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Effect of stress triaxiality on void growth in dynamic fracture of metals:
A molecular dynamics study
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The effect of stress triaxiality on growth of a void in a three-dimensional single-crystal face-centered-cubic
lattice has been studied. Molecular dynamics simulations using an embedded-atom potential for copper have
been performed at room temperature and using strain controlling with high strain rates ranging #sec 10
10'%sec. Strain rates of these magnitudes can be studied experimentally, e.g., using shock waves induced by
laser ablation. Void growth has been simulated in three different conditions, namely, uniaxial, biaxial, and
triaxial expansion. The response of the system in the three cases has been compared in terms of the void
growth rate, the detailed void shape evolution, and the stress-strain behavior including the development of
plastic strain. Also macroscopic observables as plastic work and porosity have been computed from the
atomistic level. The stress thresholds for void growth are found to be comparable with spall strength values
determined by dynamic fracture experiments. The conventional macroscopic assumption that the mean plastic
strain results from the growth of the void is validated. The evolution of the system in the uniaxial case is found
to exhibit four different regimes: elastic expansion; plastic yielding, when the mean stress is nearly constant,
but the stress triaxiality increases rapidly together with exponential growth of the void; saturation of the stress
triaxiality; and finally the failure.
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I INTRODUCTION e usually are of the order (#6-10%/sec, in gas gun of

10°/sec, with high explosives even higher strain rates can be

Ductile fracture of metals commonly occurs through the . : i

leation, growth, and coalescence of microscopic vbids.proquced’ and with lasers strain rates exceedirigsta are
nuc 9 ' . P attained. In a gas gun, for instance, the fracture results from
Much can be learned about the ductile fracture through th@gqoptiaily one-dimensional shock loading. Two compressive
study of these voids. A partlcularlys interesting case is theghock waves are generated by the impact of a flier on a metal
dynamic fracture of ductile metafs® in which the strain target, propagate away from each other, reflect from opposite
rates are so high that processes such as diffusion operatifige surfaces becoming tensile release waves, and finally
on relatively long-time scales may be neglected, while inerzome into coincidence again. If the combined tensile stress
tial effects become relatively important. Void growth is exceeds the rupture strength of the material, the metal fails,
driven by the need to relax tensile stress that builds up in thafter some incubation time, producing a fracture surface. In
system, and to minimize the associated elastic energy. Thetrong shocks, a scab of material may spall from the back
material around a void deforms plastically in order to accomsside of the target and fly off. Spallation experiméntsr
modate the void growth. Naturally, the plastic deformationsingle and polycrystal copper report spall strength values of
results from a local shear stress, which may arise from thg*~3-4 GPa at strain rates=(2—3)x10°/sec, and

applied stress, but it also may arise from the stress field °§caling between the spall strength and strain ratey £°2
the void even if the applied stress is hydrostatic. So the ex- | this study of dynamic fracture in ductile metals at high
pectation is that the evolution of the plastic zone, and hencgain rateg (10’ — 101%/sed we have concentrated on void
the growth of the void, is influenced by the degree of stresgrowth starting from a single-crystal copper lattice contain-
triaxiality; i.e., the ratio of the meathydrostati¢ stress t0  ing an infinitely weakly bound inclusion or a preexisting
the shear stress. It is this relationship that we study here bijanoscale void. The lattice is initially free of other defects.
varying the triaxiality of the loading. In particular, we con- We have focused on the effect of stress triaxiality on void
duct simulations in which one, two, or three directions of thegrowth. In some fracture experiments, for example, in neck-
system are expanded, producing a state of uniaxial, biaxialng and cup-cone fracturethe uniaxial strain produces a
or triaxial strain, respectively. Variation in the triaxiality of stress state that transitions rapidly to triaxial state due to the
the strain causes variation in the triaxiality of the stress stateglastic flow during the course of loading. It is during the
where it should be noted that uniaxiddiaxial) strain does triaxial phase that void growth and failure take place. Be-
not imply pure uniaxialbiaxial) stress. cause of the connection with shock experiments, the stress
Besides dynamic crack propagation experiments, dynamitriaxiality study done here is carried out using strain control,
fracture can be measured, for instance, in shock physics @nd it is the strain that is varied from uniaxial to biaxial to
spallation experiments, to which the simulations performedriaxial.
here are compared. Various techniques are employed to gen- Much of the damage modeling of metals has been carried
erate the shock waves: Hopkinson bar, gas gun, high expl@aut at mean-field or continuum level based on constitutive
sives, and laser ablation. With Hopkinson bar the strain ratetheories. The continuum models concentrate especially on
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two areas: macroscopic crack growth phenomércand Il. METHOD AND SIMULATIONS
studies of porosity, i.e., behavior of an array of voids, at
subgrain level during loadintf?°In the latter area, for ex- _ o _ _
ample, the locus of yield surfaces in stress space has been In this atomistic-level stud_y of v0|d_ growth, the simula-
studied, which is related to the question of the effect of stresdons have been done using empirical embedded-atom
triaxiality studied here. Of the void growth studies especially(EAM) potentials in classical molecular dynamiftéollow-

the Gurson modéf is commonly used to model cavitation Ing Fhe scheme develpped carfir> The copper EAM po-
(the development of porositat the subgrid level in what is ten_pﬁl we have 'usegllsh d#e t9 Olh gnd JOhﬁdgéﬂ' . h
termed as damage modeling. These continuum calculationd';I e system, in which the simulations are done, Is a three-

