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High-temperature expansion of the tetrahedral spin-1Õ2 and spin-2 XXZ models
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We apply the cummulant method to obtain the high-temperature expansion of the Helmholtz free energy of
the tetrahedral spin-1/2 and spin-2 XXZ models. The tetrahedral model is written as a composite spin-1 XXZ
model, and some of its thermodynamic functions are compared to those of the ordinary spin-1 XXZ model. The
composite spin-1 model is then mapped onto a fermion model, and it is shown that the contribution of the
string Hamiltonian to thermodynamic functions at high temperatures cannot be neglected. The high-
temperature expansion of the Helmholtz free energy of the anisotropic spin-2 XXZ chain is obtained up to
orderb6. Our results fit well the numerical quantum Monte Carlo data calculated by Yamamoto@Phys. Rev. B
53, 3364~1996!# for the isotropic antiferromagnetic Heisenberg chain. We complement his high-temperature
expansions for thermodynamic functions with terms of higher order inb.
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I. INTRODUCTION

Quasi-one-dimensional models such as ladder models
rahedral spin models, dimer chains, and mixed spin mo
have been attracting the attention of theoreticians and exp
mentalists, because they represent a transition from o
dimensional to bidimensional models and show interes
topological features.

A surprising aspect about ladder models is that the s
1/2 antiferromagnetic Heisenberg chain is a gapless mo
whereas the even-legged antiferromagnetic Heisenberg
der model has a gap in its energy spectrum.1 Besides those
important topological differences between chain a
m-legged antiferromagnetic Heisenberg ladder models, th
are materials whose experimental data can be fitted by th
models. For example, the vanadyl pyrophosph
(VO)2P2O7 ~Ref. 2! and SrCu2O3 ~Ref. 3! are well fitted by
the two-legged antiferromagnetic Heisenberg ladder. Ano
important point about these quasi-one-dimensional mode
the exciting possibility that a doped ladder can be associ
with high-temperature superconductivity.4,5

A complete frustration occurs in the two-legged ladd
model when diagonal couplings6 are present. Recently, spin
1/2 tetrahedral clusters have attracted substantial interes
to the unconventional magnetic phases they present.7–9 Tet-
rahedral spin-1/2 clusters have been applied to the stud
0163-1829/2004/69~13!/134405~9!/$22.50 69 1344
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properties of tellurate materials Cu2Te2O5X5 (X5Cl or Br!.
On the basis of experimental results it was argued that th
materials can be appropriately described by the noninter
ing tetrahedral spin-1/2 model.8 This model can be mappe
onto composite spin models, which have a sum of two
more spins at each site. So´lyom and Timonen10,11applied the
Jordan-Wigner transformation to have the composite sp
1/2 model mapped onto the one-dimensional extended H
bard model plus a string Hamiltonian with interactions alo
all the chain sites. For different sets of parameter values, t
compared theT50 phase diagrams of the anisotropic com
posite spinS51 Heisenberg chain and the one-dimensio
extended Hubbard model.

Zero- and low-temperature properties of the aforem
tioned quasi-one-dimensional models are well known;
same cannot be said, however, of their thermodynamic p
erties. In the nice work by Troyer, Tsunetsugu, and Wu¨rtz,12

the thermodynamics of the two-legged Heisenberg mode
calculated numerically in the whole range of temperatu
There are few analytical results such as high-temperature
pansions, even for models that have been studied extensi

In Ref. 13 Niggemann, Uimin, and Zittartz considered
alternated spin chain where at each second site there is a
of dumbbell configuration. At each vertex of the dumbb
there is a spin-1/2~see Fig. 1!. They obtained a set o
coupled equations that give the thermodynamics of w
e-
FIG. 1. The dumbbell structure of the tetrah
dral spin-1/2 model. Along ther line we have the
spin-1/2s i at each site and along ther line an-
other spin-1/2t i .
©2004 The American Physical Society05-1
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they called modelA.14 In the thermodynamics of modelA
they explicitly verify the consequence of the equivale
chain model fragmentation due to the presence ofS50
states. The modelB, also defined in Ref. 13, is a tetrahedr
spin-1/2 model and also exhibits a rich phase diagram aT
50, but its thermodynamic properties are unknown. Fo
special choice of constants, modelB becomes a noninterac
ing tetrahedral spin-1/2 model with the tetrahedral s
model being of a direct sum of two spins-1/2 at each s
with all interactions being of the isotropic Heisenberg typ

The spin-2 antiferromagnetic Heisenberg chains~AFH!
have been less studied than the corresponding spin-1 m
Probably, this rests on theS52 model having a larger num
ber of degrees of freedom than lower-value spin mod
Nevertheless, the ground-state energy of theS52 AFH chain
as well as its lowest excited states and low-temperature p
erties have been calculated.15–17 On the other hand, ther
also are relatively few calculations on the thermodynam
functions of the spin-2 Heisenberg model.18–20 Moreover,
quasi-one-dimensionalS52 AFH materials have bee
synthesized,21,22 hence the study of properties of the spin
XXZ model at zero and finite temperatures have risen
importance.

