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We apply the cummulant method to obtain the high-temperature expansion of the Helmholtz free energy of
the tetrahedral spin-1/2 and spin-2 XXZ models. The tetrahedral model is written as a composite spin-1 XXZ
model, and some of its thermodynamic functions are compared to those of the ordinary spin-1 XXZ model. The
composite spin-1 model is then mapped onto a fermion model, and it is shown that the contribution of the
string Hamiltonian to thermodynamic functions at high temperatures cannot be neglected. The high-
temperature expansion of the Helmholtz free energy of the anisotropic spin-2 XXZ chain is obtained up to
order88. Our results fit well the numerical quantum Monte Carlo data calculated by YamdRioys. Rev. B
53, 3364(1996)] for the isotropic antiferromagnetic Heisenberg chain. We complement his high-temperature
expansions for thermodynamic functions with terms of higher ordeg.in
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. INTRODUCTION properties of tellurate materials €Ie,05Xs (X=Cl or Br).
On the basis of experimental results it was argued that these

Quasi-one-dimensional models such as ladder models, tetaaterials can be appropriately described by the noninteract-
rahedral spin models, dimer chains, and mixed spin modelmg tetrahedral spin-1/2 mod@IThis model can be mapped
have been attracting the attention of theoreticians and experénto composite spin models, which have a sum of two or
mentalists, because they represent a transition from onewore spins at each site. Igom and TimoneH''*applied the
dimensional to bidimensional models and show interestinglordan-Wigner transformation to have the composite spin-
topological features. 1/2 model mapped onto the one-dimensional extended Hub-

A surprising aspect about ladder models is that the spinbard model plus a string Hamiltonian with interactions along
1/2 antiferromagnetic Heisenberg chain is a gapless modesll the chain sites. For different sets of parameter values, they
whereas the even-legged antiferromagnetic Heisenberg ladompared thél =0 phase diagrams of the anisotropic com-
der model has a gap in its energy spectfuBesides those posite spinS=1 Heisenberg chain and the one-dimensional
important topological differences between chain andextended Hubbard model.
m-legged antiferromagnetic Heisenberg ladder models, there Zero- and low-temperature properties of the aforemen-
are materials whose experimental data can be fitted by thosmned quasi-one-dimensional models are well known; the
models. For example, the vanadyl pyrophosphatesame cannot be said, however, of their thermodynamic prop-
(VO),P,0; (Ref. 2 and SrCyO; (Ref. 3 are well fitted by erties. In the nice work by Troyer, Tsunetsugu, andriz/t?
the two-legged antiferromagnetic Heisenberg ladder. Anothethe thermodynamics of the two-legged Heisenberg model is
important point about these quasi-one-dimensional models isalculated numerically in the whole range of temperature.
the exciting possibility that a doped ladder can be associatefihere are few analytical results such as high-temperature ex-
with high-temperature superconductivity. pansions, even for models that have been studied extensively.

A complete frustration occurs in the two-legged ladder In Ref. 13 Niggemann, Uimin, and Zittartz considered an
model when diagonal couplinjare present. Recently, spin- alternated spin chain where at each second site there is a kind
1/2 tetrahedral clusters have attracted substantial interest deé dumbbell configuration. At each vertex of the dumbbell
to the unconventional magnetic phases they presérfet-  there is a spin-1/Asee Fig. 1L They obtained a set of
rahedral spin-1/2 clusters have been applied to the study afoupled equations that give the thermodynamics of what

