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Phase diagram of the three-dimensional asymmetric next-nearest-neighbor Ising model
in an effective-field approximation

Anton Šurda
Institute of Physics, Slovak Academy of Sciences, Du´bravskácesta, 842 28 Bratislava, Slovakia
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An effective-field method for calculation of thermodynamic properties of three-dimensional lattice spin
models is developed. It is applied to the axial next-nearest-neighbor Ising model on the simple-cubic lattice.
The phase diagram of the model, consisting of a large number commensurate phases and of an incommensurate
phase, is calculated, confirming the results of previous approaches. The phase transition lines for a number of
commensurate structures are localized and a strong evidence for absence of the direct phase transition between
commensurate phases and the disordered phase is found.
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I. INTRODUCTION

In this paper we study the axial next-nearest-neigh
Ising ~ANNNI ! model on a simple-cubic or tetragonal lattic
This model was first introduced by Elliott1 in order to under-
stand modulated magnetic materials. It is reviewed by Se
and Yeomans.2–4 The model is known to form a low
temperature ferromagnetic phase for a small next-nea
neighbor~NNN! interaction and â2& phase for a large one
The wedge in the NNN interaction temperature phase
gram between these two phases is, at low temperatures,
by infinite number of commensurate phases.

Theoretical study of the ANNNI model has been based
a large number of various approaches. The devil’s stairc
structure of the phase diagram at low and medium temp
tures was elucidated by low-temperature series expansi5,6

and mean-field approximations.7–10 Monte Carlo
simulations11 differ from the mean-field calculations at tran
sition line to disordered phase. The incommensurate ph
was also treated by the free-fermion approximation.12,13

Recently, an anisotropic scaling at the Lifshitz point w
used to calculate several critical exponents at this point.14 A
considerable effort was also devoted to investigation
ANNNI thin films.15–17

The mean-field approximations describes qualitativ
well the phase diagram of the ANNNI model, neverthele
some of its features were challenged by other approac
e.g., the stability of the commensurate phase up to the t
sition line to the disordered phase.

To improve the performance of mean-field treatment
the ANNNI model, we develop an effective-field metho
which is a generalization of the cluster transfer-mat
method successfully applied to two-dimensional~2D! spa-
tially modulated structures.18–20

Our effective-field method resembles the nonlinear m
ping approach of Bak,10,21 but, instead of magnetization,
maps a large number of effective fields, which simulate
cluster environment. It is related also to the density ma
renormalization group~DMRG! method,22 and for the 2D
ANNNI model they yield similar results.19,23 Comparing
with DMRG approach, our method is much simpler, and
stead of diagonalization of density matrix and renormali
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tion of transfer matrix by matrix multiplication it require
only calculation of square root of a function of cluster sp
configurations and real-number multiplications.22 The results
of our method is in general agreement with other approac
and it removes the artifacts of the previous mean-field me
ods.

In Sec. II the 3D ANNNI model is specified, and a ne
effective-field approximation is developed. Results of n
merical calculations and a tool for distinguishing betwe
commensurate and incommensurate phases, which lea
construction of the phase diagram are presented in Sec.

II. MODEL AND METHOD

We shall generalize the cluster transfer-matrix method~an
effective-field approximation! developed and applied to 2D
space-modulated structures some time ago.18–20,22The devel-
opment of the 3D method follows the same ideas that w
used in 2D case, however, the number of approximations
has to be done is higher. For reasons of clarity the metho
developed for a ANNNI-type model but it can be easily r
formulated for any 3D model with short-range interaction

The three-dimensional ANNNI model on a simple-cub
lattice consists of two-dimensional planes, within which ea
spin is coupled to its nearest neighbors by a ferromagn
interactionJ0. However, in the direction perpendicular to th
planes, spins are coupled by competing ferromagnetic n
est and antiferromagnetic next-nearest-neighbor interact
~Fig. 1!. For reasons of simplicityJ15J0 is further assumed

As the interactions between spinss i , j ,k561 in the
Hamiltonian of the 3D ANNNI model

FIG. 1. Spin-spin interactions in 3D ANNNI model; NN inter
actionsJ0 andJ1 are ferromagnetic, NNN interactionsJ2 are anti-
ferromagnetic.
©2004 The American Physical Society16-1
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H5(
i , j ,k

