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Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
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Molecular simulations, when they are used to understand properties characterizing the mechanical strength
of solid materials, such as stress-strain relation or Born stability criterion, by using elastic constants, are
sometimes seriously time consuming. In order to resolve this problem, we propose an efficient simulation
approach under constant external stress and temperature, modifying Parrinello-R&®Rnhamethod using
useful sampling techniques developed recently—massivé-Noseer chain method and hybrid Monte Carlo
method. Test calculations on the Ni crystal employing the embedded atom method have shown that our method
greatly improved the efficiency in sampling the elastic properties compared with the conventional PR method.
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[. INTRODUCTION There has been a lot of effort devoted to the method for
accurate evaluation of elastic constants by MD or Monte
Molecular simulation in the presence of external stress iarlo (MC) simulations?>®919:26=3\hjle most of the cal-
important as it is related to the mechanical strength of solicculations are limited to elastic constants in zero-stress con-
materials such as metals, ceramics, and amorphoudtion, it is worthwhile to briefly describe this topic. The
polymers!~> One of the goals of such a simulation will be simplest method would be to impose a strain on the sample
direct calculation of stress-strain curve and determination o&nd calculate the corresponding strain energy or stress by the
the yield point by the Born stability criteria using the calcu- standardNhE ensemble MD where the enerdy and cell
lated elastic constants!! As a useful approach to this aim, matrix h are constants, and then calculate the elastic con-
Parrinello and RahmaPR) have suggested a molecular dy- stants from the stress-strain relationship.However, it is
namics(MD) under theNtH ensemble in which the simula- inconvenient because several strains must be imposed at sev-
tion cell containingN atoms allows us to change its shapeeral times to calculate all the elastic constants. Besides, nu-
appropriately conforming to external strasgstrictly speak- —merical error in finite-difference differentiation would be in-
ing, this should be referred to as “thermodynamic tensfon” evitable. Elastic constants can also be calculated by the
and enthalpyH.”®*2However, it is well known that a simple standardNhE ensemble MD in another way, based on the
PR approach would be somewhat problematic for the evalufluctuation theory that microscopic stress tensor and first and
ation of the elastic constants, since the MD calculations oecond derivatives of the potential are related to elastic
elastic constants are usually time consunfii§Even for the  constant$. Although NhE MD calculation usually gives
zero-stress case, a satisfactorily converged result for the elageod convergence and accurate results, it is rarely used in the
tic constants might take a simulation run of typically severalsimulations for system beyond pair poterftl*! (e.g.,
millions or more sampling steps. To resolve this problem, wemany-body potentials or first-principles potentiakcept in
propose a MD-based simulation algorithm to estimate thersome case%?: or Coulombic system in which Ewald summa-
modynamic properties for thdtT ensemble when the stress tion is needed, since the second derivatives of the potential
t is nonzero, using the efficient sampling techniques devel(Born term are uneasy to calculate. Another difficulty is that
oped to attain the canonical distribution rapitfly> Here,  the stress cannot be controlled using a rigid ¢ellAs an-
the equation of motion in non-Hamiltonian dynanfts®is  other way, elastic constants can be obtained from MD or MC
solved by time-reversible RESPA algorithit2° This formu-  methods based on flexible-clitH ensemble by the calcu-
lation enables us to consider various methods in systeniation of strain fluctuations. Although these methods are
thermostat coupling*?*??so that the system temperature is promising, it has been reported that the statistical conver-
efficiently controlled. In the present work, we employ threegence is unsatisfactory in some systems which may be due to
types of thermostat, i.e., No$¢oover (NH),?2?2 Nose  nonergodicity problen!® These are the motivations to de-
Hoover chain (NHC),}* and massive NdsHoover chain velop a MD approach based dWtT ensemble for which
(MNHC), and their sampling efficiency of the lattice con- some efficient sampling techniques are available with a com-
stants and elastic constants are examined. In addition, tha@nation of thermostat and barostat.
time reversibility in this algorithm allows us to use hybrid  This paper is organized as follows. In Sec. I, we describe
Monte Carld® (HMC) method in theNtT ensemble. The the equation of motion and RESPA integrafdior NtT en-
efficiency of HMC method is also compared with other semble based on non-Hamiltonian dynamics as an extension
methods. A series of test calculations are performed for Nof the formulation previously suggested by Martyna and
crystal, where embedded atom metfitsd (EAM) is used for ~ Tuckerman®~® along with hybrid Monte Carlo algorithm
interatomic interactions. following the formulation by Mehliget al® In Sec. IIl, the
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conditions and results of the test calculation of Ni crystal areof the NHC (length =M), respectively. The constants;,
described. Finally, this paper ends with a discussion on th&/,, andQ, are the mass of atory barostat, andkth ther-

