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Phase diagram of the three-dimensional asymmetric next-nearest-neighbor Ising model
in an effective-field approximation
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An effective-field method for calculation of thermodynamic properties of three-dimensional lattice spin
models is developed. It is applied to the axial next-nearest-neighbor Ising model on the simple-cubic lattice.
The phase diagram of the model, consisting of a large number commensurate phases and of an incommensurate
phase, is calculated, confirming the results of previous approaches. The phase transition lines for a number of
commensurate structures are localized and a strong evidence for absence of the direct phase transition between
commensurate phases and the disordered phase is found.
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[. INTRODUCTION tion of transfer matrix by matrix multiplication it requires
only calculation of square root of a function of cluster spin
In this paper we study the axial next-nearest-neighbogonfigurations and real-number multiplicatidisthe results
Ising (ANNNI) model on a simple-cubic or tetragonal lattice. of our method is in general agreement with other approaches,
This model was first introduced by Ellidtin order to under- and it removes the artifacts of the previous mean-field meth-

stand modulated magnetic materials. It is reviewed by Selk€dS. ) N

temperature ferromagnetic phase for a small next-nearesgfective-field approximation is developed. Results of nu-

neighbor(NNN) interaction and 42) phase for a large one. merical calculations and a tool for distinguishing between
The wedge in the NNN interaction temperature phase digtommensurate and incommensurate phases, which lead to

gram between these two phases is, at low temperatures, fil&pnstruction of the phase diagram are presented in Sec. .

by infinite number of commensurate phases.

Theoretical study of the ANNNI model has been based on
a large number of various approaches. The devil's staircase
structure of the phase diagram at low and medium tempera- We shall generalize the cluster transfer-matrix mettad
tures was elucidated by low-temperature series expahSion effective-field approximationdeveloped and applied to 2D
and mean-field approximatiods!’® Monte Carlo space-modulated structures some time ¥gé>?*The devel-
simulationd! differ from the mean-field calculations at tran- opment of the 3D method follows the same ideas that were
sition line to disordered phase. The incommensurate phasésed in 2D case, however, the number of approximations that
was also treated by the free-fermion approximatiot?. has to be done is higher. For reasons of clarity the method is

Recently, an anisotropic scaling at the Lifshitz point wasdeveloped for a ANNNI-type model but it can be easily re-
used to calculate several critical exponents at this gdiat.  formulated for any 3D model with short-range interactions.
considerable effort was also devoted to investigation of The three-dimensional ANNNI model on a simple-cubic
ANNNI thin films.15-17 lattice consists of two-dimensional planes, within which each

The mean-field approximations describes qualitativelySPin iS coupled to its nearest neighbors by a ferromagnetic
well the phase diagram of the ANNNI model, nevertheless!”teraCt'Onglo- However, in the dlrectlor_l perpendicular to the
some of its features were challenged by other approacheBlanes, spins are coupled by competing ferromagnetic near-
e.g., the stability of the commensurate phase up to the trarSt and antiferromagnetic next-nearest-neighbor interactions
sition line to the disordered phase. (Fig. 1. For reasons of simplicity, = J, is further assumed.

To improve the performance of mean-field treatment of AS the interactions between spins;; =+1 in the
the ANNNI model, we develop an effective-field method, Hamiltonian of the 3D ANNNI model
which is a generalization of the cluster transfer-matrix
method successfully applied to two-dimensio2D) spa-
tially modulated structure$.-2° Ay

Our effective-field method resembles the nonlinear map- 1
ping approach of Bak??! but, instead of magnetization, it
maps a large number of effective fields, which simulate the vl
cluster environment. It is related also to the density matrix
renormalization grougDMRG) method?? and for the 2D
ANNNI model they yield similar results?® Comparing FIG. 1. Spin-spin interactions in 3D ANNNI model; NN inter-
with DMRG approach, our method is much simpler, and in-actionsJ, andJ; are ferromagnetic, NNN interactiods are anti-
stead of diagonalization of density matrix and renormalizaferromagnetic.