2J0s i , j ,k~s i 11,j ,k1s i , j 11,k!2J1s i , j ,ks i , j ,k11

1J2s i , j ,ks i , j ,k12 ~1!

involve only three layers, it can be written as a sum of la
HamiltoniansHi(Si ,Si 11 ,Si 12) which depend on three laye
variablesSk[$s i , j ,k% i , j P(2`,`). Since the layers were
chosen perpendicular to the competitive interactions, th
are only nearest-neighbor interactions inside the layers,
the layer Hamiltonian can be expressed as a sum of clu
Hamiltonians defined on 23233 clusters with the longe
side oriented along theJ2 interaction.

H5(
k

Hk~Sk ,Sk11 ,Sk12!5(
k

(
i , j

Hi , j ,k~s l ,m,n!, ~2!

wherel 5 i ,i 11, m5 j , j 11, n5k,k11,k12.
The exponential of the layer HamiltonianHk is further

denoted by Tk(Sk ,Sk11 ,Sk12)[exp@Hk(Sk ,Sk11,Sk12)/T#
and sometimes called transfer matrix though it is rathe
function of spin variables.

Then the summation in the partition function

Z5(
$s i %

exp@H~s i !/T#

may be performed consecutively layer by layer generatin
set of auxiliary functionsCk and normalization factorslk :

(
Sk

Ck~Sk ,Sk11!Tk~Sk ,Sk11 ,Sk12!5lkCk11~Sk11 ,Sk12!

~3!

starting from an appropriate functionC1(S1 ,S2) that may be
interpreted as a boundary condition of the system on a se
infinite lattice. The values ofCk for k→` mostly do not
depend on the inputC1 except in the vicinity of a first-orde
phase transition. Here the different bulk values correspon
one stable and one or more physically unstable solutio
The stable solution is the one with the lowest free energy
is proportional to ln)klk .

As we see, the auxiliary functions in the transfer mat
method are some general positive functions defined on c
ters of planes in 3D models. For lower-dimensional mod
they are defined on clusters of rows in 2D and clusters
sites in 1D. In a one-dimensional model, the auxiliary fun
tions depend on finite number of spin variables, in 2D a
3D cases they acquire infinite number of values, which c
not be generally found by numerical calculations. Instead
the whole function at the right-hand side of Eq.~3!, we fur-
ther calculate only its correlation function, sum
Ck11(Sk11 ,Sk12) over the whole lattice except a sma
cluster, and the true auxiliary functionC is approximated by
a more convenient one, nevertheless, exactly reproducing
correlation functions calculated from the left-hand side
Eq. ~3!.

As we do not use any further information from the le
hand side of Eq.~3!, all the remaining properties of the ap
proximate functionC̃ are derived from the requirement o
13411
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maximum of the information entropyS5C̃ ln C̃.24 To maxi-
mizeSunder the condition that the partial sum ofC̃ is equal
to the given correlation function, Lagrange multipliers corr
sponding to each configuration of the cluster have to be
troduced. It is easy to show that the desired auxiliary fu
tion can be expressed as a product of exponentials of
cluster Lagrange multipliers. Thus, the requirement of ma
mum of the information entropy leads to a factorization
the auxiliary function. Further only factorized auxiliary func
tions will be used, and will be designated without tilde, sim
ply by C. Now the left-hand side of Eq.~3! is completely
factorized for short-range interactions and its partial summ
tion is equivalent to calculation of a correlation function of
statistical system of the dimension lower by 1 than that of
original problem. It means that for 2D system this step c
be performed exactly, but for 3D the factorization procedu
must be applied even to calculation of the correlation fu
tion.

A. 2D model

In the case of 2D model~1D auxiliary functions! the ap-
plication of the above considerations is straightforward.
the course of the iteration procedure, our task is to calcu
the unknown functionCk11 from Ck known from the pre-
vious iteration step using 2D version of Eq.~3!

(
sk21

Ck21~sk21 ,sk!Tk~sk21 ,sk ,sk11!

5lkCk~sk ,sk11!. ~4!

Both functionsC, at the left- and right-hand side of Eq.~4!,
are factorized

Cm[)
i

Q i
i 1n~sm, j ,sm11,l ! j ,l P^ i ,i 1n&.