In 1995 Yamamoto19 did a nice quantum Monte Carl
calculation~QMC! to obtain the thermodynamic propertie
of the S52 AFH chain. He calculated the temperature d
pendence of the mean energy, specific heat, and static m
netic susceptibility per spin for either periodic or open cha
with N sites forN532, 64, and 96. Using the least-squar
method, he extrapolated his results to the thermodyna
limit ( N→`). In the high-temperature region he derived ab
expansion for each calculated physical quantity that fitted
numerical data in this limit.

To the best of our knowledge a study of thermodynam
properties of the anisotropic spin-2 XXZ chain with sing
ion-anisotropy term in the presence of an external magn
field is still missing in the literature.

In Ref. 23 we presented a method to calculate the coe
cients of the cummulant expansion of the Helmholtz fr
energy, in the thermodynamic limit, of any chain with pe
odic boundary condition, invariance under spatial translat
and interactions between nearest neighbors. The aim o
present work is to obtain the high-temperature expansio
the Helmholtz free energy of the tetrahedral spin-1/2 mo
and the spin-2 XXZ chain by applying the method presen
in Ref. 23. The dimensions of parameter spaces of both m
els have been increased: in the tetrahedral model, we inc
anisotropic Heisenberg-type interactions along the diago
~cf. Fig. 1!; in the spin-2 XXZ we introduce anisotropy in th
z direction. Both models are in the presence of an exte
magnetic field in thez direction. As mentioned previously, i
Refs. 10 and 11 So´lyom and Timonen mapped the compos
spin-1 model onto the one-dimensional extended Hubb
model plus a string Hamiltonian. We sought to clarify t
importance of the contribution of the string Hamiltonian
the thermodynamics of the composite spin model in the hi
temperature limit.

In Sec. II we obtain the Helmholtz free energy of th
tetrahedral spin-1/2 model, up to orderb5. We compare
13440
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some thermodynamics functions~such as the specific hea
per site, the correlation of thez component of the spin be
tween nearest neighbors, and the average of the squaz
component of spin per site! of this model with those of the
spin-1 XXZ model~spin-1 in the irreducible representation!,
obtained in Ref. 24. In Sec. III we compare the specific he
mean energy, and static magnetic susceptibility of the o
dimensional extended Hubbard model25 and a modified ver-
sion of the tetrahedral spin-1/2 model. We do so to quant
tively verify the importance of the string Hamiltonian to th
thermodynamics of the model in the high-temperature
gion. In Sec. IV we calculate theb expansion, up to orde
b6, of the Helmholtz free energy of theS52 XXZ model
with anisotropy in thez direction and the single-ion aniso
ropy term in the presence of an external magnetic field in
z direction. The analytical results are compared to thermo
namic functions data calculated by the QMC method in R
19. In Sec. V we present our conclusions. Finally, in t
Appendix we give theb expansion of the Helmholtz free
energy of the modified tetrahedral spin-1/2 model, up to
derb5, that is mapped onto to the fermionic chain model
Sólyom and Timonen.

II. THE THERMODYNAMICS OF THE TETRAHEDRAL
SPIN-1Õ2 MODEL IN THE HIGH-TEMPERATURE

LIMIT

The Hamiltonian of the tetrahedral spin-1/2 model~see
Fig. 1! is

Ht5(
i 51

N

$J0~s i ,t i !11J@~s i ,s i 11!D1~s i ,t i 11!D

1~t i ,s i 11!D1~t i ,t i 11!D#2h~s i
z
^ 1t11s ^ t i

z!%.

~1!

Along the r line of the dumbbell we have the spin-1/2s i
whereas along ther line we have the distinct spin-1/2t i . We
use the notation (Al ,Bk)D[Al

x
^ Bk

x1Al
y

^ Bk
y1DAl

z
^ Bk

z ,
with Al[(Al

x ,Al
y ,Al

z) andBk[(Bk
x ,Bk

y ,Bk
z) to introduce the

anisotropy in thez direction. We impose periodic boundar
conditions to the Hamiltonian~1!.