) . . mensional single-crystal face-centered-culiic) lattice in
often assume that the matrix material, where the voids are . . _— "
. . - ! . . a cubic box with{100; faces. Periodic boundary conditions
embedded, is elastically rigid and plastically incompressible

o ; . ) are used in all the three directions so that there are no free
and the dilation of the void-matrix aggregate is COmpIet(alyboundaries in the system apart from the void. Equivalently

due to the void growth. Of particular interest, and relevancne system can be imagined to consist of an infinite periodic
in terms of gns study, is a single-crystal plasticity study of 5rray of voids. Note that periodic boundary conditions have
void growth™ The calculations are typically done by deter- 4150 peen used in continuum models of void growth, but in
mining approximate solutions for integrals of incrementalthe continuum modeling of void growth in isotropic materi-
equations of virtual work using the finite element method.a|s the calculations are done in a reduced cell, which exhibits
Continuum modeling has been used to study some of thgne-quarter of the box in two dimensions and one-eighth in
phenomena addressed in this paper such as the effect of tthree dimensions, and the behavior of other areas are derived
axiality on void growth and void shape chang&dhe va-  from the symmetries. We use the full cubic box because the
lidity of the approximate solutions of incrementals limits the cubic symmetry present in the continuum is broken in MD at
strain rates to be rather low compared to the strain rates usditite temperature, and processes such as dislocation nucle-
in this study. ation at the void surface would be overconstrained in a re-
In order to characterize the void growth not only with duced simulation box.
macroscopic quantities and at the continuum level, but to In the simulations, the system is brought to thermal equi-
investigate what happens at the atomistic level, we have emibrium at room temperaturel =300 K, with a commonly
ployed molecular dynamicéMD) simulations. MD simula- used thermost&tand at ambient pressuré=0 MPa, keep-
tions enable us to see what are the effects on the void surfadad the volume constant. After that a spherical void is cut in
at the single-atom level, when it grows while the total systenfn® middle of the system, later the thermostat is turned off,
yields. This paper presents work, which is an extension to thand the dll-atlonal strain is applied uniformly with a constant
work done earlier by some of this paper’s authors of voidstrain rates. The removal of the atoms in the spherical re-
growth in a single-crystal copper with hydrostatic loading,9ion may be considered to simulate the instantaneous sepa-
void nuc|eation, and growth in Sing|e and po|ycrysta”ine ration of the matrix material from an |nf|n|t6|y Weakly bound
copper®~3*Molecular dynamics simulations of void growth inclusion. The uniform expansion in these strain-controlled
in sing|e_crysta| copper have also been conducted by Othéﬁimulations is applled through rescaling the coordinates as in
groups for slab geometries of interest in the semiconductohe Parrinello-Rahman methétiTechnically the three Car-
chip metallization probler®*® The effectively two- tesian coordinates of the atoms are rescaled to the unit box,
dimensional, thin film systems are in contrast to threeach coordinats,<[0,1). When calculating the forces and
dimensional bulk systems studied here. In some cases MEelocities, as well as updating the new positions of the at-
simulations of plasticity and crack propagation have been a@ms, the unit box is multiplied by a diagonal scaling matrix
large as 10 atoms®’ H={l,ly,l;}, where I's are the simulation box’s side
This paper is organized as follows. It starts in Sec. Il withlengths, to compute the true positions of the atoms,
an overview of the MD method used and the simulations
which have been carried out in this study. Exploration of the x="HS. @)
results of the simulations starts in Sec. Ill by the study of theThis scaling matrix+ is updated each time step, when the
mean or hydrostatic stress versus strain as well as the devigad is applied, by multiplying the initial matrik(, with the
toric part of the stress tensor, von Mises stress, which is usngm of the unit matrix and the strain matdxt&,
to measure the shear stress, and stress triaxiality versus strain
for all the simulated strain rates and modes of expansion. H(t) = Ho(I1+1E). )
Sec. IV concentrates on the macroscopic plastic quantities, )
such as mean and equivalent plastic strain, plastic work, anlor our purposes the strain-rate maifixs always diagonal,
its relation to the temperature. The evolution of the void insince neither rotation nor simple shear-type strains are stud-
terms of its growth and shape changes is studied in Sec. \ed. In the triaxial case all the terms in the diagonal are
Section VI summarizes the results and compares differergqual; in the uniaxial there is a single nonzero term; and in
measured quantities with each other concentrating on one dlfie biaxial case two of the three diagonal terms differ from
the simulations, uniaxial strain with strain rate®i€kec. The zero and are equal. Prior to expansion the system is cubic, its
paper is concluded with discussions of the results and sugscaling matrixH, is diagonal, and all the terms are equal and
gestions for future studies in Sec. VII. correspond to the equilibrium size at ambient pressure.

A. Strain-controlled molecular dynamics
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Hence the scaling matrik/ remains diagonal throughout the point of failure, so the so-called “no-void” simulations have
simulation, and the strain in each case is if1@0 direction. ~ been performed with a smaller system size, 45 fcc cells in
In fracture and plasticity simulations the first quantity to €ach direction(364 500 atomsand at the single strain rate

consider is the stress-strain behavior. With the strain as as=10°/sec. A uniaxial study of the 8Gystem size, but with
input parameter, here we have to measure the stress. In thassmaller initial void radius of 1.1 nm, was carried out with
study of the stress triaxiality we are interested in both meamhe strain rates = 108/sec in order to study the void-size
and shear stresses. Therefore the whole stress tengos  dependence. In this case the system with the void contains
needed. The stress tendtiie negative of the pressurean g3 543 atoms.

be calculated atomistically on each time step using the virial |t should be mentioned, too, that all of the intermediate

38 X
formula: strain-rate simulation = 10%/sec and % 10°/sec) expan-
1 sions were not started from equilibrium conditions Rt
Tap= " 2 piapi/}/mi+2 2 iofiip 3 =0 MPa, but from systems expanded previously at the
: b= strain rates = 10°/sec. These simulations have been restarted