For Ck , we want to express the unknown cluster functio
Q i

i 1n by its correlation functionsF i
i 1n on clusters of the

lengthn11:

F i
i 1n[ (

$sk, j ,sk11,l %
j ,l P(2`,i 21)(i 1n11,̀ )

Ck~sk, j ,sk11,l !,

which can be calculated substituting forCk at the left-hand
side of Eq.~4!. ( ln Qi

i1n is one of the Lagrange multiplier
mentioned above.!

Let us denote the left eigenfunction of the function~trans-
fer matrix! Q i

i 1n :

(
sk,i ,sk11,i

u i
i 1n21~sk,i ,sk11,i , . . . ,sk,i 1n21 ,sk11,i 1n21!••

3Q i
i 1n~sk,i ,sk11,i , . . . ,sk,i 1n ,sk11,i 1n!

5lu i 11
i 1n~sk,i 11 ,sk11,i 11 , . . . ,sk,i 1n ,sk11,i 1n! ~5!
6-2
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by u and its eigenvalue byl. (u i
i 1n21 andu i 11

i 1n are identical
function defined on different clusters if we do not expect a
space modulation in this direction.!

Sinceu i
i 1n21 is the result of summation ofC from 2`

to i, correlation functionF i
i 1n corresponding toC can be

expressed as

F i
i 1n5u i

i 1n21Q i
i 1nū i 1n

i 11 , ~6!

whereū is the right eigenfunction ofQ defined by

(
sk,i 1n ,sk11,i 1n

Q i
i 1n~sk,i ,sk11,i , . . . ,sk,i 1n ,sk11,i 1n!••

3 ū i 1n
i 11~sk,i 11 ,sk11,i 11 , . . . ,sk,i 1n ,sk11,i 1n!

5lū i 1n21
i ~sk,i ,sk11,i , . . . ,sk,i 1n21 ,sk11,i 1n21!.

~7!

The unknown cluster functionQ i
i 1n can be expressed from

Eq. ~6! as follows

Q i
i 1n5

F i
i 1n

u i
i 1n21ū i 1n

i 11
. ~8!

Unfortunately, the eigenfunctionsu and ū are implicit func-
tions of Q. On the other hand, it can be easily shown tha

Q i8
i 1n5A u i

i 1n21

ū i 1n21
i

Q i
i 1nAū i 1n

i 11

u i 11
i 1n

~9!

have the same eigenvalues as the original cluster funct
Q i

i 1n . Substituting Eq.~8! for Q i
i 1n we get

Q i8
i 1n5

F i
i 1n

Au i
i 1n21ū i 1n21

i u i 11
i 1nū i 1n

i 11
5

F i
i 1n

AF i
i 1n21F i 11

i 1n
,

~10!

where F i 11
i 1n5(sk,i ,sk11,i

F i
i 1n5u i 11

i 1nū i 1n
i 11 and similarly

F i
i 1n21 . Thus, obeying the condition of maximum of info
ed
d

o

e
de
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mation entropy, relation~10! yields a possibility to express
the approximate chain auxiliary functionC as a product of
known correlation functionsF i

i 1n :

C5)
i

Q i
i 1n5)

i
Q i8

i 1n5)
i

F i
i 1n

AF i
i 1n21F i 11

i 1n
. ~11!

B. 3D model

In the case of 3D models and 2D auxiliary functions t
relations~5!–~11! are further valid, only the indices denot
infinite rows of sites rather than sites, and the site spin v
abless should be replaced by row variablesS. As now the
correlation functionsF i

i 1n in Eq. ~11! acquire infinite num-
ber of values, they cannot be calculated and should be
pressed by correlation functions defined on a finite clus
of the size (n11)3( l 11). We denote them byF i , j

i 1n, j 1 l ,
where the first indices represent rows and the second o
columns of the lattice. Unfortunately, now they cannot
calculated from the left-hand side of Eq.~3! exactly as well
as Eqs.~5! and ~7! cannot be solved exactly, and the sam
procedure which was used for treatment of the 2D latt
model should be applied to them. Nevertheless, after th
approximate calculations all the functions in Eq.~6! are fac-
torized, andn-row andn21-row correlation functionsF i

i 1n

andF i 11
i 1n , F i

i 1n21 , respectively, appearing in 3D version o
Eq. ~11! can be written in the same way asC of the 2D
model

F i
i 1n5)

j

F i , j
i 1n, j 1 l

AF i , j
i 1n, j 1 l 21F i , j 11

i 1n, j 1 l
, etc. ~12!

