r*=1, this metastable state dis-
pseudocritical exponents thus obtained are invariant undedPpears and we are left with=0 as the only physically
reparametrization of Coup”ng constants, as it should bel;elevant state, see Flg 15. FinaIIy, it must be noted that, for

since Eq.(D2) transforms as components of a vector. r=r*, the curvature of the potential at the configuration
¢™(r*) vanishes:U"[¢™"(r*)]=0. This means that the

susceptibility in the metastable state diverges=at *. Simi-
larly, one can show that the correlation length in the meta-
stable state also diverges.

In this appendix, we discuss in more details the problems Let us now come back to the NPRG method. In the trun-
that we encounter in our description of the first-order phaseation of the effective average action that we use—an expan-
transition that occurs in frustrated magnets. We also explaision in powers of the fields of the form E{.52—we retain
the surprising increase of the correlation length observed ainly local informations on the potential around its nontrivial
small reduced temperaturgsee Fig. 18)]. minimum—which is equivalent to the configuratigh™"(r)

To this end, let us discuss the following toy model of first discussed above. In particular we do not accurately describe
order phase transition. We consider a scélgfinvariant  the physics around the zero-field configuratigp= (;2:6_

We are thus unable to compare the energies of different local
! U(e) [>T minima and to determine the temperature of transition at
which the energies of the two minima are equal. Also, in a
small domain of temperatures—equivalent hererger
<r*—the configuration that we probe corresponds actually
to the metastable state and not to the true equilibrium
state. However, these phenomena should not induce a large
bias in our analysis as long as the transitionnisakly of
first order since, in this case, the temperature range where
metastable states exist is very small. This means that the
error induced on the determination of the critical temperature
is very small too.

FIG. 15. Shape of the potentiéE1) for different temperatures, Moreover in our study, as in the toy model above, we
i.e., different values of the parameterThe plain lines correspond Should observe whenreaches *—the temperature at which
tor=r. andr=r*, while the dotted lines correspond to different the metastable state must disappear—the associated diver-
generic values or. gence of the correlation length discussed previously. This is

APPENDIX E: THE DISCONTINUOUS CHARACTER OF
THE PHASE TRANSITION
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precisely what we found in frustrated magnets for small re-ered. These problems can be cured by considering trunca-

duced temperature—see Fig.(hB

tions of the form Eq(150 which retains the full field de-

Note that this increase of the correlation length as well apendence of the potentigsee, for instance, Ref. 46 for a
the error associated with our determination of the criticaltreatment of a first-order phase transition in a NPRG ap-
temperature both rely on the truncation that we have considsroach.
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