The first term in the stress tensor is the kinetic contributionV&!l Pefore yielding, when the system’s behavior is rate in-

of atoms denoted withand having masses; and momenta dependent,_and relaxed fOI’. 2000 time steps, or13.4 Ps, with-
pi. The second term, a microscopiirial plotential stress, out expansion before continuing th? expansion at the Inter-
consists of sums of interatomic forcé of atom pairs{ij ) mediate strain rates. The energy is conserved during the

with corresponding distanceg . It should be noted that here relaxa_tlon in MD S|mulat|0ns. Thess restarts r(l)ave been ac-
and in the rest of the papérand]j denote the atoms, ang Eoin%'f/h?d at s'Fralunb_va_Iules:é.tl_Z %, ’IEZZ'OGA” andF |
and B the Cartesian coordinates. Note that the thermal stress =/ <”° N uniaxial, biaxial, and triaxial cases, respectively.

is included, although in practice in these simulations it con-

tributes less than 1 GPa, less than 10% of the yield stress !l STRESS-STRAIN BEHAVIOR AND STRESS
value, and never dominates the changes in stress. TRIAXIALITY
Let us begin to explore the results of the MD simulations
B. Simulations performed by looking at the stress-strain curves. Figure 1 shows these

curves for each of the modes of expansion at all the strain
rates computed. The data from no-void cases are also plotted.
he mean or hydrostatic stress,

Typically in the simulations carried out here, the cube
consists of 60 fcc unit cells in each direction, giving 864 000
atoms. The equilibrium side length of such a copper systerH-
is 1=21.6 nm at room temperature and ambient pressure.
The radius of the spherical void cut from the system, unless
otherwise noted, is 0.1 of the side length of the box; thugs plotted to indicate the principal impetus for void growth.
2.2 nm. After the void is cut, there are 860 396 atoms in theéNote that the strain is thengineering straindefined as the
system. expanded system size divided by the original system size

The relatively inexpensive potential used enables us to dminus one. In the uniaxial and biaxial cases the strains are
extensive simulations in time. A single time step takes typi-the principal strain values in the direction of the strain,
cally about 40 sec of CPU time in a system with 864 000such ass,=¢, ey=¢,=0 in the uniaxial case, anel=¢,
atoms in a Linux workstation with Intel Xeon 1700 MHz =g, ¢,=0 in the biaxial case. Hence the strain is the value

processor. The longest calculation required 835050 timef a nonzero diagonal term € in Eq. (2). The mean strains
steps corresponding to 5.6 ns. The time step was 6.7 fs.  are 1/3 and 2/3 of the plotted uniaxial and biaxial strains,
As mentioned earlier, in order to study the effects of therespectively. Thus the total volumetric strain rates are not the
stress triaxiality and different modes of expansion on thesame in the different expansion modes. In the triaxial cases
void growth, we have applied three different types of expanthe plotted and the mean strain values are the same. The
Sion, namely, Uniaxial, biaxial, and triaxial. The Strain 'ra.teSshape of the Stress_strain curves do not differ much depend_
used for each of the three modes of expansion are ing on the modes of expansion in these cases, at least when
=10"9Ysec, 18/sec, 5<1(F/sec, 16/sec, and 10sec. For plotted versus mean strain. Independent of the strain rate,
the lowest strain rate, the MD code was parallelized in ordeand whether with or without a void, the stress-strain curves
to take advantage of massively parallel computers. The patie essentially on top of each other during elastic expansion,
allelization was done using a spatial domain decompositioni,e., the initial smooth behavior when the system is still re-
and was shown to scale nearly linearly up to 128 processorsoverable and has not deformed plastically.
The parallel code was used in the case with 835050 time The stress-strain curve starts to deviate from the trend of
steps mentioned above, for example. the elastic behavior at a specific “critical” point which we
For comparison in the elastic regime, we have also pereall here ayield point In other quantities we measure a
formed simulations without a void in all three modes of ex-change in behavior happens at a specific point too, and as we
pansion. These simulations have been used to determine tegall see later the critical or yield points mostly coincide
bulk, elastic stress-strain response of the EAM copper andith each other, i.e., their strain values are approximately the
hence the elastic constants. Without a void, the system is naame independent of which quantity we derived it. The same
so strain-rate and system size dependent, at least up to tpeint is also the one when the void starts to grow, which is

Om= % Tr Ua/B ’ (4)

134101-3



E. T. SEPPAA, J. BELAK, AND R. E. RUDD

PHYSICAL REVIEW B69, 134101 (2004

11.0 is the reason for the drop in the mean stress. There is a small
p

10.0 | .. offset between cases with a void compared to the case with-
— (a) uniaxial P
g 90 e out a void due to the elastic relaxation of the void. The value
O 80fF 2 . of the stress at the yield point in the cases with void is lower
~ 707 AR - f}glvg;g with lower strain rate, and thus the strain to yield is also
L 6ot N 2;109/;? lower. In each of the modes of expansion, the stress at the
g o \\“-." - €=5%107sec yield point for the strain rate = 10/sec is close to the value
E 407 : = ?=}87;S€C to which the higher strain rates converge. Of course, at much

L 5 e S~ | — €= . H H
g 30 ol # O it lower strain rates the physics changes, new mechanisms be-
g 2071 sl e come active, so this value need not hold for arbitrarily low
1ot 50, Bt strain rates. However, it is noteworthy that the stress at the

00 L e
0.0 20 40 60 8.0 100 12.0 14.0 160 18.0

strain (€) | % |

yield point is not scaling with strain, contrary to the experi-
mental finding for the spall strength explained in Sec. .
Overshooting, the phenomenon that the maximum stress is