methodological aspects in Sec. IV. mostat, respectively, and the latter two were used to tune the
frequency at which those variables fluctu#t@he constant
Il. METHODS N; (=3N) is the number of system degrees of freedom and

) ] o the tensot denotes the identity matrix. The parametgy; is
As mentioned above, we consider here an efficient sampe external temperature and the paramBtgyis the hydro-

pling scheme for evaluating elastic constants by using a Mogtatic pressure, and the internal press@eis defined as,
lecular dynamics simulation under constant stress and con-

stant temperature based on theT ensemble. The non- 1[N (P)a(Pi) g
Hamiltonian MD techniques were employed to generate the (Pin)as=y; > —— 4+ (F)a(r)g—('h") 5,
NtT ensemble. TheNtH-MD was also used in the hybrid =1 !
Monte Carlo simulation. In this section, MD and HMC algo- a(r.h)
rithms used in our examination are described in detail. (¢")ap= a(h), ) 2
ap
A. Molecular dynamics The matrix¥ is defined by
As a barostat, the fully flexible cell with a modular invari- S=h; Lt Pod) h5_1’ 3)

ant form of the momentum was employed to control the
internal stres$® For the temperature control, we consideredwheret is the stress applied to the system. The above equa-
three different choices in the method of thermostat couplingtions of motions have the conserved quantity,

NoseHoover?? NoseHoover chain, and massive Nese

Hoover chaint* By setting up these types of barostat and N 2
thermostat, stable integrators can be straightforwardly con- H'= 2—'
structed for the extended system dynamics on the basis of the (=1 M,
Trotter factorization of the Liouville operator by the revers- 1
ible RESPA algorithnt® Here, as an example, the equations + Pegdefh]+ ETr[hgl(t— IPeht 1G]
of motion (EOM) for the case of NHC are given by

1 M pE
— Trlpt K

M
P Po +(Ni+ 0K Touér+ 2, Kotk @
r'_m-+Wr" k=2
i g
where G=h'h is the metric tensor, and the sixth term in
b=F — &p- _ 1 Tripg] oi— &p- right-hand side of the above equation denotes the elastic en-
oWt N Wy TP QY ergy due to the external stress.
The Jacobian of the coordinate transformation is calcu-
Py lated ad®
h= Wh,
9 M
) J=defh]" “exg (Ni+d?)ér+ 2 &|. (5)
Py=V(Pii— 1 Pex) —hSht+ izp—i)l—%p e
9 neex N =2 m; Q" This leads us to find the partition function as
Eﬁ% for k=1,... M, A“J dhexd — BH"]defh]*" ¢, (6)
Qk
" where
2
- pi 1 t 2 pfz 2
Pe,= 2 — o TPyPgl — Ny + d?)KTex—Pg, o N g M p?
=rm Wy Q2 H'=> o+ =——Trp\pgl+ > 5=+ ¢(r,h
izl 2m| ng [pgpg] IZI 2Qk ¢( 1 )
2
- p§k71 §k+l 1
pgk:(Qk_l_kText “Pig., for k=2...M-L +Peqdefh]+ 5TiThy (t-EPeohl "Gl (7)

