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Microscopic origin of the non-Gaussian behavior of dynamic structure factors of glassy matter
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We consider the Lamb-Mo¨ssbauer factors corresponding to the structure factors of a material~ethyl alcohol!
showing two glassy phases, one of those being an orientationally disordered crystal. The deviations from the
idealized Gaussian behavior expected for an isotropic-harmonic vibrator within the amorphous phase and
disordered crystal are found to be remarkably close. Such proximity enables us to take advantage of the crystal
symmetry to gain access to specific details of the effective interparticle potential. Once this is done the
treatment is extended to include the fully amorphous material. The results depict atomic motions within the
glassy matrices as significantly anisotropic and highly anharmonic and thus provide a way to understand the
microscopic origin of phenomena considered as fingerprints of glassy dynamics.
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I. INTRODUCTION

Most glasses show thermal expansion coefficients
typically are one order of magnitude larger than those
their parent crystals.1 This taken together with the well docu
mented anomalies in sound velocity and attenuation at
temperatures2 depicts the thermal properties of these states
matter as fundamentally different from their fully ordere
crystalline forms. On such grounds one would expect to fi
signatures of such distinctive behaviors in a variety of d
namical properties accessible to experiment. Those conc
ing the microscopic realm such as the temperature and w
vector dependences of atomic motions are known to
sensitive to departures from the behavior followed by sim
model systems such as perfect crystals at low temperat
where particle motions are driven by harmonic potentia
Such signatures of nonideal behavior can nowadays be
culated for simple solids such as the condensed rare gase
fact, several decades of work on the explicit calculation
thermodynamic properties and spectra for realistic model
anharmonic crystals,3 has achieved remarkable accuracy
predicting thermal and dynamical properties of crystals cl
to melting if high-order terms in the Van Hove ordering p
rameter are included in the calculations. While those me
ods can, in principle, be applied to any condensed sys
whether ordered or not, most treatments dealing with am
phous and disordered-crystalline matter are usually of p
nomenological nature.

In recent times we have carried out studies on the volu
dependence of the vibrational spectrum of a material sh
ing a rich polymorphism.4 The system just referred to con
cerns the amorphous, orientationally disordered/rota
phase ~i.e., where the average position of the molecu
centers-of-mass occupies the nodes of a bcc lattice! and fully
ordered crystal forms of ethanol.5–9 The concurrent study o
the several solid phases has allowed to quantify the effec
anharmonicity and disorder within the fully ordered, orien
tionally disordered, and fully amorphous phases.4 Here we
0163-1829/2004/69~13!/134202~10!/$22.50 69 1342
at
f

w
f

d
-
rn-
e-
e
e
es
.

al-
. In
f
of

e

-
m
r-
e-

ic
-

r-
r

of
-

pursue such studies now focusing onto the effects on n
ideal behavior on a basic dynamical property such as
asymptotic form of theGs(r ,t), space-time self-correlation
function for t→` that is experimentally accessible by mea
of measurements of the Lamb-Mo¨ssbauer factor. The rel
evance of such studies stems from the use of departure
such quantity from its Gaussian form,

Gs~r ,`!5S 3

4p^u2&
D 3/2

exp~23r 2/4^u2&!, ~1!

as measures of deviation from ideality in glass-formi
liquids.10 Here^u2& stands for the particle mean-squared d
placement, which characterizes the thermal motion of a p
ticle subjected to an isotropic harmonic potential. Such p
ticle displacements within a liquid arise from the action
both stochastic forces leading to mass diffusion and ra
oscillations due to interparticle vibrations. As one a
proaches the glass transition from above, the former kind
motions are expected to decrease in relative importance
respect to those of vibrational nature up until a point wh
mass diffusion becomes slow enough to be observable wi
usual observation windows.

Deviations from the harmonic form forGs(r ,t) measured
by experimental means10–14 or calculations15,16 are often in-
terpreted as fingerprints for regions within the disorde
material where groups of atoms move with mean-squa
displacements far larger than the average thermal va
More into specifics, the experimental evidence for nonid
behaviors is usually quantified by a strong nonideal beha
of the appropriate response function. In our particular c
this translates into ‘‘non-Gaussian’’ features in the dynam
structure factors in neutron-scattering experiments.10 For a
given temperatureT, such departures refer to the wav
vector dependence of the incoherent elastic scattering in
sity I s(Q,v50,T)5 f s(Q,T)5exp@22W(Q,T)# that equals
exp(2aQ2) for a vibrating isotropic body subjected to ha
monic restoring forces having an average mean-square
©2004 The American Physical Society02-1
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placement~m.s.d.! given bya5 1
3 ^u2&. Here f s(Q,T) stands

for the time integral taken overFs(Q,t), the fourier trans-
form of Gs(r ,t) for a given temperature. In such a case d
viations from a Gaussian distribution of atomic displac
ments will give additional terms in theQ dependence o
W(Q,T) such as,