16.0 much higher than the stress at the yield point is evident here
— 140 | (b) biaxial for the higher strain rates. The scaling of the spall strength
S : . )
& versus the strain ratewith an exponent 0.2 is reproduced
(2 1207 here when one compares the maximum stress values instead
~ 100 of the stresses at the yield point for strain rates5
% 80 | x 10°/sec, 18/sec, and 1¥/sec, since then the exponent is
2 6ol 0.14-0.18, lowest for the uniaxial case and highest for the
5 triaxial case. On the other hand the stress value at the yield
§ 40 1 point, which is at the same time the maximum stress, when
g 20t e=10"/sec is very close to the value of 6-8 GPa the spall
0.0 strength scaling predicted from the lower strain rates men-

00 20 40 6.0
strain (€) [ % ]

8.0 10.0 12.0 14.0

tioned in Sec. I. It should be noted also that, since we are
limited to finite, fairly small, system sizes, at late stages of
the stress-strain curves, at the failure, the data are not realis-

lad tic anymore. The reason is that at the plastic part of the
— 140t (c) triaxial stress-strain behavior when the void grows, it also emits dis-
é,; 120t TN locations, and in a finite system with periodic boundaries,
— 7 when the dislocations have traveled long enough, they propa-
108 1 / ! gate through the boundaries and reenter from the other side.
% 8.0t \ \ !n _th_e picture Whgre we have a periocjic array of voids in an
8 & | o\ ‘a“ \ infinite system this means that the voids are so close to each
2 \\‘-._‘ & other that they start to interact. In reality voids are never
% 401 SR ‘\ arranged in a perfect cubic lattice structure and in symmetric
E 20} . positions with respect to each other, and thus the interactions

00 \ of the voids in the simulations with their periodic images are

00 20 40 60 80
strain (&) [ % ]

100 12.0

FIG. 1. Mean stress,, VS engineering straie for strain rates
e=10"Ysec, 16/sec, 5 10°/sec, 16/sec, and 10sec. The equi-
librium size of the simulation box is (21.7 nf)wheno,,=0. The
simulation box has 860 396 atoms and a preexisting void of radius

2.2 nm. The thin solid line, drawn as a reference, is from a system
with no initial void, consisting of 364 500 atoms in an equilibrium

box sized (17.5 nn?) and expanded at=10%sec. (a) Uniaxial

expansion withe,=¢, e,=¢,=0. The inset zooms on the yield

points of the stress-strain curvéb) Biaxial expansion withe,
=g,=¢, 8,=0. (c) Triaxial expansion witte,=¢e,=¢,=¢.

the primary mechanism for plasticity in this study. Here we
define numerically the yield point of the cases with void by
comparing their stress-strain curves with the reference no-

just an unphysical finite-size effect.

In the shear stress or more precisely in the deviatoric part
of the stress tensar, plotted in Fig. 2, a much bigger dif-
ference is seen between the modes of expansion than in the
mean stress. For the deviatoric part of the stiessve use
von Mises stress

7e=[33,]" ©)

whereJ,=3Tr o'? is the second invariant of the stress de-
viator o;ﬁz Top— o, 1.*3 Thus von Mises stress reads
12
2 ’
3( E Oap™ gﬁ 0-(;(10-3,8)

Te=
a>f

1/2

6

1
— _ 2+ 2
2 aZB (Uaa O-BB) Sgﬂ gaﬂ

void curve, which behaves elastically beyond the yield points ) )
of the other casef. Fig. 1(a) insef. Ultimately the no-void ~ While the mean stress at the yield point gets a value of about
case does fail by homogeneous nucleation of voids, and this=5.6—6.4 GPa when loaded with strain rate- 10’/sec in
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4.0 T T T T T T T T 20.0 T T T T T T T T 1
— L . | 18.0 | .. — no void
= 33| (a) uniaxial - (a) uniaxial } —- £=10"sec
65' 30 r T \ g 16.0 1 f‘ \ ------ £=10"fsec
= \ — no voligi >, 140 ! x;‘\ - 8:5*}08/sec
~25 ¢ W[ = €=10/see = [ ,J --- £€=10/sec
=) 4 Ly £=10"/sec s 120 ' \»M — £=10"/sec
2 2.0 ‘\\""-,. - €=5%10"/sec %5 100t L,

H . 3 o= -

i:) 15t i --- §=107/sec E 80 | / Mﬂ s
2 ! \\ — €=10/sec 4 ; /

$ 10 AN NI £ ooy W
S os | ! \\.\:\::N\ ] ©2 40 ¢ ' - v

AR 2.0
0000 20 40 60 80 100 120 140 160 18.0 0.0 T T TR Y ST T
: ’ ’ : : : : ' : : 00 2.0 40 6.0 80 10.012.014.016.0 18.0

strain () [ % | strain () [ % ]

1.0 , ' - ' - 40.0
_ 09t A . . 350 | o
< o8| p (b) biaxial | _ P01 (b) biaxial
O AN 25300 t
= 07 I: \\ 2
o 06 ; \} N = 250 ¢
= 0.5 by N = i
2 Lo N & 200
g 0.4 1 \\\n AR ) =
- i |l \ ] w 150
5 0 h%,'\a“ fot A Z 100 }
sorlf WS A 2,
0.1t g o 5.0
%0 20 40 60 80 100 120 140 0.0 F o
’ ) 'straiﬁ (S)St % ] ’ : : 700 1.0 20 3.0 40 50 60 7.0 80 9.0
? strain (g) [ % ]
0.50 - . . .
FIG. 3. The stress triaxiality (7) vs engineering straia from
o 0.45 1 (¢) triaxial ] the same simulations as in Fig. 1. See the caption of Fig. 1 for the
g, 040t 1 details.(a) Uniaxial and(b) biaxial expansion. In triaxial expansion
2 0.35 stress triaxiality is diverging and not defined.
o 030 1 _ _ _ o
= [ ; ] respectively, independent of the strain rate, but with signifi-
2 0.5 A ndepenadent o n rate, >19
8 000 | ) ] cant fluctuations in this regime. In this period also disloca-
] '1 | . tions move under the action of the shear stress until the stress
§ 015 ¢ : ‘a‘, ] drops to the point that it is no longer sufficient to move a
= 0.10 P ) 1 dislocation through the forest of dislocations. The final value
0.05 | f‘w‘i /,// A of the shear stress corresponds to the flow stress, and they are
0.0000‘ '4 - 6’0““ m 10- o close to the tensile strength values of copper, 200—400 MPa,

quoted in the literatur&®
Although von Mises stress captures differences between
the loading modes quite well, an even better quantity to