} péMfl TakingM =1 in EOM (1), we obtain NH-MD instead of
Pev=13, . —KTex/, (1) NHC-MD. In case of MNHC-MD, all the system degrees of
freedom &3N) and all the degrees of freedom in the cell
where variableqr; ,p;} are the position and momentum of matrix (=6, without rotation are separately coupled with
atomi, h is the cell matrix,p, is the modularly invariant the respective Noseoover chains. It should be noted that,
form of the cell momenta, anf,,p.} are the thermostat to eliminate the rotation of the cell, the off-diagonal elements
variable and its conjugated momentum of ksth thermostat of the cell momentum matrix werepg) ,s=(Pg) g, and
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their kinetic energy{(pg)iﬁvL(pg)fm}/ZWg is controlled to  WhereilL is the Lipuvillg operator, which is decomposed into
kTexf/2 (NOtkTey) . An explicit reversible integrator was con- three componentd. ;, iL,, andil pam:

structed on the basis of the rRESPA algorithm and employed
to generate theNtT dynamics?® Now, there are several
choices of the factorization scheme of the time evolution
operator. In this work, we used the following form:

iL=iL1+iL2+iLbath,

N

: At At _ _— d
exp(lLAt)=exp(|Lbath7) exp(|L2?) expiL At) 'Ll—zl [Vi+Vgri]’Vri+a2ﬁ (Vg)“ﬁa(h)a/;’
At At
X exp iL,—|exp iLpan= | + O(AL3), N
2 2 =S Fi} v o
iLy=2, | —|-Vy,
(8) 2 m) ©
|
N 1 1 N N
iLbath:iZ]_ - Vg+ N_f Tr[Vg]+U§1]Vi 'Vvi+;8 [Wg|:i=2]_mi(\/i)a(\/i)ﬂ+i21 (Fi)a(ri)ﬂ_(d)’ht)aﬁ
1< N
N ;1 miviz—PextV) 5aﬁ—[hh51(t—lPexghg_lht]aﬁ} —ugl(vg)aﬁ]—[?(vg)aﬁ +k21 Ve e
1 9
o 2 mivi2+WgTr[v‘gvg]—(Nf+dz)kText)—Uglvgz}ﬁ
1\i=1 131
M , J 1 ) J
+k:2 Q—k(Qk,lvgk_l—kText)—vgkvng ng"‘ Q_M(QMflng_l—kText) avg ’ (10)

M

wherev,=p; /m;#r;, Vg=pq/W,, andv, =p, /Qy. _ 1
P e re e B Tk :=fdrdhexp[—ﬁ(¢+Pextde[h]+§Tr[EG] :

(12)
B. Hybrid Monte Carlo . . .
) o The detailed balance condition can be written as
Hybrid Monte Carlo method was originally used to gen-
erateNhT ensemble in Metropolis MC sampling utilizing the ~ Af{r,h)P,,(r,h—r’,h’")drdhdr’dh’
trajectories oNhE MD.*® Now we want to apply this idea to . . o
obtain NtT trajectories utilizingNtH MD trajectories. The =Mr',h")Py(r’,h"—r,h)drdhdr’dh’,
algorithm forNtH MD is very similar to that forNtT MD (13

described above. The EOM foitH MD are just the EOM'’s L N N
of NtT MD, Eq. (1), except that the terms related to the WherePy(r,h—r",h") denotes the transition probability to
thermostat variablefé, ,p;, } are not included. It should be 90 from configuration ,h) to (r',h’). In a MC algorithm,

noted that the Jacobian of the EOM is not unity hut the transition matrix is given by
=defh]* 9.2 Therefore, to satisfy the detailed balance con- e h— e h R
dition, the changes in the volume elements in the phase-PM(r’h ) =p(rh=r")Pacdrh—r7.h"), (14

space trajectory should be taken into account. whereP,.(r,h—r’,h") denotes the probability of accepting
In the isothermal-isostress ensemble, the probability thad trial move from ¢,h) to (r’,h’). In the HMC, as described
the system is in a configuratiom,f) is proportional to above, MD is used to generate a trial move of the system

with a probabilitypg(r,h—r',h’). In order to meet the de-
tailed balance condition, we have chosen the probability
exp{— B(¢p+ Pedefh]+3TI[2G])} ps(r,h—r’,h") to be a symmetric matrix, assigning to the
Mr,h)drdh= = drdh,  jnitial momentum chosen from a Maxwellian distribution at
- (11) T. Since the system is moved deterministically through phase
spacep can be rewritten as

whereE is the configurational integral, ps(r,h—r’,h")dr'dh’= ps(p,pg)dedpg. (15
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Therefore, the acceptance probability has been taken as

