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Effect of stress triaxiality on void growth in dynamic fracture of metals:
A molecular dynamics study

E. T. Seppa¨lä, J. Belak, and R. E. Rudd
Lawrence Livermore National Laboratory, Condensed Matter Physics Division, L-415, Livermore, California 94551, USA
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The effect of stress triaxiality on growth of a void in a three-dimensional single-crystal face-centered-cubic
lattice has been studied. Molecular dynamics simulations using an embedded-atom potential for copper have
been performed at room temperature and using strain controlling with high strain rates ranging from 107/sec to
1010/sec. Strain rates of these magnitudes can be studied experimentally, e.g., using shock waves induced by
laser ablation. Void growth has been simulated in three different conditions, namely, uniaxial, biaxial, and
triaxial expansion. The response of the system in the three cases has been compared in terms of the void
growth rate, the detailed void shape evolution, and the stress-strain behavior including the development of
plastic strain. Also macroscopic observables as plastic work and porosity have been computed from the
atomistic level. The stress thresholds for void growth are found to be comparable with spall strength values
determined by dynamic fracture experiments. The conventional macroscopic assumption that the mean plastic
strain results from the growth of the void is validated. The evolution of the system in the uniaxial case is found
to exhibit four different regimes: elastic expansion; plastic yielding, when the mean stress is nearly constant,
but the stress triaxiality increases rapidly together with exponential growth of the void; saturation of the stress
triaxiality; and finally the failure.

DOI: 10.1103/PhysRevB.69.134101 PACS number~s!: 61.72.Qq, 62.20.Mk, 62.20.Fe, 62.50.1p
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I. INTRODUCTION

Ductile fracture of metals commonly occurs through t
nucleation, growth, and coalescence of microscopic voi1

Much can be learned about the ductile fracture through
study of these voids. A particularly interesting case is
dynamic fracture of ductile metals,2–5 in which the strain
rates are so high that processes such as diffusion oper
on relatively long-time scales may be neglected, while in
tial effects become relatively important. Void growth
driven by the need to relax tensile stress that builds up in
system, and to minimize the associated elastic energy.
material around a void deforms plastically in order to acco
modate the void growth. Naturally, the plastic deformati
results from a local shear stress, which may arise from
applied stress, but it also may arise from the stress field
the void even if the applied stress is hydrostatic. So the
pectation is that the evolution of the plastic zone, and he
the growth of the void, is influenced by the degree of str
triaxiality; i.e., the ratio of the mean~hydrostatic! stress to
the shear stress. It is this relationship that we study here
varying the triaxiality of the loading. In particular, we con
duct simulations in which one, two, or three directions of t
system are expanded, producing a state of uniaxial, bia
or triaxial strain, respectively. Variation in the triaxiality o
the strain causes variation in the triaxiality of the stress st
where it should be noted that uniaxial~biaxial! strain does
not imply pure uniaxial~biaxial! stress.

Besides dynamic crack propagation experiments, dyna
fracture can be measured, for instance, in shock physic
spallation experiments, to which the simulations perform
here are compared. Various techniques are employed to
erate the shock waves: Hopkinson bar, gas gun, high ex
sives, and laser ablation. With Hopkinson bar the strain ra
0163-1829/2004/69~13!/134101~19!/$22.50 69 1341
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«̇ usually are of the order (1022104)/sec, in gas gun of
105/sec, with high explosives even higher strain rates can
produced, and with lasers strain rates exceeding 107/sec are
attained. In a gas gun, for instance, the fracture results f
essentially one-dimensional shock loading. Two compress
shock waves are generated by the impact of a flier on a m
target, propagate away from each other, reflect from oppo
free surfaces becoming tensile release waves, and fin
come into coincidence again. If the combined tensile str
exceeds the rupture strength of the material, the metal f
after some incubation time, producing a fracture surface
strong shocks, a scab of material may spall from the b
side of the target and fly off. Spallation experiments6 for
single and polycrystal copper report spall strength values
s* .324 GPa at strain rates«̇.(223)3105/sec, and
scaling between the spall strength and strain rate,s* ;«̇0.2.

In this study of dynamic fracture in ductile metals at hig
strain rates@(10721010)/sec# we have concentrated on voi
growth starting from a single-crystal copper lattice conta
ing an infinitely weakly bound inclusion or a preexistin
nanoscale void. The lattice is initially free of other defec
We have focused on the effect of stress triaxiality on vo
growth. In some fracture experiments, for example, in ne
ing and cup-cone fracture,7 the uniaxial strain produces
stress state that transitions rapidly to triaxial state due to
plastic flow during the course of loading. It is during th
triaxial phase that void growth and failure take place. B
cause of the connection with shock experiments, the st
triaxiality study done here is carried out using strain contr
and it is the strain that is varied from uniaxial to biaxial
triaxial.

Much of the damage modeling of metals has been car
out at mean-field or continuum level based on constitut
theories. The continuum models concentrate especially
©2004 The American Physical Society01-1
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E. T. SEPPA¨ LÄ , J. BELAK, AND R. E. RUDD PHYSICAL REVIEW B69, 134101 ~2004!
two areas: macroscopic crack growth phenomenon8,9 and
studies of porosity, i.e., behavior of an array of voids,
subgrain level during loading.10–26 In the latter area, for ex-
ample, the locus of yield surfaces in stress space has
studied, which is related to the question of the effect of str
triaxiality studied here. Of the void growth studies especia
the Gurson model16 is commonly used to model cavitatio
~the development of porosity! at the subgrid level in what is
termed as damage modeling. These continuum calculat
often assume that the matrix material, where the voids
embedded, is elastically rigid and plastically incompressib
and the dilation of the void-matrix aggregate is complet
due to the void growth. Of particular interest, and relevan
in terms of this study, is a single-crystal plasticity study
void growth.27 The calculations are typically done by dete
mining approximate solutions for integrals of incremen
equations of virtual work using the finite element metho
Continuum modeling has been used to study some of
phenomena addressed in this paper such as the effect o
axiality on void growth and void shape changes.28 The va-
lidity of the approximate solutions of incrementals limits t
strain rates to be rather low compared to the strain rates
in this study.

In order to characterize the void growth not only wi
macroscopic quantities and at the continuum level, bu
investigate what happens at the atomistic level, we have
ployed molecular dynamics~MD! simulations. MD simula-
tions enable us to see what are the effects on the void sur
at the single-atom level, when it grows while the total syst
yields. This paper presents work, which is an extension to
work done earlier by some of this paper’s authors of v
growth in a single-crystal copper with hydrostatic loadin
void nucleation, and growth in single and polycrystalli
copper.29–34Molecular dynamics simulations of void growt
in single-crystal copper have also been conducted by o
groups for slab geometries of interest in the semicondu
chip metallization problem.35,36 The effectively two-
dimensional, thin film systems are in contrast to thre
dimensional bulk systems studied here. In some cases
simulations of plasticity and crack propagation have been
large as 109 atoms.37

This paper is organized as follows. It starts in Sec. II w
an overview of the MD method used and the simulatio
which have been carried out in this study. Exploration of
results of the simulations starts in Sec. III by the study of
mean or hydrostatic stress versus strain as well as the d
toric part of the stress tensor, von Mises stress, which is u
to measure the shear stress, and stress triaxiality versus s
for all the simulated strain rates and modes of expans
Sec. IV concentrates on the macroscopic plastic quanti
such as mean and equivalent plastic strain, plastic work,
its relation to the temperature. The evolution of the void
terms of its growth and shape changes is studied in Sec
Section VI summarizes the results and compares diffe
measured quantities with each other concentrating on on
the simulations, uniaxial strain with strain rate 108/sec. The
paper is concluded with discussions of the results and s
gestions for future studies in Sec. VII.
13410
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II. METHOD AND SIMULATIONS

A. Strain-controlled molecular dynamics

In this atomistic-level study of void growth, the simula
tions have been done using empirical embedded-a
~EAM! potentials in classical molecular dynamics38 follow-
ing the scheme developed earlier.29–31The copper EAM po-
tential we have used is due to Oh and Johnson.39,40

The system, in which the simulations are done, is a thr
dimensional single-crystal face-centered-cubic~fcc! lattice in
a cubic box with$100% faces. Periodic boundary condition
are used in all the three directions so that there are no
boundaries in the system apart from the void. Equivalen
the system can be imagined to consist of an infinite perio
array of voids. Note that periodic boundary conditions ha
also been used in continuum models of void growth, but
the continuum modeling of void growth in isotropic mate
als the calculations are done in a reduced cell, which exhi
one-quarter of the box in two dimensions and one-eighth
three dimensions, and the behavior of other areas are der
from the symmetries. We use the full cubic box because
cubic symmetry present in the continuum is broken in MD
finite temperature, and processes such as dislocation nu
ation at the void surface would be overconstrained in a
duced simulation box.

