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Correlation functions of the magnetization in thin films
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We calculate the correlation functions of uniform magnetization in thin ferromagnetic films for small de-
viations from equilibrium using a functional formalism. To take account of dissipation and fluctuations con-
sistently, the magnetization is coupled linearly to a bosonic heat bath. The correlation functions of the mag-
netization strongly depend on the density of states of the bath. Depending on what density of states we choose,
we show how the recent results of Smith@J. Appl. Phys.90, 5768 ~2001!# and Safonov and Bertram@Phys.
Rev. B 65, 172417~2002!# obtained by macroscopic methods can be understood in light of the microscopic
treatment presented here.
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I. INTRODUCTION

The problem of magnetic noise in nanosystems and
particular in giant-magnetoresistive read sensors is of con
erable importance to the physics of magnetic recording.
macroscopic systems, the classical Landau-Lifshitz-Gilb
~LLG! equation has been used frequently to study ther
fluctuations in magnetic systems mainly through a stocha
approach.1 Magnetic noise in thin anisotropic films with th
magnetization close to equilibrium has been recently trea
by at least a couple of different methods with differe
results.2–4 The first work by Smith2 is based on a linearize
LLG and application of the fluctuation-dissipation theore
~FDT!.5 The second method by Safonov and Bertram3 is also
approximate and based on analogies with the harmonic
cillator and a seemingly different form of the FDT.6

To better understand this discrepancy, we study this
ticular problem of magnetic noise in thin films from a micr
scopic point of view. Since we are dealing with a magne
zation slightly disturbed from equilibrium, we use boson
degrees of freedom to describe the magnetization.7 While
this is a rather crude approximation, it is equivalent to
one used in Refs. 2 and 3. Moreover, we use the languag
coherent states~CS! to describe the states of the magnetiz
tion since such a representation is the most natural for
semiclassical limit.8 The dissipation is simulated by couplin
the magnetization to a bosonic environment.9 The noise
spectrum is found by calculating the correlation functions
the magnetization. We carry out the calculations with a
without use of the FDT. We find that both methods give t
same result. However not using the FDT entails using fu
tional methods not commonly used in recoding physics.10,11

These methods are attractive because they are equally a
cable to highly nonequilibrium situations which involve im
portant problems such as the switching of the magnetizat

Two of us have already used functional methods in a
cent paper that addressed the conditions under which a
equation can be recovered from a simple quantum mod12

The results presented here complement those present
Ref. 12. However this paper can be read independently
our previous work. The major result of this work is gene
expressions for the correlation functions of the transve
0163-1829/2004/69~13!/134412~10!/$22.50 69 1344
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components of the magnetization from which we can reco
both LLG-type correlation functions and oscillatorlike corr
lation functions for the simplified Hamiltonian. Currently ex
periments do seem to favor the LLG result, however, we w
not address these questions here.4,13 We simply show that for
systems close to equilibrium and within the harmon
oscillator approximation for the transverse components
the magnetization, we can have different theories for a la
spin. However, it must be kept in mind that the results o
tained are based on an artificial Hamiltonian and a v
simple coupling between the magnetization and the bath
more realistic coupling such as that of conduction electr
interacting with localized magnetic moments is treat
elsewhere.14

The paper is organized as follows. In Sec. II, we fi
introduce the Hamiltonian for the system considered he
Then we write this Hamiltonian in a simplified approxima
form valid for near-equilibrium cases. It is shown that if w
use the same approximations as those used in Refs. 2 a
the spin Hamiltonian is exactly that of an oscillator. In Se
III, we first derive the CS generating functional for this sy
tem. Then, we derive the general correlation functions for
magnetization without using the FDT. The linearized LL
result is shown to follow from the general result by assum
a bath for which the product of the density of states and
coupling constants is linear with frequency. This is the sa
condition recovered in Ref. 12. To get the Safonov-Bertr
result,3 we set the product of the coupling constants and
density of states to a constant. We find that in this particu
case there is no need to introduce a tensor damping or us
rotating wave approximation to get our results. At the end
this section, we address questions15 that put in doubt the
correctness of the application of the FDT in deriving t
correlation function in Ref. 3. We find that an equilibriu
calculation produces the same results as those obtaine
real-time nonequilibrium methods. Finally in Sec. IV, w
summarize and discuss our results.

II. MICROSCOPIC MODEL

In this section, we introduce a microscopic model for
thin film and approximate the magnetization operator by
©2004 The American Physical Society12-1
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A. REBEI, M. SIMIONATO, AND G. J. PARKER PHYSICAL REVIEW B69, 134412 ~2004!
bosonic operator stressing the analogies with the harm
oscillator ~see, e.g., Ref. 16!.