, NN b)) po(rN' b’ =N hydrNdhdrN'dh’
PacdrN,h—rN ,h’)=min[1 ( )Pl AL

" MrN ) py(rNh—rN' h")drNdhdrN dh’

exp[—,B

1
exp‘ —,8( ¢+ P det[h]+ zTr [EG]) ] ps(p",pg)drNdhdpNdp,

1 r ’ !
¢’ +Peqdet[h’]+ ETV[EG’])]DS(DN ,pg)dr™ dh’dp™ dpg

=miny 1,

=min{Lexf — B(H;—H) IV b .pY' pg vV h,pN.pg)}

| Lexti - BH{—Hy '{1 i B(H; H)](de(h'])d_ll a6
=min{ 1,exg — - —=minj 1,exg — - —_— ,
1 1 \@ 1 1 de[h]
|
where H,=3=N p%2m+ (1/2\Ng)Tr[p;pg] +¢  Throughout a series of simulations, the temperature was con-

+ Pegdefh]+ 2T SG] and \Jg is the metric factor associ- trolled at 300 K. Two conditions for the external stress were
ated with the phase-space compressibility of the nonexamined. The first examination was carried out under zero
Hamiltonian dynamic3®’ The latter is not unity only when external stress. After this, the uniaxial tensile stress was ap-
the fully flexible cell is employed. plied stepwise to the system along thexis by 1 GPa, up to

5 GPa. Then, the second examination was undertaken under

the uniaxial tensile stress ¢f,=5 GPa.
I1l. APPLICATION TO NI CRYSTAL

A. System and simulation details B. Results

In order to evaluate the efficiency of the four different  rjgyre 1 plots the cumulative average of the averaged cell
schemes described above, i.e., NH-MD, NHC-MD, MNHC- jangth (L), as a function of MD steps under the zero applied

MD, and HMC, we applied these methods to face-centeredyess. All three MD simulations gave a fast convergence of
cubic (fcc) Ni crystal. This system consists of 500 Ni atoms ihe cell length, and the agreement among them was fairly
in a three-dimensional periodic boundary cell. The EAM wasyood. In the case of HMC. however. the convergence prop-
used to model the interatomic interactions. Among severglyy of the cell length was sensitive to the choice of the
parametrizations of the EAI\/2I4potent|aI of the Ni system, thejine_step size: As long as the step size less than 2 fs was
parameter set by Angelet al™ was adopted here. This is a seq, the averaged cell length converged within a reasonable
revised version onginally developed by Daw and BasKes, (ime, which was comparable to that of MD; whereas, using
and by Foileset al,™ which reproduce the experimental val- e step size of 10 fs, by which the acceptance probability of
ues well for the pure Ni properties, and was shown to be ifpe HMC trial motion was about 45%, we observed a signifi-

gopd agreement with first-principles _calculat_ﬁ?ﬁ[he EAM  cant delay of the convergence of the cell length. In any case,
being short range, no cutoff of the interaction was needed.

During MD simulations, time-step size was fixed at 2 fs, and

the fluctuation times of the barostat and thermostats were set
to be 2 ps and 0.5 ps, respectively. In the HMC simulations,

the step size is a tunable parameter to attain the efficient
sampling of molecular configurations. Here we selected four

step sizes 10 fs, 5fs, 2 fs, and 1 fs to assess the efficiency of
the HMC algorithm in estimating the elastic constants. Each by
MD simulation was carried out for 10 million steps. The first 17.6751;
1 million steps were the equilibration period, while the re-
maining 9 million steps were used in the sampling. Each
HMC simulation was repeated for 1 million cycles, the first
0.1 million MC cycles was regarded as equilibration. The
number of MD integration steps per Monte Carlo cycle,