In the simulations, the system is brought to thermal eq
librium at room temperature,T5300 K, with a commonly
used thermostat41 and at ambient pressure,P.0 MPa, keep-
ing the volume constant. After that a spherical void is cut
the middle of the system, later the thermostat is turned
and the dilational strain is applied uniformly with a consta
strain rate«̇. The removal of the atoms in the spherical r
gion may be considered to simulate the instantaneous s
ration of the matrix material from an infinitely weakly boun
inclusion. The uniform expansion in these strain-control
simulations is applied through rescaling the coordinates a
the Parrinello-Rahman method.42 Technically the three Car
tesian coordinates of the atoms are rescaled to the unit
each coordinateSaP@0,1). When calculating the forces an
velocities, as well as updating the new positions of the
oms, the unit box is multiplied by a diagonal scaling mat
H5$ l x ,l y ,l z%, where l ’s are the simulation box’s side
lengths, to compute the true positions of the atoms,

x5HS. ~1!

This scaling matrixH is updated each time step, when th
load is applied, by multiplying the initial matrixH0 with the
sum of the unit matrix and the strain matrixE5t Ė,

H~ t !5H0~I1t Ė!. ~2!

For our purposes the strain-rate matrixĖ is always diagonal,
since neither rotation nor simple shear-type strains are s
ied. In the triaxial case all the terms in the diagonal a
equal; in the uniaxial there is a single nonzero term; and
the biaxial case two of the three diagonal terms differ fro
zero and are equal. Prior to expansion the system is cubic
scaling matrixH0 is diagonal, and all the terms are equal a
correspond to the equilibrium size at ambient pressu
1-2
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EFFECT OF STRESS TRIAXIALITY ON VOID GROWTH . . . PHYSICAL REVIEW B69, 134101 ~2004!
Hence the scaling matrixH remains diagonal throughout th
simulation, and the strain in each case is in a^100& direction.

In fracture and plasticity simulations the first quantity
consider is the stress-strain behavior. With the strain as
input parameter, here we have to measure the stress. In
study of the stress triaxiality we are interested in both m
and shear stresses. Therefore the whole stress tensorsab is
needed. The stress tensor~the negative of the pressure! can
be calculated atomistically on each time step using the v
formula:38

sab52
1

V S (
i

piapib /mi1(
i

(
j . i

r i j a f i j bD . ~3!

The first term in the stress tensor is the kinetic contribut
of atoms denoted withi and having massesmi and momenta
pi . The second term, a microscopicvirial potential stress,
consists of sums of interatomic forcesf i j of atom pairŝ i j &
with corresponding distancesr i j . It should be noted that her
and in the rest of the paperi and j denote the atoms, anda
andb the Cartesian coordinates. Note that the thermal st
is included, although in practice in these simulations it co
tributes less than 1 GPa, less than 10% of the yield st
value, and never dominates the changes in stress.

B. Simulations performed

Typically in the simulations carried out here, the cu
consists of 60 fcc unit cells in each direction, giving 864 0
atoms. The equilibrium side length of such a copper sys
is l 521.6 nm at room temperature and ambient press
The radius of the spherical void cut from the system, unl
otherwise noted, is 0.1 of the side length of the box; th
2.2 nm. After the void is cut, there are 860 396 atoms in
system.

The relatively inexpensive potential used enables us to
extensive simulations in time. A single time step takes ty
cally about 40 sec of CPU time in a system with 864 0
atoms in a Linux workstation with Intel Xeon 1700 MH
processor. The longest calculation required 835 050 t
steps corresponding to 5.6 ns. The time step was 6.7 fs.

As mentioned earlier, in order to study the effects of t
stress triaxiality and different modes of expansion on
void growth, we have applied three different types of exp
sion, namely, uniaxial, biaxial, and triaxial. The strain ra
used for each of the three modes of expansion are«̇
51010/sec, 109/sec, 53108/sec, 108/sec, and 107/sec. For
the lowest strain rate, the MD code was parallelized in or
to take advantage of massively parallel computers. The
allelization was done using a spatial domain decomposit
and was shown to scale nearly linearly up to 128 process
The parallel code was used in the case with 835 050 t
steps mentioned above, for example.

For comparison in the elastic regime, we have also p
formed simulations without a void in all three modes of e
pansion. These simulations have been used to determin
bulk, elastic stress-strain response of the EAM copper
hence the elastic constants. Without a void, the system is
so strain-rate and system size dependent, at least up to
13410
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point of failure, so the so-called ‘‘no-void’’ simulations hav
been performed with a smaller system size, 45 fcc cells
each direction~364 500 atoms! and at the single strain rat
«̇5109/sec. A uniaxial study of the 603 system size, but with
a smaller initial void radius of 1.1 nm, was carried out wi
the strain rate«̇5108/sec in order to study the void-siz
dependence. In this case the system with the void cont
863 543 atoms.

It should be mentioned, too, that all of the intermedia
strain-rate simulation («̇5108/sec and 53108/sec) expan-
sions were not started from equilibrium conditions atP
50 MPa, but from systems expanded previously at
strain rate«̇5109/sec. These simulations have been restar
well before yielding, when the system’s behavior is rate
dependent, and relaxed for 2000 time steps, or 13.4 Ps, w
out expansion before continuing the expansion at the in
mediate strain rates. The energy is conserved during
relaxation in MD simulations. These restarts have been
complished at strain values«54.12%, «52.06%, and«
51.72% in uniaxial, biaxial, and triaxial cases, respective

III. STRESS-STRAIN BEHAVIOR AND STRESS
TRIAXIALITY

Let us begin to explore the results of the MD simulatio
by looking at the stress-strain curves. Figure 1 shows th
curves for each of the modes of expansion at all the st
rates computed. The data from no-void cases are also plo
The mean or hydrostatic stress,

sm5 1
3 Tr sab , ~4!

is plotted to indicate the principal impetus for void growt
Note that the strain is theengineering strain, defined as the
expanded system size divided by the original system s
minus one. In the uniaxial and biaxial cases the strains
the principal strain values« in the direction of the strain,
such as«x5«, «y5«z50 in the uniaxial case, and«y5«z
5«, «x50 in the biaxial case. Hence the strain is the va
of a nonzero diagonal term oft Ė in Eq. ~2!. The mean strains
«m are 1/3 and 2/3 of the plotted uniaxial and biaxial strai
respectively. Thus the total volumetric strain rates are not
same in the different expansion modes. In the triaxial ca
the plotted and the mean strain values are the same.
shape of the stress-strain curves do not differ much depe
ing on the modes of expansion in these cases, at least w
plotted versus mean strain. Independent of the strain r
and whether with or without a void, the stress-strain curv
lie essentially on top of each other during elastic expans
i.e., the initial smooth behavior when the system is still
coverable and has not deformed plastically.

The stress-strain curve starts to deviate from the trend
the elastic behavior at a specific ‘‘critical’’ point which w
call here ayield point. In other quantities we measure
change in behavior happens at a specific point too, and a
shall see later the critical or yield points mostly coinci
with each other, i.e., their strain values are approximately
same independent of which quantity we derived it. The sa
point is also the one when the void starts to grow, which
1-3
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the primary mechanism for plasticity in this study. Here w
define numerically the yield point of the cases with void
comparing their stress-strain curves with the reference
void curve, which behaves elastically beyond the yield poi
of the other cases@cf. Fig. 1~a! inset#. Ultimately the no-void
case does fail by homogeneous nucleation of voids, and

FIG. 1. Mean stresssm vs engineering strain« for strain rates

«̇51010/sec, 109/sec, 53108/sec, 108/sec, and 107/sec. The equi-
librium size of the simulation box is (21.7 nm)3, whensm50. The
simulation box has 860 396 atoms and a preexisting void of ra
2.2 nm. The thin solid line, drawn as a reference, is from a sys
with no initial void, consisting of 364 500 atoms in an equilibriu

box sized (17.5 nm)3, and expanded at«̇5109/sec. ~a! Uniaxial
expansion with«x5«, «y5«z50. The inset zooms on the yiel
points of the stress-strain curve.~b! Biaxial expansion with«y