Il. MODEL AND METHOD
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maximum of the information entropg=¥In ¥.2* To maxi-

mize Sunder the condition that the partial sumfis equal

to the given correlation function, Lagrange multipliers corre-
sponding to each configuration of the cluster have to be in-
involve only three layers, it can be written as a sum of layerfroduced. It is easy to show that the desired auxiliary func-
HamiltoniansH;(S;,S - 1,S + ) Which depend on three layer tion can be expresse_d as a product of exponentials of the
variables S;={a; ; \}i,j e (—,). Since the layers were cluster Lagrange multipliers. Thus, the requirement of maxi-
chosen perpendicular to the competitive interactions, ther@um of the information entropy leads to a factorization of
are only nearest-neighbor interactions inside the layers, anie auxiliary function. Further only factorized auxiliary func-
the layer Hamiltonian can be expressed as a sum of clustéions will be used, and will be designated without tilde, sim-

Hamiltonians defined on22x 3 clusters with the longer Ply by ¥. Now the left-hand side of E(3) is completely
side oriented along tha, interaction. factorized for short-range interactions and its partial summa-

tion is equivalent to calculation of a correlation function of a

statistical system of the dimension lower by 1 than that of the

H:; Hk(Sk,Sk+1,Sk+2)=2k lz Hijk(o1mn), () original problem. It means that for 2D system this step can

! be performed exactly, but for 3D the factorization procedure

wherel=i,i+1, m=j,j+1, n=k,k+1,k+2. must be applied even to calculation of the correlation func-
The exponential of the layer Hamiltonia#, is further  tion.

denoted by T (S¢,Sc+1,Sc+2)=exXdH(SS1:S:2)/T]

H=iJZk —JoUi,j,k(0i+1,j,k+ ‘Ti,j+1,k)—JlUi,j,kUi,j,k+1

+3207 ki j k+2 N

and ;ometimgs caI.Ied transfer matrix though it is rather a A. 2D model
function of spin variables. . .
Then the summation in the partition function In the case of 2D moddlLD auxiliary function$ the ap-

plication of the above considerations is straightforward. In
the course of the iteration procedure, our task is to calculate
Z= 2 exdH(oy)/T] the unknown function¥,, ; from ¥, known from the pre-
toil vious iteration step using 2D version of E®)
may be performed consecutively layer by layer generating a
set of auxiliary functionsl, and normalization factorsy:
2 W10k 1,00 Ti( Ok 1,04, i)
Ok-1

2 VS SEDTHS S S =MV (S, Sera) AT (o o). @

()
) _ _ Both functions¥, at the left- and right-hand side of E@),
starting from an appropriate functioh,(S,,S,) that may be are factorized

interpreted as a boundary condition of the system on a semi-

infinite lattice. The values ofF’, for k—o~ mostly do not

depend on t.h_e inpu | except in the vicinity of a first-order xmeH @i*“(gm’j Ome1y) B e(ii+n).

phase transition. Here the different bulk values correspond to i

one stable and one or more physically unstable solutions. .

The stable solution is the one with the lowest free energy thafOF Wi, we want to express the unknown cluster functions

is proportional to II\,. ©!"" by its correlation functionsb! ™" on clusters of the
As we see, the auxiliary functions in the transfer matrixlengthn+1:

method are some general positive functions defined on clus-

ters of planes in 3D models. For lower-dimensional models

i+n_
they are defined on clusters of rows in 2D and clusters of iz {”k_z(rk 3 Yi(owj o)),
sites in 1D. In a one-dimensional model, the auxiliary func- jJE(_m,i‘_'l)(*iinH,w)

tions depend on finite number of spin variables, in 2D and

3D cases they acquire infinite number of values, which canwhich can be calculated substituting fér, at the left-hand
not be generally found by numerical calculations. Instead oide of Eq.(4). (In®!"" is one of the Lagrange multipliers
the whole function at the right-hand side of Eg), we fur-  mentioned abovg.