By consecutive application of the factorizing procedure E
~12! to all terms in Eq.~11!, the approximate functionC is
expressed in terms of its cluster correlation functions

F i , j
i 1n, j 1 l5 (

$skm%
kP(2`,i 21)ø( i 1n11,̀ )
mP(2`, j 21)ø( j 1 l 11,̀ )

C~skm!. ~13!

The expression reads
C5)
i , j

Q i , j8 i 1n, j 1 l5)
i , j

F i , j
i 1n, j 1 l A4 F i , j

i 1n21,j 1 l 21F i , j 11
i 1n21,j 1 lF i 11,j

i 1n, j 1 l 21F i 11,j 11
i 1n, j 1 l

AF i , j
i 1n, j 1 l 21F i , j 11

i 1n, j 1 lF i , j
i 1n21,j 1 lF i 11,j

i 1n, j 1 l
. ~14!
dy

n
the

ary
Unlike in 2D case, the correlation function calculat
from Ck11 is only approximately equal to that calculate
from the left-hand side of Eq.~3!. They would be equal to
each other if we were able to factorize the whole tw
dimensional plane functionQ i8

i 1n in 3D version of Eq.~10!
and not only each correlation functionF separately.

All the functions in Eq.~13! are plane dependent in th
case of a modulated structure. Therefore, in the explicit
scription of the iteration procedure, the plane indexk should
-

-

be attached to all correlation and auxiliary functions.
The auxiliary functionC at the left-hand side of Eq.~3!

represents the effect of the half-lattice, we have alrea
summed over, onto the rest. Similarly, as lnTk is a part of the
Hamiltonian of the model, lnCk may be interpreted as a
effective Hamiltonian acting on the boundary planes of
part of the lattice not yet summed over. As lnCk

5(i,j ln Qi,j8
i1n,j1l , the cluster functions lnQ8 are in fact

short-range effective fields acting on spins of the bound
6-3
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ANTON ŠURDA PHYSICAL REVIEW B 69, 134116 ~2004!
planes. Further, for simplicity, rather the functionsQ8 them-
selves will be called effective fields. The computational
eration scheme of the cluster transfer-matrix method for
ANNNI model is as follows:

~1! From the cluster functions ~effective fields!

kQ i , j8 i 1n, j 1 l known from the previous step, the approxima
auxiliary function Ck(Sk ,Sk11)5) i , j kQ i , j8 i 1n, j 1 l is con-
structed and is substituted in the left-hand side of Eq.~3!.

~2! The correlation functionk11F i , j
i 1n, j 1 l Eq. ~13! of the

auxiliary functionCk11(Sk11 ,Sk12) is calculated from Eq.
~3!. As both functions at the left-hand side of Eq.~3! are
factorized this problem is equivalent to calculation of a c
relation function of a 2D lattice model with short-range i
teractions that was discussed above and in prev
papers18–20in detail. This task is performed in two steps, a
the approximate factorization utilizing Eq.~11! is applied
once.

~3! Formula ~14! is used and the cluster function

k11Q i , j8 i 1n, j 1 l are found.
~4! Calculation is continued for the next plane starti

from the step 1.
As an initial condition for the first step of calculation, it

convenient to take the result of a previous calculation a
nearby point in the parameter space. The bulk values of
cluster function are obtained after iteration over few perio
of the commensurate or incommensurate structure. Howe
the periods of the commensurate structure sometimes
ceeded several hundreds of lattice constants in our calc
tions. The convergence of the iteration procedure is v
slow near the continuous incommensurate-disorder ph
transition and the steady state was often reached after m
than 10 000 steps.