We consider the following system: A thin magnetic sl
with easy axis along thez axis and a hard axis along thex
axis which are both in plane. We assume that there is a l
external magnetic fieldH along the easy axis that keeps t
average magnetization in plane. We will be interested onl
fluctuations around the equilibrium position of the magne
zation, i.e., fluctuations in thex and y components of the
magnetization. The Hamiltonian for such a system, coup
to a bosonic heat bath, has the general form (\51)

Ĥ52HŜz2
K1

2
Ŝz

21
K2

2
Ŝx

21(
k

vkbk
1bk1V~bk ,bk

† ,Ŝ!,

~1!

whereK1 andK2 are the anisotropy constants andvk is the
energy of thekth bath’s oscillator. The spin-bath interactio
V will be taken linear inŜ and the bath variablesbk . A
possible form forV is

V~bk ,bk
† ,Ŝ!5(

k
~gk* Ŝ1bk1gkbk

1Ŝ2!, ~2!

where

Ŝ15Ŝx1 iŜy , ~3!

Ŝ25Ŝx2 iŜy . ~4!

gk’s are the coupling constants, which can be time dep
dent. The bosonic-type operators for the bath oscillators,bk ,
satisfy the usual commutation relations

@bk ,bk
1#5dkk8 . ~5!

For the magnetization,Ŝ, we have the following commuta
tion relation:

@Ŝ1 ,Ŝ2#52Ŝz . ~6!

For precession around the equilibrium position, i.e., thz
axis,Sz is usually assumed to be a constant17 and the Hamil-
tonian expression for the spin part,ĤS , can be simplified to
be of the general form

ĤS5 1
2 ~AŜx

21BŜy
2!, ~7!

where

A5K11K2 , B5K1 , ~8!

that is, the energy expression which was assumed in b
calculations by Smith2 and Safonov and Bertram.3

To account for thermal fluctuations, we need to calcul
the two-point correlation functions of the transverse com
nents of the magnetization. It is now more appropriate
define the following operators,7

a5
1

~2S!1/2
Ŝ1 ~9!
13441
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a15
1

~2S!1/2
Ŝ2 , ~10!

then, we have

Ŝz'S2a1a, ~11!

which is the Holstein-Primakoff approximation at low tem
perature. However, here we insist on takingSẑ to be a con-
stant operator with magnitudeS. Then we can normalize by
2S the Hamiltonian of the system. The operatorsa and a1

then behave as bosonic degrees of freedom, i.e., the ma
tization behaves, in this approximation, like a harmonic
cillator ~see Ref. 18 for a discussion of the validity of th
approximation!. If we rewrite the Hamiltonian in terms o
these operators, we find

Ĥ5Va1a1V~a,a1!1(
k

vkbk
1bk2(

k
gk~a1bk1bk

1a!,

~12!

where

V5H1K11 1
2 K2 , ~13!

and the potentialV is in this case equal to

V~a1,a!5 1
4 K2~aa1a1a1!. ~14!

In the following, we use this simplified Hamiltonian within
path-integral formalism in both real and imaginary time~i.e.,
in the nonequilibrium and equilibrium cases! to calculate the
transition probabilities which are needed for the correlat
functions. From this, we are able to identify the cause of
discrepancy between Refs. 2 and 3.

III. THE CORRELATION FUNCTIONS OF THE
MAGNETIZATION IN THE HARMONIC-OSCILLATOR

APPROXIMATION

To set the notation for what follows, we briefly review th
coherent-state representation for the magnetization and
bath. This representation is used in a path-integral appro
to define a functional generator for irreducible Green’s fun
tions. This functional is then used to calculate the symm
trized two-point correlation functions. The calculation is ca
ried out using two different methods. One is based on
real-time approach, while the second is based on
imaginary-time ~equilibrium! formalism. Both approache
are path-integral approaches. The equilibrium appro
makes use of the FDT while the real-time one doesnot de-
pend on it. Both methods are shown to give the same ans
and hence the discrepancy in the results of Safonov
Smith is not due to a faulty use of the FDT.

A. The coherent-state representation : Equilibrium and
nonequilibrium dynamics

Coherent states are the natural representation for s
classical calculations. A Gaussian wave packet for a h
2-2
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CORRELATION FUNCTIONS OF THE MAGNETIZATION . . . PHYSICAL REVIEW B69, 134412 ~2004!
monic oscillator with minimum uncertainty is a cohere
state. They are formally defined as eigenstates of the an
lation operator8

aua&5aua&, ~15!

wherea is a complex number. An important operator re
tion for a path-integral representation is the decomposition
the unit operator in terms of coherent projection operato

E da* da

2p i
e2a* aua&^au51̂, ~16!

which is used in the discretization of the path integral.19 The
coherent states form an over-complete basis.

The real-time formulation deals with nonequilibriu
questions.11 This is the method we adopt in the calculatio
of the correlation functions of the magnetization without u
of the FDT. For a general operatorO, its average value a
any timet is given in terms of the density matrixr,

^O~ t !&5Tr^rO~ t !&. ~17!

