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Correlation functions of the magnetization in thin films
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We calculate the correlation functions of uniform magnetization in thin ferromagnetic films for small de-
viations from equilibrium using a functional formalism. To take account of dissipation and fluctuations con-
sistently, the magnetization is coupled linearly to a bosonic heat bath. The correlation functions of the mag-
netization strongly depend on the density of states of the bath. Depending on what density of states we choose,
we show how the recent results of Smjth Appl. Phys.90, 5768(2001)] and Safonov and BertraffPhys.

Rev. B65, 172417(2002] obtained by macroscopic methods can be understood in light of the microscopic
treatment presented here.
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[. INTRODUCTION components of the magnetization from which we can recover
both LLG-type correlation functions and oscillatorlike corre-
The problem of magnetic noise in nanosystems and ifation functions for the simplified Hamiltonian. Currently ex-
particular in giant-magnetoresistive read sensors is of considPeriments do seem to favor the LLG result, however, we will
erable importance to the physics of magnetic recording. FoRot address these questions Hetéwe simply show that for
macroscopic systems, the classical Landau-Lifshitz-Gilberfystems close to equilibrium and within the harmonic-
(LLG) equation has been used frequently to study therma®scillator appr(_)ximation for the transverse components of
fluctuations in magnetic systems mainly through a stochastite magnetization, we can have different theories for a large
approach. Magnetic noise in thin anisotropic films with the SPin. However, it must be kept in mind that the results ob-
magnetization close to equilibrium has been recently treatetpined are based on an artificial Hamiltonian and a very
by at least a couple of different methods with differentSimple coupling between the magnetization and the bath. A
results>~* The first work by Smitfis based on a linearized More realistic coupling such as that of conduction electrons
LLG and application of the fluctuation-dissipation theoreminteracting with localized magnetic moments is treated
(FDT).5 The second method by Safonov and Berftasralso ~ elsewhere’
approximate and based on analogies with the harmonic os- The paper is organized as follows. In Sec. II, we first
cillator and a seemingly different form of the FIST. introduce the Hamiltonian for the system considered here.
To better understand this discrepancy, we study this parlhen we write this Hamiltonian in a simplified approximate
ticu|ar prob'em Of magnetic noise in thin f||ms from a micro_ form Va.||d for neal‘—eq.uﬂlb.rlum cases. It is Shc.)Wn that if we
scopic point of view. Since we are dealing with a magneti-use the same approximations as those used in Refs. 2 and 3,
zation S||ght|y disturbed from equ”ibrium, we use bosonicthe Spin Hamiltonian iS eXaCtIy that Of an OSCi||at0I’. In Sec.
degrees of freedom to describe the magnetizativvhile I, we first derive the CS generating functional for this sys-
this is a rather crude approximation, it is equivalent to thetem. Then, we derive the general correlation functions for the
one used in Refs. 2 and 3. Moreover, we use the language §agnetization without using the FDT. The linearized LLG
coherent state€CS) to describe the states of the magnetiza-result is shown to follow from the general result by assuming
tion since such a representation is the most natural for th@ bath for which the product of the density of states and the
semiclassical limif. The dissipation is simulated by coupling Coupling constants is linear with frequency. This is the same
the magnetization to a bosonic environm%n’t'he noise condition recovered in Ref. 12. To get the Safonov-Bertram
spectrum is found by calculating the correlation functions offésult’ we set the product of the coupling constants and the
the magnetization_ We Carry out the calculations with andjensn:y Of states to a constant. We f|nd that N thIS partlcular
without use of the FDT. We find that both methods give thecase there is no need to introduce a tensor damping or use the
same result. However not using the FDT entails using funcfotating wave approximation to get our results. At the end of
tional methods not commonly used in recoding phy&fcd.  this section, we address questibhthat put in doubt the
These methods are attractive because they are equally apghorrectness of the application of the FDT in deriving the
cable to highly nonequilibrium situations which involve im- correlation function in Ref. 3. We find that an equilibrium
portant problems such as the switching of the magnetizatiorfalculation produces the same results as those obtained by
Two of us have already used functional methods in a rer€al-time nonequilibrium methods. Finally in Sec. IV, we
cent paper that addressed the conditions under which a LL&UmMmarize and discuss our results.
equation can be recovered from a simple quantum mtdel.
The results presented here complement those presented in
Ref. 12. However this paper can be read independently of
our previous work. The major result of this work is general In this section, we introduce a microscopic model for a
expressions for the correlation functions of the transverséhin film and approximate the magnetization operator by a