2W~Q,T!5 1
3 ^u2&Q22 1

24 @P^u4&Q42•••# ~2!

where the second term contains contributions up to fou
order in the displacements whose explicit form for the co
ficient P depends upon details of higher-order terms in
interaction potential. A convenient parameter to measure
partures from the Gaussian shape is given by the ratio
fourth-to-second moments of the particle displacements,

Ang~ t !5
3^Dr 4~ t !&

5^Dr 2~ t !&2
21, ~3!

which vanishes for Gaussian motion.
Preliminary results from computer simulations carried o

for a realistic model of ethanol within the glass and liqu
states described in Ref. 5 that are displayed in Fig. 1 serv
illustrate the extent in time and space as well as the temp
ture dependence of deviations from ideal behavior.

A glance at Fig. 1 shows that even within the norm
liquid range~i.e., for T.200 K purely Gaussian behavior
found at times of the order of tenths of a picosecond as w
as at long times when particle motions conform to hydro
namic diffusion. Moreover, such non-Gaussian behavio
seen to be strongly temperature dependent. As tempera
lowers, the strength of the deviation as well as the lapse
time taken to enter the diffusive regime become increasin
large. In fact, for temperatures below 160 K it takes a f
nanoseconds to regain the Gaussian regime. The maxim
of theAng(t) curvesAng

max is known to appear when the con
tribution to the mean-square displacements arising from
fusive motions becomes comparable to that due to rapid
tions of vibrational nature.15 The quantityAng

maxt* giving the
value of Ang(t) at its maximum multiplied by the time
elapsed to reach it, is expected to show a relatively w
defined feature at some temperature signaling the trans
into a strong non-Gaussian regime. The middle frame of F
1 depicts such a quantity that shows a change of slope
temperatures within 120 K–150 K.

As a spatial counterpart, the lower frame of Fig. 1 sho
the particle displacement probability as measured fr
4pr 2Gs(r ,t) for the molecular centers of mass for the lat
temperature. The relevant feature there concerns the ra
different regimes observed for times of the order of tenths
picoseconds where particle excursions cover distance
about 0.5 Å and the subsequent entrance within a regim
sluggish motions. In fact, from there we see that for tim
between 1 and 1000 ps particle displacements are confi
within a sphere of about 2 Å of radius.

From what has just been written it is clear that the sig
tures of non-Gaussian behavior will show strong space, ti
and temperature dependencies. The question of how the
viations from Gaussianity observed in the liquid relate
13420
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those found for the deep glass phase remains open. A
matter of fact, within the glass state observations of gro
of atoms executing motions with amplitudes well above
average thermal value are known from compu
simulations17 as well as direct experimental observations.11,14

A unified approach should therefore comprise both the s
tial ~or wave vector! and temperature dependencies of su
deviations. Here we aim to provide such a tool on the ba
of our own measurements of departures from ideal beha
spanning temperatures from the deep glass up to the no
liquid range on a relatively simple system such as etha

FIG. 1. The upper frame depicts results for the non-Gauss
parameterAng(t) as calculated from computer molecular dynam
simulations for the set of molecular centers of mass for temp
tures given in the inset. The middle frame shows the depende
with temperature of the quantityAng

maxt* ~see text!. The solid line is
a smoothing spline shown as a guide to the eye. The lower fra
shows the probability that a particle moves a distancer in a time
interval t as measured by 4pr 2Gs(r ,t). The leftmost curve is taken
for t50.2 ps. The observation times for the rest, from left to rig
are 1, 2, 5, 10, 20, 40, 120, 160, 200, 400, 800, and 1000
Calculations here correspond toT5160 K.
2-2
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MICROSCOPIC ORIGIN OF THE NON-GAUSSIAN . . . PHYSICAL REVIEW B69, 134202 ~2004!
which is studied both experimentally by neutron scattering
well as by computer simulation. Our aim is to track down t
origin of such behaviors to details of the interparticle int
action potential. More into details, our study concerns
sample that can be easily prepared in its fully amorpho
liquid, and orientationally disordered forms. Its simple m
lecular structure CH3CH2OH and the possibility of studying
the deviations from Gaussianity within the rotator-pha
crystal paves up the way to tackle the fully amorpho
sample since theoretical results for the non-Gaussian be
ior of cubic crystals are known in detail. In addition, th
sample here studied presents some advantages over
complex materials since it is free from effects of static lo
microscopic anisotropy common to more complex mater
such as polymers. Furthermore, its anharmonic prope
have been quantified in detail in terms of Gru¨neisen
parameters4 and this will surely help to understand the d
viations from Gaussianity at least at a semiquantitative le