The operatorO is in the Heisenberg picture,

O~ t !5ei ĤtOe2 i Ĥt. ~18!

Therefore, the average of the observableO at time t can be
written in terms of that att50,

^O~ t !&5Tr~rei ĤtOe2 i Ĥt!. ~19!

This latter average can be written in terms of path integ
as in the equilibrium case.19 First we define the operatorsK
andK̄ which are functions of external sourcesJ andJ* . The
operatorK is a forward propagator and is defined as follow

K@J1 ,J1* #5T expH 2 i E
t i

t f
~Ĥ2J1* a2J1a1!dtJ

5T expH 2 i E ~Ĥ2F1
xSx2F1

ySy!dtJ , ~20!

whereT is the time-ordering operator andF1 andF2 are real
external fields which are coupled to the transverse com
nents of the magnetization.K̄ is a backward operator and
therefore defined in terms of antiordered time operatorT̄,

K̄@J2 ,J2* #5T̄ expH 2 i E
t f

t i
~Ĥ2J2* a2J2a1!dtJ

5T̄ expH 2 i E ~Ĥ2F2
xSx2F2

ySy!dtJ . ~21!

Next, we define a generating functional

Z@J,J* #5Tr$r@J3 ,J3* #K̄@J2 ,J2* #K@J1 ,J1* #%. ~22!

J is now the three-vector (J1 ,J2 ,J3). The density matrixr is
assumed of the form
13441
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r@J3 ,J3* #5TIexpH 2E
0

b

~Ĥ2J3* a2J3a1!dtJ
5TIexpH 2E

0

b

~Ĥ2F3
xSx2F3

ySy!dtJ , ~23!

where TI is now a time-ordering operator along th
imaginary-time axis. Hence, all correlation functions can
obtained from the coefficients of the Taylor expansion of
functional Z@J,J* # aroundJ5J* 50 ~or F15F25F350).
For example, the average value of thex component of the
magnetization at timet can be found by differentiatingZ
with respect toF1

x at the same timet,

1

Z
dZ@J,J* #

dF1
x~ t !

U
F50

52^Sx~ t !&. ~24!

Next we define another functionalW which at equilibrium
becomes the thermodynamic potential of the system,

Z@Fi 51,2,3#5exp$ iW@F#%. ~25!

The functionalW, as will be seen below, is the more appr
priate functional to calculate and expand in powers ofJ and
J* ~or F). Therefore, we have for averages and two-po
correlation functions,

dW

dF1
x~ t !

U
F50

5^Sx~ t !& ~26!

and

d2W

dF1
x~ t !dF1

x~ t8!
U

F50

52 i ^T~Sx~ t !Sx~ t8!!&. ~27!

Similar expressions hold when we differentiateW with re-
spect to the sourcesJ andJ* . They are related to each othe
by the chain rule.

Next we give an explicit expression for the functionalW
in terms of coherent states and calculate all the associ
propagators.

The generating functionalZ is defined above, Eq.~22!.
Using coherent states, for both the bath and spin, this tr
formula can be written in terms of path integrals over sp
variables and bath variables,

Z@J,J* #5E dm~a1!E dm~a2!E dm~a3!E dm~w1!

3E dm~w2!E dm~w3!exp$2ua1u22ua2u2

2ua3u2%expH 2(
k

~ uw1,ku21uw2,ku21uw3,ku2!J
3^a1 ,w1ur@J3 ,J3* #ua2 ,w2&

3^a2 ,w2uK̄@J2 ,J2* #ua3 ,w3&

3^a3 ,w3uK@J1 ,J1* #ua1 ,w1&. ~28!
2-3
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A. REBEI, M. SIMIONATO, AND G. J. PARKER PHYSICAL REVIEW B69, 134412 ~2004!
Thea i 51,2,3 represent states of the spin system, while
w i 51,2,3 represent the bath states. This integral can be
mally written as a path integral along the path in Fig. 1 w
periodic boundary conditions similar to the equilibrium pa
tition function calculations. This functional can be calculat
exactly only in few cases in particular if the Hamiltonian
quadratic. Higher-order terms can be accounted for only
proximately. This is best done through a graphical proced
such as the Feynman diagram technique. Here we ha
quadratic Hamiltonian and hence we can solve forZ, how-
ever, we will mention briefly what happens in the gene
case.

In our case, the bath degrees of freedom can be integr
out exactly and we can derive an exact effective action
the spin degrees of freedom. In the general case, the effe
action can be derived perturbatively. From it, we calcul
the correlation functions ofS. We find

Z@J,J* #5E dm~a1!E dm~a2!E dm~a3!

3exp$2ua1u22ua2u22ua3u2%E
a1

ā3
dm~z1!

3E
a3

ā2
dm~z2!E

a2

ā1
dm~z3!