FIG. 1. The dumbbell structure of the tetrahe-
Jo dral spin-1/2 model. Along thg line we have the
spin-1/2 g; at each site and along threline an-
other spin-1/2r; .
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they called modeA.!* In the thermodynamics of modél  some thermodynamics functiorfsuch as the specific heat
they explicitly verify the consequence of the equivalentper site, the correlation of the component of the spin be-
chain model fragmentation due to the presenceSef0  tween nearest neighbors, and the average of the squared
states. The modeB, also defined in Ref. 13, is a tetrahedral component of spin per sitef this model with those of the
spin-1/2 model and also exhibits a rich phase diagrami at spin-1 XXZ model(spin-1 in the irreducible representatjon
=0, but its thermodynamic properties are unknown. For aobtained in Ref. 24. In Sec. Ill we compare the specific heat,
special choice of constants, modibecomes a noninteract- mean energy, and static magnetic susceptibility of the one-
ing tetrahedral spin-1/2 model with the tetrahedral spindimensional extended Hubbard modeind a modified ver-
model being of a direct sum of two spins-1/2 at each sitesion of the tetrahedral spin-1/2 model. We do so to quantita-
with all interactions being of the isotropic Heisenberg type. tively verify the importance of the string Hamiltonian to the

The spin-2 antiferromagnetic Heisenberg chafA&H)  thermodynamics of the model in the high-temperature re-
have been less studied than the corresponding spin-1 modgjion. In Sec. IV we calculate th8 expansion, up to order
Probably, this rests on thf&=2 model having a larger num- g°, of the Helmholtz free energy of th8=2 XXZ model
ber of degrees of freedom than lower-value spin modelswith anisotropy in thez direction and the single-ion anisot-
Nevertheless, the ground-state energy ofSke€2 AFH chain  ropy term in the presence of an external magnetic field in the
as well as its lowest excited states and low-temperature prop-direction. The analytical results are compared to thermody-
erties have been calculat&}’ On the other hand, there namic functions data calculated by the QMC method in Ref.
also are relatively few calculations on the thermodynamicall9. In Sec. V we present our conclusions. Finally, in the
functions of the spin-2 Heisenberg mod&?® Moreover,  Appendix we give theB expansion of the Helmholtz free
quasi-one-dimensionalS=2 AFH materials have been energy of the modified tetrahedral spin-1/2 model, up to or-
synthesized!?? hence the study of properties of the spin-2 der 8°, that is mapped onto to the fermionic chain model by
XXZ model at zero and finite temperatures have risen inSdyom and Timonen.
importance.

In 1995 Yamamott did a nice quantum Monte Carlo
calculation(QMC) to obtain the thermodynamic properties || THE THERMODYNAMICS OF THE TETRAHEDRAL
of the S=2 AFH chain. He calculated the temperature de- SPIN-17/2 MODEL IN THE HIGH-TEMPERATURE
pendence of the mean energy, specific heat, and static mag- LIMIT
netic susceptibility per spin for either periodic or open chains
with N sites forN=32, 64, and 96. Using the least-squares _ The Hamiltonian of the tetrahedral spin-1/2 modsée
method, he extrapolated his results to the thermodynamiEig. 1) is
limit (N— ). In the high-temperature region he deriveg a
expansion for each calculated physical quantity that fitted the
numerical data in this limit.

To the best of our knowledge a study of thermodynamic Ht:izl {Jo(ai, 7)1+ I[(07, 011 1)at (07,74 1)a
properties of the anisotropic spin-2 XXZ chain with single
ion-anisotropy term in the presence of an external magnetic +(7,01+ )2+ (71,71 )a]l—h(of®1,+1,@ )}
field is still missing in the literature.

In Ref. 23 we presented a method to calculate the coeffi- (2)
cients of the cummulant expansion of the Helmholtz free

energy, in the thermodynamic limit, of any chain with peri- Along the p line of the dumbbell we have the spin-162

odic boundary condition, invariance under spatial translation, hareas along theline we have the distinct spin-1/2. We
and interactions between nearest neighbors. The aim of the.. o otation A B s =A@ B+ AVo BY+ AAZ® B
present work is to obtain the high-temperature faxpansion QLith A= (AX,AY AZ)Ir;lmkj ékE(IBX é‘y B'z) tokintrodluce tr’le
the Helmholtz free energy of the tetrahedral spin-1/2 mOdeYvnisotropy ey ldirection Weki}ngt,)sek periodic boundary
and the spin-2 XXZ chain by applying the method presenteé1 " oo

. : : qc_ondltlons to the Hamiltoniaf).