In our actual calculations the length of the cluster edgen
and l was taken equal to 1, i.e., the cluster, on which
functionsF i , j

i 1n, j 1 l andQ i , j8 i 1n, j 1 l are defined, has eight site
~elementary cube! and the functions acquire 256 value
Thus, our generalized mean-field approximation utilizes 2
effective fields instead of one in previous approaches.10

The planes perpendicular to the NNN interaction are f
romagnetic in the ANNNI model, thus the cluster correlati
function and the cluster function do not depend on its po
tion in the plane.kF i , j

i 1n, j 1 l is in fact only a short-hand no

tation of Fk( kSi , j
i 1n, j 1 l), where kSi , j

i 1n, j 1 l is a spin configu-
ration of a cluster in the planek. Similarly, kQ i , j8 i 1n, j 1 l

[Qk8( kSi , j
i 1n, j 1 l).

To find the actual structure at a point of the phase d
gram, it is not necessary to calculate the lattice site mag
tizations. The structure can be deduced from the plane
pendence of the effective fieldQk8 , which has the same
symmetry as magnetization. In our approximation it acqui
256 values, but a plot of arbitrary one of them can be u
to find the phase diagram. For reason of simplicity and sy
metry, the differenceck[Qk8(1)2Qk8(2), is plotted where
‘‘ 1 ’’ and ‘‘ 2 ’’ denote spin configurations of the eight-si
cluster with all the spins up and down, respectively. For
very small values of magnetization the sign of the funct
ck is the same as the sign of the magnetization of thekth
plane. The ANNNI model structures consist of sequence
13411
-
D

-

s

a
e

s
er,
x-
la-
y
se
re

e

6

r-

i-

-
e-
e-

s
d
-

t

of

planes with negative or positive magnetization. As the ex
nal magnetic field is equal to zero, the commensurate st
tures are symmetric with respect to spin inversion. Therefo
only ucku is taken into account further. Its periodicityp is one
half of or equal to the structure periodicity if in the intervalp
the functionck changes its sign even or odd times, resp
tively. A structure consisting repeatedly ofp planes with
positive magnetization andp planes of negative magnetiza
tion with periodicity 2p is usually denoted in literature a
^p&. More generally, the sequence ofn clusters of the above
mentioned planes of the lengthp interrupted by one cluste
of the lengthp21 is denoted aŝpn(p21)&.

At high temperature when the convergence is slow a
the areas of commensurate structures are very narrow,
lower temperatures when near the accumulation points
periodicity of commensurate structures tends to infinity, it
often not possible to perform the calculation directly at t
point of parameter space of desired properties, becaus
precise position is not known. Nevertheless, the structur
it can be deduced from the behavior of the effective field
its close vicinity. For this purpose, we shall further pl
uck1pu2ucku vs ucku, wherep is the periodicity of the func-
tion ucku somewhere near the point of the parameter sp
where we perform the calculation. It is not necessary to p
uck1pu2ucku vs ucku for all values ofk. The information, we
are interested in, can be found from behavior of the plot
the planesk01np (n51,2, . . . ).k0 should be the number o
the plane closest to a node of the structure (sgnck0

Þsgnck011), where uck0
u is close to zero anduck0

u
2uck021u is large. If the planek0 were far from the node,

uck01pu2uck0
u might be equal to zero because the maximu

of the interpolated curveuck01npu as a function ofn lies

betweenn50 andn51 and not for the reason that the stru
ture is commensurate. The plots will be drawn forucku in the
range from 0 to its maximum value when a new planek
21, with a smaller value ofuck21u appears. Analysis of
them will make it possible to distinguish between comme
surate and incommensurate structures and confirm the e
tence of the accumulation point, where period of commen
rate structures tends to infinity.

III. RESULTS AND DISCUSSION

Results of our effective-field calculations are consist
with the phase diagram obtained by the mean-field appr
mation and low-temperature expansion.2 However, the tem-
peratures, at which the phase transitions occur, are more
alistic, and for the exactly soluble caseJ250 in the
approximation with 256 effective fields, the critical temper
ture does not deviate more than 1% fromTc54.512 obtained
by Monte Carlo simulations.25

From our calculation, in accordance with previous resu
of other authors, it is possible to conclude that the ph
diagram consists of infinitely many commensurate pha
which appear mostly at low temperatures and an incomm
surate and disordered phase at high temperatures.