3expH (
i 51

3

I i@zi ,z̄i ,Ji ,Ji* #J F~Z,Z̄!, ~29!

where F(Z,Z̄) is the Feynman-Vernon functional for th
spin-bath system given by

ln F~Z,Z̄!5E dtE dt8F2(
k

ugku2Z̄~ t !•Gk~ t,t8!•Z~ t8!G .
~30!

The three-vectorZ is related to the three branches of t
curveC, Fig. 1,

Z5S z1

2z2

z3

D . ~31!

The time integrations are defined based on the pathC:

t i,t,t8,t f , t,t8PC(1),C(2)

t i,t,t8,t i2 ib, t,t8PC(0).

FIG. 1. Complex time path for the generating functional.
13441
e
r-

p-
re

a

l

ed
r

ive
e

The Feynman-Vernon term is the only term which is dep
dent on the bath parameters. The functionsGi j

k (t,t8), nine in
total, are propagators associated with the bath oscillat
Hence they can easily be calculated since the oscillator
of the Hamiltonian is quadratic and the spin can be cons
ered as an external field.

In the following, we take account of the imaginary-tim
branch through the assumption that initially the system is
equilibrium. For a general potentialV, the generating func-
tional can be written in terms of that of a free system,Ĥ0
5Va†a, interacting with the bath,

Z@J,J̄#5expH 2 i E
C
dtVF ]

]Ji~ t !
,

]

] J̄i~ t !
G J ZSB@J,J̄#. ~32!

ZSB is therefore the generating functional of a particle int
acting with the bath only and with no external potential. Th
latter formula is valid in the general case and is the star
any perturbative calculations. The free action along the re
time trajectories is given by

i I 1
05 i E dtF ż̄1z12 z̄1ż1

2i
2V z̄1z1G ~33!

along the pathC(1) and by

i I 2
052 i E dtF ż̄2z22 z̄2ż2

2i
2V z̄2z2G ~34!

along the pathC(2), Fig. 1. At t i→2`, the system is at
equilibrium, then we can assume that the initial density m
trix is thermal, withJ3(t i)50. Therefore we write that

r~ t i !5
1

Z~ t i !
e2bH(t i ), t i→2`. ~35!

Then, we observe that

^a1ur~2`!ua2&5E
a1

ā2
dm~z3!eiI 3

0[z3 ,z̄3]F~z3 ,z̄3!, ~36!

where I 3
0 has the same expression asI 1

0 but with t→ i t .
Hence in this case, the initial density-matrix element is j
another overall factor in the generating functionalZ,

Z@J,J̄#5E dm̄~a3!E dm̄~a1!dm̄~a2!^a1ur~2`!ua2&

3E
a1

ā3
dm~z1!E

a3

ā2H dm~z2!

3expF2E
C1

dtVS ]

]J~ t !
,

]

] J̄~ t !
D G J

3expH i I 1
0@z1 ,z̄1#1 i I 2

0@z2 ,z̄2#

1 i E dt~J•Z̄1 J̄•Z!JF~Z,Z̄!, ~37!
2-4
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CORRELATION FUNCTIONS OF THE MAGNETIZATION . . . PHYSICAL REVIEW B69, 134412 ~2004!
with Z5(z1 ,2z2) and the measure is defined by

dm̄~a!5dm~a!e2uau2. ~38!

Therefore we define a new generating functionalẐ,

Z@J,J̄#5E dm̄~a3!E dm̄~a1!

3F E dm̄~a2!^a1ur~2`!ua2&3Ẑ@J,J̄#G .
We can now adopt a different notation that takes into acco
the pathC implicitly by defining a scalar product and com
bine the different components into a single vector. The g
erating function becomes

Ẑ@J,J̄#5E dm~z1!E dm~z2!

3expF2E dtVS ]

]J~ t !
,

]

]J~ t !
D G

3expH i I 0~Z,Z̄!1 i E dt~ Z̄•J1 J̄•Z!JF~Z,Z̄!,

~39!

where now the vectorZ is defined as

Z5S z1

z2
D , ~40!

and the free action is

I 05(
i , j

s i j I j
0 , ~41!

with

s i j 5S 1 0

0 21D . ~42!

The complex scalar product is now defined by

Z̄•J5s i j z̄j Jj . ~43!

This notation makes it possible to take into account the c
edness of the real-time path by just taking one branch of
curveC and doubling the components of the dynamical va
ables. The matrixs i j plays the role of a metric.

Now we turn to some properties satisfied by the functio
Gi j

k . These properties are better displayed in Fourier sp
The Fourier space representation of the Feynman propag
is given by

G11
k ~v!5E dteivt@11n~vk!#Q~ t !e2 ivkt

1E dteivtn~vk!u~2t !e2 ivkt ~44!

5@11n~vk!#
i

v2vk1 i e
2n~vk!

i

v2vk2 i e
, ~45!
13441
nt

-

s-
e

-

s
e.
tor

wheree→01. P stands for the principal part of the integra
For the antitime-ordered propagator, we have

G22
k ~v!5E dteivtn~vk!Q~ t !e2 ivkt

1E dteivt@11n~vk!#Q~2t !e2 ivkt ~46!