in Ref. 23. The dimensions of parameter spaces of both mo Hamiltonian(1) is a modified version of modd of Ref

els have been increased: in the tetrahedral model, we inclu With F=p: and .= We introduce an anisotropy.in
anisotropic Heisenberg-type interactions alor_19 the dl_agonalt ez dire%;tioﬁ;1 in thezcrgééing interactions as well as in the
(cf. Fig. D; in the spin-2 XXZ we introduce anisotropy in the .

z direction. Both models are in the presence of an externa'f“er"JICtlon between first neighbofsee Fig. 1 It is also a

magnetic field in the direction. As mentioned previously, in special case of the generalized spin ladder proposed by

Refs. 10 and 11 Sgom and Timonen mapped the composite Kolezhuk and Mikesk& to interpolate some quasi-one-

spin-1 model onto the one-dimensional extended Hubbarglmens?nal_gapped modelg. Hgmll_tonlelj Is the spec!al
model plus a string Hamiltonian. We sought to clarify the caseJ;=Jy=J,, of the Hamiltonian in Ref. 8 that describes
importance of the contribution of the string Hamiltonian to a frust.ra'ted spin Iadderlwnh Qlagonal couplmgs.
the thermodynamics of the composite spin model in the high- Defining the composite spi§; at each site as
temperature limit.

In Sec. Il we obtain the Helmholtz free energy of the o .
tetrahedral spin-1/2 model, up to ordgP. We compare S=0®1,+1,97, 2
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with 1, being the identity in ther space andl, being the 0 1 0 O 0 0 0 O
identity in the 7 space, it is simple to realize that the tetra- 00 1 0 10 0 0
hedral spin-1/2 mod€l) is mapped into the chain model: St= S =
0 0 0 0] 01 0O
0 0 0O 0 0 0O

N
3 Jo _ _
He= 2, [_23014x4+§s|2+3[3|+5|+1+3| S i i
“ (30

The model described by Hamiltoni@Ba) is also subject to a
, (38 periodic boundary condition. In matricé8b) and (3c) we
recognize the sectorS=0 (singlet statg and S=1 (triplet
whereS =(1/12)(S'+iS)) andS’=S;-S;. The matrices in ~ statd that come from the composite spi@). .
Hamiltonian(3a), written in the basis of the eigenstatesSf The method developed in Ref. 23 can be directly applied
and<2 . are to the Hamiltonian3a) to obtain its thermodynamics in this
v region of temperature. The advantage of describing the tet-
rahedral spin-1/2 model in Fig. 1 by Hamiltoni&®g) is that

+AS'S,, ] -hS

2 000 10 0 0 of recognizing a one-dimensional composite spin model that
, |0 200 , (00 0 o0 has already been studied in the literattft&13
S=lo o0 2 ol S0 0 -1 ol By applying the results of Ref. 23 to the Hamiltoniéga)
we get the high-temperature expansion of the Helmholtz free
0 0 0 O, 0 0 0 0, energy of the tetrahedral spin-1/2 mod#), in the thermo-
(3b)  dynamic limit, up to orde®:
|
In(4) 3J, J? 333 h? J2A? JFA Joh?  JPA%), 33 JAh? 32,
W(B)=——F—+| 5 — B+| -+ + -+ +
B 4 4 32 4 8 16 16 16 64 4 8
J05 I%h? 7XAY Jg 3J%A%h2 h* J'A% JoJAh? JGh? J5PA% JoPA 34|
64 ' 16 384 '1024 16 96 32 8 64 ' 128 ' 32 48P

. Joh*  Jod* 5J*A2), JZA233+JOJ4A4 3J3Ah2+J3AJS+J5A+13J3A3h2 Joh2J2
9% 64 96 192 192 32 256 192 96 16
h235 35 %A% 333 JAJGh® 73,0°Ah? JAh*

11344435 53°A%h?  1192A235
“ 768 "1024 384 96 64 ' 64 24

3072 64 6144

B+

1132A%h* 5J%A2J5 113%A%h?  J3AJ3 J23%h? 7J5A%), T7J,J°A  J%h* JBAS h2gt
+ + + - -