ther calculate only its correlation function, sum of Letus denote the left eigenfunction of the functitrans-
Wi+ 1(Scr1,Sc+2) over the whole lattice except a small fer matrixy ® " ":

cluster, and the true auxiliary functioh is approximated by

a more convenient one, nevertheless, exactly reproducing the

correlation functions calculated from the left-hand side of >, 9:+n_1(0'k,i yOk41jr oo Oki4n-110k+1j+n-1)"
Eq. (3). Tk, Tkt 1
As we do not use any further information from the left- X O (Tt Trrtis o s Tkions Thstion)
hand side of Eq(3), all the remaining properties of the ap- _ ' oot ke T Lien
. .~ . . — +
proximate function® are derived from the requirement of ~ =M1 1(0ki+1,0ks1i+1s - -+ Thitns Tk Li+n) (5

134116-2



PHASE DIAGRAM OF THE THREE-DIMENSIONA . .. PHYSICAL REVIEW B 69, 134116 (2004

by 6 and its eigenvalue by. (6" * and 6" are identical mation entropy, relatﬁomlo)_yields a possibility to express
function defined on different clusters if we do not expect anythe approximate chain auxiliary functioll as a product of

space modulation in this direction. known correlation function;™":
Since #, """ * is the result of summation oF from — i+n
to i, correlation functiond®; " corresponding tol' can be v=[] oi*"=1] ;" "=1] ﬁ (12)
expressed as i i L TR O
PItN=gtnl@ltgtl (6) B. 3D model
whered is the right eigenfunction o® defined by In the case of 3D models and 2D auxiliary functions the

relations(5)—(11) are further valid, only the indices denote
S @it infinite rows of sites rather than sites, and the site spin vari-
e S (TkirFrsin - -+ Okien Therdin) ableso should be replaced by row variabl&sAs now the
e correlation functionsb!*" in Eq. (11) acquire infinite num-

Xail(gki+liak+li+li e Tkien T kaditn) ber of values, they cannot be calculated and should be ex-
e ’ ’ ’ pressed by correlation functions defined on a finite clusters
— : i+n,j+l
=NO o 1T Okstis - Tk 10 Oks 1 +n1)- of the size +1)Xx(I+1). We denote them byb; ™™,

where the first indices represent rows and the second ones
_ () columns of the lattice. Unfortunately, now they cannot be
The unknown cluster functio®;"" can be expressed from calculated from the left-hand side of EQ) exactly as well
Eq. (6) as follows as Eqgs.(5) and(7) cannot be solved exactly, and the same
procedure which was used for treatment of the 2D lattice
) model _should be applied to them. Ngvert_heless, after these
6:+n71§=1$' approximate calculations all the functions in E6) are fac-
torized, andh-row andn— 1-row correlation function; "

Unfortunately, the eigenfunctions and 6 are implicit func-  gqggpi+n @i+tn-1 respectively, appearing in 3D version of
| 1 l

tions of ®. On the other hand, it can be easily shown that Eq. (1i1+)lc':an be written in the same way s of the 2D

girn-1 gL model
rid+n_ ! i+n I+n . .
®i| - 5,’ ®= 0“_” (9) q:.:’%j—n,J-H

i+n
|

i+n_
0=

L i+n_
| i+n—1 . .|+1 . (I)i —H \/(DI+H,J+|*1(I)I+H,J+|' etc. (12
have the same eigenvalues as the original cluster functions ' b i+l
0!"". Substituting Eq(8) for ®!*" we get By consecutive application of the factorizing procedure Eq.
_ _ (12) to all terms in Eq.(11), the approximate functio® is
_ oitn orn expressed in terms of its cluster correlation functions
®i/|+n: — ' ' ,
N1, gtigrl ol ey S
i i+n i+1%+n 10 q)=,ern'J+ - {lrzk:m} V(okm)- (13
where ®{i1=%, ,  ®/'"= oltT6tl and similarly A g A