Nuommc, Which is also a tunable parameter in HMC, was  FIG. 1. Cumulative average of the cell length,) = V3 under
fixed at 10. The cell parameters were stored every step ithe zero external stress. Thin solid line, NH-MD; solid line, NHC-
HMC, and every 10 steps in MD. Thus, we can compare thevD; thick solid line, MNHC-MD; dotted line, HMC At=1 fs);
convergence properties of both the cell parameters and thgashed line, HMC At=2 fs), dash dotted line, HMC At
elastic constants using the same statistics for MD and HMC=5 fs); and thin dashed line; HMCA¢ =10 fs).

17.68| - .

<[>/ A

0 2000 4000 6000 8000 10000
MD step

134103-4



RAPID ESTIMATION OF ELASTIC CONSTANTS BY ...

PHYSICAL REVIEW B59, 134103 (2004

TABLE I. Averaged cell length and its statistical error under the zero external pregsamggstron. The
latter was estimated by using the block averages with the length*oMIDsteps.

Hxx Hyy sz
NH 17.67586(-0.0015) 17.67420£0.0017) 17.67327£0.0017)
NHC 17.67511¢-0.0015) 17.67566¢ 0.0015) 17.67428¢0.0016)
MNHC 17.67606(- 0.0006) 17.67603¢ 0.0006) 17.67611£0.0005)
HMC/10 fs 17.67582¢0.0019) 17.67601f 0.0020) 17.67587£0.0020)
HMC/5 fs 17.67613(0.0010) 17.67632(0.0010) 17.67592¢ 0.0010)
HMC/2 fs 17.67669¢ 0.0014) 17.67658¢ 0.0014) 17.67659¢ 0.0015)
HMC/1 fs 17.67679¢0.0029) 17.677110.0028) 17.67648¢0.0030)

however, all simulations produced a cell length converged tavas revealed that all simulations provided a lower value for
the same value within a small statistical error. In Table I,the elastic constants than did the experimental measure-
each component of the cell length averaged over the simulanents. The discrepancy would arise mainly from the inad-
tion time was listed with its statistical errors. The statisticalequacy of the EAM parameters. It should be noted that the
error was estimated by using the block averages with eacBAM parameters used here were fitted to room temperature
block length being 1D MD time steps. It is shown that, rather tha 0 K values for the elastic constaifsThis ex-
among all the algorithms employed here, MNHC-MD givesplains the underestimation of the simulated values.
the best convergence with respect to the cell length. Under
zero-stress condition, the cubic-cell symmetfly,)=(L,)
=(L,), should be satisfied. The numerical error for this con- 1.5
dition is, again, the smallest in the MNHC simulation.
Figure 2 plots the cumulative average of the elastic con-
stantsCy;, Cq,, andCy, (in Voigt notatior), as a function of
MD steps. Among three MD calculations, MNHC-MD
clearly shows the best performance to attain well-converged
elastic constants. For every component of elastic constants, 1.3} 4
cumulative averages are converged within about 1.5 million
steps. The elastic constants obtained by NH- and NHC-MD 0 2 4 6 8
approach rather slowly the same values that the MNHC-MD MD step [x10%]
have settled. However, especially@,, NH-MD showed a 147
poor convergence. On the other hand, the valueS,gfand
C,, obtained by HMC were quite sensitive to the choice of
the time-step size. It was found that, with the shorter step

”
el Melmencall | .

2 0.9k i
size, those components showed the better agreement with the S B e _
MD results. In contrast, the calculate®l,,, Css, and Cgg 2 A T T
(latter two are not shown in the figyrehowed almost no Sos

dependence on the step size used in HMC simulations, being
in good agreement with those obtained by MNHC-MD. In
Table 11, the overall average of elastic constants and their
statistical errors were listed. The latter were estimated by
using the block averages of the block length of MD steps

(10° data points We can see from the table that MNHC-MD

is always advantageous over NH- and NHC-MD in estimat-
ing the elastic constants efficiently within a small error. For
comparison, the statistical errors 6f,, C;,, andC,, cal-
culated by 16 MNHC-MD steps were 0.033, 0.046, and
0.013, which are comparable to those obtained Y N#B-