Hamiltonian~1! is a modified version of modelB of Ref.
13 with r 15r1 and r 25r2. We introduce an anisotropy in
the z direction in the crossing interactions as well as in t
interaction between first neighbors~see Fig. 1!. It is also a
special case of the generalized spin ladder proposed
Kolezhuk and Mikeska26 to interpolate some quasi-one
dimensional gapped models. Hamiltonian~1! is the special
case,J25J35J4, of the Hamiltonian in Ref. 8 that describe
a frustrated spin ladder with diagonal couplings.

Defining the composite spinSW i at each site as

SW i5sW i ^ 1t11s ^ tW i , ~2!
5-2
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with 1s being the identity in thes space and1t being the
identity in thet space, it is simple to realize that the tetr
hedral spin-1/2 model~1! is mapped into the chain model:

Ht5(
i 51

N H 2
3

4
J014341

J0

2
Si

21J@Si
1Si 11

2 1Si
2Si 11

1

1DSi
zSi 11

z #2hSi
zJ , ~3a!

whereSi
6[(1/A2)(Si

x6 iSi
y) andSi

2[SW i•SW i . The matrices in
Hamiltonian~3a!, written in the basis of the eigenstates ofSi

z

andSi
2 , are

Si
25S 2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 0

D
i

, Si
z5S 1 0 0 0

0 0 0 0

0 0 21 0

0 0 0 0

D
i

,

~3b!
1

he

13440
Si
15S 0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

D
i

, Si
25S 0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

D
i

.

~3c!

The model described by Hamiltonian~3a! is also subject to a
periodic boundary condition. In matrices~3b! and ~3c! we
recognize the sectorsS50 ~singlet state! and S51 ~triplet
state! that come from the composite spin~2!.

The method developed in Ref. 23 can be directly appl
to the Hamiltonian~3a! to obtain its thermodynamics in thi
region of temperature. The advantage of describing the
rahedral spin-1/2 model in Fig. 1 by Hamiltonian~3a! is that
of recognizing a one-dimensional composite spin model t
has already been studied in the literature.10,11,13

By applying the results of Ref. 23 to the Hamiltonian~3a!
we get the high-temperature expansion of the Helmholtz f
energy of the tetrahedral spin-1/2 model~1!, in the thermo-
dynamic limit, up to orderb5:
Wt~b!52
ln~4!

b
1

3J0

4
1S 2

J2

4
2

3J0
2

32
2

h2

4
2

J2D2

8 Db1S 2
J3D

16
1

J0h2

16
1

J2D2J0

16
2

J0
3

64
1

JDh2

4
1

J2J0

8 Db2

1S J2J0
2

64
1

J2h2

16
2

7J4D4

384
1

J0
4

1024
2

3J2D2h2

16
1

h4

96
1

J4D2

32
2

J0JDh2

8
1

J0
2h2

64
1

J0
2J2D2

128
1

J0J3D

32
2

J4

48Db3

1S 2
J0h4

96
2

J0J4

64
2

5J4D2J0

96
2

J2D2J0
3

192
1

J0J4D4

192
2

3J3Dh2

32
1

J3DJ0
2

256
1

J5D

192
1

13J3D3h2

96
2

J0h2J2

16

2
h2J0

3

768
1

J0
5

1024
1

J5D3

384
2

J0
3J2

96
2

JDJ0
2h2

64
1

7J0J2D2h2

64
2

JDh4

24 Db41S 11J4D4J0
2

3072
2

5J4D4h2

64
2

11J2D2J0
4

6144

1
11J2D2h4

128
1

5J4D2J0
2

384
1

11J4D2h2

128
2

J3DJ0
3

384
1

J0
2J2h2

256
2

7J5D3J0

768
2

7J0J5D

384
2

J2h4

96
2

J6D6

2880
2

h2J4

192

1
J6D2

2560
1

7J0
2J4

512
2

J0
2h4

1536
2

5h2J0
4

3072
2

11J2J0
4

3072
1

9J6D4

1280
1

13J0
6

122 880
1

73J6

11 520
2

h6

1440
2

J3D3J0h2

12
1

JDJ0
3h2

96

1
5JDJ0h4

96
1

J2D2J0
2h2

128
1

15J0h2J3D

128 Db51O~b6!. ~4!
the
e

ct

Z

ific
In Ref. 24 we obtained theb expansion of the Helmholtz
free energy of the XXZ Heisenberg model with spin-
where the spin-1 is considered as a fundamental spin~i.e.,
the irreducible representation of spin-1!, under periodic
boundary conditions. ForJ050, the Hamiltonian~3a! has
the same form as the Hamiltonian~1a! of Ref. 24, in the
absence of the single-ion anisotropy (D50).