128 | 384 128 384 ' 256 768 384 96 2880 102
J6AZ 7323% 3%t 5h23% 110235 93°A4 1305 730°  h®  J3A33,h?  JAI3K?
T 2560 512 1536 3072 3072 | 1280 122880 11520 1440 12 96

SJAJOh“LJZAZJShZ 1530h%3%A | o8 4
T o T izs T 12 P TOBY @

In Ref. 24 we obtained thg expansion of the Helmholtz The thermodynamics of both models is independent of the
free energy of the XXZ Heisenberg model with spin-1, sign of the constand. From now on we choose it to be
where the spin-1 is considered as a fundamental §@n  positive. We factor the constadtin Hamiltonian (3@ and
the irreducible representation of spin-lunder periodic have the others constants redefinedlgsl and H/J. The
boundary conditions. Fody=0, the Hamiltonian(3a) has  expression4) for W,(8) becomes an expansion with respect
the same form as the Hamiltonidfia) of Ref. 24, in the to the product gJ), with J>0.
absence of the single-ion anisotropgy € 0). In what follows, we takel=1 andD =0 in expressiori3)

Certainly it is interesting to compare the behavior of theof Ref. 24 for the Helmholtz free energy of the spin-1 XXZ
thermodynamic quantities for the spin-1 model when it is amodel andJy=0 in Eq. (4).
composite model and when it is a fundamental one. From the Helmholtz free energy we calculate the specific
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FIG. 2. Dashed lines represent the specific heat per site for B
the spin-1 XXZ model, whereas solid lines are for the tetrahedral
spin-1/2 model with(a) A=1 andh=0, and (b) A=—-2 and FIG. 3. The correlation functiofS?S?, ;) for both models with
h=0.5. A=-0.06. In(a) we haveh=0 and in(b) we have an external

magnetic fieldh=0.2. In the presence of the external magnetic
field, the intersection of curves has gone higheBirni.e., occurs at
heat per siteC, (8) (C.(B)=— B25*[BW(B)]/3B?, where  a lower temperature.
WI(B) is the Helmholtz free energy of the respective madel
In the high-temperature region3€[0,0.3]), the specific
heat per site of the spin-1 XXZ model is always higher thanyhich implies that the mean energy per site of the composite
that of tetrahedral spin-1/2 model for the ferromagnefic ( model is always smaller than that of the spin-1 XXZ model.
<0) and the antiferromagnetidA(-0) phases. In Fig.@  Figure 4 exemplifies this behavior fdr=—2 andh=0.5. In
we compare the specific heat per site of both models in thg,qo vicinity of 8=0, both models give a straight line but
absence of an external magnetic field, while in Fi)2ve it different negative slopes.
have an external magnetic fiefi=0.5. These figures exem- | the region of high temperatures, the static magnetic
plify the fgct that in th'IS region of temperature the Spec'f'csusceptibility per sitex(8) (((8)=— 4 W(B)1/oh¥ o)
heat per site of the spin-1 XXZ model is higher than that ofyf the spin-1 XXz model is higher than that of the composite
the composite model. This happens due to the presence gioge|. The static magnetic susceptibility is defined as the
composite spirS=0 along the chain. For both mc;dels the ratio of the magnetic moment per unit of length to the norm
specific heat per site vanishes f6r—0, just like 8%, but  qf the external magnetic field. The spins-0 in the chain work
with different positive coefficients. _ _as nonmagnetic impurities, such that the magnetic suscepti-
In the high-temperature region, the correlation functiony;jity of the composite spin model is smaller than that of the
between thez components of the nearest spifS'S,;)  fundamental spin-1 XXZ model. Varying the anisotropy con
[(S/S,,)=adW(B)IdA] of the spin-1 XXZ model is, in gen-
eral, stronger than for the composite spin model. However,
for Ae(—0.8,0) the curves ofS'S’, ;) for both models
cross each other. In Fig.(& we haveA=—0.06 andh r ]
=0. For the interval oA mentioned above, the presence of o2k ~
an external magnetic fieltd takes the crossing point to a .~
lower value of temperature, as we have in Figh)3The r ]
correlation function between nearest neighbors of both mod- 04k i
els vanishes ag— 0 but with different values of its deriva- )
tive at 3=0. - ]
The mean energy per sitB) (e(B8) =4 BW(B)1/B) 06k _
of the spin-1 XXZ model is lower than that of the tetrahedral | | — $=1/2+1/2 .
spin-1/2 model in the high-temperature region. This is true P s=t ]
for both models, even in the presence of the same nonvan ,¢|
ishing external magnetic fiekd Again, this fact is associated
with the presence of immobil&=0 spins in the chain. B ¥ Ty B T a— T
Those composite spirs=0 are responsible for the breaking
of the original chain into subchains of composite s@n FIG. 4. The mean energy of the spin-1 XXZ is the dashed line
=1, each one with nonzero mean energy per site. The unioand the solid line is the equivalent curve of the tetrahedral spin-1/2
of those subchains is always smaller than the original chainmodel. For both curves we have=2 andh=0.5.

