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Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
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Molecular simulations, when they are used to understand properties characterizing the mechanical strength
of solid materials, such as stress-strain relation or Born stability criterion, by using elastic constants, are
sometimes seriously time consuming. In order to resolve this problem, we propose an efficient simulation
approach under constant external stress and temperature, modifying Parrinello-Rahman~PR! method using
useful sampling techniques developed recently—massive Nose´-Hoover chain method and hybrid Monte Carlo
method. Test calculations on the Ni crystal employing the embedded atom method have shown that our method
greatly improved the efficiency in sampling the elastic properties compared with the conventional PR method.
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I. INTRODUCTION

Molecular simulation in the presence of external stres
important as it is related to the mechanical strength of s
materials such as metals, ceramics, and amorph
polymers.1–5 One of the goals of such a simulation will b
direct calculation of stress-strain curve and determination
the yield point by the Born stability criteria using the calc
lated elastic constants.5–11 As a useful approach to this aim
Parrinello and Rahman~PR! have suggested a molecular d
namics~MD! under theNtH ensemble in which the simula
tion cell containingN atoms allows us to change its sha
appropriately conforming to external stresst ~strictly speak-
ing, this should be referred to as ‘‘thermodynamic tension6!
and enthalpyH.7,8,12However, it is well known that a simple
PR approach would be somewhat problematic for the ev
ation of the elastic constants, since the MD calculations
elastic constants are usually time consuming.6,13 Even for the
zero-stress case, a satisfactorily converged result for the
tic constants might take a simulation run of typically seve
millions or more sampling steps. To resolve this problem,
propose a MD-based simulation algorithm to estimate th
modynamic properties for theNtT ensemble when the stres
t is nonzero, using the efficient sampling techniques de
oped to attain the canonical distribution rapidly.14,15 Here,
the equation of motion in non-Hamiltonian dynamics16–18 is
solved by time-reversible RESPA algorithm.19,20This formu-
lation enables us to consider various methods in syst
thermostat coupling,14,21,22so that the system temperature
efficiently controlled. In the present work, we employ thr
types of thermostat, i.e., Nose´-Hoover ~NH!,21,22 Nosé-
Hoover chain ~NHC!,14 and massive Nose´-Hoover chain
~MNHC!, and their sampling efficiency of the lattice co
stants and elastic constants are examined. In addition,
time reversibility in this algorithm allows us to use hybr
Monte Carlo15 ~HMC! method in theNtT ensemble. The
efficiency of HMC method is also compared with oth
methods. A series of test calculations are performed for
crystal, where embedded atom method23,24~EAM! is used for
interatomic interactions.
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is
d
us

f

u-
f

as-
l
e
r-

l-

-

he

i

There has been a lot of effort devoted to the method
accurate evaluation of elastic constants by MD or Mo
Carlo ~MC! simulations.2,3,5,9,10,26–31While most of the cal-
culations are limited to elastic constants in zero-stress c
dition, it is worthwhile to briefly describe this topic. Th
simplest method would be to impose a strain on the sam
and calculate the corresponding strain energy or stress by
standardNhE ensemble MD where the energyE and cell
matrix h are constants, and then calculate the elastic c
stants from the stress-strain relationship.6,13 However, it is
inconvenient because several strains must be imposed at
eral times to calculate all the elastic constants. Besides,
merical error in finite-difference differentiation would be in
evitable. Elastic constants can also be calculated by
standardNhE ensemble MD in another way, based on t
fluctuation theory that microscopic stress tensor and first
second derivatives of the potential are related to ela
constants.6 Although NhE MD calculation usually gives
good convergence and accurate results, it is rarely used in
simulations for system beyond pair potential6,27,31 ~e.g.,
many-body potentials or first-principles potential! except in
some cases,2,3 or Coulombic system in which Ewald summa
tion is needed, since the second derivatives of the poten
~Born term! are uneasy to calculate. Another difficulty is th
the stress cannot be controlled using a rigid cellh. As an-
other way, elastic constants can be obtained from MD or M
methods based on flexible-cellNtH ensemble by the calcu
lation of strain fluctuations. Although these methods a
promising, it has been reported that the statistical conv
gence is unsatisfactory in some systems which may be du
nonergodicity problem.6,13 These are the motivations to de
velop a MD approach based onNtT ensemble for which
some efficient sampling techniques are available with a co
bination of thermostat and barostat.