Certainly it is interesting to compare the behavior of t
thermodynamic quantities for the spin-1 model when it is
composite model and when it is a fundamental one.
,

a

The thermodynamics of both models is independent of
sign of the constantJ. From now on we choose it to b
positive. We factor the constantJ in Hamiltonian ~3a! and
have the others constants redefined asJ0 /J and H/J. The
expression~4! for Wt(b) becomes an expansion with respe
to the product (bJ), with J.0.

In what follows, we takeJ51 andD50 in expression~3!
of Ref. 24 for the Helmholtz free energy of the spin-1 XX
model andJ050 in Eq. ~4!.

From the Helmholtz free energy we calculate the spec
5-3
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heat per site,CL(b) „CL(b)52b2]2@bW(b)#/]b2, where
W(b) is the Helmholtz free energy of the respective mode….
In the high-temperature region (bP@0,0.3#), the specific
heat per site of the spin-1 XXZ model is always higher th
that of tetrahedral spin-1/2 model for the ferromagneticD
,0) and the antiferromagnetic (D.0) phases. In Fig. 2~a!
we compare the specific heat per site of both models in
absence of an external magnetic field, while in Fig. 2~b! we
have an external magnetic fieldh50.5. These figures exem
plify the fact that in this region of temperature the spec
heat per site of the spin-1 XXZ model is higher than that
the composite model. This happens due to the presenc
composite spinS50 along the chain. For both models th
specific heat per site vanishes forb→0, just like b2, but
with different positive coefficients.

In the high-temperature region, the correlation functi
between thez components of the nearest spins^Si

zSi 11
z &

@^Si
zSi 11

z &5]W(b)/]D# of the spin-1 XXZ model is, in gen-
eral, stronger than for the composite spin model. Howe
for DP(20.8,0) the curves of̂ Si

zSi 11
z & for both models

cross each other. In Fig. 3~a! we haveD520.06 andh
50. For the interval ofD mentioned above, the presence
an external magnetic fieldh takes the crossing point to
lower value of temperature, as we have in Fig. 3~b!. The
correlation function between nearest neighbors of both m
els vanishes asb→0 but with different values of its deriva
tive at b50.

The mean energy per site«(b) „«(b)5]@bW(b)#/]b…
of the spin-1 XXZ model is lower than that of the tetrahed
spin-1/2 model in the high-temperature region. This is t
for both models, even in the presence of the same non
ishing external magnetic fieldh. Again, this fact is associate
with the presence of immobileS50 spins in the chain.
Those composite spinsS50 are responsible for the breakin
of the original chain into subchains of composite spinS
51, each one with nonzero mean energy per site. The u
of those subchains is always smaller than the original ch

FIG. 2. Dashed lines represent the specific heat per site
the spin-1 XXZ model, whereas solid lines are for the tetrahed
spin-1/2 model with~a! D51 and h50, and ~b! D522 and
h50.5.
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which implies that the mean energy per site of the compo
model is always smaller than that of the spin-1 XXZ mod
Figure 4 exemplifies this behavior forD522 andh50.5. In
the vicinity of b50, both models give a straight line bu
with different negative slopes.

In the region of high temperatures, the static magne
susceptibility per sitex(b) „x(b)52]2@W(b)#/]h2uh50…

of the spin-1 XXZ model is higher than that of the compos
model. The static magnetic susceptibility is defined as
ratio of the magnetic moment per unit of length to the no
of the external magnetic field. The spins-0 in the chain wo
as nonmagnetic impurities, such that the magnetic susce
bility of the composite spin model is smaller than that of t
fundamental spin-1 XXZ model. Varying the anisotropy c

or
l

FIG. 3. The correlation function̂Si
zSi 11

z & for both models with
D520.06. In ~a! we haveh50 and in ~b! we have an externa
magnetic fieldh50.2. In the presence of the external magne
field, the intersection of curves has gone higher inb, i.e., occurs at
a lower temperature.

FIG. 4. The mean energy of the spin-1 XXZ is the dashed l
and the solid line is the equivalent curve of the tetrahedral spin
model. For both curves we haveD52 andh50.5.
5-4
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stantD from negative~ferromagnetic state! to positive values
~antiferromagnetic state!, the difference between the stat
magnetic susceptibility per site of the spin-1 XXZ mod
x1, and the analogous thermodynamic quantity of the te
hedral spin-1/2 model,x t , diminishes. In Fig. 5 we plot the
percentual relative difference.@(x12x t)/x1#3100%. For
b→0 both models satisfy Curie’s law, but with differen
coefficients.