5«z5«, «x50. ~c! Triaxial expansion with«x5«y5«z5«.
13410
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is the reason for the drop in the mean stress. There is a s
offset between cases with a void compared to the case w
out a void due to the elastic relaxation of the void. The va
of the stress at the yield point in the cases with void is low
with lower strain rate, and thus the strain to yield is al
lower. In each of the modes of expansion, the stress at
yield point for the strain rate«̇5107/sec is close to the value
to which the higher strain rates converge. Of course, at m
lower strain rates the physics changes, new mechanisms
come active, so this value need not hold for arbitrarily lo
strain rates. However, it is noteworthy that the stress at
yield point is not scaling with strain, contrary to the expe
mental finding for the spall strength explained in Sec.
Overshooting, the phenomenon that the maximum stres
much higher than the stress at the yield point is evident h
for the higher strain rates. The scaling of the spall stren
versus the strain rate6 with an exponent 0.2 is reproduce
here when one compares the maximum stress values ins
of the stresses at the yield point for strain rates«̇55
3108/sec, 109/sec, and 1010/sec, since then the exponent
0.1420.18, lowest for the uniaxial case and highest for t
triaxial case. On the other hand the stress value at the y
point, which is at the same time the maximum stress, w
«̇5107/sec is very close to the value of 6–8 GPa the sp
strength scaling predicted from the lower strain rates m
tioned in Sec. I. It should be noted also that, since we
limited to finite, fairly small, system sizes, at late stages
the stress-strain curves, at the failure, the data are not re
tic anymore. The reason is that at the plastic part of
stress-strain behavior when the void grows, it also emits
locations, and in a finite system with periodic boundari
when the dislocations have traveled long enough, they pro
gate through the boundaries and reenter from the other s
In the picture where we have a periodic array of voids in
infinite system this means that the voids are so close to e
other that they start to interact. In reality voids are nev
arranged in a perfect cubic lattice structure and in symme
positions with respect to each other, and thus the interact
of the voids in the simulations with their periodic images a
just an unphysical finite-size effect.

In the shear stress or more precisely in the deviatoric p
of the stress tensorse plotted in Fig. 2, a much bigger dif
ference is seen between the modes of expansion than in
mean stress. For the deviatoric part of the stressse we use
von Mises stress

se5@3 J2#1/2, ~5!

whereJ25 1
2 Tr s82 is the second invariant of the stress d

viator sab8 5sab2smI.43 Thus von Mises stress reads

se5F3S (
a.b

sab
2 2 (

a.b
saa8 sbb8 D G1/2

5F1

2 (
a.b

~saa2sbb!213 (
a.b

sab
2 G1/2

. ~6!

While the mean stress at the yield point gets a value of ab
s55.626.4 GPa when loaded with strain rate«̇5107/sec in

s
m

1-4
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EFFECT OF STRESS TRIAXIALITY ON VOID GROWTH . . . PHYSICAL REVIEW B69, 134101 ~2004!
each of the three modes of expansion, von Mises stress h
value ofse52.0 GPa and 0.7 GPa in the uniaxial and biax
cases, respectively. In the triaxial case it should be zero
symmetry, and the difference from zero, represent
symmetry-breaking effects, is small. Thus the loading diff
ences between the modes of expansion are quantified in
Mises stress. After the onset of plasticity or the void grow
von Mises stress gets a value of aboutse50.4 GPa, 0.2
GPa, and 0.1 GPa, in the uniaxial, biaxial, and triaxial cas

FIG. 2. von Mises stressse vs engineering strain« from the
same simulations as in Fig. 1. In uniaxial and biaxial expans
von Mises stress rises until the onset of void growth and the
drops to a small value; in triaxial expansion it is always small. S
the caption of Fig. 1 for simulation details.~a! Uniaxial, ~b! biaxial,
and ~c! triaxial expansion.
13410
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respectively, independent of the strain rate, but with sign
cant fluctuations in this regime. In this period also disloc
tions move under the action of the shear stress until the st
drops to the point that it is no longer sufficient to move
dislocation through the forest of dislocations. The final va
of the shear stress corresponds to the flow stress, and the
close to the tensile strength values of copper, 200–400 M
quoted in the literature.44

Although von Mises stress captures differences betw
the loading modes quite well, an even better quantity
study is the ratio between hydrostatic and shear stresses
stress triaxiality

x5sm /se , ~7!

which has been plotted in Fig. 3. In the uniaxial case
stress triaxiality starts from the valuex.3.0 and slowly de-
creases linearly to a valuex.2.8 until the onset of rapid
growth at the yield point. After the rapid increase the stre
triaxiality saturates atx.11.0216.0. The stress triaxiality in
the biaxial case starts with a much larger value than in
uniaxial case. It begins atx.6.0 and increases linearly to
value x.8.0 at the yield point where it grows rapidly to
value ofx.15.0230.0. We have noted the corresponden
of the final von Mises stress and the flow stress above. S

,
it
e

FIG. 3. The stress triaxialityx ~7! vs engineering strain« from
the same simulations as in Fig. 1. See the caption of Fig. 1 for
details.~a! Uniaxial and~b! biaxial expansion. In triaxial expansio
stress triaxiality is diverging and not defined.
1-5
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TABLE I. The onset of plasticity associated with void growth, as indicated by three different criteria: deviation from elastic beha
the mean stress, von Mises stress, and stress triaxiality. Their threshold values, together with the corresponding strain values, ar

for uniaxial, biaxial, and triaxial expansion at the strain rates«̇5109/sec, 53108/sec, 108, and 107/sec. In particular, the third and fourt
columns show the mean stress valuess and the corresponding mean engineering strain values«m , respectively, at the critical or yield poin
at which the mean stress first deviates from the elastic stress-strain curve. Analogously, the fifth and sixth columns show the yiel
indicated by von Mises stressse and the corresponding mean engineering strain values«m , respectively. The seventh and eighth colum
show the yield point as indicated by the stress triaxialityx and the corresponding mean engineering strain values«m , respectively. Note the
small but significant differences in the yield point as indicated by these three different criteria. The error bars of the values are of
of last reported digit. The details of the simulations are in the caption of Fig. 1 and the curves, from which the yield data ha
calculated, are plotted in Figs. 1–3. Note that, as expected, von Mises stress is small and erratic in the triaxial case, so those von
stress triaxiality data are not tabulated.

(«x ,«y ,«z) «̇ (sec21) s ~GPa! «m ~%! se ~GPa! «m ~%! x «m ~%!

(«,0,0) 109 5.87 1.85 2.12 1.87 2.78 1.92
(«,0,0) 53108 5.82 1.84 2.09 1.84 2.79 1.84
(«,0,0) 108 5.65 1.77 2.01 1.77 2.80 1.77
(«,0,0) 107 5.60 1.77 2.00 1.77 2.79 1.77

(0,«,«) 109 6.50 2.02 0.79 2.02 8.29 2.02
(0,«,«) 53108 6.50 2.02 0.79 2.02 8.23 2.02
(0,«,«) 108 6.03 1.85 0.75 1.87 8.08 1.86
(0,«,«) 107 5.96 1.83 0.74 1.82 8.02 1.82

(«,«,«) 109 7.25 2.30
(«,«,«) 53108 7.25 2.30
(«,«,«) 108 6.50 2.00
(«,«,«) 107 6.33 1.94
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larly the spall strength provides an experimental measur
the mean stress that can be supported in void growth. T
the stress triaxiality values can be compared with the ratio
the spall and the tensile strength of copper. Previou
quoted literature values for them are 6–8 GPa and 200–
MPa, respectively, giving for their ratio values between
and 40, and thus comparable with the stress triaxiality val
here. The comparison is not fully rigorous, but it provides
indication of how reasonable the final stress triaxiality valu
are in terms of experiment. Since the stress triaxiality is
mean stress divided by von Mises stress, which is equa
zero in the triaxial case until the yield point and very sm
even after that, the stress triaxiality is diverging and theref
not plotted here in that case. The stress triaxiality value
the uniaxial and biaxial cases at the elastic part of the si
lation are compared here also with the values one gets f
the elasticity theory:45

x5
1

3

C1112C12

C112C12
J. ~8!