II. MICROSCOPIC MODEL
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bosonic operator stressing the analogies with the harmoniand
oscillator (see, e.g., Ref. 16

We consider the following system: A thin magnetic slab . 1 .
with easy axis along the axis and a hard axis along the ar=——.S, (10)
axis which are both in plane. We assume that there is a large
external magnetic fieltH along the easy axis that keeps the then, we have
average magnetization in plane. We will be interested only in R
fluctuations around the equilibrium position of the magneti- S,~S—a'a, (12)

zation, i.e., fluctuations in the andy components of the avhich is the Holstein-Primakoff approximation at low tem-

perature. However, here we insist on tak@to be a con-
stant operator with magnitud® Then we can normalize by
Ki., Koo, N - 2S the Hamiltonian of _the system. The opera;arand a*
7SZ+75X+EK by b+ V(b by, S), then behave as bosonic degrees of freedom, i.e., the magne-

1) tization behaves, in this approximation, like a harmonic os-

cillator (see Ref. 18 for a discussion of the validity of this

whereK; andK, are the anisotropy constants aag is the  approximation. If we rewrite the Hamiltonian in terms of
energy of thekth bath’s oscillator. The spin-bath interaction these operators, we find

V will be taken linear inS and the bath variableb,. A

to a bosonic heat bath, has the general fofins ()

H=—-HS,-

possible form foV is 7:£=Qa*a+V(a,a+)+§k: wkbﬁbk—; yk(a*bk+b;a),
2 2 . 12
Vb b 8= (8 bt nbis), @ 12
k where
where Q=H+K;+1K,, (13)
S.=S,+iS,, (3)  and the potentiaV/ is in this case equal to
5 =§-iS,. (4) V(a*,a)=iK,(aa+a*a"). (14)

/s are the coupling constants, which can be time depen'—n the following, we use this simplified Hamiltonian within a
dent. The bosonic-type operators for the bath oscillatyys, path-integral formalism in both real and imaginary tithe.,

satisfy the usual commutation relations in the nonequilibrium and equilibrium cases calculate the
transition probabilities which are needed for the correlation
[by,by 1= 6 - (5) functions. From this, we are able to identify the cause of the

R discrepancy between Refs. 2 and 3.
For the magnetizatiors, we have the following commuta-

tion relation: ll. THE CORRELATION FUNCTIONS OF THE
. . MAGNETIZATION IN THE HARMONIC-OSCILLATOR
[S,.,S_]=25,. (6) APPROXIMATION

For precession around the equilibrium position, i.e.,Zhe  To set the notation for what follows, we briefly review the
axis, S, is usually assumed to be a constdrind the Hamil-  coherent-state representation for the magnetization and the

tonian expression for the spin paf’(s, can be simplified to bath. This representation is used in a path-integral approach

be of the general form to define a functional generator for irreducible Green’s func-
tions. This functional is then used to calculate the symme-
Hs=3(AS+ B%), (7)  trized two-point correlation functions. The calculation is car-
ried out using two different methods. One is based on the
where real-time approach, while the second is based on the

imaginary-time (equilibrium) formalism. Both approaches
A=K tKz,  B=Ky, (8) are path-integral approaches. The equilibrium approach

that is, the energy expression which was assumed in botfakes use of the FDT while the real-time one doesde-

calculations by Smithand Safonov and Bertrafn. pend on it. Both methods are shown to give the same answer
To account for thermal fluctuations, we need to calculatednd hence the discrepancy in the results of Safonov and

the two-point correlation functions of the transverse compo-Smith is not due to a faulty use of the FDT.

nents of the magnetization. It is now more appropriate to

define the following operators, A. The coherent-state representation : Equilibrium and

nonequilibrium dynamics

= _1 (9) Coherent states are the natural representation for semi-

S
(28)1’2 N classical calculations. A Gaussian wave packet for a har-
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monic oscillator with minimum uncertainty is a coherent . B .
state. They are formally defined as eigenstates of the annihi-  p[J3,J3]=Texp — fo (H—Jza—Jza")dr
lation operatdt

B .
ala)=cala), (15 =T|GXW’ _J’O (H—FgSX—F%Sy)dT], (23

where « is a complex number. An important operator rela-
tion for a path-integral representation is the decomposition o
the unit operator in terms of coherent projection operators

here T, is now a time-ordering operator along the
maginary-time axis. Hence, all correlation functions can be
obtained from the coefficients of the Taylor expansion of the
. functional 7[ J,J* ] aroundJ=J*=0 (or F;=F,=F3=0).
da*da . A
—e " a)a|=1, (16)  For example, the average value of theomponent of the