MD, respectively. Thus, MNHC-MD is more efficient than
NH-MD by about one order of magnitude. In the calculation
of elastic constants another point of concern is the symmetry
of the elastic constants; in the case of the fcc nickel crystal 0
under the zero stres§,;;=C,,=Cs3, C1,=C»3=C;3, and

C44=Cs55=Cgs. However, for all the simulations studied

here, numerical errors in these symmetries were smaller than FIG. 2. Cumulative averages of the elastic constants under the
the statistical error listed in Table II. In the table, the theo-zero external stresé) C;;, (b) C15, and(c) C,,. Lines denote the
retical and experimental elastic constants are also listed. Hame as in Fig. 1.

Cu | eVA®

13 " 1 " 1 " "
0 2 Y 6 8
MD step [x10%]
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TABLE II. Elastic constants and their statistical errors under the zero external préissake A~ 3%). The

latter was estimated by using the block averages with the block length®dfiDOsteps.

PHYSICAL REVIEW B 69, 134103 (2004

Cu Ci Cua

NH 1.3331(0.0150) 0.8051£0.0134) 0.6568¢ 0.0115)
NHC 1.3304¢-0.0111) 0.8137¢0.0130) 0.6678¢0.0090)
MNHC 1.3395(+0.0048) 0.8102¢ 0.0047) 0.6647¢0.0018)
HMC/10 fs 1.3822¢- 0.0066) 0.8572¢0.0071) 0.6659¢ 0.0018)
HMC/5 fs 1.3851¢-0.0099) 0.8582£ 0.0096) 0.6668¢£ 0.0034)
HMC/2 fs 1.3638¢-0.0051) 0.8347£0.0042) 0.6691¢ 0.0014)
HMC/1 fs 1.3390¢- 0.0067) 0.8166£ 0.0036) 0.6658¢ 0.0020)
Exp.?@ 1.54 0.92 0.78

Theory? 1.45 0.96 0.80

%Reference 25, and references theréin.Ref. 25, the factor of 1% must be missing due to a typological
error)

When the uniaxial tensile stress of 5 GPa was applied to
the system, the results in the statistical convergence of elastic
constants were similar to the previous zero-stress case. Fig-
ure 3 plots the cumulative average of the elastic constants
under the uniaxial tensile stress,=5 GPa and Table Il
shows the averaged data and the statistical errors estimated
by using the block averages with the length of MD steps
trajectories. Again, the MNHC-MD has shown the best per-
formance in estimating all the elastic constaffable IlI).

The HMC result ofC,4 andC,, largely depends on the MD
step size for the trial motions. The smaller the step size in
HMC sampling is, the better agreement between HMC and
MC results is found.

Cy | eVA®

IV. DISCUSSION

Our numerical tests have shown that MNHC-MD is ad-
vantageous over other simulation techniques studied here
(NH-MD, NHC-MD, and HMQ in the estimation of both the
cell parameters and the elastic constants. We will devote the
last part of this paper to discuss possible reasons for this
result and some methodological issues in these simulation
techniques.

When we use a conventional Parrinello-Rahman’s flexible
cell MD method for solid-state systems, it is often observed
that the system cannot reach canonical distribution even after
a long time. This may be partly because the solid is generally
a “stiff” system as to cell fluctuational motion. In a sense, it
could be related to the famous problem for a single
harmonic-oscillator system that canonical distribution is un-
able to reach within a simple system-thermostat coupffng.
Nevertheless, a lot of MD studies that investigated the elastic
constants of solids so far used this conventional algorithm
and failed to make a precise evaluation of the elastic prop-
erties of the system. Instead, Monte Carlo simulations have
been recently used to avoid this fatfit®However, there are MD step [x10%)
also demerit for MC; MC significantly decreases the sam-
pling efficiency when the interatomic potential has a many-
body nature or is estimated by a first-principles calculation,
since the potential calculation will be time consuming for  FIG. 3. Cumulative averages of the elastic constants under the
each trial move of one atom at a time. In addition, in theuniaxial stresg,,=—5 GPa.(a) Cy;, (b) C1,, and(c) Cy,. Lines
variety of applications of the mechanical analysis of somedenote the same as in Fig. 1.
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TABLE lIl. Elastic constants and their statistical errors under the uniaxial stggss-5 GPa(in eV A%). The latter was estimated by

using the block averages with the block length of MD steps.