This paper is organized as follows. In Sec. II, we descr
the equation of motion and RESPA integrator19 for NtT en-
semble based on non-Hamiltonian dynamics as an exten
of the formulation previously suggested by Martyna a
Tuckerman,16–18 along with hybrid Monte Carlo algorithm
following the formulation by Mehliget al.15 In Sec. III, the
©2004 The American Physical Society03-1
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WATARU SHINODA, MOTOYUKI SHIGA, AND MASUHIRO MIKAMI PHYSICAL REVIEW B 69, 134103 ~2004!
conditions and results of the test calculation of Ni crystal
described. Finally, this paper ends with a discussion on
methodological aspects in Sec. IV.

II. METHODS

As mentioned above, we consider here an efficient s
pling scheme for evaluating elastic constants by using a
lecular dynamics simulation under constant stress and
stant temperature based on theNtT ensemble. The non
Hamiltonian MD techniques were employed to generate
NtT ensemble. TheNtH-MD was also used in the hybrid
Monte Carlo simulation. In this section, MD and HMC alg
rithms used in our examination are described in detail.

A. Molecular dynamics

As a barostat, the fully flexible cell with a modular invar
ant form of the momentum was employed to control t
internal stress.18 For the temperature control, we consider
three different choices in the method of thermostat coupli
Nosé-Hoover,22 Nosé-Hoover chain, and massive Nos´-
Hoover chain.14 By setting up these types of barostat a
thermostat, stable integrators can be straightforwardly c
structed for the extended system dynamics on the basis o
Trotter factorization of the Liouville operator by the rever
ible RESPA algorithm.19 Here, as an example, the equatio
of motion ~EOM! for the case of NHC are given by

ṙ i5
pi

mi
1

pg

Wg
r i ,

ṗi5Fi2
pg

Wg
pi2

1

Nf

Tr@pg#

Wg
pi2

pj

Q
pi ,

ḣ5
pg

Wg
h,

pġ5V~Pint2IPext!2hSht1S 1

Nf
(
i 51

N pi
2

mi
D I2

pj1

Q1
pg ,

j̇k5
pjk

Qk
for k51, . . . ,M ,

ṗj1
5(

i 51

N pi
2

mi
1

1

Wg
Tr@pg

t pg#2~Nf1d2!kText2pj1

pj2

Q2
,

ṗjk
5S pjk21

2

Qk21
2kTextD 2pjk

pjk11

Qk11
for k52, . . . ,M21,

ṗjM
5S pjM21

2

QM21
2kTextD , ~1!

where variables$r i ,pi% are the position and momentum o
atom i, h is the cell matrix,pg is the modularly invariant
form of the cell momenta, and$jk ,pjk% are the thermosta
variable and its conjugated momentum of theksth thermostat
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of the NHC ~length 5M ), respectively. The constantsmi ,
Wg , andQk are the mass of atomi, barostat, andkth ther-
mostat, respectively, and the latter two were used to tune
frequency at which those variables fluctuate.20 The constant
Nf (53N) is the number of system degrees of freedom a
the tensorI denotes the identity matrix. The parameterText is
the external temperature and the parameterPext is the hydro-
static pressure, and the internal pressurePint is defined as,

~Pint!ab5
1

V H (
i 51

N
~pi !a~pi !b

mi
1~Fi !a~r i !b2~f8ht!abJ ,

~f8!ab5
]f~r ,h!

]~h!ab
. ~2!

The matrixS is defined by

S5h0
21~ t2IPext!h0

t 21 , ~3!

wheret is the stress applied to the system. The above eq
tions of motions have the conserved quantity,

H85(
i 51

N pi
2

2mi
1

1

2Wg
Tr@pg

t pg#1 (
k51

M pjk

2

2Qk
1f~r ,h!