2 magnetization at time can be found by differentiating

with respect toF] at the same time,

which is used in the discretization of the path integfalhe

coherent states form an over-complete basis. SN
The real-time formulation deals with nonequilibrium E o2, J7]

questions? This is the method we adopt in the calculations L sFX(1)

of the correlation functions of the magnetization without use

of the FDT. For a general operatdl, its average value at Next we define another functiond’ which at equilibrium

any timet is given in terms of the density matrix becomes the thermodynamic potential of the system,

=—(S(1). (24)

F=0

(O(D))Y=Tr{pO(1)). 17) 2 Fi=123l=expi WF]}. (25)
The functionalWV, as will be seen below, is the more appro-

priate functional to calculate and expand in powers aihd

o iin J* (or F). Therefore, we have for averages and two-point
O(t)=e""0e """, (18 correlation functions,

The operatoi© is in the Heisenberg picture,

Therefore, the average of the observablat timet can be

written in terms of that at=0, oW

SFI(1)

=(S(1)) (26)

F=0

(O(1))=Tr(pe' Tt Oe 17t) 19

This latter average can be written in terms of path integrals .
as in the equilibrium cas€.First we define the operatof§ W

andC which are functions of external sourc@éandJ*. The SFI(t) SFI(t))

operatorkC is a forward propagator and is defined as follows: ) } ) ]
Similar expressions hold when we differentidte with re-

A spect to the sourcebandJ*. They are related to each other
K[31,971=T exp{ —IJ (H_‘J’Ia_‘-]la+)dt] by the chain rule.
t Next we give an explicit expression for the functioniél

= —i(T(S(DS(t).  (27)

F=0

. in terms of coherent states and calculate all the associated
=T exp[ =i f (H—FiS— F’{Sy)dt] , (200 propagators.
The generating functional is defined above, Eq22).
whereT is the time-ordering operator atg andF, are real  Using coherent states, for both the bath and spin, this trace
external fields which are coupled to the transverse compdormula can be written in terms of path integrals over spin

nents of the magnetizatioiC is a backward operator and is Variables and bath variables,
therefore defined in terms of antiordered time operator

t_ 20,5°1= | duaten) | dute) [ dutas) [ duton
E[JZ,J;]=?exp{—if I(ﬂ—Jga—J2a+)dt)
f Xf dM(‘Pz)f du(ps)exp—|a|*~]a,|?
=?exp[—i H—F%S,—F} dt]. 21
J derisrisai. @ —|a3|2}ex;{—; <|<,o1,k|2+|so2,k|2+|qo3,k|2>]

Next, we define a generating functional
X(ay,¢1p[I3,93 ]| @2, ¢2)

_ _ o X( oz, 02| K[ 32,95 1| 3, 03)
J is now the three-vectordg,J,,J3). The density matriyp is .
assumed of the form X(ag, @3l K[I1,37 1@y, ¢1). (28

7[3,3%1=Tr{p[I5,351K[ 3,35 1K[ 31,351} (22
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i+ The Feynman-Vernon term is the only term which is depen-
dent on the bath parameters. The functiﬁlﬁ‘;(t,t’), nine in

0 ? y total, are propagators associated with the bath oscillators.
= Hence they can easily be calculated since the oscillator part
N (1) C of the Hamiltonian is quadratic and the spin can be consid-
C ered as an external field.

-ifkT In the following, we take account of the imaginary-time
branch through the assumption that initially the system is in
equilibrium. For a general potentid, the generating func-

tional can be written in terms of that of a free systef,

The e _1 , 3 represent states of the spin system, while the=a'a, interacting with the bath,
@i—123 represent the bath states. This integral can be for-
mally written as a path integral along the path in Fig. 1 with 203731 =exp| — iJ' qtv J
periodic boundary conditions similar to the equilibrium par- ' c aJ;i(t)’ O’)J_i(t)
tition function calculations. This functional can be calculated
exactly only in few cases in particular if the Hamiltonian is Zsg is therefore the generating functional of a particle inter-
quadratic_ Higher-order terms can be accounted for 0n|y a@Cting with the bath Only and with no external pOtential. This
proximately. This is best done through a graphical procedur@ttef formula is valid in the general case and is the start of
such as the Feynman diagram technique. Here we have &y perturbative calculations. The free action along the real-
quadratic Hamiltonian and hence we can solveZphow-  time trajectories is given by
ever, we will mention briefly what happens in the general

FIG. 1. Complex time path for the generating functional.