@:*”‘1. Thus, obeying the condition of maximum of infor- The expression reads

i+l 4 i n—1j+—1qi+n—1+Igi+n,|+l—1gi+n,|+l
;] \/qji,j Qi1 Dila) Qi1

(14

,\P:H ®i/ij+n,j+|:H
i ' i

: TN+ =Ly 4]+l i n—1j +1 i +nj+]
" \/q)i,j Qv P Dii7]

Unlike in 2D case, the correlation function calculated be attached to all correlation and auxiliary functions.
from W, is only approximately equal to that calculated The auxiliary function¥ at the left-hand side of Ed3)
from the left-hand side of Eq3). They would be equal to represents the effect of the half-lattice, we have already
each other if we were able to factorize the whole two-summed over, onto the rest. Similarly, ad|ris a part of the
dimensional plane functio®'*" in 3D version of Eq(10) Hamiltonian of the model, I¥, may be interpreted as an
and not only each correlation functich separately. effective Hamiltonian acting on the boundary planes of the

All the functions in Eq.(13) are plane dependent in the part of the lattice not yet summed over. As Up
case of a modulated structure. Therefore, in the explicit de=3;;In ®i’]}+'”+', the cluster functions I®' are in fact
scription of the iteration procedure, the plane intteshould  short-range effective fields acting on spins of the boundary
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planes. Further, for simplicity, rather the functio®s them-  planes with negative or positive magnetization. As the exter-
selves will be called effective fields. The computational it-nal magnetic field is equal to zero, the commensurate struc-
eration scheme of the cluster transfer-matrix method for 30ures are symmetric with respect to spin inversion. Therefore,
ANNNI model is as follows: only || is taken into account further. Its periodicipyis one

(1) From the cluster functions(effective fields  half of or equal to the structure periodicity if in the interyal
«®/ "™+ known from the previous step, the approximatethe functiony, changes its sign even or odd times, respec-
auxiliary function W, (S, Ses1) =11, jk@fiﬂrn,ﬁl is con- tively. A structure consisting repeatedly of planes with

’ s i, . . . . .
structed and is substituted in the left-hand side of By positive magnetization angl planes of negative magnetiza-
: . i+n,j+l tion with periodicit is usually denoted in literature as

(2) The correlation function; 1@ ; Eq. (13) of the (p) Morep enerally fﬂe se uenze mtlusters of the above
auxiliary functionW, 1(Sy+1,S¢:2) is calculated from Eq. Py T 9 Y, quen
(3). As both functions at the left-hand side of E@) are mentioned planes.of the Iengrhmrferrupted by one cluster
factorized this problem is equivalent to calculation of a cor-Of Ter:_enhgthp—l IS denotﬁd a$hp (p—1)). i< o d
relation function of a 2D lattice model with short-range in- At Nigh temperature when the convergence Is slow an
teractions that was discussed above and in previoudl® areas of commensurate structures are very narrow, or at
paper&®-2in detail. This task is performed in two steps, and OWe' temperatures when near the accumulation points the
the approximate factorization utilizing E4L1) is applied periodicity of commensurate structures ter_1ds to infinity, it is
once often not possible to perform the calculation directly at the

(8) Formula (14) is used and the cluster functions pom; of par_a_met_er space of desired properties, because its

©/i+Mi*! are found precise position is not known. Nevertheless, the structure at
k+1%ij . ; ; ; : ;

(4) Calculation is continued for the next plane starting It can be dgdu_ced from the behavior of the effective field in
from the step 1. its close vicinity. For this purpose, we shall further plot

As an initial condition for the first step of calculation, it is |.¢k+r|_|¢k| vs |4/, wherep is the periodicity of the func-
convenient to take the result of a previous calculation at dlon Yx| somewhere near the.pomt .Of the parameter space
nearby point in the parameter space. The bulk values of th here we perform the calculation. It is no_t necessary to plot
cluster function are obtained after iteration over few period wkal_Wk' vs_|¢k| for all values ofk. The information, we
of the commensurate or incommensurate structure. Howevep © interested in, can be found from behavior of the plot for
the periods of the commensurate structure sometimes e%e planeko+np (n=12,...).ky should be the number of
ceeded several hundreds of lattice constants in our calculd™® plane closest to a node of the structure ($gon
tions. The convergence of the iteration procedure is very*Sany +1), where [ | is close to zero andyy |
slow near the continuous incommensurate-disorder phase|¢/k0,1| is large. If the plane, were far from the node,
:Lansi{iggoa:)ndtthe steady state was often reached after m0{3k0+p| — || might be equal to zero because the maximum

an steps.