In what follows we will first describe the results from
set of neutron-scattering experiments carried out to valid
the simulation results. The latter are then used to gain ac
to quantities not directly amenable to experiment such
those concerning the molecular centers of mass. Comp
tion of such quantities allows to carry out an analy
couched in terms of an effective interparticle potential t
includes terms up to a fourth order in the particle displa
ment.

II. EXPERIMENTAL MEASUREMENTS

The experimental data were measured on the IN6 sp
trometer at the Institute Laue Langevin, Grenoble~France!
for an extended set of temperatures. The measurement
complementary to those already reported4,7–9 that were fo-
cused on comparisons between spectra and dynamics fo
various condensed phases as well as transformations bet
them.18

Fully deuterated ethanol samples were used in orde
ascertain the sample state~amorphous or disordered crysta!
through diffraction measurements. The quantities to be
rived from experiment are the temperature-depend
W(Q,T) exponents of the Lamb-Mo¨ssbauer factors~i.e., the
Debye-Waller factor for an incoherent-scattering signal! that
are related to the measured dynamic structure fac
S(Q,v). Their calculation was performed through the co
putation of the quantityf s(Q,T)5 ln@S(Q,v50,T)2S(Q,T)
11#52W(Q,T), whereS(Q,v50,T) is the elastic struc-
ture factor calculated by integration of the elastic peak o
limits ~0.15 meV! commensurable with the achieved instr
ment resolution andS(Q,T)5*dvS(Q,v,T).

The departure from Gaussian behavior as far as its sp
dependence is concerned is usually quantified10,16 by a di-
mensionless parameterAng52c4 /c2

2, wherec2 and c4 are
coefficients of theQ2 andQ4 terms needed to account for th
observed decays off s(Q,T). This measure of non
Gaussianity is a convenient tool to depict the extent of
spatial dependence of the deviation from ideality at a glan
although a more complete picture will require the analysis
13420
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the temperature dependence of bothc2 andc4 coefficients as
discussed below.

Having in mind the proviso of our limited range of wav
vectors (Q range'0.2–3.0 Å21) accessible to our measure
ment, we have calculated the experimentalA0 parameters for
the disordered crystals and glass and which are shown in
2. A test on the significance of the quantities just referred
is provided by data measured over a far larger range
momentum-transfers using the MARI chopper instrumen
the ISIS pulsed neutron source. Such data7 also shown in
Fig. 2 for a single temperature reveal a reasonably g
agreement with the present results. This measure of n
Gaussianity for the glass/liquid and disordered crystal pha
shows both ordering states to be rather close, a result
comes into line with the thermodynamic and dynamical fe
tures examined so far.25,26

The values forAng shown in Fig. 2 become large as w
enter the glass phase from above. The behavior shown
experiment is in at least a qualitative agreement with sim
lation data shown in Fig. 1. The strong rise of such param
with decreasing temperature is due to the distinct dep
dency of temperature shown by the fourth-order term co
pared to its second-order counterpart and detailed cons
ations of this particular are deferred to latter sections. T
Ang parameters for the glass and rotator-phase crystal s

FIG. 2. ~a! Deviation of I s(Q,v50) from Gaussian behavio
derived from experimental measurements as measured by the
rametersAng . Open symbols stand for the glass~and supercooled
liquid! and filled symbols for the orientationally disordered cub
crystals. Crosses denote data measured using the MARI spect
eter for glass (1) and orientationally disordered crystal (x). ~b!
Experimental estimates for the quantities 2W(T) entering the expo-
nent of the Lamb-Mo¨ssbauer factor. The symbolTg marks the tem-
perature where the calorimetric transitions take place.
2-3
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C. CABRILLO et al. PHYSICAL REVIEW B 69, 134202 ~2004!
far milder temperature dependencies once the glass→ liquid
and qrientationally disordered crystal~ODC! transitions
cross into the supercooled liquid and rotator-phase crys
respectively. This takes place upon crossing the respec
thermodynamic glass-transitions centered at about 95 K.