”ZSB[J,J_]. (32)

case. L0 22,-212  —
In our case, the bath degrees of freedom can be integrated =i J dt 2 -Qzz (33
out exactly and we can derive an exact effective action for
the spin degrees of freedom. In the general case, the effectiaong the pattC™) and by
action can be derived perturbatively. From it, we calculate
the correlation functions of. We find o '?222_;2'22 _
i|2=—iJ dt T_QZZZZ (34)

* =
43971 fdM(al)f d'“(aZ)f dplas) along the pathC(™), Fig. 1. Att;— —o, the system is at

— equilibrium, then we can assume that the initial density ma-
><exp{—|a1|2—|a2|2—|a3|2}J *du(zy) trix is thermal, withJs(t;) =0. Therefore we write that
a1

;2 51 P(ti):Le_EH(ti)i tj— —oo. (35)
Xf dM(Zz)f du(zs) Z(t)
ag ap

Then, we observe that

3
X ex l[z,z,3,3* 1t FZ2,2), (29 p P _
p{i21 Lz ']] ( (ar]p(—)|az)= j “duu(2:)€"35 5 Flz3,75), (36)
J— ay
where F(Z,Z) is the Feynman-Vernon functional for the

spin-bath system given by where I has the same expression H5 but with t—it.

Hence in this case, the initial density-matrix element is just
another overall factor in the generating functiofal

-2 |wIZZU-Gk(t.t')-Z(t’)}.
30 A3J1= f dp(as) f du(ar)du(as)(alp(—=)|ay)

The three-vectoZ is related to the three branches of the B B
curveC, Fig. 1, % jasdﬂ(zl)faz
as

a

In]—‘(Z,Z_)=jdtJ dt’

du(z,)

Z

2=| ~z|. @1 : LL)]
., xex;{ fc+dtv<a3(t)’(93_(t)

The time integrations are defined based on the fath — —
¢ o= xexp{ilg[zl,zlh—il2[22,22]

t<tt'<t;, tt'ec® ct)

t<tt'<t—iB, tt eCO, i dt(JerTZ)]f(Zf), (37
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with Z=(z;,—z,) and the measure is defined by wheree— 0. P stands for the principal part of the integral.
— T For the antitime-ordered propagator, we have
du(a)=dp(a)el*". (39)

Therefore we define a new generating functional ng(w):f dte“n(w,) O (t)e iext

713,3]= | dulas) | du ' '
[J,9] f ,u(ag)f m(ay) +Jdte""t[1+n(wk)]®(—t)e—lwkt (46)

X

| dtazaalp(—=)lan x 710,31 |

We can now adopt a different notation that takes into account - n(‘”")w— wytie g n(wk)]w— wg—le’ (47
the pathC implicitly by defining a scalar product and com-

bine the different components into a single vector. The genfor the other remaining Green’s functions, we have for posi-
erating function becomes tive w,

23.31= f dp(zy) f dp(z2) Gl ) =27N(w)) 8 w— wy) (48)

xex;{—f dtV|

xexp{il O(z,i)+if dt(ZJJJZ)]f(zE),

nd

Q

331 53(t)
Ghy(w) =271+ n(w)] 80— wy). (49

These Green’s functions are not all independent. We first
(39  observe that

where now the vector is defined as

, G (w)+ G ) =GC¥(w) + Gk (w). (50)
1
N ( 22)’ (40 This is an immediate result of their definition. Moreover, the
o term on the left-hand side is easily seen to be a symmetric
and the free action is sum of the product of two operators. Now it is not difficult to
show from the above expressions of the Green’s functions
1= o1?, (41)  that we have
]
with GYy(w)+ Gl ) =[1+2n(w)][Gy(w) — Gifw)].
(51
| 1 0
7l -1/ 42 The last factor on the right-hand side is an antisymmetric
sum of two operators. Equatigbl) is a statement of some
The complex scalar product is now defined by form of the fluctuation-dissipation theoréfiThese relations
_ o will be used in subsequent sections to calculate the correla-
Z-J=0dzJ;. (43 tion functions. In equilibrium, when the distribution func-

This notation makes it possible to take into account the clos'Elons are the Bose-Einstein functions

edness of the real-time path by just taking one branch of the
curveC and doubling the components of the dynamical vari-
ables. The matrixr;; plays the role of a metric.