In our actual calculations the length of the cluster edyes of the interpolated CurV¢¢“O*""| as a function ofn lies
and | was taken equal to 1, i.e., the cluster, on which theéP&weem=0 andn=1 and not for the reason that the struc-

functions@}f“'”' and®ir'ij+n,j+l are defined, has eight sites tUre is commensurate. The plots will be drawn [fgg| in the

(elementary cubeand the functions acquire 256 values. @ng€ from 0 to its maximum value when a new plake,

Thus, our generalized mean-field approximation utilizes 2561 With @ smaller value ofys | appears. Analysis of
effective fields instead of one in previous approaches. them will make it possible to distinguish between commen-

The planes perpendicular to the NNN interaction are ferSurate and incommensurate structures and confirm the exis-

romagnetic in the ANNNI model, thus the cluster correlationt€nce of the accumulation point, where period of commensu-
function and the cluster function do not depend on its posif@t€ structures tends to infinity.

tion in the plane, @™ *" is in fact only a short-hand no-

. . - ri+n,j . . . .
ratlo’n oL?J_EIIuster in the plan&. Similarly, ,&7; Results of our effective-field calculations are consistent
=0,(«S; ). with the phase diagram obtained by the mean-field approxi-

To find the actual structure at a point of the phase diamation and |0W_temperature expans?oHowe\/er, the tem-
gram, it is not necessary to calculate the lattice site magneperatures, at which the phase transitions occur, are more re-
tizations. The structure can be deduced from the plane deyiistic, and for the exactly soluble cas&=0 in the
pendence of the effective fiel®,, which has the same approximation with 256 effective fields, the critical tempera-
symmetry as magnetization. In our approximation it acquiresure does not deviate more than 1% frdip=4.512 obtained
256 values, but a plot of arbitrary one of them can be usety Monte Carlo simulation®
to find the phase diagram. For reason of simplicity and sym-  From our calculation, in accordance with previous results
metry, the difference,=0,(+)—0.(—), is plotted where of other authors, it is possible to conclude that the phase
“+"and “ —" denote spin configurations of the eight-site diagram consists of infinitely many commensurate phases
cluster with all the spins up and down, respectively. For notwhich appear mostly at low temperatures and an incommen-
very small values of magnetization the sign of the functionsurate and disordered phase at high temperatures.

Yy is the same as the sign of the magnetization ofktie At low temperature we have found a ferromagnetic phase,
plane. The ANNNI model structures consist of sequences oA commensurate structure with periodicity 4 consisting of a
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FIG. 2. Phase diagram of the 3D ANNNI model. Only the basic
structures with short periodicity are depicted. The dotted lines F|G. 3. Plot of A= 3| — |l vs ¥=|w| for every third
connect points in the parameter space where the incommerplane of(3) structureT=3.45. The plots are drawn for the follow-
surate phase has the same periodicity as the corresponding coffig values of the parameters: 13+4J,=0.53335, 2-J,/J,
mensurate structure. The symbols denote the following periodically=0.533 25, 3—3,/J,=0.53315. The commensurat8) phase is
repeating structures;2)—111], (3)—111111, (23—1111]l,  represented by the stable fixed point. Curve 1 represents an incom-

(4)—1111111], F—ferromagnetic {), D—disordered, where mensurate structure. A<y, the plots are practically continu-
the arrows indicate directions of plane magnetization. ous.