Cll C22 ClZ C23 c44 C55
NH 0.9081(-0.0091) 1.2573¢0.0129) 0.6146€0.0097) 0.9425¢0.0125) 0.7702£0.0086) 0.4539¢0.0072)
NHC 0.9075¢-0.0053) 1.2611£0.0125) 0.6162¢0.0092) 0.9431£0.0113) 0.7675¢0.0077) 0.4575¢0.0045)
MNHC 0.9124(+0.0019) 1.2665¢0.0043) 0.6200£0.0035) 0.9507¢0.0051) 0.7659¢0.0025) 0.4552¢0.0015)
HMC/10 fs  0.9828(-0.0022) 1.3016¢0.0058) 0.6697¢0.0033) 0.9906¢0.0054) 0.7674¢0.0046) 0.4535¢0.0022)
HMC/5fs  0.9817¢-0.0038) 1.3262¢0.0063) 0.6817£0.0044) 1.0118¢0.0064) 0.7704£0.0021) 0.4499¢ 0.0020)
HMC/2 fs  0.9285¢-0.0024) 1.2873£0.0030) 0.6384£0.0023) 0.9736£0.0043) 0.7682£0.0018) 0.4563¢0.0011)
HMC/1fs  0.9145¢-0.0040) 1.2737£0.0031) 0.6283¢0.0014) 0.9575¢£0.0043) 0.7665£0.0032) 0.4563¢ 0.0030)

important materials, it is often critical to investigate the n,,,,c, are tunable parameters to attain the optimum effi-
large-scale system that contains grain boundary or defectgjency in sampling the phase space. In our examination,
To treat a large-scale system, MD is always advantageoys,, . - was fixed at 10 to compare HMC and MD with the
over MC due to its fgasibility of an efficient parallel compu- g5me statisticésee Sec. Il If a largernypuc with a rea-
tation. In the technical developments of MD methods, thesonably short step size is used in HMC, the calculated elastic
.NHC algorithm propos_ed to overcome the_ sa_mpl_lng prObI_enl:onstants, in principle, should approach to values obtained
indeed works well to give the canonical distribution for stiff by MD. Actually, taking n —100. we confirmed that
system'* Furthermore, the MNHC algorithm, in which each HMC oroduced th @MD’MCd . as MD did "
degree of freedom in the system couples to a different NHC produced the sam€y; and €4, as d, even |

may be expected to be efficient in estimating the elastic conét:10 fs was used. However, using the longpc, the

stants. Expectedly, this was confirmed in this study in thd®SS data points are valid in sampling the cell matrix. Thus, a
application to Ni crystal. fast and accurate estimation of the (_algstlc properne_s is not
Originally, the MNHC algorithm was used in the path e_xpectgd. In any case, HMC has a difficulty in choosing the
integral MD (PIMD) to attain the canonical distribution, Simulation parameteraypyc and At for the present pur-
since the stiff bond between the neighboring “bead” ele-Pose. In conclusion, MNHC-MD is a favorable algorithm in
ments in a necklace gives rise to slow convergence of oplnvestigating the mechanical properties and stability of the
servable quantitie® The fact that the HMC algorithm is Solid materials by molecular simulations under an external
also successfully used in the PIMD encouraged us to use tHress.
HMC algorithm in our problem. Although th&ltT-HMC
algorithm constructed on the basis of the non-Hamiltonian
dynamics produces the same statistical average of the cell
matrix, the calculated elastic constafitg; andC,,, depend
sensitively on the choice of the step siZzén HMC, the step We are grateful to Dr. T. Ikeshoji and Dr. H. Kaburaki for
size At together with the number of MD steps per MC cycle, helpful discussion.
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