1Pextdet@h#1
1

2
Tr@h0

21~ t2IPext!h0
t 21G#

1~Nf1d2!kTextj11 (
k52

M

kTextjk , ~4!

where G5hth is the metric tensor, and the sixth term
right-hand side of the above equation denotes the elastic
ergy due to the external stress.

The Jacobian of the coordinate transformation is cal
lated as18

J5det@h#12d expF ~Nf1d2!j11 (
k52

M

jkG . ~5!

This leads us to find the partition function as

D}E dh exp@2bH9#det@h#12d, ~6!

where

H95(
i 51

N pi
2

2mi
1

1

2Wg
Tr@pg

t pg#1 (
k51

M pjk

2

2Qk
1f~r ,h!

1Pextdet@h#1
1

2
Tr@h0

21~ t2EPext!h0
t 21G#. ~7!

Taking M51 in EOM ~1!, we obtain NH-MD instead of
NHC-MD. In case of MNHC-MD, all the system degrees
freedom (53N) and all the degrees of freedom in the ce
matrix (56, without rotation! are separately coupled wit
the respective Nose´-Hoover chains. It should be noted tha
to eliminate the rotation of the cell, the off-diagonal eleme
of the cell momentum matrix were (pg)ab5(pg)ba , and
3-2
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their kinetic energy$(pg)ab
2 1(pg)ba

2 %/2Wg is controlled to
kText/2 ~not kText). An explicit reversible integrator was con
structed on the basis of the rRESPA algorithm and emplo
to generate theNtT dynamics.20 Now, there are severa
choices of the factorization scheme of the time evolut
operator. In this work, we used the following form:

exp~ iLDt !5expS iL bath

Dt

2 DexpS iL 2

Dt

2 Dexp~ iL 1Dt !

3expS iL 2

Dt

2 DexpS iL bath

Dt

2 D1O~Dt3!,

~8!
n-
e

e

n
s

th

13410
d

n

whereiL is the Liouville operator, which is decomposed in
three componentsiL 1 , iL 2, and iL bath:

iL 5 iL 11 iL 21 iL bath,

iL 15(
i 51

N

@vi1vgr i #•“ r i
1(

a,b
~vg!ab

]

]~h!ab
,

iL 25(
i 51

N F Fi

mi
G•“vi

, ~9!
iL bath5(
i 51

N F2H vg1S 1

Nf
DTr@vg#1vj1J vi G•“vi

1(
a,b

H 1

Wg
F(

i 51

N

mi~vi !a~vi !b1(
i 51

N

~Fi !a~r i !b2~f8ht!ab

1S 1

Nf
(
i 51

N

mivi
22PextVD dab2@hh0

21~ t2IPext!h0
t 21ht#abG2vj1

~vg!abJ ]

]~vg!ab
1 (

k51

M

vjk

]

]jk

1F 1

Q1
S (

i 51

N

mivi
21WgTr@vg

t vg#2~Nf1d2!kTextD 2vj1
vj2G ]

]vj1

1 (
k52

M21 F 1

Qk
~Qk21vjk21

2 2kText!2vjk
vjk11G ]

]vjk

1F 1

QM
~QM21vjM21

2 2kText!G ]

]vjM

, ~10!
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wherevi5pi /miÞr i̇ , vg5pg /Wg , andvjk
5pjk

/Qk .

B. Hybrid Monte Carlo

Hybrid Monte Carlo method was originally used to ge
erateNhT ensemble in Metropolis MC sampling utilizing th
trajectories ofNhE MD.15 Now we want to apply this idea to
obtain NtT trajectories utilizingNtH MD trajectories. The
algorithm for NtH MD is very similar to that forNtT MD
described above. The EOM forNtH MD are just the EOM’s
of NtT MD, Eq. ~1!, except that the terms related to th
thermostat variables$jk ,pjk

% are not included. It should be

noted that the Jacobian of the EOM is not unity butJ
5det@h#12d.18 Therefore, to satisfy the detailed balance co
dition, the changes in the volume elements in the pha
space trajectory should be taken into account.