FIG. 2. von Mises stress, vs engineering straig from the ) . .
same simulations as in Fig. 1. In uniaxial and biaxial expansion,Stucly is the ratio between hydrostatic and shear stresses, the

von Mises stress rises until the onset of void growth and then iSt€SS triaxiality

drops to a small value; in triaxial expansion it is always small. See

the caption of Fig. 1 for simulation detail@) Uniaxial, (b) biaxial, X=0mloe, (7)
and (c) triaxial expansion.

strain (€) [ % |

which has been plotted in Fig. 3. In the uniaxial case the
each of the three modes of expansion, von Mises stress hasstiess triaxiality starts from the valye=3.0 and slowly de-
value ofo,=2.0 GPa and 0.7 GPa in the uniaxial and biaxialcreases linearly to a valug=2.8 until the onset of rapid
cases, respectively. In the triaxial case it should be zero bgrowth at the yield point. After the rapid increase the stress
symmetry, and the difference from zero, representingriaxiality saturates ag=11.0-16.0. The stress triaxiality in
symmetry-breaking effects, is small. Thus the loading differ-the biaxial case starts with a much larger value than in the
ences between the modes of expansion are quantified in vamiaxial case. It begins gt=6.0 and increases linearly to a
Mises stress. After the onset of plasticity or the void growth,value y=8.0 at the yield point where it grows rapidly to a
von Mises stress gets a value of abaety=0.4 GPa, 0.2 value of y=15.0—30.0. We have noted the correspondence
GPa, and 0.1 GPa, in the uniaxial, biaxial, and triaxial casegyf the final von Mises stress and the flow stress above. Simi-
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TABLE I. The onset of plasticity associated with void growth, as indicated by three different criteria: deviation from elastic behavior in
the mean stress, von Mises stress, and stress triaxiality. Their threshold values, together with the corresponding strain values, are tabulated

for uniaxial, biaxial, and triaxial expansion at the strain rates10%/sec, 5< 10%/sec, 16, and 10/sec. In particular, the third and fourth

columns show the mean stress valueand the corresponding mean engineering strain valgegespectively, at the critical or yield point

at which the mean stress first deviates from the elastic stress-strain curve. Analogously, the fifth and sixth columns show the yield point as
indicated by von Mises stress, and the corresponding mean engineering strain valygsrespectively. The seventh and eighth columns

show the yield point as indicated by the stress triaxiglitgnd the corresponding mean engineering strain valyesespectively. Note the

small but significant differences in the yield point as indicated by these three different criteria. The error bars of the values are of the order
of last reported digit. The details of the simulations are in the caption of Fig. 1 and the curves, from which the yield data have been
calculated, are plotted in Figs. 1-3. Note that, as expected, von Mises stress is small and erratic in the triaxial case, so those von Mises and
stress triaxiality data are not tabulated.

(SXvSylez) P (sec’l) o (GPa em (%) o. (GPa em (%) X em (%)
(£,0,0) 10 5.87 1.85 2.12 1.87 2.78 1.92
(£,0,0) 5x 10° 5.82 1.84 2.09 1.84 2.79 1.84
(£,0,0) 16 5.65 1.77 2.01 1.77 2.80 1.77
(¢,0,0) 10 5.60 1.77 2.00 1.77 2.79 1.77
(0,e,8) 10° 6.50 2.02 0.79 2.02 8.29 2.02
(0,,¢) 5x10° 6.50 2.02 0.79 2.02 8.23 2.02
(0,,¢) 108 6.03 1.85 0.75 1.87 8.08 1.86
(0,,€) 10 5.96 1.83 0.74 1.82 8.02 1.82
(g,e,€) 10° 7.25 2.30
(g,8,€) 5% 108 7.25 2.30
(g,8,€) 108 6.50 2.00
(e,e,¢) 10’ 6.33 1.94

larly the spall strength provides an experimental measure of The critical mean stress, von Mises stress, and the stress
the mean stress that can be supported in void growth. Thusiaxiality values where their behaviors start to deviate com-
the stress triaxiality values can be compared with the ratio opared to the elastic ones, or what we call yield points, are
the spall and the tensile strength of copper. Previoushsymmarized in Table | for the strain rates=10°sec, 5

quoted literature values for them are 6—8 GPa and 200-40Q 18/sec, 16/sec, and 10sec of the principal strains. In