At low temperature we have found a ferromagnetic pha
a commensurate structure with periodicity 4 consisting o
6-4
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PHASE DIAGRAM OF THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW B 69, 134116 ~2004!
sequence of couples of planes with alternating magnetiza
(^2&), a structure with periodicity 6 (^3&) and combinations
of the last two structures of the type^2n3& n51,2,3, . . . .
As the low-temperature region is fairly well described by t
low-temperature expansion, we concentrate to the medi
and high-temperature properties of the phases^4&, ^3&,
^23&, and the regions in their close vicinity.

The main phases of the 3D ANNNI model obtained fro
our calculations are shown in the phase diagram~Fig. 2!. The
thick lines denote the borders of the regions of commen
rate phases and represent first-order phase transition l
The dotted lines connect points in the parameter space w
the incommensurate phase has the same periodicity as
corresponding commensurate structure. The widths of
commensurate phases near the order-disorder phase t
tion line go to zero for all of them, i.e., there is no dire
transition between the commensurate and the disord
phase. The commensurate regions at high temperature
very narrow~narrower than the line thickness!, nevertheless
they persist to rather high temperatures. A very large~prob-
ably infinite! number of commensurate phases between e
two main phases are not depicted in the diagram and
discussed later. The Lifshitz point behind the left edge of
diagram is not shown, as the slow convergence of calc
tions and complicated phase structure did not make poss
to correctly interpret the obtained results.

It is not easy to prove the existence of the commensu
phase in a very narrow region and distinguish between
commensurate and incommensurate phase of the same
slightly different periodicity. Here, it is helpful to observe th
above mentioned plot ofDc[uck1pu2ucku vs ucku, wherep
is the periodicity of the functionucku for the assumed com
mensurate structure.

In Fig. 3 this plot forT53.45 and two differentJ2 /J1
inside and near the structure^3& is shown.p53 andk runs

FIG. 2. Phase diagram of the 3D ANNNI model. Only the ba
structures with short periodicity are depicted. The dotted lin
connect points in the parameter space where the incomm
surate phase has the same periodicity as the corresponding
mensurate structure. The symbols denote the following periodic
repeating structures:̂2&—↑↑↓↓, ^3&—↑↑↑↓↓↓, ^23&—↑↑↓↓↓,
^4&—↑↑↑↑↓↓↓↓, F—ferromagnetic (↑), D—disordered, where
the arrows indicate directions of plane magnetization.
13411
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over all planes after whichck changes its sign, i.e., the func
tion is plotted for every third plane. The structure is com
mensurate ifDc is equal to zero. We see that forJ2 /J1
50.533 35 it never occurs. The function is an incommen
rate one with local periodicity greater than 3. The local p
riodicity is different at different places of the structure, i.e
its true periodicity is very large, and for decreasingJ2 /J1 it
tends to infinity. It can be considered as a phase-modula
^3& structure. As the curveuck1pu2ucku vs ucku shifts in
vertical direction with change ofJ2 /J1 with only a small
change of its shape, we can expect that for some value
J2 /J1 the curve intersects thex axis and the structure be
comes commensurate. In Fig. 3 this situation is exemplifi
by the curves forJ2 /J150.533 25 and 0.533 15. In the bul
the structure iŝ 3&, the differenceuck1pu2ucku is equal to
zero and the structure is trapped in the stable fixed point
the transition period, near the lattice boundary or a pla
defect, whereDcÞ0, the structure is incommensuratelik
Starting away from an arbitrary boundary condition, the s
tem reaches very fast an incommensurate metastable s
represented by one of the curves, from which the stable b
commensurate structure at the intersection withx axis slowly
develops.

To confirm the existence of the commensurate structur
some region of parameter space, it is not necessary to
the point where after many iteration steps the system c
verges to a bulk commensurate structure. Near to it,Dc is
small and the convergence is very slow. It is enough to fi
a nonmonotonous behavior of theDc vs c plot of an incom-
mensurate structure somewhere near that parameter s
point. A set of such plots forT53.52 is shown in Fig. 4. It is
seen that the amplitude of modulation of the functions
creases when approaching the commensurate phase.
already a small modulation of the curve far from the co
mensurate structure indicates its presence.

s
n-
m-
ly

FIG. 3. Plot of Dc[uck13u2ucku vs c[ucku for every third
plane of^3& structure.T53.45. The plots are drawn for the follow
ing values of the parameters: 1—J2 /J150.533 35, 2—J2 /J1

50.533 25, 3—J2 /J150.533 15. The commensurate^3& phase is
represented by the stable fixed point. Curve 1 represents an inc
mensurate structure. AsDc!c, the plots are practically continu
ous.
6-5
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The width of the region of the commensurate struct
can be deduced from the amplitude of the functionuck1pu
2ucku vs ucku and the rate of its vertical shift with change
the parameters.