Now we turn to some properties satisfied by the functions
Gh- . These properties are better displayed in Fourier spaceand Eq. (51) gives the usual form of the fluctuation-
The Fourier space representation of the Feynman propagatdissipation theorem.
is given by

Bw
1+2n(w)=coth7 (52

B. A real-time calculation of the noise

k _ i wt —iwyt
Gll(“’)_f dte“T1+n(w)]O(t)e ' After integrating out the bath degrees of freedom, we

write the generating functiondl in terms of the real opera-
+J dte'“n(wy) 6(—t)e et (449 tors S, and S,. This doubling of the variables makes the
) ) remaining Gaussian integration slightly more complicated,

! (45) since we will have to invert a4 matrix. The bath contrib-

[ n(wk)]w— wytie n(w")w— w—le’ utes a term of the following form to the effective action:

134412-5
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_ d_w 2k 2 2 =
Set1(S1,Sy) 27T|')’k| Gll(w)[sl,x+sl,y+|Sl,xsl,y
Y do 5« )
—iS1yS1x]— Z|7k| Gzz(w)[sz,x+sz,y
T~ T~ d(l) 2~k
+|82,x82,y_|s2,y52,x]+J'%|7k| GZl(w)
X[§2,xsl)(+§2,ysl,y+ i§2,xsl,y_ i§2,ysl,x:|

dow 2k _ _
+J'E|7k| Glz(w)[sl,xsz,x+sl,ysz,y

+ i§1,x82,y_ igl,ysz,x]v (53

where the bar denotes the complex conjugate integration

PHYSICAL REVIEW B59, 134412 (2004

0 0 A —w
0 0 w IB
(0)— 61
Ai iA —o O 0 | (61)
w B 0 0
It is the inverse of the full matrixA= .4+ A™ that is
needed to determine the correlation functions of the magne-
tization where. A™ is the part that is due to the interaction
with the bath. The determinant ofL determines the natural
frequency of the system and any broadening due to interac-
tions. The determinant of the free part is

Do=(wg— w?)?, (62)
where

w5=AB, (63)

variables andS; (S,) is the component along the path is the ferromagnetic resonaneMR) frequency of the sys-

c(Cc)y, Fig. 1. Next, we define two new vectoBsand

tem.

To recover dissipative behavior in the spin subsystem, we
take the continuum limit in the number of oscillator modes.
This limit guarantees that the probability of acquiring back
any energy lost to the bath is almost zero. Because of the
interaction with the bath, we expect that there will be a shift
in the energy of the spin system accompanied by dissipation.

An explicit computation shows that in the continuum
limit, i.e., converting the sum ovesto an integral over the
frequencies involving the density of state&(wy)
=dk/dwy, the correlation functions can be expressed in
terms of the functiong&, andL;:

=d
L) ==1 [ () Y0 (G- B (),
64

=g
Li(@)=2 | S (o0 @0 (G G (0. (69

Using the definitions of the Green’s functions, we find

Dy
S=2(S5,+S,), (54)
D=S,-S,. (55
Similarly, we define
Fd: Fl_ F2 ’ (56)
1
FaZE(Fl"' Fo). (57
Finally, we make another definition. We define four-vectors
U andF,
U:(S)(!Sy!nyDy)l (58)
F=(Fq,Fo), (59

>d 1
L) =27 [ Xm0l o= (66

and write the generating functional in terms of these four-

vectors along the patB(*) only. SinceU(t) is real, then we

have

U(0)=U(-w),

Li(w)=—2m\(0)|y(0)]?0(w). (67)

Counterterms are needed to cancel ultraviolet divergences in
L, . For simplicity, we will assume that this is done via suit-
able subtractions. The effect &f, is a redefinition of the
given coefficientsA and B. In principle, this redefinition

and hence we should constrain the Fourier integration tehanges the oscillation frequency. However, for a passive
positive frequencies only. The bath-independent part of theath, one neglects,(w) and thus the frequency shift. In this
Hamiltonian then gives the following contribution to the approximation the coefficientd and B are kept unnormal-
phase of/, ized and all the physics is contained lin(w). There is a
subtlety here, since the expressi@T) is not antisymmetric,
whereas it has to be antisymmetric due to general properties
of correlation functions. Therefollg (w) has to be antisym-
metrized. By noticing thalty(w)|? is even inw and extend-

ing A(w) to negativew<<0 with a negative sign, the final
result can be written in the form

where the matrix4 () is, in Fourier space,

134412-6
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IA—A(w) -
B 0 0 ) iB—A(w)
A= iIA+A(w) —w N (o) y(w)]|1+2n(w)] 0 ' €8)
w iB+A(w) 0 N 0)] ()| H[1+2n(w)]
|
whereA (w) is the odd function, dw
CXX(t)=f2—cos{wt)[1+2n(w)]
Aw)=2EOHD) v 69 "
2 e ,(0?+B?)+A?
XN ()| Y(0)|*———— (77