E(g)
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FIG. 5. We plot the percentage difference between the static FIG. 6. We plot the mean value of the squazecbmponent of
magnetic susceptibility of the two modelfDiff% = ([ x1(8) spin per site{(S9)?). We takeA=2 andh=0.4. The dashed line
—x:(B)1/x1(B))*x100%]. For the continuous line we hava gives the curve for the spin-1 XXZ model; the solid line gives the
= —1; for the dotted line we hav&=0; and for the dashed line we curve for the composite spin-model.
haveA=1.

This is a direct consequence of the immolste O sites that
stantA from negative(ferromagnetic stajeto positive values  work as “nonmagnetic impurities” in the chaff:**
(antiferromagnetic statethe difference between the static
magnetic susceptibility per site of the spin-1 XXZ model,

X1, and the analogous thermodynamic quantity of the tetralll. COMPARISON OF THE THERMODYNAMICS OF THE

hedral spin-1/2 modely;, diminishes. In Fig. 5 we plot the COMPOSITE SPIN-1 MODEL AND THE ONE-
percentual relative difference.(x;— x;)/x1]X100%. For DIMENSIONAL EXTENDED HUBBARD MODEL
B—0 both models satisfy Curie’s law, but with different || Refs 10 and 11, ‘9gom and Timonen apply the

coefficients. . Jordan-Wigner transformation to the spin variables to map
Finally, we cannot obtain the mean value of the squared 1,4y Hamiltonian(2.1)

component of spin at each siteS?)?) from a simple deriva-
tive of the Helmholtz free energi). To get((S7)?) for the

N
composite model we apply the method of Ref. 22 to the
modﬁ‘ied Hamiltonian: PoY Hsi= _Z’l [J(SSG 1+ 1) +3,5S, 1~ D(SH)?],
(7)
N
Htfmod:E {‘][stwl-l- S S +ASS, ] into the Hamiltonian of the one-dimensional extended Hub-
i=1 bard model plus a string Hamiltonian with infinite correla-

tion. This string Hamiltonian is proportional to the constant
] (5)  Jxy, only. In Refs. 10 and 11 the phase diagram$ a0 of
Hamiltonian(7) and the one-dimensional extended Hubbard

. . ) ) model are compared. They concluded that both models have
In the Appendix we give the expression of theexpansion, 4 similar phase diagram in the strobighimit (J,,=0) and

5 . .
up to orderg®, of the Helmholtz free energy associated with consequently the effect due to the string Hamiltonian is neg-
this Hamiltonian, Wi mod(8)- Th? gemperature dependence igihle at T=0 in this limit. However the models have dif-
of the thermodynamic functiof(S)“) of the composite spin  ferent phase diagrams whdq,+0. Certainly both models

G Z
—h§+ =(s)?