MPa, respectively, giving for their ratio values between 15 : . 0
and 40, and thus comparable with the stress triaxiality valuethe case of the highest strain rate- 10 ¥sec, the shapes of

here. The comparison is not fully rigorous, but it provides anflhe stress-strain curves are so much rounded due to over-
indic;altion of ho?/v reasonable thg fingal streflss triax?alit vaIuesShOoting that there is no clear point where the stress-strain
Y curve deviates from the elastic behavior, and thus our defi-

are in terms Of. e_xperiment. Sin'ce the stress tr'iaxiglity s thenition of the yield point is no longer suitable. In comparing
mean stress divided by von Mises stress, which is equal tﬂwe mean strain values,, (as in the tablgat .the onset of

zero in the triaxial case until the yield point and very small lasticity f icul . finds that th
even after that, the stress triaxiality is diverging and thereford asticity for a particular strain rate, one finds that the
' . Uniaxial expansion always starts to yield at the least strain,

not plqtte_d here in that case. The stress _tr|aX|aI|ty vaIue; "nd the hydrostatic expansion, at the greatest strain. There
the uniaxial and biaxial cases at the elastic part of the simu:

lation are compared here also with the values one gets frorare two effects that contribute to the increase in the plastic
> comp 5 9 TMreshold as the triaxiality increases. First, the shear compo-
the elasticity theory"

nent of the applied stress contributes to the resolved shear
stress and lowers the threshold for heterogeneous nucleation
_1Cnt2C, (g Of dislocations at the void surfaééSecond, the volumetric
X—3 Ci1—Cpp ™ strain rate is lowest in the uniaxial case and the highest in the
hydrostatic case. Strain-rate hardening then leads to an in-
E=1 in the uniaxial case anf =2 in the biaxial case. The crease in the stress value at the onset of plasticity as the
literature values for the elastic constants of copperGye triaxiality increases. The difference between the critical
=168 GPa an€C,,=121 GPa'® Thusy=2.9 andy=5.8in  strain values when defined as when a behavior deviates from
the uniaxial and biaxial cases, respectively, which comparehe elastic behavior is nearly negligible and thus independent
quite well with the simulations presented here. When theof whether one uses the criterion from the hydrostatic stress,
elastic constants are derived from the stress-strain curves @sn Mises stress, or stress-triaxiality curves. The differences
e—0, they are close to the actual experimental val@s: reflect mainly the difficulties in defining the point what we
=162 GPa, Cy,=121 GPa and C{;=168 GPa, C,, call the yield point. However, we will see later that if the
=124 GPa in the uniaxial and biaxial cases, respectively. mean stress and von Mises stress start to deviate from the
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elastic behavior with the same ratio as they have during elagases, respectively. Using formulas which relgtgandS,,
tic expansion, the stress triaxiality may deviate a bit latetto C;; and C;, in cubic crystalé? and the correspondence
than the other quantities. We shall see later, too, that thbetween elastic constants and moduli we geSgrandS;,,
onset of plasticity defined from these quantities is very close

to where the void starts to grow. s 1 N 1 5. 1 1 11
1798 T30 D298 gt (11

IV. PLASTIC STRAIN AND PLASTIC WORK .
o _ _ Using S;1(om) asS,.(om) andSi(oy,) asS,z(or) due to
After sufficient expansion, the system yields and the meafhe symmetry and neglecting off-diagonal terms, which are
stress is observed to drop with respect to the elastic responsgmall compared to the diagonal ones, we get all the neces-

Then_as the simulation box c_ontinues to _expand, the s_tre%cary terms folS(,.), and thuséEB(am) from Eq.(10). Note
remains roughly constant until the precipitous drop at f'nalthat sinceo is used as a parameter insteadqj; , the von
failure. In the region of increasing strain but roughly con- n

R ‘Mises stress must be mapped with the mean stress when
stant mean stress, most of the strain is in the form of plaSt"ﬁnding the correspondinG’. This was done again by fitting

strain, a macroscopic measure of the plastic, permanent, arfﬁ]e von Mises versus mean stress curves with fourth-order
irrecoverable deformations in the system. In this section w olynomials

study th? macroscopic quantities of plasticity su_ch as mea Subtracting the elastic strain from the total strain as in Eq.
gnd equwalent plastl_c strains as well as the plastic work, angg) we get the mean plastic strain increment

in the following section in more detail what are the actual
plastic deformations visible in the void. The concomitant dis- ) 1 )
locations related to void’s shape and volume changes are 851:5 2 sia, (12
studied elsewher&:3247 “

In deriving the plastic strain here it is assumed that thetime integral of which is plotted in Fig. 4 for all the loading
tetragonal symmetry is approximately preserved and thus theodes and strain rates. In these plots one sees that after the
off-diagonal terms of the stress tensor are negligible. Followyield point the mean plastic strain first increases roughly
ing the literature we separate the strain incremnts dt  exponentially, although the region is too small to be defini-
into elastic and plastic parté Thus by definition the plastic tive, and thenceforth roughly linearly. Note that the mean

strain increment becomes plastic strain is not the equivalent plastic strain commonly
used in plasticity, which will be defined below, but a measure
'85’8 dt:'gf/; dt_éEB dt, (9) of the porosity. This will be studied in the following section,

where the mean plastic strain will be compared with the
wherez!s; dt is the total increment of the strain. Below we growth of the volume of the void. . _
uses instead of: dt sincedt can be divided from both sides Ve turn now to the quantification of the dislocation flow,

of Eq. (9). The total strain increment is an input parameter inconventionally computed at the continuum level as the sec-

these strain-controlled simulations. It is given by the strain0nd invariant of the deviatoric plastic strain, thguivalent

rate matrix€. The compliances relating the elastic strain plastic strain Typically in the case of tetragonal total strain,

. . : . the equivalent plastic strain rate would be calculated as
increment to the stress increment is derived from the stress- q P

strain curves in the elastic region by 1 ) ) 172
_ _ s£’=§{22 (eZa—sZﬁf] : (13
eap(Tap)=S0ap. (10 “r

. . . ) The equivalent plastic strain is calculated in turn as
The stress matrixr, z is calculated each time step using Eq.