5n~vk!
i

v2vk1 i e
2@11n~vk!#

i

v2vk2 i e
. ~47!

For the other remaining Green’s functions, we have for po
tive v,

G12
k ~v!52pn~vk!d~v2vk! ~48!

and

G21
k ~v!52p@11n~vk!#d~v2vk!. ~49!

These Green’s functions are not all independent. We fi
observe that

G11
k ~v!1G22

k ~v!5G12
k ~v!1G21

k ~v!. ~50!

This is an immediate result of their definition. Moreover, t
term on the left-hand side is easily seen to be a symme
sum of the product of two operators. Now it is not difficult
show from the above expressions of the Green’s functi
that we have

G11
k ~v!1G22

k ~v!5@112n~v!#@G21
k ~v!2G12

k ~v!#.
~51!

The last factor on the right-hand side is an antisymme
sum of two operators. Equation~51! is a statement of some
form of the fluctuation-dissipation theorem.20 These relations
will be used in subsequent sections to calculate the corr
tion functions. In equilibrium, when the distribution func
tions are the Bose-Einstein functions

112n~v!5coth
bv

2
~52!

and Eq. ~51! gives the usual form of the fluctuation
dissipation theorem.

B. A real-time calculation of the noise

After integrating out the bath degrees of freedom,
write the generating functionalZ̄ in terms of the real opera
tors Ŝx and Ŝy . This doubling of the variables makes th
remaining Gaussian integration slightly more complicat
since we will have to invert a 434 matrix. The bath contrib-
utes a term of the following form to the effective action:
2-5
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Se f f~S1 ,S2!5E dv

2p
ugku2G11

k ~v!@S1,x
2 1S1,y

2 1 iS̄1,xS1,y

2 iS̄1,yS1,x#2E dv

2p
ugku2G22

k ~v!@S2,x
2 1S2,y

2

1 iS̄2,xS2,y2 iS̄2,yS2,x#1E dv

2p
ugku2G21

k ~v!

3@S̄2,xS1,x1S̄2,yS1,y1 iS̄2,xS1,y2 iS̄2,yS1,x#

1E dv

2p
ugku2G12

k ~v!@S̄1,xS2,x1S̄1,yS2,y

1 iS̄1,xS2,y2 iS̄1,yS2,x#, ~53!

where the bar denotes the complex conjugate integra
variables andS1 (S2) is the component along the pa
C(1)(C(2)), Fig. 1. Next, we define two new vectorsS and
D,

S5 1
2 ~S11S2!, ~54!

D5S12S2 . ~55!

Similarly, we define

Fd5F12F2 , ~56!

Fa5
1

2
~F11F2!. ~57!

Finally, we make another definition. We define four-vecto
U andF,

U5~Sx ,Sy ,Dx ,Dy!, ~58!

F5~Fd ,Fa!, ~59!

and write the generating functional in terms of these fo
vectors along the pathC(1) only. SinceU(t) is real, then we
have

Ū~v!5U~2v!,

and hence we should constrain the Fourier integration
positive frequencies only. The bath-independent part of
Hamiltonian then gives the following contribution to th
phase ofẐ,

i I 12 i I 252E
0

`dv

p
Ū i~v!A i j

(0)~v!U j~v!, ~60!

where the matrixA (0) is, in Fourier space,
13441
n

s

-

to
e

A i j
(0)5F 0 0 iA 2v

0 0 v iB

iA 2v 0 0

v iB 0 0

G . ~61!

It is the inverse of the full matrixA5A(0)1Aint that is
needed to determine the correlation functions of the mag
tization whereAint is the part that is due to the interactio
with the bath. The determinant ofA determines the natura
frequency of the system and any broadening due to inte
tions. The determinant of the free part is

D05~v0
22v2!2, ~62!

where

v0
25AB, ~63!

is the ferromagnetic resonance~FMR! frequency of the sys-
tem.

To recover dissipative behavior in the spin subsystem,
take the continuum limit in the number of oscillator mode
This limit guarantees that the probability of acquiring ba
any energy lost to the bath is almost zero. Because of
interaction with the bath, we expect that there will be a sh
in the energy of the spin system accompanied by dissipat

An explicit computation shows that in the continuu
limit, i.e., converting the sum overk to an integral over the
frequencies involving the density of statesl(vk)
5dk/dvk , the correlation functions can be expressed
terms of the functionsLr andLi :

Lr~v!52 i E
0

`dvk

p
pl~vk!ug~vk!u2~G11

k 2G22
k !~vk!,

~64!

Li~v!52E
0

`dvk

p
pl~vk!ug~vk!u2~G12

k 2G21
k !~vk!. ~65!