model can be easily calculated as do not have the same energy spectrum.
In Ref. 25 we calculated the high-temperature expansion
2o 2 MWemod B) of the grand potential of the one-dimensional generalized
((S) >_2T|G:0' (6) Hubbard model up to ordes?. In order to have a quantita-

tive check of the effect due to the presence of the string

The thermodynamic functio(S?)?) of the spin-1 XXZ  Hamiltonian in the thermodynamics of the model described
model is larger than that of the tetrahedral spin-1/2 model irby the Hamiltonian(7) we consider the casd,,=—J, J,
the high-temperature region for arbitrary ratio of the con-=—JA, andD=G/2. For these choices of constants, Hamil-
stantsA/J andh/J. In Fig. 6 we compare the temperature tonian(7) becomes identical to the modified Hamiltonig.
dependence of the functiof(S’)?) of the two models for We should note that the modified model corresponds to a
A=2 andh=0.4. Differently from the other thermodynamic tetrahedral spin-1/2 model where the te3g$7/2 is replaced
quantities presented, the limt— 0 of the((S?)?) is not the by G(SH)?/2. This new term is obtained in substituting the
same for the two models, as we verify directly from Fig. 6.term (o;, ;) in Hamiltonian(1) by (o7, 7). In the Appen-
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Jo=0and h=0.5 Jo=1land h=05
: . : 35 : T . , : T . T

—_— A=05
--- A=-05

FIG. 7. The percentual relative difference of the specific heat FIG. 8. The percentual relative difference of the mean energy
per site given by the one-dimensional extended Hubbard model anger sjte given by the one-dimensional extended Hubbard model and
the modified tetrahedral spin-1/2 model. For both plots we have sehe modified spin model. In the two curves we &+1 andh

G=0 andh=0.5. The curves correspond to the cases —1 =05, We plot the curves foA=—0.5 (dashed linfandA=0.5
(dashed linpandA=1 (solid line). (solid line).

dix we present the expression of the Helmholtz free energy . th ite of th di ional extended
of this modified model, up to orde8®, but since the results ofth€ mean energy per site of the one-dimensional extende

of the one-dimensional extended Hubbard model go up tguPbard model Eey) and of the modified tetrahedral spin-
order 82, in the following 8 expansion foW,mod8) we /2 model €y, that is, AE(B)=(Em(B) ~Een(B)]/
only keep terms up to ordes?: Emi(B))*x100%. In Fig. 8 we have sei=+0.5 and for

both curves we hav&=1 andh=0.5. We verify directly
from the plots that the relative difference in the two plots is
larger than 30%. As in the case of the specific heat per site
when we setA=h=G=0, the relative differencéin per-
cen) AE(B) is equal to 50%, and it is independent ®fin
B2+0(8%). the high-temperature region.
Finally, up to orderg?, the static magnetic susceptibility
(8) is the same for both models. In units &fwe have

In(2) J2 JPA? G%2 n?
Wt-mod(ﬂ):_z (

B
(Gh2 J’A%2G  JPA  JAR?

"\ 16" 16 16 a3

To compare the results of the modified Hamiltoni@n
and the one-dimensional extended Hubbard model, in Egs. A G
(63) and (73) of Ref. 25, we made the following substitu- YerlB)=Xtmod B)=—| =+ =
tions: t=J/2, \g=0, Eo=—(G/2+2JA+h), U=G, V 2 8
=Jh/2, =0, andX=0.

To verify the importance of the contribution of the string . . . I
Hamiltonian to the thermodynamics functions in the high—WhereXEh('g) is the static magnetic susceptibility of the one-

temperature region, we calculate the relative differefine dimensional extended Hubbard model ando«8) is the
percent of the specific heat, mean energy, and static mag_statlc magnetic susceptibility of the modified composite spin
netic susceptibility per site obtained from the Hamiltonianmodel.

(5) and the one-dimensional extended Hubbard model. In

Fig. 7 we plot the relative difference in the specific heat per

site of the one-dimensional extended Hubbard model IV. THE THERMODYNAMICS OF THE SPIN-2 XXZ
[th(,B)] and the modified tetrahedral spin-1/2 model CHAIN IN THE HIGH-TEMPERATURE REGION
(CL™YB)), that is, AC (B)=[(C{"-C{ ™°)/C{~ ™

x100%. In Fig. 7 we plot this relative difference, in the  The Hamiltonian of the anisotropic spin-2 XXZ model is
high-temperature region, for two values &f A=+1. For identical to the modified Hamiltoniafb), but now the opera-
both values ofA we setG=0 andh=0.5. In the two curves torsS', §, andS/ are the components of the fundamental
the relative difference is larger than 20%. In particular, whenS=2 spin matrices of théth site. To simplify the notation
we only have the “flip term” in the Hamiltoniart5) (A=h we takeD =G/2 in Hamiltonian(5).