Figure 5 shows that forT53.546 very probably no com
mensuratê3& structure exists.

All the curves are monotonous. The sign of their deriv
tives is negative and positive above and below thex axis,
respectively, and they do not intersect it. The functions ab
and belowx axis are symmetric, their derivatives becom
smaller for curves close to the axis. The period ofc is not
very large as in the previous case of the point in param
space near the commensurate structure^3&, but it is close to
3. It may be expected that the curve for periodicity 3 exac
coincides withx axis and does not intersect it. This point

FIG. 4. Plot of Dc[uck13u2ucku vs c[ucku for every third
plane and high temperature,T53.52, ^3& structure. The plots are
drawn for the following values of the parameters: 1—J2 /J1

50.534 400, 2—J2 /J150.534 350, 3—J2 /J150.534 320,
4—J2 /J150.534 313, 5—J2 /J150.534 290. The commensura
^3& phase is represented by curve 4.

FIG. 5. In close vicinity of the phase transition line to the d
ordered state, all the plotsDc[uck13u2ucku vs c[ucku are mo-
notonous indicating the absence of commensurate phase in th
gion. 1—T53.5461, J2 /J150.5341; 2—T53.5465, J2 /J1

50.5345; 3—T53.5466,J2 /J150.5346.
13411
e

-

e

er

y

the parameter space is very close to the order-disorder p
transition line, so that the parameters in Fig. 5 should
carefully changed in the direction parallel to it. The rate
convergence is very slow here, and the bulk incommensu
structures depicted in the figure were obtained after m
than 10 000 iteration steps.

More clear evidence for nonexistence of commensur
structure atT53.546 is given by extrapolation of the width
of the ^3& structure to higher temperatures shown in Fig.
For small values of the width, this plot could be well fitte
by a parabola. The parabola practically touchesx axis in its
minimum ~its deviation from zero value due to the comput
tional errors is within width of the line!, and this tempera-
ture,T153.543, was taken as the one at which the comm
surate structure disappears. Due to convergence problem
is difficult to find the temperature of phase transition to d
ordered state, but it can be estimated byT253.547 from
decay of the amplitude of incommensurate structure.

Similar considerations were done for the structures^4&,
^23&, and ^2320&, and it was found that the commensura
structures of higher periodicity disappear at lower tempe
tures. The whole region near the order-disorder phase tra
tion line is incommensurate with tongues of commensur
structures of low periodicity which do not reach the pha
transition line.

At very low temperatures the phase^3& is neighboring to
the phase^23&. With increasing temperature, atT51.6,
phases of the typê23n& start to appear. At given temperatu
T, the period of the function,p53n12, increases with de-
creasingJ2 /J1 and its largest value is reached at the boun
ary of the^3& structure. The plots ofn near thê 3& boundary
for T52.60,2.62,2.63,2.64,2.65 are depicted in Fig. 7. T
periodicity in the close vicinity of̂ 3& phase increases ver
fast and for the temperatures above 2.62 it is not possibl
determine the value ofnmax or even decide if it is finite or
not. Nevertheless, the accumulation point, wherenmax be-
comes infinite, can be found analyzing the plotsuck1pu
2ucku vs ucku for different temperatures andp53, which
are shown in Fig. 8. The structure^23n& for largen is formed
from domains of the structurê3& of the length slightly less
thann interrupted by domain walls symbolically denoted b
‘‘2’’ in the symbol ^23n&. The ^3& structure beyond the wal
is shifted by one plane with respect to the structure in