Finally, we cannot obtain the mean value of the squarez
component of spin at each site^(Si

z)2& from a simple deriva-
tive of the Helmholtz free energy~4!. To get^(Si

z)2& for the
composite model we apply the method of Ref. 22 to
modified Hamiltonian:

Ht2mod5(
i 51

N H J@Si
1Si 11

2 1Si
2Si 11

1 1DSi
zSi 11

z #

2hSi
z1

G

2
~Si

z!2J . ~5!

In the Appendix we give the expression of theb expansion,
up to orderb5, of the Helmholtz free energy associated w
this Hamiltonian,Wt2mod(b). The temperature dependen
of the thermodynamic function̂(Si

z)2& of the composite spin
model can be easily calculated as

^~Si
z!2&52

]Wt-mod~b!

]G
uG50 . ~6!

The thermodynamic function̂(Si
z)2& of the spin-1 XXZ

model is larger than that of the tetrahedral spin-1/2 mode
the high-temperature region for arbitrary ratio of the co
stantsD/J and h/J. In Fig. 6 we compare the temperatu
dependence of the function̂(Si

z)2& of the two models for
D52 andh50.4. Differently from the other thermodynam
quantities presented, the limitb→0 of the^(Si

z)2& is not the
same for the two models, as we verify directly from Fig.

FIG. 5. We plot the percentage difference between the st
magnetic susceptibility of the two models†Diff% 5„@x1(b)
2x t(b)#/x1(b)…3100%‡. For the continuous line we haveD
521; for the dotted line we haveD50; and for the dashed line w
haveD51.
13440
,
-

e

n
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.

This is a direct consequence of the immobileS50 sites that
work as ‘‘nonmagnetic impurities’’ in the chain.10,11

III. COMPARISON OF THE THERMODYNAMICS OF THE
COMPOSITE SPIN-1 MODEL AND THE ONE-

DIMENSIONAL EXTENDED HUBBARD MODEL

In Refs. 10 and 11, So´lyom and Timonen apply the
Jordan-Wigner transformation to the spin variables to m
their Hamiltonian~2.1!,

Hst52(
i 51

N

@Jxy~Si
xSi 11

x 1Si
ySi 11

y !1JzSi
zSi 11

z 2D~Si
z!2#,

~7!

into the Hamiltonian of the one-dimensional extended Hu
bard model plus a string Hamiltonian with infinite correl
tion. This string Hamiltonian is proportional to the consta
Jxy , only. In Refs. 10 and 11 the phase diagrams atT50 of
Hamiltonian~7! and the one-dimensional extended Hubba
model are compared. They concluded that both models h
a similar phase diagram in the strong-U limit ( Jxy50) and
consequently the effect due to the string Hamiltonian is n
ligible at T50 in this limit. However the models have dif
ferent phase diagrams whenJxyÞ0. Certainly both models
do not have the same energy spectrum.

In Ref. 25 we calculated the high-temperature expans
of the grand potential of the one-dimensional generaliz
Hubbard model up to orderb2. In order to have a quantita
tive check of the effect due to the presence of the str
Hamiltonian in the thermodynamics of the model describ
by the Hamiltonian~7! we consider the case:Jxy52J, Jz
52JD, andD5G/2. For these choices of constants, Ham
tonian~7! becomes identical to the modified Hamiltonian~5!.
We should note that the modified model corresponds t
tetrahedral spin-1/2 model where the termJ0Si

2/2 is replaced
by G(Si

z)2/2. This new term is obtained in substituting th
term (s i ,t i)1 in Hamiltonian~1! by (s i

z ,t i
z)1. In the Appen-

ic FIG. 6. We plot the mean value of the squaredz component of
spin per sitê (Si

z)2&. We takeD52 andh50.4. The dashed line
gives the curve for the spin-1 XXZ model; the solid line gives t
curve for the composite spin-model.
5-5
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dix we present the expression of the Helmholtz free ene
of this modified model, up to orderb5, but since the results
of the one-dimensional extended Hubbard model go up
order b2, in the following b expansion forWt-mod(b) we
only keep terms up to orderb2:

Wt-mod~b!522
ln~2!

b
1S 2

J2

4
2

J2D2

8
2

G2

32
2

h2

4 Db

1S Gh2

16
1

J2D2G

16
2

J3D

16
1

JDh2

4 Db21O~b3!.

~8!