In the isothermal-isostress ensemble, the probability
the system is in a configuration (r ,h) is proportional to

N~r ,h!drdh5
exp$2b~f1Pextdet@h#1 1

2 Tr@SG# !%

J
drdh,

~11!

whereJ is the configurational integral,
-
e-

at

J5E drdh expH 2bS f1Pextdet@h#1
1

2
Tr@SG# D J .

~12!

The detailed balance condition can be written as

N~r ,h!PM~r ,h→r 8,h8!drdhdr 8dh8

5N~r 8,h8!PM~r 8,h8→r ,h!drdhdr 8dh8,

~13!

wherePM(r ,h→r 8,h8) denotes the transition probability t
go from configuration (r ,h) to (r 8,h8). In a MC algorithm,
the transition matrix is given by

PM~r ,h→r 8,h8!5ps~r ,h→r 8,h8!Pacc~r ,h→r 8,h8!, ~14!

wherePacc(r ,h→r 8,h8) denotes the probability of acceptin
a trial move from (r ,h) to (r 8,h8). In the HMC, as described
above, MD is used to generate a trial move of the syst
with a probabilityps(r ,h→r 8,h8). In order to meet the de
tailed balance condition, we have chosen the probab
ps(r ,h→r 8,h8) to be a symmetric matrix, assigning to th
initial momentum chosen from a Maxwellian distribution
T. Since the system is moved deterministically through ph
space,ps can be rewritten as

ps~r ,h→r 8,h8!dr 8dh85ps~p,pg!dpNdpg . ~15!
3-3
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Therefore, the acceptance probability has been taken as

Pacc~rN,h→rN8,h8!5minH 1,
N~rN8,h8!ps~rN8,h8→rN,h!drNdhdrN8dh8

N~rN,h!ps~rN,h→rN8,h8!drNdhdrN8dh8
J

5minH 1,

expH 2bS f81Pextdet@h8#1
1

2
Tr @SG8# D J ps~pN8,pg8!drN8dh8dpN8dpg8

expH 2bS f1Pextdet@h#1
1

2
Tr @SG# D J ps~pN,pg!drNdhdpNdpg

J
5min$1,exp@2b~H182H1!#J~rN8,h8,pN8,pg8 ;rN,h,pN,pg!%

5minH 1,exp@2b~H182H1!#
Ag

Ag8
J 5minH 1,exp@2b~H182H1!#S det@h8#

det@h# D d21J , ~16!
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where H15( i 51
N pi

2/2mi1(1/2Wg)Tr@pg
t pg#1f

1Pextdet@h#1 1
2 Tr@SG# andAg is the metric factor associ

ated with the phase-space compressibility of the n
Hamiltonian dynamics.16,17The latter is not unity only when
the fully flexible cell is employed.

III. APPLICATION TO NI CRYSTAL

A. System and simulation details

In order to evaluate the efficiency of the four differe
schemes described above, i.e., NH-MD, NHC-MD, MNH
MD, and HMC, we applied these methods to face-cente
cubic ~fcc! Ni crystal. This system consists of 500 Ni atom
in a three-dimensional periodic boundary cell. The EAM w
used to model the interatomic interactions. Among seve
parametrizations of the EAM potential of the Ni system, t
parameter set by Angeloet al.24 was adopted here. This is
revised version originally developed by Daw and Baske23