The determinant of this matrix is given by

detA=D(w)=[ 05— 0’— A(w)?]*+[A(w)(A+B)]%
(70)

D(w)

Now, we show how for different choices of the function
L;(w), we can recover the correlation functions derived by
Smith? and Safonov.

We also observe that for the functional integral to converge,

we must have

()] y(w)|}[1+2n(w)]>0.

This requires that the functidn (w) when extended to nega-
tive frequencies be aodd function which is consistent with
the statement before E(68).

1. Case 1: LLG

If we assume that the bath is defined such that
™\ ()| y(w)|?=aw, (79)

i.e., Li(w) is odd, then in the limit of high temperaturg,

To calculate the correlation functions, we need first to—0, the correlation function for thex component takes the
calculate the inverse matrix od. The cofactors needed for simple form
the correlation functions of the different components of the

magnetization are for small couplings to the bath,

T\ ()| y(@)7[1+2n(0)][B?+ 0+ A(w)?],
(71)

Cni=—

ci=i TN (0)]y()[[1+2n(0)[(A+B)w], (72

Cop=— Th ()| ¥(@)| [ 1+ 2n(w) [[A%+ 0’ + A(w)?],
(73)

C1p= —Cy=imA(w) Y(w)|2[1+2n(“’)][(A+ Bw].
(74)

As will be seen below, the;; (¢4 cofactor of the matrix4
is associated with thex(yy) component of the magnetiza-
tion while cq, is related to thexy component.

dw

27Tcos( wt)

cxx(t)=2aka

(1+ a®)w?+B?
[(1+ az)wz—wg]2+[aw(A+ B)]2 '

X (79

This is the result that coincides with that derived from
LLG.?'2 This case also corresponds to a white-noise
solution’? Moreover, we observe that the condition on the
bath that gives LLG is similar to the one that gives the
Langevin equation for the harmonic oscillator. In both cases
the spectral density is linear in frequerfcy.

2. Case 2: Coherent Oscillator

Next, we use these cofactors to calculate the correlation This case is similar to the normal-mode result by

functions of the magnetization.

For a general operatd?, the average of the anticommu-

tator {O(t),O(t")} is found by differentiation ofW[ F,,Fq]
with respect ta,

8*W[Fa,Fql

1 .
E<(9(t)(9(t )+O(")O(1))=—i m

(75

Safonov’ We call it coherent oscillator because this case
gives correlation functions similar to those of the collective
operator ¢ introduced by Safonov and Bertram in their
normal-mode analysis. Here we chodséw) such that

w>0.

m\(0)|y(w)[*=a, (80)

For B—0, we get the following expression for thkxex com-

Applying this procedure to the components of the magnetiPonent of the correlation functions:

zation, we find that for th& component

Cii(w)

1 3 do
> (S(0S(0)+8,0)8,(0)= [ 5ocosot 22

(76)
From Eq.(71), we then obtain

dw . 1
ECOE{(D ) Z
B2+ w?+ o?

[wz— wé]z-i- Zaz(wz-i- wg)-i- ot

Cxx(t)=2aka

(81
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The normal-mode result obtained by Safonov and Bertram isve have thap*¥Y(w) andpY*(w) are imaginary and symmet-
easily seen to follow by setting=B and (1) by (1/wg) in  ric:

the correlation functions. Therefore without this latter ap- o . . . o
proximation, this model corresponds to a case of colored  P'(@)*=—p(w), plw)=p'(-w), i#]. (89

noise*? As w—0, the integral diverges. Therefore at small o 4 consequence, thél (w),i#] spectral densities can be

, the approximation in Eq(80) is not applicablel(®) extracted from theeal part of the retarded self-energy:
—Li(—w) cannot be a constant but, for consistency with

antisymmetry and analyticity, must vanish withat w—0. i i i o

In both cases above, we have taken the high-temperature p'(w)= ;ReDR(“’)’ 7). (89)
limit to recover the results of Smithand Safonov and
Bertram®. Given that the approximation of the magnetization!n order to compute the retarded propagators, one has to
degrees of freedom by that of an oscillator is only valid atcompute the Euclidean effective action obtained by integrat-
low temperature, one might question the validity of thising out the bath degrees of freedom in the Euclidean func-
limit. However this is a well-known shortcoming of LLG tional integral
and little attention has been paid to address this [Fint.