sequence of couples of planes with alternating magnetizatioover all planes after whicky, changes its sign, i.e., the func-
({2)), a structure with periodicity 6(@)) and combinations tion is plotted for every third plane. The structure is com-
of the last two structures of the tyg@"3) n=1,2,3 ... . mensurate ifAy is equal to zero. We see that fdp/J;
As the low-temperature region is fairly well described by the=0.533 35 it never occurs. The function is an incommensu-
low-temperature expansion, we concentrate to the mediunrate one with local periodicity greater than 3. The local pe-
and high-temperature properties of the phaéés (3),  riodicity is different at different places of the structure, i.e.,
(23), and the regions in their close vicinity. its true periodicity is very large, and for decreasingJ; it

The main phases of the 3D ANNNI model obtained fromtends to infinity. It can be considered as a phase-modulated
our calculations are shown in the phase diag(gig. 2. The ~ (3) structure. As the curvéy.,| — [l vs [ shifts in
thick lines denote the borders of the regions of commensuvertical direction with change od,/J; with only a small
rate phases and represent first-order phase transition linehange of its shape, we can expect that for some values of
The dotted lines connect points in the parameter space whedg /J; the curve intersects the axis and the structure be-
the incommensurate phase has the same periodicity as tkemes commensurate. In Fig. 3 this situation is exemplified
corresponding commensurate structure. The widths of thby the curves fod,/J;=0.533 25 and 0.533 15. In the bulk
commensurate phases near the order-disorder phase trartsie structure ig3), the difference 1//k+p|—|1//k| is equal to
tion line go to zero for all of them, i.e., there is no direct zero and the structure is trapped in the stable fixed point. In
transition between the commensurate and the disorderdtie transition period, near the lattice boundary or a planar
phase. The commensurate regions at high temperatures atefect, whereA s+ 0, the structure is incommensuratelike.
very narrow(narrower than the line thicknessevertheless, Starting away from an arbitrary boundary condition, the sys-
they persist to rather high temperatures. A very lafg®b-  tem reaches very fast an incommensurate metastable state,
ably infinite) number of commensurate phases between eactepresented by one of the curves, from which the stable bulk
two main phases are not depicted in the diagram and areommensurate structure at the intersection wigxis slowly
discussed later. The Lifshitz point behind the left edge of thedevelops.
diagram is not shown, as the slow convergence of calcula- To confirm the existence of the commensurate structure in
tions and complicated phase structure did not make possibEome region of parameter space, it is not necessary to find
to correctly interpret the obtained results. the point where after many iteration steps the system con-

It is not easy to prove the existence of the commensurateerges to a bulk commensurate structure. Near td i, is
phase in a very narrow region and distinguish between themall and the convergence is very slow. It is enough to find
commensurate and incommensurate phase of the same omaonmonotonous behavior of the/ vs  plot of an incom-
slightly different periodicity. Here, it is helpful to observe the mensurate structure somewhere near that parameter space
above mentioned plot af =y | —| ¥4l vs|yil, wherep  point. A set of such plots fof = 3.52 is shown in Fig. 4. It is
is the periodicity of the functiohy,| for the assumed com- seen that the amplitude of modulation of the functions in-
mensurate structure. creases when approaching the commensurate phase. Thus,

In Fig. 3 this plot forT=3.45 and two differentl,/J;  already a small modulation of the curve far from the com-
inside and near the structu(8) is shown.p=3 andk runs  mensurate structure indicates its presence.
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FIG. 4. Plot of Ay=|¢u. 3l — |l vs y=|ys/ for every third  the parameter space is very close to the order-disorder phase
plane and high temperaturg=3.52, (3) structure. The plots are transition line, so that the parameters in Fig. 5 should be
drawn for the following values of the parameters: 1,A;  carefully changed in the direction parallel to it. The rate of
=0.534400, ~ 2-3,/J,=0.534350,  3-3,/3;=0.534320,  convergence is very slow here, and the bulk incommensurate
4—J,/3,=0.534 313, 5-3,/J;=0.534290. The commensurate siryctures depicted in the figure were obtained after more
(3) phase is represented by curve 4. than 10000 iteration steps.