Using the definitions of the Green’s functions, we find

Lr~v!52PE
0

`dvk

p
pl~vk!ug~vk!u2

1

v2vk
, ~66!

Li~v!522pl~v!ug~v!u2u~v!. ~67!

Counterterms are needed to cancel ultraviolet divergence
Lr . For simplicity, we will assume that this is done via su
able subtractions. The effect ofLr is a redefinition of the
given coefficientsA and B. In principle, this redefinition
changes the oscillation frequency. However, for a pass
path, one neglectsLr(v) and thus the frequency shift. In thi
approximation the coefficientsA and B are kept unnormal-
ized and all the physics is contained inLi(v). There is a
subtlety here, since the expression~67! is not antisymmetric,
whereas it has to be antisymmetric due to general prope
of correlation functions. ThereforeLi(v) has to be antisym-
metrized. By noticing thatug(v)u2 is even inv and extend-
ing l(v) to negativev,0 with a negative sign, the fina
result can be written in the form
2-6
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whereD(v) is the odd function,

D~v!5
Li~2v!2Li~v!

2
5pl~v!ug~v!u2. ~69!

The determinant of this matrix is given by

detA5D~v!5@v0
22v22D~v!2#21@D~v!~A1B!#2.

~70!

We also observe that for the functional integral to conver
we must have

pl~v!ug~v!u2@112n~v!#.0.

This requires that the functionLi(v) when extended to nega
tive frequencies be anodd function which is consistent with
the statement before Eq.~68!.

To calculate the correlation functions, we need first
calculate the inverse matrix ofA. The cofactors needed fo
the correlation functions of the different components of
magnetization are for small couplings to the bath,

c1152pl~v!ug~v!u2@112n~v!#@B21v21D~v!2#,
~71!

c125 ipl~v!ug~v!u2@112n~v!#@~A1B!v#, ~72!

c2252pl~v!ug~v!u2@112n~v!#@A21v21D~v!2#,

~73!

c1252c215 ipl~v!ug~v!u2@112n~v!#@~A1B!v#.
~74!

As will be seen below, thec11(c22) cofactor of the matrixA
is associated with thexx(yy) component of the magnetiza
tion while c12 is related to thexy component.

Next, we use these cofactors to calculate the correla
functions of the magnetization.

For a general operatorO, the average of the anticommu
tator $O(t),O(t8)% is found by differentiation ofW@Fa ,Fd#
with respect toFd ,

1

2
^O~ t !O~ t8!1O~ t8!O~ t !&52 i

d2W@Fa ,Fd#

dFd~ t !dFd~ t8!
. ~75!

Applying this procedure to the components of the magn
zation, we find that for thex component

1

2
^Sx~ t !Sx~0!1Sx~0!Sx~ t !&5E dv

2p
cosvt

c11~v!

D~v!
.

~76!

From Eq.~71!, we then obtain
13441
,

e

n

i-

Cxx~ t !5E dv

2p
cos~vt !@112n~v!#

3pl~v!ug~v!u2
~v21B2!1D2

D~v!
. ~77!

Now, we show how for different choices of the functio
Li(v), we can recover the correlation functions derived
Smith2 and Safonov.3

1. Case 1: LLG

If we assume that the bath is defined such that

pl~v!ug~v!u25av, ~78!

i.e., Li(v) is odd, then in the limit of high temperature,b
→0, the correlation function for thexx component takes the
simple form

Cxx~ t !52akTE dv

2p
cos~vt !

3F ~11a2!v21B2

@~11a2!v22v0
2#21@av~A1B!#2G . ~79!

This is the result that coincides with that derived fro
LLG.2,12 This case also corresponds to a white-no
solution.12 Moreover, we observe that the condition on t
bath that gives LLG is similar to the one that gives t
Langevin equation for the harmonic oscillator. In both cas
the spectral density is linear in frequency.21

2. Case 2: Coherent Oscillator

This case is similar to the normal-mode result
Safonov.3 We call it coherent oscillator because this ca
gives correlation functions similar to those of the collecti
operator c introduced by Safonov and Bertram in the
normal-mode analysis. Here we chooseLi(v) such that

pl~v!ug~v!u25a, v.0. ~80!

For b→0, we get the following expression for thexx com-
ponent of the correlation functions:

Cxx~ t !52akTE dv

2p
cos~vt !S 1

v D
3F B21v21a2

@v22v0
2#212a2~v21v0

2!1a4G . ~81!
2-7
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The normal-mode result obtained by Safonov and Bertram
easily seen to follow by settingA5B and (1/v) by (1/v0) in
the correlation functions. Therefore without this latter a
proximation, this model corresponds to a case of colo
noise.12 As v→0, the integral diverges. Therefore at sm
v, the approximation in Eq.~80! is not applicable:Li(v)
2Li(2v) cannot be a constant but, for consistency w
antisymmetry and analyticity, must vanish withv at v→0.