J51 in the uniaxial case andJ52 in the biaxial case. The
literature values for the elastic constants of copper areC11
5168 GPa andC125121 GPa.46 Thusx52.9 andx55.8 in
the uniaxial and biaxial cases, respectively, which comp
quite well with the simulations presented here. When
elastic constants are derived from the stress-strain curve
«→0, they are close to the actual experimental values:C11
.162 GPa, C12.121 GPa and C11.168 GPa, C12
.124 GPa in the uniaxial and biaxial cases, respectively
13410
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The critical mean stress, von Mises stress, and the st
triaxiality values where their behaviors start to deviate co
pared to the elastic ones, or what we call yield points,
summarized in Table I for the strain rates«̇5109/sec, 5
3108/sec, 108/sec, and 107/sec of the principal strains. In
the case of the highest strain rate«̇51010/sec, the shapes o
the stress-strain curves are so much rounded due to o
shooting that there is no clear point where the stress-st
curve deviates from the elastic behavior, and thus our d
nition of the yield point is no longer suitable. In comparin
the mean strain values«m ~as in the table! at the onset of
plasticity for a particular strain rate, one finds that t
uniaxial expansion always starts to yield at the least str
and the hydrostatic expansion, at the greatest strain. T
are two effects that contribute to the increase in the pla
threshold as the triaxiality increases. First, the shear com
nent of the applied stress contributes to the resolved s
stress and lowers the threshold for heterogeneous nucle
of dislocations at the void surface.47 Second, the volumetric
strain rate is lowest in the uniaxial case and the highest in
hydrostatic case. Strain-rate hardening then leads to an
crease in the stress value at the onset of plasticity as
triaxiality increases. The difference between the critic
strain values when defined as when a behavior deviates f
the elastic behavior is nearly negligible and thus independ
of whether one uses the criterion from the hydrostatic stre
von Mises stress, or stress-triaxiality curves. The differen
reflect mainly the difficulties in defining the point what w
call the yield point. However, we will see later that if th
mean stress and von Mises stress start to deviate from
1-6
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EFFECT OF STRESS TRIAXIALITY ON VOID GROWTH . . . PHYSICAL REVIEW B69, 134101 ~2004!
elastic behavior with the same ratio as they have during e
tic expansion, the stress triaxiality may deviate a bit la
than the other quantities. We shall see later, too, that
onset of plasticity defined from these quantities is very cl
to where the void starts to grow.

IV. PLASTIC STRAIN AND PLASTIC WORK

After sufficient expansion, the system yields and the m
stress is observed to drop with respect to the elastic respo
Then as the simulation box continues to expand, the st
remains roughly constant until the precipitous drop at fi
failure. In the region of increasing strain but roughly co
stant mean stress, most of the strain is in the form of pla
strain, a macroscopic measure of the plastic, permanent,
irrecoverable deformations in the system. In this section
study the macroscopic quantities of plasticity such as m
and equivalent plastic strains as well as the plastic work,
in the following section in more detail what are the actu
plastic deformations visible in the void. The concomitant d
locations related to void’s shape and volume changes
studied elsewhere.31,32,47

In deriving the plastic strain here it is assumed that
tetragonal symmetry is approximately preserved and thus
off-diagonal terms of the stress tensor are negligible. Follo
ing the literature we separate the strain incrementd«5 «̇ dt
into elastic and plastic parts.48 Thus by definition the plastic
strain increment becomes

«̇ab
P dt5 «̇ab

tot dt2 «̇ab
E dt, ~9!

where«̇ab
tot dt is the total increment of the strain. Below w

use«̇ instead of«̇ dt sincedt can be divided from both side
of Eq. ~9!. The total strain increment is an input parameter
these strain-controlled simulations. It is given by the stra
rate matrix Ė. The complianceS relating the elastic strain
increment to the stress increment is derived from the str
strain curves in the elastic region by

«̇ab
E ~sab!5Sṡab . ~10!

The stress matrixsab is calculated each time step using E
~3!. The elastic compliance tensorS(sab) is retrieved from
the elastic part of the stress-strain curve of the cases wit
the void as follows. Due to the nonlinearity of a stress-str
curve we have not only retrieved the slope of it, which wou
give 3B5C1112C12, whereB is the bulk modulus, but fit-
ted a fourth-order polynomial to the strain versus str
curve, whose derivative gives us 1/3B21(sm). This is done
separately for the uniaxial, biaxial, and triaxial no-vo
cases, and the respective curves are used for the cases
the void. It should be mentioned, too, that in the derivat
of the bulk modulus the mean total logarithmic strain is us
instead of the engineering principal strain used in the plot
this paper. Similarly the termC85 1

2 (C112C12) is derived
using a fourth-order polynomial in the mean strain vers
von Mises stress curve giving 1/C8. Note that whenC8 is
derived from the plot using mean strain there are prefac
1/3 and 2/3 for 1/(C112C12) in the uniaxial and biaxial
13410
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cases, respectively. Using formulas which relateS11 andS12
to C11 and C12 in cubic crystals,43 and the correspondenc
between elastic constants and moduli we get forS11 andS12,

S115
1

9B
1

1

3C8
, S125

1

9B
2

1

6C8
. ~11!

Using S11(sm) asSaa(sm) andS12(sm) asSab(sm) due to
the symmetry and neglecting off-diagonal terms, which
small compared to the diagonal ones, we get all the ne
sary terms forS(sm), and thus«̇ab

E (sm) from Eq.~10!. Note
that sincesm is used as a parameter instead ofsab , the von
Mises stress must be mapped with the mean stress w
finding the correspondingC8. This was done again by fitting
the von Mises versus mean stress curves with fourth-o
polynomials.

Subtracting the elastic strain from the total strain as in E
~9! we get the mean plastic strain increment

«̇m
P5

1

3 (
a

«̇aa
P , ~12!

time integral of which is plotted in Fig. 4 for all the loadin
modes and strain rates. In these plots one sees that afte
yield point the mean plastic strain first increases roug
exponentially, although the region is too small to be defi
tive, and thenceforth roughly linearly. Note that the me
plastic strain is not the equivalent plastic strain commo
used in plasticity, which will be defined below, but a measu
of the porosity. This will be studied in the following sectio
where the mean plastic strain will be compared with t
growth of the volume of the void.

We turn now to the quantification of the dislocation flow
conventionally computed at the continuum level as the s
ond invariant of the deviatoric plastic strain, theequivalent
plastic strain. Typically in the case of tetragonal total strai
the equivalent plastic strain rate would be calculated as

«̇e
P5

1

3 H 2 (
a.b

~ «̇aa
P 2 «̇bb

P !2J 1/2

. ~13!

The equivalent plastic strain is calculated in turn as

«e
P~ t !5E

0

t

«̇e
P~ t8! dt8. ~14!

In practice this formula for the equivalent plastic strain
problematic in MD for several reasons. First, the time a
length scales in MD are much shorter than those assume
continuum formulations of plasticity. The time scale is
problem because dislocation flow becomes partially reve
ible at short enough time scales. Thermal fluctuations ca
reversible oscillations of dislocations and fluctuations in
local elastic strain. To the contrary, the integrand in Eq.~14!
is positive definite, as appropriate for plastic deformati
that is cumulative even when reversed. In practice, the ap
cation of Eq.~14! in MD gives a result dominated by th
fluctuations for small time increments; in fact, in our attem
to apply the formula to the MD deformation every 10 tim
steps, the contribution of the fluctuations was 22 times
1-7
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E. T. SEPPA¨ LÄ , J. BELAK, AND R. E. RUDD PHYSICAL REVIEW B69, 134101 ~2004!
large as the applied total mean strain~these values are ob
tained from the biaxial case with strain rate«̇5108/sec).
The formula must be modified to be insensitive to therm
fluctuations. Second, the formula for the equivalent pla
strain assumes isotropic plasticity in the following sense
isotropic plasticity, the plastic flow is driven by the she
stress quantified by the von Mises stress. The equiva
plastic strain is conjugate to the von Mises stress, and th
fore takes on a particular significance in the theory. Impl
is the assumption, for example, that slip systems that ex
rience the same shear stress will exhibit the same pla
strain. This assumption is violated in MD for two reason
Once again, the thermal fluctuations may cause the initia
of flow on one glide system before that on a symmetrica
related system. This effect is observed in our MD simu
tions. Typically the symmetry is restored after a brief perio

FIG. 4. Mean plastic strain«m
P , calculated using Eq.~12!, vs

engineering strain« from the same simulations as in Fig. 1. See t
caption of Fig. 1 for the details.~a! Uniaxial, ~b! biaxial, and~c!
triaxial expansion.
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but because the plastic strain is cumulative, the symme
breaking fluctuation is never eliminated from the plas
strain ~14!. Second, a more mundane reason why the
sumption of isotropy fails is that the single-crystal syste
are anisotropic, both because of the specific glide planes
volved and because of the elastic constants, especiall
copper.

It may be possible to rectify these problems while reta
ing the basic formulation of the equivalent plastic strain,
example, through a suitable multiresolution calculation
the integral~14!. We have made several attempts at a n
formulation, but we were not able to develop a satisfact
algorithm, providing a meaningful measure of the plas
strain on MD time scales based on the equivalent pla
strain integral~14!. We found that we could eliminate th
anomalies due to fluctuations or the anisotropy, but not b
simultaneously in a robust manner.