A first step towards a detailed study of the temperat
dependence of non-Gaussian behavior is better done in t
of W(Q,T). Furthermore, to simplify the analysis and
improve on the statistics of the experimental data an ave
over Q wave vectors is performed so that we deal with
quantityW(T) only dependent upon temperature.

Figure 3 displays the obtained results. As expected fr
the close similarity found forA0 for both phases, data con
cerningW(T) again show the same close behaviors. On
basis of such similitude we consider the disordered crysta
an adequate test ground to go deeper into the nature o
deviations from Gaussianity.

Data displayed in Fig. 3 show thatW(T) strongly departs
from the expectation values calculated for purely harmo
behavior, i.e.,W(T)}T. To quantify such a deviation we firs

FIG. 3. Temperature dependence of the terms entering the
ponent of the Lamb-Mo¨ssbauer factors. The upper frame depi
data for the glass/supercooled liquid and the lower frame those
the orientationally disordered/rotator-phase crystals, respectiv
Symbols stand for experimental values, dashed lines are the re
for the harmonic approximation calculated following steps given
the text, and solid lines are the result from the anharmonic appr
mation ~see text!.
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extrapolate the value forT50 and compare it to that calcu
lated for a cubic crystal which reads as19

2W~0!5
\Q2

2Me f f
E

0

vmZ~v!

v
dv, ~4!

whereZ(v) is density of one-phonon states,vm the maxi-
mum phonon frequency, the horizontal bar denotes aver
over Q, and Me f f is the effective mass of the scatterer
seen by the neutron probe. By fittingW(T) to third order
polynomials the values of theW(0)’s were calculated by
extrapolation toT→0. Making now recourse to the previou
knowledge of the experimental value for the first negat
frequency moment4 leads to estimates for 1/Me f f , the in-
verse of the effective mass, of 0.8360.2 for the glass and
0.6660.2 for the disordered crystal, both given in terms
the molecular mass.

For a cubic crystal, a purely harmonic dependence
W(T) upon temperature should follow19,20

2W~T!5
\Q2

2Me f f
KBTE

0

vm Z~v!

v2
dv. ~5!

Since 1/Me f f is now set, the temperature dependence
W(T) given by Eq.~5! can now be calculated using for th
purpose our knowledge of the experimental value for
second negative moment given in Ref. 4. The result a
shown in Fig. 3 serves to set a comparison with the exp
mental estimates forW(T) which strongly deviate from the
harmonic approximation. This is known to be caused by
harmonic effects4 that typically manifest themselves at m
soscopic scales where the material behaves as an elastic
tinuum ~i.e., typically over distances of a thousand angstr
or so! in the marked temperature dependence of the fr
tional change in sound velocitydv/v usually measured by
Brillouin or mechanical spectroscopies.4

The first correction to the harmonic approximation i
cludes the effects of thermal expansion. Its relative stren
is evaluated from data concerning volume expansivityx and
macroscopic Gru¨neisen parametersgG .4 It amounts to renor-
malize the harmonic value for the m.s.d. by (112gGxT),
which makesW(T) to display a temperature dependen
slightly nonlinear. In real figures calculated for a referen
temperature of 80 K, this correction amounts to multiply t
harmonic values of the m.s.d. by 1.1 and 1.2 for the glass
the ODC, respectively. However, as data shown in Fig
reveal, such correction term cannot account for the la
value ofW(T) in any of both phases, making a more com
plete anharmonic treatment necessary to reproduce the
The details of such a calculation are given in more expl
terms in the coming sections. Here we only point to a co
parison of results from such a treatment with experimen
data, both sets shown in Fig. 3. Notice that such a comp
son is made fitting 1/Me f f as the only adjustable paramete
Moreover, the values we get that are 0.8360.02 for the glass
and 0.6360.01 times the inverse molecular mass for the d
ordered crystal are in very good agreement with the e
mates given above obtained fromW(0).

x-
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ly.
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III. COMPUTER SIMULATIONS

The most relevant details concerning the interaction
tentials, algorithms, and integration steps for the molecu
dynamics simulations have already been given.5,9 The em-
ployed model considers the molecule as ‘‘semiflexible’’ w
a low-lying internal degree of freedom constituted by t
internal molecular rotation about the C-O bond. Intermole
lar forces are felt on four sites located at the methyl, me
ylene, oxygen and hydroxyl groups and comprise b
Lennard-Jones, and electrostatic interactions. In addition,
internal rotation about the C-O bond is described by a F
rier series with coefficients chosen to give reasonable ag
ment with experimental data.