To compare the results of the modified Hamiltonian~5!
and the one-dimensional extended Hubbard model, in E
~63! and ~73! of Ref. 25, we made the following substitu
tions: t5J/2, lB50, E052(G/212JD1h), U5G, V
5Jh/2, m50, andX50.

To verify the importance of the contribution of the strin
Hamiltonian to the thermodynamics functions in the hig
temperature region, we calculate the relative difference~in
percent! of the specific heat, mean energy, and static m
netic susceptibility per site obtained from the Hamiltoni
~5! and the one-dimensional extended Hubbard model
Fig. 7 we plot the relative difference in the specific heat p
site of the one-dimensional extended Hubbard mo
@CL

eh(b)# and the modified tetrahedral spin-1/2 mod
(CL

t2mod(b)), that is, DCL(b)[@(CL
eh2CL

t2mod)/CL
t2mod#

3100%. In Fig. 7 we plot this relative difference, in th
high-temperature region, for two values ofD: D561. For
both values ofD we setG50 andh50.5. In the two curves
the relative difference is larger than 20%. In particular, wh
we only have the ‘‘flip term’’ in the Hamiltonian~5! (D5h
5G50), which is mapped into the hopping term of th
one-dimensional Hubbard model plus a string Hamiltoni
the relative differenceDCL(b) is 50% for any value ofb in
the high-temperature region. In Fig. 8 we plot the differen

FIG. 7. The percentual relative difference of the specific h
per site given by the one-dimensional extended Hubbard model
the modified tetrahedral spin-1/2 model. For both plots we have
G50 and h50.5. The curves correspond to the casesD521
~dashed line! andD51 ~solid line!.
13440
y

to

s.

-

-

In
r
l

l

n

,

e

of the mean energy per site of the one-dimensional exten
Hubbard model (Eeh) and of the modified tetrahedral spin
1/2 model (Emt), that is, DE(b)[„@Emt(b)2Eeh(b)#/
Emt(b)…3100%. In Fig. 8 we have setD560.5 and for
both curves we haveG51 andh50.5. We verify directly
from the plots that the relative difference in the two plots
larger than 30%. As in the case of the specific heat per
when we setD5h5G50, the relative difference~in per-
cent! DE(b) is equal to 50%, and it is independent ofb in
the high-temperature region.

Finally, up to orderb2, the static magnetic susceptibilit
is the same for both models. In units ofJ, we have

xeh~b!5x t-mod~b!52S D

2
1

G

8 Db21
b

2
, ~9!

wherexeh(b) is the static magnetic susceptibility of the on
dimensional extended Hubbard model andx t-mod(b) is the
static magnetic susceptibility of the modified composite s
model.

IV. THE THERMODYNAMICS OF THE SPIN-2 XXZ
CHAIN IN THE HIGH-TEMPERATURE REGION

The Hamiltonian of the anisotropic spin-2 XXZ model
identical to the modified Hamiltonian~5!, but now the opera-
tors Si

x , Si
y , andSi

z are the components of the fundamen
S52 spin matrices of thei th site. To simplify the notation
we takeD5G/2 in Hamiltonian~5!.

Applying the method of Ref. 23 to the Hamiltonian~5! of
the fundamental spin-2 XXZ model, we obtain its Helmho
free energy, up to orderb6, for either positive or negative
values ofD andD:

t
nd
et

FIG. 8. The percentual relative difference of the mean ene
per site given by the one-dimensional extended Hubbard model
the modified spin model. In the two curves we setG51 and h
50.5. We plot the curves forD520.5 ~dashed line! and D50.5
~solid line!.
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b
12D1S 22J2D22h22