(3). The elastic compliance tens8(o ) is retrieved from o tp

the elastic part of the stress-strain curve of the cases without ec(t)= f go(t') dt’. (14

the void as follows. Due to the nonlinearity of a stress-strain 0

curve we have not only retrieved the slope of it, which wouldIn practice this formula for the equivalent plastic strain is
give 3B=Cy;+2C;,, whereB is the bulk modulus, but fit- problematic in MD for several reasons. First, the time and
ted a fourth-order polynomial to the strain versus stressength scales in MD are much shorter than those assumed in
curve, whose derivative gives us B/3' (o). This is done continuum formulations of plasticity. The time scale is a
separately for the uniaxial, biaxial, and triaxial no-void problem because dislocation flow becomes partially revers-
cases, and the respective curves are used for the cases wiithe at short enough time scales. Thermal fluctuations cause
the void. It should be mentioned, too, that in the derivationreversible oscillations of dislocations and fluctuations in the
of the bulk modulus the mean total logarithmic strain is usedocal elastic strain. To the contrary, the integrand in &d)
instead of the engineering principal strain used in the plots ofs positive definite, as appropriate for plastic deformation
this paper. Similarly the tern€’=3(C,;—C,,) is derived that is cumulative even when reversed. In practice, the appli-
using a fourth-order polynomial in the mean strain versusation of Eq.(14) in MD gives a result dominated by the
von Mises stress curve giving@/. Note that whenC’ is  fluctuations for small time increments; in fact, in our attempt
derived from the plot using mean strain there are prefactorto apply the formula to the MD deformation every 10 time
1/3 and 2/3 for 1/C;;—C;,) in the uniaxial and biaxial steps, the contribution of the fluctuations was 22 times as
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0.050 R but because the plastic strain is cumulative, the symmetry-
B ) uniaxial 1 breaking fluctuation is never eliminated from the plastic
o 22‘3‘2 — strain (14). Second, a more mundane reason why the as-
S o030 |- = =10""sec sumption of isotropy fails is that the single-crystal systems
g oomst|T e=l0sce are anisotropic, both because of the specific glide planes in-
g o000l ke volved and because of the elastic constants, especially in
S 0015 [ | — &=10"fsec copper.
= 0010 s . It may be possible to rectify these problems while retain-
§ 8'333 A ] ing the basic formulation of the equivalent plastic strain, for
0,005 o example, through a suitable multiresolution calculation of
7700 20 40 60 80 10.012.0 14.0 16.0 18.0 the integral(14). We have made several attempts at a new
strain (¢) [ % 1 formulation, but we were not able to develop a satisfactory
0.10 —— — algorithm, providing a meaningful measure of the plastic
0.09 | (b) biaxial stra@n on MD time scales based on the equiya]ent plastic
m;; 0.08 ¢ strain integral(14). We found that we could eliminate the
= 00Tt anomalies due to fluctuations or the anisotropy, but not both
E g'gg simultaneously in a robust manner. -
S ool We have therefore turned to a different quantification of
2 ool the plastic strain. Certainly, the full deviatoric plastic strain
Ry tensor is a measure of the plastic flow, conjugate to the de-
% 001 | viator stress. Its rate of increase is given by the traceless part
g 000 of Eq. (9). Typically, the rate would be integrated in a cumu-
00 TS0 40 60 80 100 Do 1zo Iat!ve fa}shion, but we will not QO so. The nature of our_simu-
strain () [ % | lations is such that at the continuum level plastic flow is only
expected in one direction, so any sign reversal may be attrib-
0.08 —— T uted to fluctuations. We then calculate
007 (c) triaxial
~E 006 t.
j‘g 005 ehs(t)= joszﬁ(t') dt’, (15)
§ 0.04
§ 0.03 where the plastic strain rate is given by Ef). We empha-
= 00, size again that no absolute value is taken, so fluctuations
g o001 cancel.
g 0.00 Then in order to have a scalar quantification of the plastic
. ) L ) ) strain, we compute thel, invariant, normalized as the
00 1.0 20 3.0 40 50 60 7.0 80 9.0 equivalent plastic strain would be
strain (€) [ % ]
FIG. 4. Mean plastic strais|,, calculated using Eq(12), vs (t) [ 2 (J ) dt’—JtéP (t’)dt’>2} 12
engineering straies from the same simulations as in Fig. 1. See the Ce aa o PB '
caption of Fig. 1 for the detailga) Uniaxial, (b) biaxial, and(c) (16)

triaxial expansion.

We must stress that this quantity is not equal to the equiva-
large as the applied total mean stréthese values are ob- |ent plastic strain commonly used in plasticity, except in the
tained from the biaxial case with strain rage=10°/sec).  extraordinary case of monotonic isotropic plasticity. It is not
The formula must be modified to be insensitive to thermalconjugate to the von Mises stress, for example, in our MD
fluctuations. Second, the formula for the equivalent plastisimulations. Nevertheless, it is a useful qualitative measure
strain assumes isotropic plasticity in the following sense. Irof the degree of plasticity, and it allows us to compare the
isotropic plasticity, the plastic flow is driven by the shear plastic response as the system is loaded in different ways and
stress quantified by the von Mises stress. The equivaleme call it here equivalent plastic strain for simplicity.
plastic strain is conjugate to the von Mises stress, and there- The evolution of the equivalent plastic strain during
fore takes on a particular significance in the theory. Implicituniaxial and biaxial expansion is plotted in Fig. 5. In the
is the assumption, for example, that slip systems that expériaxial case it is essentially zero, as expected by symmetry,
rience the same shear stress will exhibit the same plastiand therefore it has not been plotted. In practice, the stress
strain. This assumption is violated in MD for two reasons.during triaxial expansion has only a negligibly small fluctu-
Once again, the thermal fluctuations may cause the initiatioating shear component, so the calculated elastic shear strains
of flow on one glide system before that on a symmetricallyare very small, too. Since neither the box strain nor the elas-
related system. This effect is observed in our MD simula-tic strain has an appreciable shear component, the equivalent
tions. Typically the symmetry is restored after a brief period,plastic strain is found to be zero.
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g -2.0e-15 L —
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14e-14 ;
0.12 o /
= _ L2e=14 1 (b) biaxial /
o 0.0 r (b) biaxial N = 1.0e-14 ;
£ o 1 Z 80e-15
- —
z 006 | £ 6015
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—= 04 | .
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L 002y = 0.0e+00
Z 000 -2.0e-15 s ; Y
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—0.02 . . . . . . strain (€) [ % ]
00 20 40 60 80 100 120 140
strain (€) [ % ] Lae=14
/
. . . 1.2e~14 + (c) triaxial :
FIG. 5. Equivalent plastic stralag, calculated as Eq16), vs = - © !
engineering straile from the same simulations as in Fig. 1. See the :m e
caption of Fig. 1 for the detailga) Uniaxial and(b) biaxial expan- = 8.0e-15 ¢
sion. 2 6.0e~15 |
o
E 4.0e-15 |
Now, once the tensors for both the stress and the plastic 2 50ets |
strain are derivedactually only the diagonal terms of the =
plastic strain are needgahe plastic work can be calculated, 0.0e+00
—2.0e-1