In both cases above, we have taken the high-tempera
limit to recover the results of Smith2 and Safonov and
Bertram.3. Given that the approximation of the magnetizati
degrees of freedom by that of an oscillator is only valid
low temperature, one might question the validity of th
limit. However this is a well-known shortcoming of LLG
and little attention has been paid to address this point.22

C. An equilibrium calculation of the noise

Here we show how the correlation functions derived
the real-time method can be also derived using the equ
rium imaginary-time formalism.19 This is an equilibrium
consistency check for our nonequilibrium computation a
moreover it shows that the FDT was correctly applied in R
3.

The basic idea in the equilibrium computation is to invo
the fluctuation-dissipation theorem~which is not assumed in
the nonequilibrium computation! in order to derive the fluc-
tuations from the dissipation, i.e., from the spectral dens
The fluctuation-dissipation theorem says that in equilibri
the symmetric correlation functions can be written in ter
of the spectral densitiesr i j (v) as

^$Si~ t !,Sj~0!%&5E dveivtcoth
bv

2
r i j ~v!, ~82!

wherei and j denote the indicesx andy, respectively. From
this definition it is immediate to see that the spectral den
ties must satisfy the relationships

r i j ~v!* 5r j i ~v!, r i j ~v!52r j i ~2v!. ~83!

In particular,rxx andryy are real and antisymmetric:

r i i ~v!* 5r i i ~v!, r i i ~v!52r i i ~2v!. ~84!

Thus, one can extract the spectral densitiesr i i (v) from the
spectral representation of the retarded self-energy,

DR
i j ~v!5E dv8

r i j ~v8!

v82v1 i«
, ~85!

by taking the imaginary part

r i i ~v!52
1

p
Im DR

ii ~v!. ~86!

Moreover, due to the behavior of the theory under time
flectionst→2t,

^$Sx~ t !,Sy~0!%&52^$Sx~2t !,Sx~0!%&. ~87!
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we have thatrxy(v) andryx(v) are imaginary and symmet
ric:

r i j ~v!* 52r i j ~v!, r i j ~v!5r i j ~2v!, iÞ j . ~88!

As a consequence, ther i j (v),iÞ j spectral densities can b
extracted from thereal part of the retarded self-energy:

r i j ~v!5
i

p
ReDR

i j ~v!, iÞ j . ~89!

In order to compute the retarded propagators, one ha
compute the Euclidean effective action obtained by integ
ing out the bath degrees of freedom in the Euclidean fu
tional integral

e2Se f f
E (Si )5E @dbk* dbk#expF2E

0

b

dtLE~Si ,bk ,bk* !G ,
~90!

where

LE~Si ,bk ,bk* !5LS
E~Si !1LR

E~bk ,bk* !1LSR
E ~Si ,bk ,bk* !,

~91!

with

LS
E~Si !5Sxi ]tS

y1 1
2 A~Sx!21 1

2 B~Sy!2, ~92!

LR
E~bk ,bk* !5(

k
bk* ~]t2vk!bk , ~93!

LSR
E ~Si ,bk ,bk* !5(

k
bk* gkS21S1gk* bk . ~94!

Since the integration onbk andbk* is Gaussian,Se f f can be
computed exactly and is quadratic in the spin fields:

Se f f
E ~Si !5E

0

b

dtE
0

b

dt8 1
2 Si~t!Di j

E~t2t8!Sj~t8!. ~95!

The Euclidean propagator is easily obtained in the Matsub
formulation by inverting the 232 matrix

DE
21~vn!5S A vn

2vn B D 1S PE~vn! 0

0 PE~vn!
D , ~96!

where the first matrix is the inverse free propagator and
second matrix is the self-energy matrix

PE~vn!52(
k

ugku2GE
k ~vn! ~97!

and wherevn52pnT, n50,61,62, . . . are theMatsubara
frequencies. The inversion is trivial. The retarded propaga
can be obtained with an analytic continuationvn→ iv:

DR~v!5
1

D~v! S B1PR~v! 2 iv

iv A1PR~v!
D , ~98!

whereD(v) is the determinant

D~v!5v0
22v21~A1B!PR~v!1PR

2~v!. ~99!
2-8
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In order to compute real and imaginary parts, it is conveni
to split

PR~v!5ReP~v!1 i ImP~v! ~100!

and to introduce the real quantities

Ã~v!5A1ReP~v!, B̃~v!5B1ReP~v!. ~101!

Then the inverse determinant reads

D 21~v!5
1

v0
22v22uPRu21~Ã1B̃!PR

5
v0

22v22uPRu21~Ã1B̃!~ReP2 i ImP!

uD~v!u2

~102!

with

uD~v!u25@v0
22v22uPR~v!u21ReP~v!~Ã1B̃!#2

1~Ã1B̃!2@ ImP~v!#2. ~103!