7D2

5
24J2Db1S 28J2D2D

5
2

28J2D

5
1

7h2D

5
2J3D14JDh21

D3

5 Db2

1S 101J4

150
1

169D4

300
1

919J4D2

75
1

51J2D2

25
1

13h4

60
2

128J2D2D2

25
1

19J2h2

5
2

409J4D4

150
2

3h2D2

10
2

54J2D2h2

5

2
56JDh2D

5 Db31S 2
169h2D3

150
2

212J2D2D3

75
2

51J2h2D

25
2

207J4D2D

10
1

79J5D3

60
1

256JDh2D2

25
2

53h4D

60

1
79J5D

30
2

646J3Dh2

25
1

2018J3D3h2

75
1

503J2D3

75
1

968J2D2h2D

25
1

95J4D

6
2

52JDh4

15
1

73J4D4D

15
2

23D5

100

2
7J3DD2

25 Db41S 1182J3Dh2D

25
250J2D2h2D21

1424JDh4D

75
1

424JDh2D3

75
2

1636J3D3h2D

15
2

66 611J6D2

1500

2
937J2h4

300
2

197J2D4

60
2

211J4h2

20
1

6563J4D2

300
1

227h4D2

200
1

23h2D4

40
1

451J6D6

900
1

7643J6D4

1500
2

31h6

360

2
1106J5D3D

375
1

1033J4D4D2

75
1

2034J4D2h2

25
2

3492J4D2D2

125
1

106J3DD3

375
1

1106J5DD

375
1

653J2D2h4

25

2
2783J4D4h2

50
2

489J2h2D2

50
2

3287D6

9000
1

3161J2D2D4

375
1

27 439J6

4500 Db51S 2
2924JDh4D2

75
2

12 763J2D2h4D

75

2
6322JDh2D4

375
2

3 193 459J4D2h2D

15 750
1

385 729J3Dh2D2

7875
1

92 059J4D4h2D

375
2

134J2D2h2D3

75
1

2284J3D3h2D2

15

2
12 187J2D5

1500
1

3287h2D5

3000
1

503h4D3

1800
2

1 055 363J4D3

31 500
1

1003h6D

1800
2

429 461J6D

31 500
1

14 699J7D5

9000
2

35 237J7D3

2250

2
1141J7D

250
1

634JDh6

225
2

31 606J3D3h4

225
2

55 852J4D4D3

1125
1

11 107J5DD2

5000
1

2 668 067J6D4D

31 500
1

100 073J2h2D3

15 750

1
897 401J5Dh2

9000
2

109 709J4h2D

4500
1

247J3DD4

250
2

57 067J6D6D

2250
2

26 173J5D3h2

125
1

847J2h4D

100
2

359 167J6D2D

7875

1
170 119J3Dh4

3150
2

71J2D2D5

375
1

142 021J4D2D3

1750
1

15 341J5D5h2

150
1

19 631J5D3D2

7500
1

731D7

3000 Db61O~b7!. ~10!
re

a

sion
e
f
,

19.
he

it,
it

in-

vi-
for
In order to compare our result~10! with the high-
temperature expansion in Ref. 19, we obtain from the f
energy~10!, the mean energy per spinE2

AF(b) and the static
magnetic susceptibility per spinx2

AF(b) of the antiferromag-
netic Heisenberg chain in the absence of an external m
netic field (D51, D50, andh50):

E2
AF~b!5212b23b21

204

5
b31

79

4
b42

4907

25
b5

2
15 617

120
b61O~b7!, ~11a!

x2
AF~b!52b28b2114b32

32

15
b42

303

10
b5

1
13 319

900
b61O~b7!. ~11b!
13440
e

g-

Comparing Eq.~11a! with expression~3.2a! of Ref. 19 for
the mean energy per spin, we see that in this last expres
the even-power terms of (bJ) are missing. Consequently, th
odd-power terms of (bJ) are missing from the expression o
the specific heat, in Eq.~3.5a! of this same reference. Finally
we also notice a misprint in Eq.~3.10a! of Ref. 19 at order
b3, when comparing it to our Eq.~11b!.

In Fig. 9 we compare our results~11! to the QMC data
and the high-temperature expansion contained in Ref.
Equations~11! extend the interval of temperature where t
b expansions of those thermodynamic functions arebona
fide.

Our results in Fig. 9 are valid in the thermodynamic lim
showing that numerical data in Ref. 19 correspond to th lim
N→`, being valid for temperatures lower than those
ferred from theb expansion in Yamamoto’s original paper.19

Our exactb expansion for the average energy per spin de
ates from the numerical results of QMC method by 0.8%
kT54, and by less than 1.3% forkT53.8. Theb expansion
5-7
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FIG. 9. We compare our results~3! ~solid
line! with the QMC data (N596) ~dashed line!
and the high-temperature expansion in Ref.
~dotted-dashed line!. The plots show~a! the mean
energy per spin;~b! the specific heat per spin, an
~c! the static magnetic susceptibility per spin.
all plots,D51, D50, andh50.
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for the specific heat per spin noticeably deviates from
merical data for lower temperatures (k&4.5) as wee see
from Fig. 9~b!.