re-

FIG. 6. Plot of the width of the commensurate phase^3& vs
temperature. The width is given in the units ofJ2 /J1•1024. Com-
mensurate structure disappears atT153.543.T253.547 is the tem-
perature of transition to disordered state.
6-6
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previous domain. Thê3& domains correspond to the minim
of the plots in Fig. 8 where theuck13u2ucku are practically
equal to zero. The advent of the wall is so abrupt a
uck13u2ucku so large that the next point after the very rig
edge of the each curve is already out of scope of the diagr
With decreasingJ2 /J1 the plots are shifting down and at th
^3& phase transition line the minimum of the plot touchex
axis, and after some transition period the system rem
stuck in ^3& phase. If the slope of the plot at minimum
zero, the periodicity near the boundary tends to infinity, a
the temperature of the system is already above the accu
lation point. From Fig. 8, we see that the accumulation po
is close to the temperatureT52.64. The periodicity ofucu
tends to infinity if the curve approachesx axis forJ2→J2c at
T52.65. Using our method, we were able to find a comm

FIG. 7. Numbern of ↑↑↑ or ↓↓↓ plane sequences in̂23n&
commensurate phases near the transition line to^3& structure. The
value ofJ2c at the transition line is different for each temperaturen
acquires discrete values and the lines are only guides for the e

FIG. 8. Plot ofDc[uck13u2ucku vs c[ucku for commensurate
^23n& structures near transition to^3& phase.n is equal to the num-
ber of points along each curve.~Only points for small values ofDc
are depicted in the figure.! The curves forJ25J2c touch thex axis.
For curves with zero derivative in the minimumn tends to infinity.
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surate structure ofp51802 at this temperature.
Our approach locates the accumulation point sligh

above the turning point where the width of the^3& phase
starts becoming narrower. In Ref. 9 it was found well belo
the turning point.

Approximately at the same temperature, aboveT52.65,
first combined phases of the type^23n23n11& between̂ 23n&
and^23n11& for largen start to appear~Fig. 9!. Similarly to
the previous more simple case, following combinations
the hierarchy are of the type^(23n)k23n11& or
^23n(23n11)k&, which appear at temperatures by 0.04 high
than the temperature of the accumulation point. A great co
putational effort is needed to detect a next type of combi
tions ^(23n)k23n11(23n)k1123n11&. These high-order com
binations occupy very small areas of the parameter sp
and with increasing temperature they are soon replaced
incommensurate structures.

This picture corresponds, to some extent, to the branch
processes found in Ref. 9, but there they took place far be
the accumulation point. As seen from Fig. 7, in our calcu
tions, even at high temperatures near the transition line
^3& phase, only simplê23n& phases exist.

It is widely believed that the structures with large di
tances between the domain walls are commensurate whe
the structures where the distance between the walls is sh
than the wall-wall interaction are incommensurate. T
statement should be formulated more precisely. The co
mensurate structures with short distances between the w
are more stable than those with longer distances. They pe
to higher temperatures and they occupy a wider area in
parameter space. Nevertheless, in the areas between^23n&
and^23n11& for smalln, the onset of incommensurate stru
tures was found at lower temperatures than for largen. The
distance between the commensurate structures increases
decreasingn faster than their width so that there is mo
space for incommensurate structures with smalln.

e.

FIG. 9. Schematic picture of branching processes in the ANN
model. It represents a small part of the phase diagram~Fig. 2!
somewhere nearT52.65 andJ2 /J150.535. Dots denote an infinite
number of higher-order phases. The distance of the sequenc
simple phaseŝ23n& from the phasê3& is shown in Fig. 7.
6-7
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ANTON ŠURDA PHYSICAL REVIEW B 69, 134116 ~2004!
In summary, we developed an effective-field approxim
tion, which yields by simple iteration procedure practica
any of, probably, an infinite number of phases in the ph
diagram of the 3D ANNNI model. In fact, the method trea
an infinite lattice. Lattice size, in contrast to other mean-fi
and DMRG approaches, does not enter the calculation
difficult task to distinguish between commensurate and
commensurate structure after a finite number of iteration
made easier by plotting the derivative of an effective fie
with respect to its value in course of iteration. The calcu
tte

13411
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tions confirmed the general picture of the phase diagram
tained by other methods, made it more accurate and s
ported the suggestion following from the Monte Car
calculations11 that the commensurate phases are separ
from the disordered phase by an incommensurate region
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