We have therefore turned to a different quantification
the plastic strain. Certainly, the full deviatoric plastic stra
tensor is a measure of the plastic flow, conjugate to the
viator stress. Its rate of increase is given by the traceless
of Eq. ~9!. Typically, the rate would be integrated in a cum
lative fashion, but we will not do so. The nature of our sim
lations is such that at the continuum level plastic flow is on
expected in one direction, so any sign reversal may be at
uted to fluctuations. We then calculate

«ab
P ~ t !5E

0

t

«̇ab
P ~ t8! dt8, ~15!

where the plastic strain rate is given by Eq.~9!. We empha-
size again that no absolute value is taken, so fluctuati
cancel.

Then in order to have a scalar quantification of the plas
strain, we compute theJ2 invariant, normalized as the
equivalent plastic strain would be

«e
P~ t !5

1

3 H 2 (
a.b

S E
0

t

«̇aa
P ~ t8! dt82E

0

t

«̇bb
P ~ t8!dt8D 2J 1/2

.

~16!

We must stress that this quantity is not equal to the equ
lent plastic strain commonly used in plasticity, except in t
extraordinary case of monotonic isotropic plasticity. It is n
conjugate to the von Mises stress, for example, in our M
simulations. Nevertheless, it is a useful qualitative meas
of the degree of plasticity, and it allows us to compare
plastic response as the system is loaded in different ways
we call it here equivalent plastic strain for simplicity.

The evolution of the equivalent plastic strain durin
uniaxial and biaxial expansion is plotted in Fig. 5. In th
triaxial case it is essentially zero, as expected by symme
and therefore it has not been plotted. In practice, the st
during triaxial expansion has only a negligibly small fluct
ating shear component, so the calculated elastic shear st
are very small, too. Since neither the box strain nor the e
tic strain has an appreciable shear component, the equiva
plastic strain is found to be zero.
1-8



s
e
d,

re
u

t
g
at
gin
ha
th
on
th
ct
he
da
c

s
te
ra
o
nd

the
tom

the
he
s
ne

re-

with
lar,

lid

he

ion

EFFECT OF STRESS TRIAXIALITY ON VOID GROWTH . . . PHYSICAL REVIEW B69, 134101 ~2004!
Now, once the tensors for both the stress and the pla
strain are derived~actually only the diagonal terms of th
plastic strain are needed!, the plastic work can be calculate

WP~ t !5(
a

E «̇aa
P saa dt ~17!

~see Fig. 6!. It should be compared with the temperatu
from the same simulations, Fig. 7. Note that in these sim
lations, when the dilational strain is applied, the thermosta
turned off and thus the temperature is allowed to chan
First the system cools in the elastic regime due to adiab
cooling on expansion, but when plastic deformations be
work is done in the system resulting in heating. We find t
the increase in plastic work does not match exactly with
temperature. In principle we expect several effects to c
tribute to this difference: the surface energy of the void,
defect formation energies for dislocations and point defe
further adiabatic cooling, and any error in calculating t
elastic energy or strain from the stress. Using the best
available to bound the contributions from surface, defe
and adiabatic cooling energies, we find that there remain
energy deficit that we attribute to an error in the calcula
elastic energy. The error comes from the use of the ave
stress despite stress inhomogeneity in the system due t
void: in the plastic work the product of plastic strain a

FIG. 5. Equivalent plastic strain«e
P , calculated as Eq.~16!, vs

engineering strain« from the same simulations as in Fig. 1. See t
caption of Fig. 1 for the details.~a! Uniaxial and~b! biaxial expan-
sion.
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stress is calculated with averaged quantities, while in
temperature the product is calculated at level of each a
and averaged afterward.

V. VOID EVOLUTION

A. Growth of the void

We now consider the volume and shape evolution of
void. During the MD simulations undergoing expansion, t
surface of the void is determined by finding individual atom
that belong to the surface. This is done by creating a fi
two-dimensional mesh, in which each mesh point cor
sponds to spherical angular coordinates (f,u). An atom is
found to represent the surface at each point of the mesh,
some atoms representing multiple mesh points. In particu
taking the origin to be the center of the void, within the so

FIG. 6. Plastic workWP , calculated from Eq.~17!, vs engineer-
ing strain« from the same simulations as in Fig. 1. See the capt
of Fig. 1 for the details.~a! Uniaxial, ~b! biaxial, and~c! triaxial
expansion.
1-9
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E. T. SEPPA¨ LÄ , J. BELAK, AND R. E. RUDD PHYSICAL REVIEW B69, 134101 ~2004!
angle associated with each mesh point, the atom that is c
est to the origin is defined to be the surface atom at that m
point. There are, however, some uncertainties related to
method. If the mesh is too dense with its size diverging it c
capture almost all the atoms in the system. On the other h
if it is too sparse, it may neglect some surface atoms, e
cially when void is anisotropic, nonspherical, and has so
sharp edges in it. Therefore we introduced a width to eac
the atoms by drawing a circle around it that implies a wid
(df,du) to the angles, so that one atom can occupy sev
mesh points in a fine mesh. We have typically 75–100 po
for each angular coordinate, giving a total of 5625–10 0
mesh points. In the surface of the void there are typically f
thousand atoms. Besides introducing the width to the ato
we also select atoms based on their radial distance: if

FIG. 7. TemperatureT vs engineering strain« from the same
simulations as in Fig. 1. Compare with the plastic work plotted
Fig. 6. See the caption of Fig. 1 for the details.~a! Uniaxial, ~b!
biaxial, and~c! triaxial expansion.
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atom has much larger radial distancer compared to its neigh-
bors it is neglected in order not to capture atoms that do
belong to the surface.

Once the surface atoms are identified, the surface is
sellated using a generalization of the Delaunay triangula
method.49 The Delaunay triangulation is an optimal triang
lation of a collection of points–in our case atoms–on t
plane. It is optimal roughly in the sense that the aspect r
of the triangles is as near to unity as possible; more precis
the Delaunay theorem guarantees that there is a unique~up to
degeneracy! triangulation such that if any triangle in the tr
angulation is circumscribed by a circle, none of the oth
points will be in the interior of the circle. The Delauna
theorem, as formulated, does not apply to points on a cur
surface. In fact, there appears to be a topological obstruc
to the existence of a unique, optimal triangulation on
closed surface when the Euler character is nonzero. Ne
theless, it is possible to extend the Delaunay triangulat
algorithm to achieve a locally optimal triangulation almo
everywhere. The approach we have taken is to project
points patchwise onto flat surfaces. In particular, ster
graphic projections are used to project the upper and lo
hemispheres separately onto planes. Cylindrical coordin
are used to project the equatorial region to a cylinder. T
Delaunay algorithm is used to triangulate each of these p
jected regions. The patches overlap at latitudes of645°
where the projections are not too distorted. The three patc
are sewn together using a simple advancing front triang
tion at the boundaries.

Using this triangulation, the volume of the void can b
calculated precisely by summing up the volumes of the
rahedra with one apex at the center of the void and the
posing face on the void surface. As we shall see below,
void shape evolves to be far from spherical. Therefore
approximation of the void surface by triangles captures
shape better than just assuming it to be spherical and u
only the solid angles and radial distances of a sphere, w
calculating the volume of the void. An advantage of th
method is that if some atom, which should be taken in
account, is missing from the surface of the void, its posit
is filled with the triangles created by its neighboring atom
and thus the ‘‘hole’’ is well approximated by its neighbors

In Fig. 8 the porosity or the ratio between the volume
the void and the total volume of the system,

f 5Vvoid /V, ~18!

is plotted for a fraction of the simulations of the strain rat
«̇51010/sec, 109/sec, 53108/sec, and 108/sec. It should be
noted that in order to get information about the positions
the atoms for the strain values of the interest~i.e., close to
and after the onset of plasticity! the calculations were re
started from already expanded system. After the restart
expansion was applied with the same strain rate as earlie
now to the already expanded system, thus the strain rate
increased by a few percent compared to the original@since
H0 in Eq. ~2! was the restart value#. Therefore these simula
tions are not precisely comparable with the ones plotted
Figs. 1–7, where the continuum quantities are shown.
1-10
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EFFECT OF STRESS TRIAXIALITY ON VOID GROWTH . . . PHYSICAL REVIEW B69, 134101 ~2004!
these plots, as for the mean plastic strain, in most cases
the void grows exponentially and then~if the calculation has
been carried out that long! it changes to a linear growth, se
especially Fig. 8~b! and the strain rates 109/sec and 5
3108/sec there. The crossover to the linear growth happ
at the same point as the rate of decrease of the mean s
slows. Although it is beyond the scope of this paper to
into the analysis, the reduction in the growth rate coincid
with the point at which the dislocation density along t
shortest distance between the void and its periodic image~at
the apices of the faceted void, cf. Sec. V B! reaches satura
tion, and the nature of the dislocation activity changes d
matically. This can be interpreted as a finite-size effect as