The relative errors of theb expansion aroundkT;5 with
respect to QMC are the following: forkT55 the error is
2.8% but forkT54.8 this error becomes 2.2%. Certainly w
expect a systematically increasing deviation when the t
perature decreases and this eventual reduction happen
to the precision in the QMC calculation. A similar behavi
is shown by the specific heat per spin in higher temperatu
that is, for kT55.6 the relative error is 1% but forkT
55.8 the error becomes 1.3%, although it globally decrea
as the temperature is increased. From Fig. 9~c!, comparison
of the magnetic susceptibility per spin, obtained by theb
expansion~11b! and by QMC method, shows that the wor
ening of their relative error is smoother than that of the s
cific heat per site. ForkT55 we have an error of about 1%
whereas forkT54.6 we have 1.5%.

V. CONCLUSIONS

The method presented in Ref. 23 has been applied u
now to obtain the high-temperature expansion of the He
holtz free energy of one-dimensional models~the spin-1/2
integrable model23 and the spin-1 nonintegrable model24!
whose Hamiltonians are identified by one site label only.
this present communication we obtain the thermodynam
of the quasi-one-dimensional tetrahedral spin-1/2 mode
the high-temperature region by applying the method of R
23. We do so by mapping the tetrahedral spin-1/2 model
a composite spin model withS50 andS51 chains. TheT
50 properties of this composite spin model have been s
ied previously.10,11,13

To verify the effect of the fragmentation of the chain d
to the presence ofS50 spin,13 in the high-temperature re
gion we compare the thermodynamics of the tetrahe
spin-1/2 model to the thermodynamics of the spin-1 XX
model.24 In this region of temperature the specific heat a
the static magnetic susceptibility per site of the spin-1 XX
model are larger than those of the composite spin model.
mean energy per site of the spin-1 XXZ model is lower th
13440
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s;
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that of the tetrahedral spin-1/2 model. In general, the co
lation function between first neighbors is stronger in t
spin-1 model than it is in the composite model, but there
an interval of values ofD where this inequality is reversed
For b→0, all these thermodynamic functions have the sa
limit for both models. The function̂(Si

z)2& expresses in a
very clear way the effect of the immobileS50 sites that
work as ‘‘nonmagnetic impurities’’ in the chain. In the high
temperature region, this function for the spin-1 XXZ mod
has higher values than that of the tetrahedral spin-1/2 mo
For b→0, the limit of this function is different for the two
models.

In the literature the composite spin model has be
mapped onto a fermionic model. This fermionic model is t
one-dimensional extended Hubbard model plus a str
Hamiltonian. The phase diagram of the composite s
model is compared to the phase diagram of the o
dimensional extended Hubbard model.10,11 The purpose of
this is showing that the effect of the string Hamiltonian cou
be neglected in the strong-U limit. To verify the importance
of the contribution of the string Hamiltonian to the therm
dynamics of the composite spin model, for any ratio amo
the constants of the model, in the high-temperature reg
we compare its specific heat, static magnetic susceptibi
and mean energy per site with the ones obtained from
one-dimensional extended Hubbard model.25 We obtain in
the high-temperature limit that theb expansion, up to orde
b2, that the static magnetic susceptibility per site is the sa
for both models. The relative difference of the specific h
per site of theses models is higher than 20% for the isotro
ferromagnetic and antiferromagnetic models (D561) in the
presence of an external magnetic field. The relative diff
ence of the mean energy per site is larger than 30% foD
560.5, also in the presence of an external magnetic fie
This relative difference decreases as much the anisotr
parametersD and G are much larger thanJ. When D5G
5h50, the relative difference of these two physical quan
ties for both models is 50% and it is temperature independ
in the high-temperature region.

We conclude that, at least in the high-temperature reg
we cannot neglect the contribution of the string Hamiltoni
5-8
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to the thermodynamics of the composite spin model, ma
in the Heisenberg point (D561). Our results let us affirm
that the energy spectra of the composite spin model and
one-dimensional extended Hubbard model are different.

Finally we extend the analyticb expansion for the ther
modynamic functions of the isotropic antiferromagne
spin-2 Heisenberg chain obtained by Yamamoto19 to the an-
isotropic case and to a larger interval of temperature in
high-temperature region. The results presented are valid
the anisotropic spin-2 XXZ chain in the presence of an
ternal magnetic field. Our results fit well the QMC data
Ref. 19 and the latter are used to obtain the interval of te
perature where our expansion is reliable.
a
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APPENDIX: THE HELMHOLTZ FREE ENERGY OF THE
MODIFIED TETRAHEDRAL SPIN-1 Õ2 MODEL

The free energy of the modified tetrahedral spin-1
model described by Hamiltonian~5!, up to orderb5, is
Wt2mod~b!52
ln~4!
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