A further study on the effects of a complete molecu
force-field21 ~including explicitly all atoms within the mol-
ecule! on the calculated properties was also carried out.
obvious reasons the calculations were restricted to s
times~40 ps of equilibration followed by 40 ps of productio
runs! compared to the ones reported here~several nanosec
onds!. The calculated quantities which were under particu
scrutiny were the density of vibrational states, mean-squa
displacements, and those characterizing the reorientati
dynamics. The density of vibrational states, which is
quantity most affected by explicit inclusion of all the in
tramolecular vibrations, shows important changes with
spect to that calculated for the four-interaction site mod
These are, however, distributed over frequencies above
meV, while the shape of the low-frequency band centere
about 6 meV is basically unaltered. The mean-square
placements calculated by the all-atom model show syst
atic differences with respect to the four-site representat
the latter being somewhat larger than the former. This ef
becomes more important as the temperature is increase
fact, below some 220 K there is very little difference b
tween thê Dr 2(t)& curves for both models. Finally, the sam
qualification applies to the calculated orientational corre
tion functions which also tend to decay somewhat faster t
those calculated for the four-site model.

The finite-size effects were also evaluated by means
computations on a far larger ensemble~1728 versus 216 mol
ecules!. Calculations were performed using large equilib
tion times~1.2 ns! and simulations of 1 ns followed. There
similar findings to those reported for vitreous silica a
found,22 that is, differences in̂Dr 2(t)& become amplified as
the temperature is lowered. In consequence, the data rep
here concern the larger sample size.

The simulations were carried out either starting from l
uid configurations that once equilibrated are quenched
form the glass or from a bcc array where the lattice no
correspond to centers of mass of randomly oriented eth
molecules which is then allowed to relax.5 The temperature
ranges corresponding to the transitions glass→ liquid and
orientationally disordered→ rotator phases were determine
by changes of slope of the curves showing the tempera
dependence of the density as well as from deviations sh
by plots of translational and rotational diffusion coefficie
from the Vogel-Fulcher-Tamann law. Both transitions ta
place within a temperature interval of 100 K–135 K, that
13420
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some 20 K above experiment. Complete arrest of all stoch
tic dynamic quantities is found for temperatures below 1
K. On the other hand, the normal equilibrium liquid range
achieved for temeperatures somewhat above 170 K.

In what follows, we will focus our discussion on quant
ties calculated for the molecular centers of mass such as
Fs

CM(Q,t) intermediate scattering functions defined as

Fs
CM~Q,t !5

1

N (
i

^exp@2 iQr i
CM~0!#exp@ iQr i

CM~ t !#&,

~6!

where the sum runs over all molecules within the sam
having centers of mass located atr i

CM(t) at time t. The ra-
tionale for choosing these quantities instead of their ato
correlates stands for the greater simplicity of handling~i.e.,
rotational motions are only felt via the translation-rotati
coupling terms!. Also, such simplifying representation o
the molecular dynamics enables us to employ for its anal
already existing theoretical frameworks developed
monoatomic cubic crystals.3,20 An example of the calculated
quantities is shown in Fig. 4. There we show a set of int
mediate scattering functions corresponding to a deeply
percooled state~i.e., a state still showing a finite value o
10212 cm2 s21 for the mass-diffusion coefficient!. The
curves shown there exhibit an initial fast decay up to som
ps or so, followed by a more sluggish relaxation that can
adequately described in terms of a Kohlrausch-William
Watts law as described in Ref. 5 and is usually identifi
with the a relaxation that appears as the strongest pea
dielectric relaxation measurements. Below'90 K there is
no evidence for a further relaxation beyond the fast init
decay. From the calculated quantities we have evaluated
function f s

CM(Q,T) from where theQ and temperature de

FIG. 4. Time and wave-vector dependencies ofFs
CM(Q,t) for

supercooled states as calculated by molecular dynamics sim
tions, for T5120 K. The inset lists the set of wave-vector valu
expressed in reciprocal angstrom units.
2-5
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pendence of its parameters can be evaluated, as referre
low. Figure 5 displays a set off s

CM(Q,T) functions for the
disordered/rotator-phase crystals. These are obtained
the simulated self-intermediate scattering functions by ti
integration in a 800 ps time window. From the graphs plot
there we witness a deviation from quadratic~harmonic! be-
havior in Q that grows stronger as the temperature is
creased.