=G=0), which is mapped into the hopping term of the  Applying the method of Ref. 23 to the Hamiltoniéb) of
one-dimensional Hubbard model plus a string Hamiltonianthe fundamental spin-2 XXZ model, we obtain its Helmholtz
the relative differenc& C_(B) is 50% for any value o3 in  free energy, up to ordeg®, for either positive or negative
the high-temperature region. In Fig. 8 we plot the differencevalues ofA andD:

B
Brs. (O
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In(5)
Wz(B): - T+2D+

2J2A%2—h? 70* 432 | B+ 280°A°D 28]2D¢7h2D JBA +4JANh%+ D’ 2
B 5 B 5 5 5 ?B
101J4+ 16934+919]4A2+ 51J2D2+ 13h* 128]2A2D2+ 193%h? 4090*A* 3h?D? 54J%A2h?
150 300 75 25 60 25 5 150 10 5
56JAh%D 5 169h%D3 212J%A%D® 511%h?D 207J*A%D 7905A3i 256JAh?D? 53h*D
N A T 75 25 10 60 " 25 60
. 793°A 646J3Ath 2018J3A3th 503J2D3i 968]2A2h2D+ 953D 52.JAh4L 731*A*D 23D°
30 25 75 75 25 6 15 15 100
7J3AD2) 4+<118233Ah2D 1424]Ah4D+424JAh2D3 16361°A%h%D 66 6111°A2

_EN12A2h202 —
25 25 SWTAThD 75 75 15 1500

9373%h* 1971°D* 21]J4h2i 6563]4D2+ 227h4D2i 23h2D4i 451J6A6i 76431°A% 31h®
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In order to compare our resull0) with the high- Comparing Eq(118 with expression3.2g of Ref. 19 for
temperature expansion in Ref. 19, we obtain from the freé¢he mean energy per spin, we see that in this last expression
energy(10), the mean energy per splt‘n;\F(,g) and the static the even-power terms of3J) are missing. Consequentlly, the
magnetic susceptibility per spigb"(8) of the antiferromag- odd-power terms of8J) are missing from the expression of

netic Heisenberg chain in the absence of an external magP® Specific heat, in Eq3.53 of this same reference. Finally,
netic field A =1, D=0, andh=0): e also notice a misprint in Eq3.10a9 of Ref. 19 at order

B2, when comparing it to our Eq11b).
A , 204 .79 . 4907 In Fig. 9 we compare our resultdl) to the QMC data
E5"(B)=-128—-38 +?,3 +Z'8 ~ %5 and the high-temperature expansion contained in Ref. 19.
Equations(11) extend the interval of temperature where the
15617 , B expansions of those thermodynamic functions laoea
Our results in Fig. 9 are valid in the thermodynamic limit,
32 303 showing that numerical data in Ref. 19 correspond to th limit
AF o\ _op_ap2 3 924 .4 ©°Y9.5 N—oo, being valid for temperatures lower than those in-
Xz (B)=2B~85"+14p 15’8 10’8 ferred from theB expansion in Yamamoto’s original papér.
Our exactB expansion for the average energy per spin devi-
3 319,36+ 0(5") (11b) ates from the numerical results of QMC method by 0.8% for
900 '