and by Foileset al.,25 which reproduce the experimental va
ues well for the pure Ni properties, and was shown to be
good agreement with first-principles calculation.32 The EAM
being short range, no cutoff of the interaction was need
During MD simulations, time-step size was fixed at 2 fs, a
the fluctuation times of the barostat and thermostats were
to be 2 ps and 0.5 ps, respectively. In the HMC simulatio
the step size is a tunable parameter to attain the effic
sampling of molecular configurations. Here we selected f
step sizes 10 fs, 5 fs, 2 fs, and 1 fs to assess the efficienc
the HMC algorithm in estimating the elastic constants. Ea
MD simulation was carried out for 10 million steps. The fir
1 million steps were the equilibration period, while the r
maining 9 million steps were used in the sampling. Ea
HMC simulation was repeated for 1 million cycles, the fir
0.1 million MC cycles was regarded as equilibration. T
number of MD integration steps per Monte Carlo cyc
nMD/MC , which is also a tunable parameter in HMC, w
fixed at 10. The cell parameters were stored every ste
HMC, and every 10 steps in MD. Thus, we can compare
convergence properties of both the cell parameters and
elastic constants using the same statistics for MD and HM
13410
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Throughout a series of simulations, the temperature was c
trolled at 300 K. Two conditions for the external stress we
examined. The first examination was carried out under z
external stress. After this, the uniaxial tensile stress was
plied stepwise to the system along thex axis by 1 GPa, up to
5 GPa. Then, the second examination was undertaken u
the uniaxial tensile stress oftxx55 GPa.

B. Results

Figure 1 plots the cumulative average of the averaged
length,^L&, as a function of MD steps under the zero appli
stress. All three MD simulations gave a fast convergence
the cell length, and the agreement among them was fa
good. In the case of HMC, however, the convergence pr
erty of the cell length was sensitive to the choice of t
time-step size: As long as the step size less than 2 fs
used, the averaged cell length converged within a reason
time, which was comparable to that of MD; whereas, us
the step size of 10 fs, by which the acceptance probability
the HMC trial motion was about 45%, we observed a sign
cant delay of the convergence of the cell length. In any ca

FIG. 1. Cumulative average of the cell length,^L&5V1/3, under
the zero external stress. Thin solid line, NH-MD; solid line, NHC
MD; thick solid line, MNHC-MD; dotted line, HMC (Dt51 fs);
dashed line, HMC (Dt52 fs), dash dotted line, HMC (Dt
55 fs); and thin dashed line; HMC (Dt510 fs).
3-4
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TABLE I. Averaged cell length and its statistical error under the zero external pressure~in angstrom!. The
latter was estimated by using the block averages with the length of 104 MD steps.

Hxx Hyy Hzz

NH 17.67586(60.0015) 17.67420(60.0017) 17.67327(60.0017)
NHC 17.67511(60.0015) 17.67566(60.0015) 17.67428(60.0016)
MNHC 17.67606(60.0006) 17.67603(60.0006) 17.67611(60.0005)
HMC/10 fs 17.67582(60.0019) 17.67601(60.0020) 17.67587(60.0020)
HMC/5 fs 17.67613(60.0010) 17.67632(60.0010) 17.67592(60.0010)
HMC/2 fs 17.67669(60.0014) 17.67658(60.0014) 17.67659(60.0015)
HMC/1 fs 17.67679(60.0029) 17.67711(60.0028) 17.67648(60.0030)
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however, all simulations produced a cell length converged
the same value within a small statistical error. In Table
each component of the cell length averaged over the sim
tion time was listed with its statistical errors. The statistic
error was estimated by using the block averages with e
block length being 104 MD time steps. It is shown that
among all the algorithms employed here, MNHC-MD giv
the best convergence with respect to the cell length. Un
zero-stress condition, the cubic-cell symmetry,^Lx&5^Ly&
5^Lz&, should be satisfied. The numerical error for this co
dition is, again, the smallest in the MNHC simulation.