IV. NON-GAUSSIAN BEHAVIOR: QUANTITATIVE
ASSESSMENT

We now take advantage of the close behaviors shown
glass and disordered crystal states. As our point of depar
we start by considering an analytically tractable object wh
is an array of molecular centers of mass~CM! corresponding
to our bcc disordered crystal as calculated from the sim
tions. Such an array can be treated using a theory develo
for cubic crystals.23 It predicts that theW(Q,T) terms enter-
ing the Lamb-Mo¨ssbauer factors should follow,23

2W~Q,T!5Q2
kBT

a0
F11S 2gGx220

g

a0

kB

a0
DTG

2Q4S kB

a0
D 3S 2

g

a0
1

9

80

d

a0
DT3. ~7!

The equation written above gives the exponent for
Lamb-Mössbauer factor of an individual CM that expe
ences an effective potentialV(r )5(a/2)r 21gr 41d@x4

1y41z42(3/5)r 4# corresponding to Einstein-like oscilla
tors with x,y,z along the principal directions of the bcc la
tice andr is the displacement modulus. Thermal expans
effects are again accounted for on the grounds of the u
quasiharmonic approximation by renormalization of t
three potential coefficients by 1/a→(112gGxT)/a.23 The
9/80 factor in Eq.~7! results from the orientational averag
of the anisotropic contribution coming from thed term, and

FIG. 5. Wave-vector dependence of the quantityFs(Q,T) for
the disordered crystals as calculated by molecular dynamics
temperatures given in the inset.
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is needed to account for the polycrystalline nature of o
sample. Formally the same expression is obtained withi
perturbation theory of nonlinear phonon interactions.20

Figure 6~a! shows the temperature dependence of both
Q2 (c2) and Q4 terms (c4) needed to describe the wave
vector behavior off s

CM(Q,T) together with fits using Eq.~7!
with 2gGx taken from experiment. Notice that fittingc4 in-
volves only one parameter, sincec4}T3 is assumed. From
here one gets estimates for the potential coefficients
yield values ofg/a5212 andd/a52185. This shows that
V(r ) is highly anharmonic with a quartic term two orders
magnitude larger than the harmonic part. A cursory glanc
such figures deems such large quartic term as too large
calls for an assessment on the range of validity of Eq.~7!.

Equation~7! is obtained through canonical averaging
exp(iQW •rW) using the above written expression forV(r ). To
enable an analytical integration, the canonical distribut
exp@2V(r)/kBT# is approximated by exp@2ar2/(2kBT)#@1
2gr4/(kBT)2d (x41y41z4)2(3/5)r 4)/(kBT)]. This means
that the harmonic part is treated exactly and this yields
Gaussian prefactor. The condition of validity for the prese
approximation tells that the equation should be valid for a
value of r provided that the anharmonic terms are mu
smaller than their squares within a standard deviation of
Gaussian part. In more precise words, such condition me
r ,AkBT/a, and this is certainly the case for the paramet

or

FIG. 6. Temperature dependence of the quadratic (c2, open
symbols! and quartic (c4, filled symbols! coefficients needed to
account for the wave-vector dependence of 2W(Q,T) as calculated
for the molecular centers of mass by means of the computer s
lations. The upper frame shows simulation data for the disorde
crystals and the lower frame shows equivalent data for the gl
Solid lines are fits to Eqs.~7! and ~8!, respectively.
2-6
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obtained here. This is understood on the basis of the su
exponential decay of the Gaussian prefactor which comp
sates the polynomial growth of the anharmonic term. Ph
cally this means that the linear contribution to the poten
energy is dominant within a spatial range comparable to
size of the thermal cloud even if the anharmonic coefficie
are larger than their harmonic counterpart. In conseque
we have to bear in mind that the quartic term in Eq.~7! still
is a correction to the quadratic one since it is cubic in
relevant parameter, that is,kBT/a.

The negative sign of theg coefficient corresponds to
potential that ‘‘softens’’ for large displacements, a featu
which is central to some approaches to glassy dynamics
as that couched in terms of the ‘‘soft potential mode
~SPM!.24 In close parallelism ‘‘non-Gaussian’’ behavio
arises there as a natural consequence of the action of a
quartic term in the potential which also has force consta
that are randomly distributed.

Our result also shows that particle motions are stron
anisotropic due to the large value ofd/g. A positive value
for such ratio~i.e., d,0) conforms to the symmetry of th
bcc lattice. In particular, the present estimate ofd/g515.4
corresponds to softening along the^100& directions concomi-
tant with hardening along thê111& directions which is con-
sistent with the repulsive effect of neighboring molecules7

V. A STEP FURTHER: THE FULLY DISORDERED SOLID

We now show how to extend the result for an ensemble
molecular CM’s devoid of the regularity imposed by the b
lattice. Obviously, Eq.~7! cannot strictly be applied to a
phase lacking cubic symmetry. Here, however, we will pro
from the close similarity of the orientationally disordere
crystal with respect to the glass since both show close d
sities, and some common features concerning the short-r
order.6 In addition, as shown in Ref. 27 formation of th
disordered crystal state from the glass/supercooled liqui
driven by a purely entropic term, which leads the system i
a state of intermediate thermodynamic stability with resp
to the fully ordered crystal. That is, such transformation
sically involves no significant change in internal energy.
such grounds we make use of Eq.~7! as our point of depar-
ture in search for a more general expression.