FIG. 8. Void volume fraction vs engineering strain«. The evo-
lution of the ratio of the void volume to the total box volume

plotted for strain rates«̇51010/sec, 109/sec, 53108/sec, and
108/sec. See the caption of Fig. 1 for additional details.~a!
Uniaxial, ~b! biaxial, and~c! triaxial expansion.
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void approaches the boundary of the simulation box or a
start of the coalescence process of the void with its o
periodic image. The void-void interactions and the coal
cence process of two voids in a less restrictive geometry
be presented elsewhere.47 The shapes of the porosity curve
as a whole can be compared with the mean plastic st
plotted in Fig. 4. Although the volume of the void is no
calculated throughout the whole simulation, one sees ea
that there is correspondence between mean plastic strain
the volume of the void. There is of course an offset at
elastic part of the simulations, since mean plastic str
equals zero then, but the initial volume of the void is fini
The correspondence will be revisited and studied more c
fully in Sec. VI. However, it can be concluded already he
that the macroscopic quantity mean plastic strain captu
the microscopic behavior of the void growth very well. E
fects such as the excess volume associated with defect
negligible. This also means that the matrix material is pl
tically incompressible, the dilation comes from the vo
growth, and thus it is consistent with the Gurson type
continuum models.16

B. Shape evolution of the void

Let us now look at the shape evolution of the void in mo
detail. In Fig. 9 snapshots of the void are shown fro
uniaxial expansion at the strain rate«̇5108/sec. There are
several interesting aspects in the snapshots. In the first
snapshots at strains«55.05% and 5.26% when the syste
still behaves elastically, the void is expanded in thex direc-
tion, which is the direction of the strain. However, after th
the void makes a rapid shape change and becomes m
extended in the transversey andz directions, i.e., the strain
free directions, thanx direction. This prolate-to-oblate tran
sition may be counterintuitive, but the behavior has be
observed previously in continuum calculations,28,50,51and it
has been related to the appearance of shallow dimples in
fractography studies of ductile fracture surfaces in low
axiality conditions. See also studies of nonspheri
voids.52,53 For example, Budianskyet al., Ref. 50, investi-
gated void shape change in a nonlinear viscous plastic fl
model. They explained the oblate growth of voids und
uniaxial loading as due to a nonlinear amplification of t
shear stress on the surface of the void, with the maximal v
growth rate at the locations of maximal von Mises stress:
equator. Their analysis does not apply directly to our sim
lations since they neglect elasticity, and the nonlinear visc
solid model they have used is not expected to be a pre
description of the plastic flow early in our MD simulatio
when the prolate-to-oblate transition takes place. Furth
more, it is not clear from our simulations what value shou
be assigned to the strain-rate exponent that controls the
linearity in the model of Budianskyet al., although a large
value is reasonable. Despite these differences, the sam
calization of plastic flow to the equator of the void and t
transition to an oblate shape does appear in both our sim
tions and the viscous solid model of Budianskyet al. Fol-
lowing some additional expansion beyond the transition,
void begins to become faceted, as visible in the last th
1-11
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FIG. 9. Snapshots of the atoms comprising the surface of the void during uniaxial expansion with«x5«, «y5«z50. The simulation box

is oriented alonĝ100& direction, so that thez axis is out of the paper. The strain rate is«̇5108/sec. See the caption of Fig. 1~a! for additional
details. The panels show snapshots at different strains:~a! «55.05%, ~b! «55.26%, ~c! «55.47%, ~d! «55.68%, ~e! «55.89%, and~f!
«56.10%.
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snapshots. It should be mentioned that the anisotropy vis
in this uniaxial case is less pronounced in the biaxial ca
The cases with the hydrostatic loading are the most isotro
and the octahedral shape, somewhat visible in Fig. 9~f!, be-
comes more pronounced.32 The octahedral shape has be
13410
le
e.
ic

seen in spallation experiments in the fcc metal aluminum54

and also in experiments on the equilibrium void shape
another material, silicon, too, where it has been used to
culate anisotropic surface energies through an inverse W
construction.55 In void growth associated with dynamic frac
1-12
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EFFECT OF STRESS TRIAXIALITY ON VOID GROWTH . . . PHYSICAL REVIEW B69, 134101 ~2004!
ture in copper, several effects contribute to the faceting:
low surface energy and high adatom energy of the$111%
surfaces common to fcc metals, the high anisotropy of
copper elastic constants (A53.21), and the$111% disloca-
tion glide systems. These effects are analyzed in de
elsewhere.47

In order to characterize the shape change of the void
only qualitatively and visually, but also quantitatively, mu
tipole moments of the void shape are calculated. To the
of our knowledge, this is the first time that multipole m
ments have been used to characterize surface shape. The
a powerful way to quantify the evolution of the comple
surface containing thousands of atoms, and they are suit
for use in continuum models and experimental void char
terization as well. Using spherical harmonics,

Ylm~rW ![Ylm$u~rW !,f~rW !%, ~19!

expressed as polynomials of Cartesian coordinates, in
trast to more commonly used trigonometric forms,56 we are
able to define different multipole moments of the void bas
on its surface atoms:

Qlm[
1

r̄ 2E Ylm~u,f!r 2~u,f!dV, ~20!

where the mean square radiusr̄ 25(1/4p)*r 2(u,f)dV. This
is in contrast to the volume integral more commonly us
when calculating multipole moments. The axial index of t
moment rangesm52 l , . . . ,l , and for eachm except m
50, Qlm has both real and imaginary parts. Here we co
centrate onl 51, 2, 3, and 4. Only the positive moments
m are calculated, since the negative ones are related by

Ql ,2m5~21!mQlm* . ~21!

In all 24 different terms are calculated. The polynom
forms used here of the moments are listed in the Appen

The momentsQlm are not rotationally invariant, but de
pend on the way the coordinatesx, y, andz are chosen. The
set of (2l 11) moments at fixedl form an irreducible repre-
sentation of the SO~3! rotation group, and are mixed by ro
tations according to the usual transformation rules. They m
be combined into a single rotationally invariant combinati
for eachl according to

Ql5F 1

2l 11 (
m52 l

l

uQlmu2G1/2

, ~22!

see, e.g., Ref. 58. Their use drastically reduces the amou
data to be shown. Only the positivem’s are needed forQl
due to the square of the norm ofQlm and Eq.~21!.

Technically the calculation of the multipole moments h
been done using the information about the shape of the
obtained from the surface triangulation procedure explai
earlier. As in the calculation of the void volume, some
finements have been introduced to reduce the uncertain
the values of the moments that arises from single atoms
the threshold for inclusion as surface atoms. These bor
line atoms can appear intermittently on the void surface d
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ing the growth, and the tessellation is used to minimize th
effect on the moments. In calculating the volume of the vo
the triangulation gave one face of the tetrahedra that acte
small volume elements for the total volume. Here the tria
gulation is used to weight the atoms by the amount of so
angle associated with each surface atom. In particular, e
triangle in the tessallation contributes one-third of its p
jected solid angle to each of the three atoms that make u
vertices, where the solid angle of a triangle is computed
ing the formula dV5A11A21A32p, where Ai

5arccos@(ci2ci 11ci 12)/(A12ci 11
2 A12ci 12

2 )# and ci

5 x̂i 11• x̂i 12 for i 51,2,3 ~mod3! and wherex̂i is the unit
vector in the direction of thei th vertex of the triangle.59 The
weight of each atom is the sum of these solid angle con
butions. This reduces the sensitivity of moments to
atomic discretization of the surface, since evanescent at
that occasionally appear and disappear from the fluctua
surface only make a small, local change to the value ofr 2. It
may be of interest to note that in the course of the devel
ment of these surface multipole moments, several differ
variations on the definition of the moments were tried. T
definition presented here~20! produced substantially les
noise~up to a factor of 5 less noise! than the other definitions
we tried, even though they all showed the same trends in
shape evolution. Using these weights for the atoms and a
normalizing each atom’s (x,y,z) coordinate by its distance
r 5(x21y21z2)1/2 from the center of the void all the term
in Eqs. ~A1!–~A4!, and Eq.~22!, are calculated. The cente
of the void is defined to be the point where the three co
ponents ofQ1m , as given by Eq.~A1!, are zero.