Figure 2 plots the cumulative average of the elastic c
stantsC11, C12, andC44 ~in Voigt notation!, as a function of
MD steps. Among three MD calculations, MNHC-MD
clearly shows the best performance to attain well-conver
elastic constants. For every component of elastic consta
cumulative averages are converged within about 1.5 mill
steps. The elastic constants obtained by NH- and NHC-
approach rather slowly the same values that the MNHC-M
have settled. However, especially inC44, NH-MD showed a
poor convergence. On the other hand, the values ofC11 and
C12 obtained by HMC were quite sensitive to the choice
the time-step size. It was found that, with the shorter s
size, those components showed the better agreement wit
MD results. In contrast, the calculatedC44, C55, and C66
~latter two are not shown in the figure! showed almost no
dependence on the step size used in HMC simulations, b
in good agreement with those obtained by MNHC-MD.
Table II, the overall average of elastic constants and th
statistical errors were listed. The latter were estimated
using the block averages of the block length of 106 MD steps
(105 data points!. We can see from the table that MNHC-M
is always advantageous over NH- and NHC-MD in estim
ing the elastic constants efficiently within a small error. F
comparison, the statistical errors ofC11, C12, andC44 cal-
culated by 105 MNHC-MD steps were 0.033, 0.046, an
0.013, which are comparable to those obtained by 106 NH-
MD, respectively. Thus, MNHC-MD is more efficient tha
NH-MD by about one order of magnitude. In the calculati
of elastic constants another point of concern is the symm
of the elastic constants; in the case of the fcc nickel cry
under the zero stress,C115C225C33, C125C235C13, and
C445C555C66. However, for all the simulations studie
here, numerical errors in these symmetries were smaller
the statistical error listed in Table II. In the table, the the
retical and experimental elastic constants are also liste
13410
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was revealed that all simulations provided a lower value
the elastic constants than did the experimental meas
ments. The discrepancy would arise mainly from the ina
equacy of the EAM parameters. It should be noted that
EAM parameters used here were fitted to room tempera
rather than 0 K values for the elastic constants.24 This ex-
plains the underestimation of the simulated values.

FIG. 2. Cumulative averages of the elastic constants under
zero external stress.~a! C11, ~b! C12, and~c! C44. Lines denote the
same as in Fig. 1.
3-5
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TABLE II. Elastic constants and their statistical errors under the zero external pressure~in eV Å23). The
latter was estimated by using the block averages with the block length of 106 MD steps.

C11 C12 C44

NH 1.3331(60.0150) 0.8051(60.0134) 0.6568(60.0115)
NHC 1.3304(60.0111) 0.8137(60.0130) 0.6678(60.0090)
MNHC 1.3395(60.0048) 0.8102(60.0047) 0.6647(60.0018)
HMC/10 fs 1.3822(60.0066) 0.8572(60.0071) 0.6659(60.0018)
HMC/5 fs 1.3851(60.0099) 0.8582(60.0096) 0.6668(60.0034)
HMC/2 fs 1.3638(60.0051) 0.8347(60.0042) 0.6691(60.0014)
HMC/1 fs 1.3390(60.0067) 0.8166(60.0036) 0.6658(60.0020)
Exp.a 1.54 0.92 0.78
Theorya 1.45 0.96 0.80

aReference 25, and references therein.~In Ref. 25, the factor of 1012 must be missing due to a typologica
error.!
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When the uniaxial tensile stress of 5 GPa was applied
the system, the results in the statistical convergence of ela
constants were similar to the previous zero-stress case.
ure 3 plots the cumulative average of the elastic const
under the uniaxial tensile stresstxx55 GPa and Table II
shows the averaged data and the statistical errors estim
by using the block averages with the length of 106 MD steps
trajectories. Again, the MNHC-MD has shown the best p
formance in estimating all the elastic constants~Table III!.
The HMC result ofC11 andC12 largely depends on the MD
step size for the trial motions. The smaller the step size
HMC sampling is, the better agreement between HMC a
MC results is found.

IV. DISCUSSION

Our numerical tests have shown that MNHC-MD is a
vantageous over other simulation techniques studied
~NH-MD, NHC-MD, and HMC! in the estimation of both the
cell parameters and the elastic constants. We will devote
last part of this paper to discuss possible reasons for
result and some methodological issues in these simula
techniques.