; B _
e EmS):f [db:dbk]exp[—JO erE(S',bk,b’k‘)},

C. An equilibrium calculation of the noise (90)
Here we show how the correlation functions derived in h
the real-time method can be ra:]:go derived using the equilibW ere
rium imaginary-time formalism? This is an equilibrium LE(S b, b*)=LE(S)+LE(b. b*)+LELS b, b*
consistency check for our nonequilibrium computation and (S:bibi) =Ls(S) +Lr(bi bio) + Ls S bi, k)('gl)
moreover it shows that the FDT was correctly applied in Ref. o
3. wit
The basic idea in the equilibrium computation is to invoke
the fluctuation-dissipation theorefwhich isnot assumed in
the nonequilibrium computationn order to derive the fluc-
tuations from the dissipation, i.e., from the spectral density. LE(by,bf) =", b (d,— wy)by, (93)
The fluctuation-dissipation theorem says that in equilibrium K
the symmetric correlation functions can be written in terms
of the spectral densities’! (w) as

LE(S)=S%9,9+ 3A(S)%+3B(S)?, (92

LSH(S\bbi) =2 bBinS +S.%(be. (99

o o BO . . . . .
({S'(t),S’(O)}>=J dwe""tCOth?p”(w), (82)  Since the integration oh, andbj is GaussianS,¢; can be
computed exactly and is quadratic in the spin fields:
wherei andj denote the indices andy, respectively. From 5 5
t_his definition it is immed!ate to see that the spectral densi- ngf(si):f de dr’%Si(r)Dﬁ(r— )S(r'). (95)
ties must satisfy the relationships 0 0

ij ii i i The Euclidean propagator is easily obtained in the Matsubara
1] * — I 1] | -

pi(w)=pl(w),  ple) pr(- o). (83 formulation by inverting the X2 matrix

In particular,p™* and p¥¥ are real and antisymmetric:

N A wp Ig(w)) 0
PRI i i De (wn)= , (96)
pl(w)*=p'(w), p'(w)=—p'(-w). (84 —w, B 0 He(wn)
Thus, one can extract the spectral densitiééw) from the where the first matrix is the inverse free propagator and the
spectral representation of the retarded self-energy, second matrix is the self-energy matrix
y ey I =2 2GE 9
Dgw):f dor P2 @5 ewn) =22 [’ GE(wp) (97)
o' —wtis
_ . _ and wherew,=27nT, n=0,=1,%=2, ... are theMatsubara
by taking the imaginary part frequencies. The inversion is trivial. The retarded propagator
can be obtained with an analytic continuatiep—i w:
- 1 -
R (1) = . 1
D i A+I1
Moreover, due to the behavior of the theory under time re- () @ R(@)
flectionst— —t, whereD(w) is the determinant
{SK 1), S(0))) = — (IS~ 1),SY(0)}). 87 D(w)=ws— *+(A+B)Ig(w) +11i(w). (99
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In order to compute real and imaginary parts, it is convenientlose to equilibrium. Below we give the full expressions for

to split
[Mg(w)=Rdl(w)+ilmll(w)

and to introduce the real quantities

(100

A(w)=A+Rdl(w), B(w)=B+Rel(w). (101

Then the inverse determinant reads

1
pt W)= -
( wi— w?—|IIg/%+ (A+B)Ilg
wi— w?—|TIg/?+ (A+B)(ReI—i ImII)
|D(w)|?
(102
with

1 D()]?=[ 0§~ o’ lg(w)|?+Rel(v)(A+B)]?
+(A+B)qImIl(w)]? (103

The functions RH(w) and ImII(w) are related to the pre-
viously defined functions ,(w), L;(w), andA(w). In par-
ticular

lmH(w)=—2w§ | 7d28(0— wy)

= -7\ o)|y(0)?*=-A(w). (109

the symmetrized correlation functions for the transverse
components of the magnetization. As far as our simple model
is concerned, it is then concluded that the LLG result is a
well behaved model of noise since it can be applied to the
whole range of frequencies while the proposed modifications
of the damping term in LLG by Safonov and Bertram rest on
weak arguments. The generd|S,-correlation function is
then given by

dow
Cu(t)= f E[:H— 2n(w)]A(w)cog wt)

X{ 0%+ B2+ A(w)?