Due to space limitations, only a fraction of the multipo
moment data is shown here. In Fig. 10~a! the quadrupole
momentsQ2m for all the positivem of the void are shown in
the uniaxial case for the strain rate«̇5108/sec. This is the
same simulation as the snapshots in Fig. 9. Indeed, the q
rupole moments are able to represent numerically the sh
changes one sees in the snapshots. In Figs. 9~a! and 9~b! at
strains«55.05% and 5.26% the void is elongated to t
direction of the load, which is visible asQ20.0. Between
strains«55.47% @Fig. 9~c!# and 5.68%@Fig. 9~d!# the void
is extended more transverse to the direction of the str
thusQ20,0, and later it starts to become more of octahed
shape and the absolute value ofQ2 saturates.

Figures 10~b–d! show the rotational invariant multipole
momentsQl , Eq. ~22!, in cases with uniaxial, biaxial, and
triaxial loading, respectively. Each of the cases has strain
«̇5108/sec. In the plots it is clear that the behavior that t
quadrupole moment has first a nonzero value and then m
a rapid dip but returns back to a nonzero value due to
transverse elongation is the strongest in the uniaxial case
the other hand the octahedral shape measured byQ4 is more
pronounced in the biaxial and triaxial cases than in
uniaxial case as explained qualitatively earlier. Hence
find that the multipole moments introduce a good method
measure the shape changes of the void. The nonzero va
for Q3, as well asQ2 in other cases than uniaxial, indica
that the void is not~cubically! symmetric in these simula
tions. It should be mentioned that these first four mome
1-13
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E. T. SEPPA¨ LÄ , J. BELAK, AND R. E. RUDD PHYSICAL REVIEW B69, 134101 ~2004!
FIG. 10. Multipole moments of the void surface calculated using Eq.~20!. ~a! Quadrupole momentQ2m with m50,1,2 for uniaxial

expansion at«̇5108/sec.~b!–~d! The momentsQl for l 51,2,3,4 in~b! uniaxial,~c! biaxial, and~d! triaxial cases. They are calculated usin

Eq. ~22! and the strain rate«̇5108/sec. See the caption of Fig. 1 for details of the simulations.
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are enough to characterize the shapes of the void and
higher moments contain little relevant information. This w
checked by creating a three-dimensional surface based o
moment values and drawing it in the same figure with
actual positions of the surface atoms using a standard c
mercial visualization program. The surfaces overlapped v
well.

VI. SUMMARY OF THE UNIAXIAL CASE

Based on the data shown earlier in this paper for the sh
and volume changes of the void as well as the stress-s
behavior and the stress triaxiality, it is evident that t
uniaxial loading raises many interesting aspects to be stu
in more detail. Therefore we now concentrate on the unia
case when summarizing how the void evolves and how
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evolution is related to the stress-triaxiality as the system
expanded. By plotting most of the measured values toge

in one figure for the uniaxial simulation at the strain rate«̇
5108/sec, it is possible to compare the evolution seque
and investigate causality, see Fig. 11~a!. For clarity, we have
chosen not to plot many quantities in the figure, e.g., pla
strain, plastic work, and temperature. However, their c
comitant behaviors are included in the verbal explanat
below and shown in previous figures. The data shown in
figure are from the restarted simulation~see the explanation
near Fig. 8!, as are the data in Figs. 8–10. The mean str
and stress triaxiality data are from that simulation, too, a
thus are different from the data shown in Figs. 1~a! and 3~a!.
In any case, the overall behavior stays the same as we
the other details such as the system size, etc.
1-14
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EFFECT OF STRESS TRIAXIALITY ON VOID GROWTH . . . PHYSICAL REVIEW B69, 134101 ~2004!
The evolution of the void and the system’s stress-str
behavior can be divided into three or even four differe
regions. The first region is when the system expands ela
cally. The mean and von Mises stresses increase smoo
nearly linearly, and the stress triaxiality stays nearly const
Through the elastic region the void volume fraction rema
nearly constant, too. It is not exactly constant, since due
the free surface of the void, the elastic expansion is a
greater at the surface of the void compared to the total
tem. Trivially the mean and equivalent plastic strains as w
as the plastic work are equal to zero in the elastic region,
temperature decreases in the system. The quadrupole
ment has a nonzero value because of the elongation in
direction of the strain.

The second region begins at what we call the yield po
i.e., the onset of rapid growth of the void facilitated by pla
tic deformation. Heterogeneous nucleation of dislocation
the void surface is the primary mechanism for plasticity
the simulation, and thus it is at this point that the measu
quantities start to deviate from their elastic behavior. T
mean stress begins to plateau here, but fluctuating somew

FIG. 11. ~a! The mean stresssm ~thick solid line!, stress triaxi-
ality x ~dotted line!, volume fractionf of the void~dashed line!, and
the quadrupole momentQ20 ~thin solid line! from the simulation

with uniaxial expansion at«̇5108/sec. See the captions of Figs.
3, 8, and 10 for the details.~b! As a comparison the same measur
as in ~a!, but now for the case having an initial void radius of 1
nm and 863 543 atoms in the system undergoing uniaxial expan

at the same«̇5108/sec.
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The early departure from elastic behavior prior to the plate
is much less pronounced. The change in the void shape
gins just at the point the mean stress deviates from ela
behavior:Q20 goes rapidly from the positive value acquire
during elastic expansion to a negative value, i.e., from a p
late shape~elongated in the direction of the strain! to an
oblate shape~expanded in the transverse directions!. Q2, on
the other hand, drops from a positive value, almost reach
zero at the prolate-to-oblate transition point («55.45%) and
rising even larger value after that@in fact, the oblate shape i
somewhat more pronounced than the earlier prolate sh
seen as a larger absolute value ofQ20 in Fig. 10~a!#. When
Q2 starts to dropQ4 starts to rise. Then after the prolate-t
oblate transition point,Q4 begins to saturate. At a strain o
«55.55%,Q2 is 1.5 times as large as its value at the end
the elastic phase («55.25%). Mean plastic strain, equiva
lent plastic strain, plastic work, and temperature increase
gether with porosity. Their increase starts immediately at
yield point, i.e., when the mean stress first deviates from
elastic behavior. A bit later than the plastic strain, equival
plastic strain, plastic work, and temperature, the stress tri
ality increases simultaneously with the first substantial d
in the von Mises stress. The fact that the increase in st
triaxiality follows later is dependent on how the ratio b
tween mean stress and von Mises stress develops, as
cussed earlier. In Fig. 3~a! and in the data reported in Table
the stress triaxiality started to increase simultaneously w
the mean and von Mises stresses deviating from the ela
behavior. The increase of stress triaxiality is caused by
Mises stress plummeting in contrast to nearly constant m
stress. The drop in von Mises stress follows from the flow
dislocations nucleated at the void and from the relaxation
the shear stress of the system due to the flow.

The third region is when the void fraction, mean plas
strain, equivalent plastic strain, plastic work, and tempe
ture switch from rapid increase to a linear growth or ev
saturate. Subsequently the increase of the stress triaxi
slows down and plateaus. The value at the plateau is rel
in continuum models to the ratio of the mean stress thresh
for void growth to the flow stress. At the plateau von Mis
stress saturates at a small value, close to the tensile stre
and the shape of the void starts to become more of octahe
shape although having a nonzero quadrupole moment,
Hence at the second and third regions the mean stres
nearly constant, but von Mises stress and the stress triaxi
changes.

A conclusion might be that once the threshold for vo
growth is reached, the population of dislocations rises su
ciently to relax the shear stress quite effectively and it dro
to a low value~the flow stress!; the mean stress, on the oth
hand, plateaus since it is relaxed by void growth and requ
that the stress at the void surface be sufficiently high to c
tinue to nucleate dislocations. The fourth region is the fa
ure, when the system breaks, and it is not studied here.

In order to see if the rapid changes studied above are
to the smallness of the size of the void we have done
additional simulation with a system in which the initial vo
radius is half that in the other simulations; otherwise, t
system size is the same, see Fig. 11~b!. For the small void

on
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simulation, uniaxial strain at a strain rate«̇5108/sec has
been used. Here the difference is that the quadrupole mom
suffers stronger fluctuation due to the smallness of the v
where each of the surface atoms contribute more to its v
and therefore is even more sensitive to the selection crite
of surface atoms, and also the shape changes are hard
determine based on theQ20 behavior. The other main differ
ence is that the growth of the void is linear all the time. Al
the changes in stress triaxiality in fact advances the poro
when saturating, and the mean stress does not fluctuate
drops more rapidly~this can be compared with the case wit
out the void, where the mean stress drops abruptly!.