When we use a conventional Parrinello-Rahman’s flexi
cell MD method for solid-state systems, it is often observ
that the system cannot reach canonical distribution even a
a long time. This may be partly because the solid is gener
a ‘‘stiff’’ system as to cell fluctuational motion. In a sense,
could be related to the famous problem for a sin
harmonic-oscillator system that canonical distribution is u
able to reach within a simple system-thermostat couplin14

Nevertheless, a lot of MD studies that investigated the ela
constants of solids so far used this conventional algorit
and failed to make a precise evaluation of the elastic pr
erties of the system. Instead, Monte Carlo simulations h
been recently used to avoid this fault.28,29However, there are
also demerit for MC; MC significantly decreases the sa
pling efficiency when the interatomic potential has a ma
body nature or is estimated by a first-principles calculati
since the potential calculation will be time consuming f
each trial move of one atom at a time. In addition, in t
variety of applications of the mechanical analysis of so
13410
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FIG. 3. Cumulative averages of the elastic constants under
uniaxial stresstxx525 GPa.~a! C11, ~b! C12, and~c! C44. Lines
denote the same as in Fig. 1.
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TABLE III. Elastic constants and their statistical errors under the uniaxial stresstxx525 GPa~in eV Å23). The latter was estimated b
using the block averages with the block length of 106 MD steps.

C11 C22 C12 C23 C44 C55

NH 0.9081(60.0091) 1.2573(60.0129) 0.6146(60.0097) 0.9425(60.0125) 0.7702(60.0086) 0.4539(60.0072)
NHC 0.9075(60.0053) 1.2611(60.0125) 0.6162(60.0092) 0.9431(60.0113) 0.7675(60.0077) 0.4575(60.0045)
MNHC 0.9124(60.0019) 1.2665(60.0043) 0.6200(60.0035) 0.9507(60.0051) 0.7659(60.0025) 0.4552(60.0015)
HMC/10 fs 0.9828(60.0022) 1.3016(60.0058) 0.6697(60.0033) 0.9906(60.0054) 0.7674(60.0046) 0.4535(60.0022)
HMC/5 fs 0.9817(60.0038) 1.3262(60.0063) 0.6817(60.0044) 1.0118(60.0064) 0.7704(60.0021) 0.4499(60.0020)
HMC/2 fs 0.9285(60.0024) 1.2873(60.0030) 0.6384(60.0023) 0.9736(60.0043) 0.7682(60.0018) 0.4563(60.0011)
HMC/1 fs 0.9145(60.0040) 1.2737(60.0031) 0.6283(60.0014) 0.9575(60.0043) 0.7665(60.0032) 0.4563(60.0030)
e
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important materials, it is often critical to investigate th
large-scale system that contains grain boundary or defe
To treat a large-scale system, MD is always advantage
over MC due to its feasibility of an efficient parallel comp
tation. In the technical developments of MD methods,
NHC algorithm proposed to overcome the sampling probl
indeed works well to give the canonical distribution for st
system.14 Furthermore, the MNHC algorithm, in which eac
degree of freedom in the system couples to a different NH
may be expected to be efficient in estimating the elastic c
stants. Expectedly, this was confirmed in this study in
application to Ni crystal.

Originally, the MNHC algorithm was used in the pa
integral MD ~PIMD! to attain the canonical distribution
since the stiff bond between the neighboring ‘‘bead’’ e
ments in a necklace gives rise to slow convergence of
servable quantities.33 The fact that the HMC algorithm is
also successfully used in the PIMD encouraged us to use
HMC algorithm in our problem. Although theNtT-HMC
algorithm constructed on the basis of the non-Hamilton
dynamics produces the same statistical average of the
matrix, the calculated elastic constantsC11 andC12, depend
sensitively on the choice of the step size.34 In HMC, the step
sizeDt together with the number of MD steps per MC cyc
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3G. Dereli, T. Çaǧin, M. Uludogan, and M. Tomak, Philos. Mag

Lett. 75, 209 ~1997!.
4K.M. Aoki, M. Yoneya, and H. Yokoyama, J. Chem. Phys.118,

9926 ~2003!.
5J.S. Tse and D.D. Klug, Phys. Rev. Lett.67, 3559~1991!.
6J.R. Ray, Comput. Phys. Rep.8, 109 ~1988!.
7M. Parrinello and A. Rahman, J. Appl. Phys.52, 7182~1981!.
8M. Parrinello and A. Rahman, J. Chem. Phys.76, 2662~1982!.
9J. Wang and S. Yip, Phys. Rev. Lett.71, 4182~1993!.