The functions ReP(v) and ImP(v) are related to the pre
viously defined functionsLr(v), Li(v), andD(v). In par-
ticular

ImP~v!522p(
k

ugku2d~v2vk!

52pl~v!ug~v!u252D~v!. ~104!

Notice that the continuum limit has been taken by ensur
the antisymmetry of ImP(v). The r i i (v) spectral densities
are obtained by taking the imaginary part of the full retard
propagatorsDR

ii (v),

rxx52
1

puDu2
@v0

22v22uPRu22B~Ã1B̃!#D, ~105!

ryy52
1

puDu2
@v0

22v22uPRu22A~Ã1B̃!#D, ~106!

whereas the spectral densitiesr i j (v)( iÞ j ) are obtained by
taking the real part ofDR

ii (v):

rxy~v!5
i

puDu2
@v~Ã1B̃#D. ~107!

These results coincide with those derived by the real-t
method. Therefore there is full consistency between the r
time and the imaginary-time formalism.

The LLG limit for small damping is recovered whe
ReP→const, ImP→av, and the coherent oscillator is re
covered in the regionuvu;v0 when ReP→const, ImP
→a sgnv. The term ReP is usually set to zero after bein
absorbed in the definition of the FMR frequency.

Therefore, both equilibrium and nonequilibrium metho
give the same correlation functions for the magnetizat
13441
t
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close to equilibrium. Below we give the full expressions f
the symmetrized correlation functions for the transve
components of the magnetization. As far as our simple mo
is concerned, it is then concluded that the LLG result is
well behaved model of noise since it can be applied to
whole range of frequencies while the proposed modificati
of the damping term in LLG by Safonov and Bertram rest
weak arguments. The generalSxSx-correlation function is
then given by

Cxx~ t !5E dv

2p
@112n~v!#D~v!cos~vt !

3F v21B21D~v!2

@v0
22v22D~v!2#21@D~v!~A1B!#2G .

~108!

Similarly for theSySy-correlation function, we have

Cyy~ t !5E dv

2p
@112n~v!#D~v!cos~vt !

3F v21A21D~v!2

@v0
22v22D~v!2#21@D~v!~A1B!#2G ,

~109!

and finally for theSxSy-correlation function, the correlation
function is

Cxy~ t !5E dv

2p
@112n~v!#D~v!sin~vt !

3F v~A1B!

@v0
22v22D~v!2#21@D~v!~A1B!#2G ,

~110!

where

D~v!5pl~v!ug~v!u2. ~111!

Even though we have succeeded in showing the origin
the discrepancy between both calculations, the usefulnes
these results is limited because of the harmonic approxi
tion. Clearly more work is needed to understand t
dissipation-noise problem in magnetic devices which g
beyond the simple approximations currently used to acco
for them.

IV. CONCLUSION

Starting from simple microscopic models which only d
fer in the density of states of the bath, we have been abl
derive variant correlation functions for the magnetizati
close to equilibrium. We have limited ourselves only
linear-type couplings to the bath. Depending on the prod
of the coupling constants and the density of states of
bath, we showed how to obtain the different types of cor
lation functions: the classical LLG result obtained by Smit2

and the normal-mode coupling solution of Safonov.3 We
2-9
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have used two independent methods to get our solution
nonequilibrium method that does not make use of the F
and an equilibrium method. The nonequilibrium formulati
allowed us in particular to show that a generaliz
fluctuation-dissipation theorem~51! holds true even if the
distribution functions are not exactly the Bose-Einstein on
In principle, an analysis of this system when the distribut
functions present strong differences from the thermal on
also possible in the general formalism we discussed her

The LLG solution was obtained for a special type of de
sity of states and coupling to the bath. The same condi
was also obtained in Ref. 12 where in addition we were a
to show that this choice gives the white-noise characte
the stochastic formulation. The normal-mode solutions a
however, generally with memory unless we are intereste
frequencies close to the FMR frequency. The assumption
damping is constant close to the FMR frequency makes
equations of motion Markovian.23 The damping in the case
treated here isindependentof the symmetries of the Hamil
tonian spin system, the reason being that the dissipation
nel only depends on the coupling with the bath and the b
properties, but not on the spin Hamiltonian. For couplin
other than linear, the damping is expected to depend on
n

ns
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symmetries of the full Hamiltonian, but, again, not at t
leading order in perturbation theory. The point is that f
nonlinear coupling, the effective Hamiltonian and therefo
the correlation functions have to be computed perturbativ
in terms of Feynman diagrams; in particular the spin pro
gator will enter in higher-order computations and since
spin propagator depends on the symmetry of the spin Ha
tonian, which could be isotropic (A5B) or not (AÞB), we
will have different results forA5B andAÞB. This does not
happen at leading order in the nonlinear case, and does
happenat all ordersin the linear case, where the exact res
is shown here. For cases far from equilibrium, the harmo
approximation is no longer valid and we expect the damp
to depend both on frequency and position and direction
the magnetization.
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