[0~ w®—A(w)?*+[A(w)(A+B)]?
(108

Similarly for the S, S, -correlation function, we have

do
Cyy()= j E[l+2n(a))]A(w)COS(wt)

y w2+A2+A(u))2
[0~ 0®—A(w)?]?+[A(w)(A+B)]?
(109

and finally for theS,S-correlation function, the correlation
function is

do .
Cyy()= f %[1+ 2n(w)]A(w)sin(wt)

Notice that the continuum limit has been taken by ensuring

the antisymmetry of Ifi(w). The p' () spectral densities

are obtained by taking the imaginary part of the full retarded

propagatord(w),
= [w3— w?—|TIg?~B(A+B)]A, (105
7|DJ?
pVY=— [wi— w?—|IIgl?*~A(A+B)]A, (106
7| DJ?

whereas the spectral d“ensitip%(w)(i #]) are obtained by
taking the real part oD x(w):

i
| D|?

pY(w)= [w(A+B]A. (107

y w(A+B)
[0§— 0= A(0)?]?+[A(w)(A+B)]?
(110

where

A(w)=m\()|y()|*. (111

Even though we have succeeded in showing the origin of
the discrepancy between both calculations, the usefulness of
these results is limited because of the harmonic approxima-
tion. Clearly more work is needed to understand the
dissipation-noise problem in magnetic devices which goes
beyond the simple approximations currently used to account
for them.

IV. CONCLUSION

These results coincide with those derived by the real-time
method. Therefore there is full consistency between the real- Starting from simple microscopic models which only dif-
time and the imaginary-time formalism. fer in the density of states of the bath, we have been able to
The LLG limit for small damping is recovered when derive variant correlation functions for the magnetization
Rell—const, IMll— aw, and the coherent oscillator is re- close to equilibrium. We have limited ourselves only to
covered in the regiofjw|~w, when Rél—const, Inil linear-type couplings to the bath. Depending on the product
—a sgnw. The term Ré&l is usually set to zero after being of the coupling constants and the density of states of the
absorbed in the definition of the FMR frequency. bath, we showed how to obtain the different types of corre-
Therefore, both equilibrium and nonequilibrium methodslation functions: the classical LLG result obtained by Sfith
give the same correlation functions for the magnetizatiorand the normal-mode coupling solution of Saforiowe
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have used two independent methods to get our solutions: symmetries of the full Hamiltonian, but, again, not at the
nonequilibrium method that does not make use of the FDTeading order in perturbation theory. The point is that for
and an equilibrium method. The nonequilibrium formulation nonlinear coupling, the effective Hamiltonian and therefore
allowed us in particular to show that a generalizedthe correlation functions have to be computed perturbatively
fluctuation-dissipation theorertbl) holds true even if the in terms of Feynman diagrams; in particular the spin propa-
distribution functions are not exactly the Bose-Einstein onesgator will enter in higher-order computations and since the
In principle, an analysis of this system when the distributionspin propagator depends on the symmetry of the spin Hamil-
functions present strong differences from the thermal one isonian, which could be isotropicA=B) or not (A#B), we
also possible in the general formalism we discussed here. will have different results foA=B andA+ B. This does not

The LLG solution was obtained for a special type of den-happen at leading order in the nonlinear case, and does not
sity of states and coupling to the bath. The same conditiomappenrat all ordersin the linear case, where the exact result
was also obtained in Ref. 12 where in addition we were ablés shown here. For cases far from equilibrium, the harmonic
to show that this choice gives the white-noise character irapproximation is no longer valid and we expect the damping
the stochastic formulation. The normal-mode solutions areto depend both on frequency and position and direction of
however, generally with memory unless we are interested ithe magnetization.
frequencies close to the FMR frequency. The assumption that
damping is constant close to the FMR frequency makes the
equations of motion Markoviaft. The damping in the cases
treated here isndependendf the symmetries of the Hamil- We thank D. Boyanovsky, W. Hitchon, N. Smith, and V.
tonian spin system, the reason being that the dissipation keSafonov for stimulating discussions. One of the authors
nel only depends on the coupling with the bath and the batiA.R.) would like to thank L. Benkhemis and R. Chantrell
properties, but not on the spin Hamiltonian. For couplingsfor discussions. Useful comments by V. R. Vieira on a pre-
other than linear, the damping is expected to depend on théous draft of this paper are also very much appreciated.
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