10J. Wang, J. Li, and S. Yip, Phys. Rev. B52, 12 627~1995!.
11Z. Zhou and B. Joo´s, Phys. Rev. B54, 3841~1996!.
12J.R. Ray and A. Rahman, J. Chem. Phys.80, 4423~1984!.
13M. Sprik, R.W. Impey, and M.L. Klein, Phys. Rev. B29, 4368

~1984!.
13410
ts.
us

e

,
n-
e

-
b-

he

n
ell

,

nMD/MC , are tunable parameters to attain the optimum e
ciency in sampling the phase space. In our examinat
nMD/MC was fixed at 10 to compare HMC and MD with th
same statistics~see Sec. III!. If a largernMD/MC with a rea-
sonably short step size is used in HMC, the calculated ela
constants, in principle, should approach to values obtai
by MD. Actually, taking nMD/MC5100, we confirmed that
HMC produced the sameC11 and C12 as MD did, even if
Dt510 fs was used. However, using the longnMD/MC , the
less data points are valid in sampling the cell matrix. Thus
fast and accurate estimation of the elastic properties is
expected. In any case, HMC has a difficulty in choosing
simulation parametersnMD/MC and Dt for the present pur-
pose. In conclusion, MNHC-MD is a favorable algorithm
investigating the mechanical properties and stability of
solid materials by molecular simulations under an exter
stress.

ACKNOWLEDGMENTS

We are grateful to Dr. T. Ikeshoji and Dr. H. Kaburaki fo
helpful discussion.

14G.J. Martyna, M.L. Klein, and M. Tuckerman, J. Chem. Phys.97,
2635 ~1992!.

15B. Mehlig, D.W. Heermann, and B.M. Forrest, Phys. Rev. B45,
679 ~1992!.

16M.E. Tuckerman, C.J. Mundy, and G.J. Martyna, Europhys. L
45, 149 ~1999!.

17M.E. Tuckerman, Y. Liu, G. Ciccotti, and G.J. Martyna, J. Che
Phys.115, 1678~2001!.

18G.J. Martyna, D.J. Tobias, and M.L. Klein, J. Chem. Phys.101,
4177 ~1994!.

19M. Tuckerman, G.J. Martyna, and B.J. Berne, J. Chem. Phys.97,
1990 ~1992!.

20G.J. Martyna, M.E. Tuckerman, D.J. Tobias, and M.L. Kle
Mol. Phys.87, 1117~1996!.

21S. Nose´, Mol. Phys.52, 255 ~1984!; S. Nose´, J. Chem. Phys.81,
511 ~1984!.

22W.G. Hoover, Phys. Rev. A31, 1695~1985!.
23M.S. Daw and M.I. Baskes, Phys. Rev. Lett.50, 1285 ~1983!;

Phys. Rev. B29, 6443~1984!.
3-7



er
d

J.

l.

s

B

no
hen

ose

WATARU SHINODA, MOTOYUKI SHIGA, AND MASUHIRO MIKAMI PHYSICAL REVIEW B 69, 134103 ~2004!
24J.E. Angelo, N.R. Moody, and M.I. Baskes, Modell. Simul. Mat
Sci. Eng.3, 289 ~1995!; M.I. Baskes, X. Sha, J.E. Angelo, an
N.R. Moody, ibid. 5, 651 ~1997!.

25S.M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. B33, 7983
~1986!; S.M. Foiles, M.I. Baskes, C.F. Melius, and M.S. Daw,
Less-Common Met.130, 465 ~1987!.

26M. Karimi, G. Stapay, T. Kaplan, and M. Mostoller, Model
Simul. Mater. Sci. Eng.5, 337 ~1997!.
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