More clear evidence for nonexistence of commensurate
Sstructure aff =3.546 is given by extrapolation of the widths
i ) o~ of the (3) structure to higher temperatures shown in Fig. 6.
— | vs |y and the rate of its vertical shift with change of £ small values of the width, this plot could be well fitted
the parameters. by a parabola. The parabola practically touckesis in its

Figure 5 shows that fof =3.546 very probably no com-  ninimum (its deviation from zero value due to the computa-
mensurate3) structure exists. _ _ _tional errors is within width of the line and this tempera-

All the curves are monotonous. The sign of their de”Va‘ture,T1=3.543, was taken as the one at which the commen-
tives is negative and positive above and below thexis,  gyrate structure disappears. Due to convergence problems it
respectively, and they do not intersect it. The functions abovey giitficult to find the temperature of phase transition to dis-
and belowx axis are symmetric, their derivatives become y 4eareq state, but it can be estimated By=3.547 from
smaller for curves close to the axis. The periodyofs not decay of the amplitude of incommensurate structure.
very large as in the previous case of the point in parameter gimilar considerations were done for the structufé,
space near the commensurate struc{Gje but it is close to (23), and (2%, and it was found that the commensurate
3. It may be expected that the curve for periodicity 3 exactlygyctures of higher periodicity disappear at lower tempera-
coincides withx axis and does not intersect it. This point in {,-as The whole region near the order-disorder phase transi-

tion line is incommensurate with tongues of commensurate
' structures of low periodicity which do not reach the phase
] transition line.

At very low temperatures the phaé) is neighboring to
the phase(23). With increasing temperature, dt=1.6,
phases of the typ@3") start to appear. At given temperature
T, the period of the functionp=3n+2, increases with de-
creasingJ,/J; and its largest value is reached at the bound-
nl ] ary of the(3) structure. The plots af near thg(3) boundary

MAA 4 a —oa A a 2 for T=2.60,2.62,2.63,2.64,2.65 are depicted in Fig. 7. The
| ] periodicity in the close vicinity of3) phase increases very
fast and for the temperatures above 2.62 it is not possible to
o M&—"‘;"" ] determine the value dfi,4 Or even decide if it is finite or

. not. Nevertheless, the accumulation point, whefg, be-
comes infinite, can be found analyzing the plots., |
—| ¢ vs |y for different temperatures anpl=3, which

FIG. 5. In close vicinity of the phase transition line to the dis- &€ shown in Fig. 8. The structu(@3") for largen is formed
ordered state, all the plotsy=|yy. 3| — |t vs ¥=|y| are mo-  from domains of the structurg8) of the length slightly less
notonous indicating the absence of commensurate phase in this réann interrupted by domain walls symbolically denoted by
gion. 1-T=3.5461, J,/J,=0.5341; 2-T=3.5465, J,/J;  “2"inthe symbol (23"). The(3) structure beyond the wall
=0.5345; 3—T=3.5466,J,/J,=0.5346. is shifted by one plane with respect to the structure in the

The width of the region of the commensurate structur
can be deduced from the amplitude of the functign. ,|

-4 *—o—0—0000

0 4 8 12 104‘!’

134116-6



PHASE DIAGRAM OF THE THREE-DIMENSIONA . .. PHYSICAL REVIEW B 69, 134116 (2004

100 |

10

15 20

. FIG. 9. Schematic picture of branching processes in the ANNNI
107 ((U,-J,)0,)

model. It represents a small part of the phase diagtgig. 2
somewhere nedr=2.65 andl, /J;=0.535. Dots denote an infinite
number of higher-order phases. The distance of the sequence of
simple phase$23") from the phasé3) is shown in Fig. 7.

FIG. 7. Numbern of 111 or ||| plane sequences i23")
commensurate phases near the transition ling8jostructure. The
value ofJ,. at the transition line is different for each temperature.
acquires discrete values and the lines are only guides for the eye.

surate structure gb=1802 at this temperature.