To pursue an adequate representation of glass data
follow the steps of previous treatments couched in terms
soft potentials24 and allow the coefficients entering theV(r )
potential to be randomly distributed rather than being sing
valued quantities. This is done to account for the disorde
structure, since all terms entering Eq.~7! are explicitly de-
pendent upon the crystal-field symmetry. Our treatment t
requires to take an additional average over the parame
To a first approximation, the only averages we need conc
a few negative moments of the leading terma. In turn, these
moments are expanded around the mean value ofa up to
second order, i.e., the variance ofa. The final expressions
for the quadratic and quartic coefficients read

c25 k̃BT~112gGxT!@11s̃~T!2#220g̃ k̃ B
2T2@116s̃~T!2#,

~8a!
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c45 1
8 k̃ B

2T2~112gGxT!2s̃~T!2

2 k̃ B
3~2g̃1 9

80 d̃ !T3@1110s̃~T!2#, ~8b!

where the tilde denotes division bya with a, g, andd now
understood as mean values of the corresponding pote
parameters, ands(T) stands for the width of the distribution
of values fora before applying the quasiharmonic renorma
ization. Furthermore, all the potential coefficients enter
Eq. ~7! can be expected to be temperature dependent,
cially under conditions where thermal expansion effects
deemed to be severe~i.e., not too far below melting!.20,23

Here, we have found that in order to include such effect
renormalization of the width of the distribution for the lea
ing parameter suffices. In fact, we find that the simplest p
sibility that is to assume a linear temperature depende
that is s̃(T)5s̃0(11aT) is able to account for the curren
data. The temperature dependence of the width of the di
bution can thus be viewed as resulting from an increase
size of the thermal cloud. The result can also be related
results cast in terms of average cage frequencies and its
quency spread that increase with increasing temperatu31

able to describe the dynamics of supercooled liquids.
Figure 6~b! shows the simulation data as well as the c

responding fits to Eqs.~8!. Thec2 coefficient was fitted set-
ting g̃ to a fixed value to improve the convergence of the
Starting fromg̃512, which was the value found for the crys
tal phase, a refined estimate gaveg̃511 as the best value
The c4 was then fitted taking the obtained parameter val
for c2 so that onlyd̃ remains as a free parameter. The qual
of the fits is again remarkable. Their self-consistency as w
the closeness to the disordered-crystal results make us
fident of having grasped the underlying physics.

To check the robustness of this approach, we have car
out a number of tests. First, Eq.~7! was found unable to fit
the glass data. Next, we tried either fitting the glass d
using the harmonic part of Eqs.~8! or to restrict the effect of
disorder to the harmonic part, or even to change the pre
tors of the variance terms. In all cases just referred to s
consistency was not achieved nor unphysical values w
obtained, also resulting in poor quality fits.

VI. CONNECTION WITH EXPERIMENT

Turning now back to experimental data shown in Fig.
we are now in a position to carry out a quantitative analy
of the experimentalW(T) using for the purpose Eq.~7!.
Furthermore, to scrutinize the reliability of parameters o
tained from simulations, we will now proceed leaving ju
only one free parameter to account for the small differen
in effective masses found between simulation and exp
ment. This amounts to include within the equations desc
ing W(Q,T) the changek̃B→ k̃B/M* . In other words, having
set the values of the parameters entering theV(r ) potential
with the aid of molecular simulations we now use such
formation to calculate the experimental estimates forW(T).
The result of such fits is shown in Fig. 3 and, as mention
above, it yields 1/M* 50.8360.02 and 1/M* 50.6360.01
2-7
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for the glass and the crystal, respectively, which are rem
ably close to those inferred from the experiment at low te
peratures~i.e., 0.83 and 0.66, respectively!.