We have also compared the mean plastic strain and
void volume fraction calculations. In continuum solid m
chanics, it is assumed that solid materials are plastically
compressible. Any local dilation, as indicated by a change
the mean strain, is attributed either to elastic dilation or t
change in the porosity of the material, where the porosity
equated to the void volume fraction. The porosityf and the
mean plastic strain«m

P are then related according to th
equation19

ḟ 53~12 f !«̇m
P , ~23!

where the dots denote time derivatives. Integration with
spect to time, porosity fromf 0 to f, and mean plastic strain
from zero to«m

P , gives

f ~«m
P !511~ f 021!exp~23«m

P !. ~24!

where f 0 is the initial porosity. It is interesting to chec
whether this relationship holds for the MD simulation, whe
other effects such as excess volume associated with dis
tion cores, vacancies, or other defects could require cor
tions. In comparing the porosity inferred from the mean pl
tic strain and that calculated directly as the void fraction,
agreement is very good. The trends are in excellent ag
ment, but there is a small discrepancy between the curve
that the porosity from the mean plastic strain is overe
mated. We believe that the discrepancy arises because o
void surface. In calculating the void fraction, we have d
fined the void surface to pass through the center of the
face atoms. However, the properties of the surface atoms
distinct from the bulk atoms. Therefore, there is some am
guity in where the surface should be placed, and a sm
uniform shift dr of the surface radially into the bulk i
enough to account for the discrepancy. In Fig. 12 we h
plotted the comparison of the porosity from the mean pla
strain, Eq.~24!, and from the void fraction, Eq.~18!, using a
constant radius increasedr 50.58a0, wherea0 is the lattice
constant for the void volume calculation. The correction
the void size,dr , is a fit parameter and it varies for differen
strain rates and slightly for different loading modes, but
always positive and of the order of the lattice constanta0. It
should be noted, too, that by Taylor expanding Eq.~24! and
discarding the higher-order terms, it becomes

f ~«m
P !5 f 013~12 f 0!«m

P , ~25!
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indicating a linear correspondence betweenf and«m
P as long

as the void fraction is small.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper void growth in copper has been studied i
high range of strain rates at the atomistic level. The mo
has been designed to simulate the growth of a void nucl
ing from a very weakly bound inclusion during strain
controlled dynamic fracture. In order to see the effect
various modes of expansion and the related stress triaxia
three different modes have been applied, namely, uniax
biaxial, and triaxial. The molecular dynamics method dev
oped here has been shown to be efficient enough to exp
the different loading conditions and strain rates varying o
four orders of magnitude. A uniform expansive loading o
system with periodic boundary conditions has been imp
mented using a well-defined scaling matrix method. For
longest calculations, the MD method was parallelized s
cessfully. The macroscopic observables mean stress,
Mises stress, stress triaxiality, mean plastic strain, equiva
plastic strain, plastic work, and temperature have been
culated and compared with the microscopic quantities m
sured at the atomistic level, such as the volume of the v
and its shape change. A method to describe the sh
changes in the void is introduced and employed, nam
calculations of the multipole moments of the void based
spherical harmonics in polynomial, not trigonometric, form
When calculating the volume of the void with an unknow
shape or defining solid surface for the multipole mome
calculation a useful method, namely, optimal triangular t
sellation, has been introduced. This method has been
tended from the usual planar case to nonplanar objects
as the surface of the void.

When the different measured quantities are compa
with each other during an MD simulation in uniaxial expa
sion, it is found that at early stages of plasticity von Mis
stress, and thus also stress triaxiality, plays a more signifi
role to the void growth and its shape change than expec
On the other hand, most of the macroscopic plastic quant

FIG. 12. Porosityf calculated from the actual void fraction as
Eq. ~18! with dr 50.58a0 ~see the text for details ofdr ) and from
the mean plastic strain«m

P as in Eq.~24! from the simulation with

uniaxial expansion at«̇5108/sec. See the captions of Figs. 1, 4,
and 11 for the simulation details.
1-16
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as mean and equivalent plastic strain as well as plastic w
and temperature, seem to be more dependent on the sim
neous saturation of the mean stress. These calculations
a counterintuitive behavior, observed previously in co
tinuum void growth modeling,28,51,52that a prolate-to-oblate
transition occurs. When the system starts to yield, the exp
sion of the void switches from its original elastic extensi
in the direction of the load to transverse plastic expansio

The yield stress values for the lowest strain rates 107/sec
are in reasonable agreement with the experimentally m
sured spall strength.6 The fact that mean plastic strain can
mapped to the growth of the void is consistent with co
tinuum models.19

This study leaves many open questions. For instance
lated to the void growth are the dislocations, which occ
when the system yields. Since the fcc crystal studied her
perfect apart from the void, the dislocations form from void
surface. They are also responsible for its growth by carry
material away. Thus the characterization of plasticity s
rounding a growing void at the level of dislocations shou
be investigated, too, especially with respect to the stress
axiality. These investigations are underway.47 Their results
are beyond the scope of this paper, other than to mention
the identification of the yield point in this paper does inde
correspond to the point of initial nucleation of dislocation
Another topic that is beyond the scope of this article a
needs further investigation, but is closely related to the st
ies here, is the quantitative connection between the s
stress, and thus the mode of the loading, and the onset o
void growth and the resulting change in the stress st
Other areas where this study can be extended are diffe
materials including different lattice structures such as bo
centered-cubic lattices; in the uniaxial case other orientat
of the lattice as^110& and ^111&; continuously changing
stress triaxiality in order to create the full yield surface to t
stress space similarly as in Gurson type of continu
studies;16 to include grain boundaries, defects, preexist
dislocations, several voids, etc.
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APPENDIX: MULTIPOLE MOMENTS

The 24 different polynomial terms of the multipole m
ments used in this study are listed below.57 Here the conven-
tional notation is used, so that the principal axis of the co
dinates is thez direction. When these formulas are used
interpreting the void shape evolution, the principal axis is
direction with uniaxial loading, i.e., thex coordinate in the
paper. Similarly the load-free directionsy and z correspond
to x andy below.

The polynomial terms whenl 51 are the dipole moment
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and they capture if the object is offset. The dipole mome
are

Q105
1

2
A3

p

1

r̄ 2E rz dV,

ReQ1152
1

2
A 3

2p

1

r̄ 2E rx dV,

ImQ1152
1

2
A 3

2p

1

r̄ 2E ry dV, ~A1!

where r̄ 251/4p*r 2(u,f)dV.
Terms withl 52 are the quadrupole moments and they

nonzero values if there is ellipsoidal shape in the object. T
quadrupole moments are as follows:

Q205
1

4
A5

p

1

r̄ 2E 3z22r 2 dV,

ReQ2152
1

2
A15

2p

1

r̄ 2E xz dV,

ImQ2152
1

2
A15

2p

1

r̄ 2E yz dV,

ReQ225
1

4
A15

2p

1

r̄ 2E x22y2 dV,

ImQ225
1

2
A15

2p

1

r̄ 2E xy dV. ~A2!

Terms with l 53 are the octupole moments and they g
nonzero values for tetrahedron shapes:

Q305
1

4
A7

p

1

r̄ 2E 1

r
z~5z223r 2! dV,

ReQ3152
1

8
A21

p

1

r̄ 2E 1

r
x~5z22r 2! dV,

ImQ3152
1

8
A21

p

1

r̄ 2E 1

r
y~5z22r 2! dV,

ReQ325
1

4
A105

2p

1

r̄ 2E 1

r
z~x22y2! dV,

ImQ325
1

2
A105

2p

1

r̄ 2E 1

r
xyz dV,

ReQ3352
1

8
A35

p

1

r̄ 2E 1

r
~x323xy2! dV, ~A3!
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ImQ335
1

8
A35

p

1

r̄ 2E 1

r
~y323x2y! dV.

And finally the terms withl 54 are listed. They are the
hexadecapole moments and capture octahedron shapes

Q405
3

4
A1

p

1

r̄ 2E 1

r 2
~3r 4230r 2z2135z4! dV,

ReQ4152
3

8
A5

p

1

r̄ 2E 1

r 2
xz~7z223r 2! dV,

ImQ4152
3

8
A5

p

1

r̄ 2E 1

r 2
yz~7z223r 2! dV,

ReQ425
3

8
A 5

2p

1

r̄ 2E 1

r 2
~x22y2!~7z22r 2! dV,
y-

,

an

ys

a

13410
ImQ425
3

4
A 5

2p

1

r̄ 2E 1

r 2
xy~7z22r 2! dV,

ReQ4352
3

8
A35

p

1

r̄ 2E 1

r 2
~x323xy2!z dV,

ImQ4352
3

8
A35

p

1

r̄ 2E 1

r 2
~3x2y2y3!z dV.

ReQ445
3

16
A35

2p

1

r̄ 2E 1

r 2
~x426x2y21y4! dV,

ImQ445
3

4
A35

2p

1

r̄ 2E 1

r 2
xy~x22y2! dV. ~A4!
V.

ds
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