1
+ .
kT=4, and by less than 1.3% f&T=3.8. TheB expansion
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g
I
_41 FIG. 9. We compare our results) (solid
line) with the QMC data N=96) (dashed ling
'50 and the high-temperature expansion in Ref. 1
, (dotted-dashed lineThe plots showa) the mean
0 2'_ energy per spintb) the specific heat per spin, and
’ (c) the static magnetic susceptibility per spin. In
. p all plots,A=1, D=0, andh=0.
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for the specific heat per spin noticeably deviates from nuthat of the tetrahedral spin-1/2 model. In general, the corre-
merical data for lower temperature&<4.5) as wee see lation function between first neighbors is stronger in the
from Fig. 9b). spin-1 model than it is in the composite model, but there is
The relative errors of th@ expansion aroundT~5 with  an interval of values ofA where this inequality is reversed.
respect to QMC are the following: fdkT=5 the error is For 8—0, all these thermodynamic functions have the same
2.8% but fork T=4.8 this error becomes 2.2%. Certainly we limit for both models. The functio(S?)?) expresses in a
expect a systematically increasing deviation when the temvery clear way the effect of the immobil&=0 sites that
perature decreases and this eventual reduction happens dwnerk as “nonmagnetic impurities” in the chain. In the high-
to the precision in the QMC calculation. A similar behavior temperature region, this function for the spin-1 XXZ model
is shown by the specific heat per spin in higher temperaturesias higher values than that of the tetrahedral spin-1/2 model.
that is, for kT=5.6 the relative error is 1% but fokT  For 8—0, the limit of this function is different for the two
=5.8 the error becomes 1.3%, although it globally decreasesiodels.
as the temperature is increased. From Fig),3comparison In the literature the composite spin model has been
of the magnetic susceptibility per spin, obtained by fhe mapped onto a fermionic model. This fermionic model is the
expansion(11b and by QMC method, shows that the wors- one-dimensional extended Hubbard model plus a string
ening of their relative error is smoother than that of the speHamiltonian. The phase diagram of the composite spin
cific heat per site. FOkT=5 we have an error of about 1%, model is compared to the phase diagram of the one-
whereas fokT=4.6 we have 1.5%. dimensional extended Hubbard mod@t! The purpose of
this is showing that the effect of the string Hamiltonian could
be neglected in the strorid-limit. To verify the importance
of the contribution of the string Hamiltonian to the thermo-
The method presented in Ref. 23 has been applied up tdynamics of the composite spin model, for any ratio among
now to obtain the high-temperature expansion of the Helmthe constants of the model, in the high-temperature region,
holtz free energy of one-dimensional modélse spin-1/2 we compare its specific heat, static magnetic susceptibility,
integrable modéf and the spin-1 nonintegrable motfél and mean energy per site with the ones obtained from the
whose Hamiltonians are identified by one site label only. Inone-dimensional extended Hubbard modeWe obtain in
this present communication we obtain the thermodynamicghe high-temperature limit that th@ expansion, up to order
of the quasi-one-dimensional tetrahedral spin-1/2 model i3?, that the static magnetic susceptibility per site is the same
the high-temperature region by applying the method of Reffor both models. The relative difference of the specific heat
23. We do so by mapping the tetrahedral spin-1/2 model intger site of theses models is higher than 20% for the isotropic
a composite spin model witB=0 andS=1 chains. Thel  ferromagnetic and antiferromagnetic models{{+1) in the
=0 properties of this composite spin model have been studsresence of an external magnetic field. The relative differ-
ied previously:%1113 ence of the mean energy per site is larger than 30%for
To verify the effect of the fragmentation of the chain due = *0.5, also in the presence of an external magnetic field.
to the presence 0B=0 spin®® in the high-temperature re- This relative difference decreases as much the anisotropic
gion we compare the thermodynamics of the tetrahedrgbarametersA and G are much larger thad. WhenA=G
spin-1/2 model to the thermodynamics of the spin-1 XXZ =h=0, the relative difference of these two physical quanti-
model®* In this region of temperature the specific heat andties for both models is 50% and it is temperature independent
the static magnetic susceptibility per site of the spin-1 XXZin the high-temperature region.
model are larger than those of the composite spin model. The We conclude that, at least in the high-temperature region,
mean energy per site of the spin-1 XXZ model is lower thanwe cannot neglect the contribution of the string Hamiltonian

V. CONCLUSIONS
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