As a first remark let us underline the scant effect felt
W(T) upon crossing both the canonical glass→ liquid and
orientationally disordered→ rotator-phase crystal trans
tions, both taking place within 100 K–135 K. However,
remarked above, motions indeed are sensitive to the eff
of the nonlinear term. To explore in deeper detail this app
ent lack of sensitivity to the occurrence of the glass transit
we extended the analysis of simulation data up to temp
tures comprising the normal-liquid range (T.Tm5170 K).
Figure 7 displays data already discussed together with th
concerning higher temperatures. For the disordered crys
c2 shows a smooth behavior up to the highest tempera
while c4 shows a somewhat steeper increase with temp
ture above some 150 K. This is something to be expected

FIG. 7. Dependence with temperature of the quadratic (c2, open
symbols! and quartic (c4, filled symbols! coefficients needed to
account for the wave-vector dependence of 2W(Q,T) as calculated
for the molecular centers of mass by means of the computer s
lations. Data includes temperatures pertaining to the normal liq
range as well as to partially molten bcc crystals. The upper fra
shows simulation data for the disordered crystals and the lo
frame shows equivalent data for the glass and liquid. Solid lines
fits to Eqs.~7! and ~8!, respectively.
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the very nature of the quantity considered in the simulatio
that is, since all motions refer to molecular centers of m
we do not expect to see a strong effect due to the onse
molecular rotations upon crossing the orientationally dis
dered→ rotator-phase transition. In addition, above 160 K
slight but noticeable deviation from the behavior followed
lower temperatures by thec4 is clearly seen. This is due to
partial melting of the bcc lattice, a process that does
reach completion within the time window of our simulation

In stark contrast with the behavior of the cubic crysta
the c2 and c4 coefficients for the glass/supercooled liqu
exhibit a stronger change upon approaching some 160 K
those exhibited by the disordered crystals. As a matter
fact, from data pertaining toc4 one could find by extrapola
tion from the high-temperature region a temperatureT*
about 140 K that signals the point of the temperature reg
driven by non-Gaussian dynamics, a feature that also co
sponds to the apparent bent in theAng

maxt* plot shown in Fig.
1. Whether such temperature has any clear meaning is d
cult to guess because of the proximity to the upper bound
the glass-transition region within the simulations. Our ow
estimate for the critical temperatureTc of structural arrest
corresponding to the schematic mode-coupling predict
made on the basis of muon spectroscopy comes about
K.28 The experimental data show, however, a smoother tr
that joins the normal liquid regime in a more continuo
fashion than does the schematic theoretical prediction.
improved theoretical estimate that includes thermally a
vated events may well result in a shift ofTc towards a tem-
perature closer toT* which will then sign an unequivoca
ergodicity-breaking transition.

VII. OUTLOOK AND CONCLUSIONS

Starting from rather general considerations we ha
reached at results which for the case of the fully amorph
phases are physically equivalent to the SPM in the sense
the most characteristic features of glassy dynamics
shown to arise from the effect of a large quartic term wh
gives rise to localized, high-amplitude modes, and that
potential parameters need to be distributed. However, in c
trast with the phenomenological nature of the SPM appro
we have set to follow a route grounded upon microsco
concepts.

Our route of approaching the glass dynamics has, h
ever, yielded results of interest not included in previous tre
ments. In fact, the analysis of the CM motions of the dis
dered crystals, which show all the characteristic fingerpri
of glassiness,7–9,25 has shown that they can be adequat
accounted for by using single-valued potential parameters
other words, our results emphasize the role played by
nonlinear interactions as main drivers of the glassy dynam
versus the effects brought forward by structural disord
Support for such a view is lent from a wealth of thermod
namic and dynamic data for the material
consideration7–9,25 which evidence the closeness of th
glassy dynamics in both glassy phases and above all
recent finding of a large linear term in the low-temperatu
specific heat which is basically identical for both phases.25 In

u-
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other words, glassy features shown by long-range-orde
arrays having purely orientational disorder are seen
be a consequence of the action of a strong nonlinea
This suggests that a similar treatment could be app
for systems having orientational or compositional disor
such as the widely studied KBr:KCN~Ref. 29! or Ar:N2
alloys.30

In conclusion, our study on a sample where the depar
from Gaussian behavior can be studied quantitatively has
us to identify some specific features of the effective inter
tion potential driving the glassy dynamics which appear to
of general validity. The motions of the particles within o
simplified model of glassy solids are found to be exceedin
large and highly anisotropic due to the strong cubic and qu
tic terms of V(r ). This serves to provide a framework t
s
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understand the wealth of experimental10–14 and computer
simulation16,17 results.

Our main limitation stems from the analysis which h
been carried out in terms of the dynamics of molecular c
ters of mass only. Extending the results beyond those c
cerning molecular centers of mass to include orientatio
motions is an obvious next step to take.
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