Our approach locates the accumulation point slightly
above the turning point where the width of tk8) phase
ptarts becoming narrower. In Ref. 9 it was found well below

previous domain. Thé3) domains correspond to the minima
of the plots in Fig. 8 where thgfy, 5| — || are practically
equal to zero. The advent of the wall is so abrupt an ; ;
| sl —| 44l SO large that the next point after the very right the turning point.

edge of the each curve is already out of scope of the diagram. APProximately at the same temperature, abave2.65,
With decreasingl,/J; the plots are shifting down and at the ISt com+bined phases of the type3'23"" ") between(23")

(3) phase transition line the minimum of the plot touclxes and(23"") for largen start to appeatFig. 9). Similarly to
axis, and after some transition period the system remain%e previous more simple case, following Eoml+3|1nat|ons In
stuck in(3) phase. If the slope of the plot at minimum is € h|e+r:i\rf(:hy are of the type((23)23""5) or
zero, the periodicity near the boundary tends to infinity, and 23 (23" ")), which appear at temperatures by 0.04 higher
the temperature of the system is already above the accumi?a" the temperature of the accumulation point. A great com-
lation point. From Fig. 8, we see that the accumulation poinfUtational ekffort+|f neeff(lj to +dletect a next type of combina-
is close to the temperatufe=2.64. The periodicity of 4| ~ H1ONS ((23") 23" 7(23")"723""%). These high-order com-

tends to infinity if the curve approachesxis for J,— J,. at binatiqns occupy very small areas of the parameter space,
T=2.65. Using our method, we were able to find a commen@nd With increasing temperature they are soon replaced by
incommensurate structures.

This picture corresponds, to some extent, to the branching

= 120 ' ' ' ' processes found in Ref. 9, but there they took place far below
% 100k . . To263 ] the accumulatlor_w point. As seen from Fig. 7, in our cal_cula-
- . o T-264 tions, even at high temperatures near the transition line to
8ok 4 TR28S | (3) phase, only simplé23") phases exist.
It is widely believed that the structures with large dis-
60 “ . . . tances between the domain walls are commensurate whereas
. the structures where the distance between the walls is shorter
40r * . i than the wall-wall interaction are incommensurate. This
e . statement should be formulated more precisely. The com-
20 N - . .
aa, e e, mensurate structures with short distances between the walls
0 - Y are more stable than those with longer distances. They persist
210 220 230 240 250 260

to higher temperatures and they occupy a wider area in the
parameter space. Nevertheless, in the areas bet(&s3h
and(23""1) for smalln, the onset of incommensurate struc-
tures was found at lower temperatures than for larg€he
distance between the commensurate structures increases with
decreasingn faster than their width so that there is more
space for incommensurate structures with small

10" v

FIG. 8. Plot ofA =i, 3| — | ] vs ¥=|is| for commensurate
(23" structures near transition {8) phasen is equal to the num-
ber of points along each curvnly points for small values of ¢
are depicted in the figureThe curves fod,=J,. touch thex axis.
For curves with zero derivative in the minimumtends to infinity.
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In summary, we developed an effective-field approxima-tions confirmed the general picture of the phase diagram ob-
tion, which yields by simple iteration procedure practically tained by other methods, made it more accurate and sup-
any of, probably, an infinite number of phases in the phasgorted the suggestion following from the Monte Carlo
diagram of the 3D ANNNI model. In fact, the method treatscalculation$! that the commensurate phases are separated
an infinite lattice. Lattice size, in contrast to other mean-fieldfrom the disordered phase by an incommensurate region.
and DMRG approaches, does not enter the calculation. A
difficult task to distinguish between commensurate and in-
commensurate structure after a finite number of iteration was
made easier by plotting the derivative of an effective field The support by Grant VEGAGrant No. 2/7174/20is
with respect to its value in course of iteration. The calcula-acknowledged.
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