5 R
0.0 1.0 2.0 3.0 40 50 6.0 7.0 80 9.0
strain (g) [ % |

We(1) =2 J Eh a0 dt (17)

FIG. 6. Plastic work\p, calculated from Eq(17), vs engineer-
ing straine from the same simulations as in Fig. 1. See the caption

) ) of Fig. 1 for the details(a) Uniaxial, (b) biaxial, and(c) triaxial
(see Fig. 6. It should be compared with the temperature gypansion.

from the same simulations, Fig. 7. Note that in these simu-

lations, when the dilational strain is applied, the thermostat i%tress is calculated with averaged quantities, while in the

tgrned off and thus thg temperatgre IS allowed to chang. emperature the product is calculated at level of each atom
First the system cools in the elastic regime due to adlabatlgnd averaged afterward

cooling on expansion, but when plastic deformations begin,
work is done in the system resulting in heating. We find that

the increase in plastic work does not match exactly with the V. VOID EVOLUTION
temperature. In principle we expect several effects to con-
tribute to this difference: the surface energy of the void, the
defect formation energies for dislocations and point defects, We now consider the volume and shape evolution of the
further adiabatic cooling, and any error in calculating thevoid. During the MD simulations undergoing expansion, the
elastic energy or strain from the stress. Using the best datsurface of the void is determined by finding individual atoms
available to bound the contributions from surface, defectthat belong to the surface. This is done by creating a fine
and adiabatic cooling energies, we find that there remains amvo-dimensional mesh, in which each mesh point corre-
energy deficit that we attribute to an error in the calculatedsponds to spherical angular coordinatés €). An atom is
elastic energy. The error comes from the use of the averageund to represent the surface at each point of the mesh, with
stress despite stress inhomogeneity in the system due to tkeme atoms representing multiple mesh points. In particular,
void: in the plastic work the product of plastic strain and taking the origin to be the center of the void, within the solid

A. Growth of the void
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550.0 L e atom has much larger radial distanmceompared to its neigh-
5000 | (a) uniaxial bors it is neglected in order not to capture atoms that do not
v : ’ belong to the surface.
— #0071 zifg}a‘}m / Once the surface atoms are identified, the surface is tes-
2 4000 | | — e=10"sec o ! sellated using a generalization of the Delaunay triangulation
£ = €=5%10"7sec 4."'" / method® The Delaunay triangulation is an optimal triangu-
§ 00 e 7 ' lation of a collection of points—in our case atoms-on the
g 300.0 ’ plane. It is optimal roughly in the sense that the aspect ratio
8 2500 1 of the triangles is as near to unity as pOSS|bIe3 more .preC|ser,
’ the Delaunay theorem guarantees that there is a uigue
00 50 50 100 50140 160 180 degene_rac)y_triar_wgulation_ such that if_ any triangle in the tri-
strain (e) [ % ] angulauqn is c_wcumsgnbed by a C|rcl_e, none of the other
points will be in the interior of the circle. The Delaunay
500.0 e theorem, as formulated, does not apply to points on a curved
__ 4500 | (b) biaxial ”/,-'.r"// surface. Ir_l fact, there appears to be_a topo_logical qbstruction
v o : to the existence of a unique, optimal triangulation on a
— 40007 closed surface when the Euler character is nonzero. Never-
% 3500 t theless, it is possible to extend the Delaunay triangulation
5 2000 algorithm to achieve a locally optimal triangulation a}lmost
£ everywhere. The approach we have taken is to project the
g 2500 points patchwise onto flat surfaces. In particular, stereo-
£ 2000 | graphic projections are used to project the upper and lower
hemispheres separately onto planes. Cylindrical coordinates
1300 50 40 60 50 100 Do 120 are used to project the equatorial region to a cylinder. The
strain (€) [ % | Delaunay algorithm is used to triangulate each of these pro-
jected regions. The patches overlap at latitudes+af5°
450.0 7 where the projections are not too distorted. The three patches
1000 | (©) triaxial /.’ are sewn together psing a simple advancing front triangula-
Q ’ ] tion at the boundaries.
= 3500 | Using this triangulation, the volume of the void can be
£ calculated precisely by summing up the volumes of the tet-
g 300.0 & rahedra with one apex at the center of the void and the op-
= posing face on the void surface. As we shall see below, the
g 2500t void shape evolves to be far from spherical. Therefore the
E) 2000 | approximation of the void sur_facg by triangles captures the
‘ shape better than just assuming it to be spherical and using
only the solid angles and radial distances of a sphere, when

1500 e
00 1.0 20 3.0 40 50 60 70 80 90 calculating the volume of the void. An advantage of this

strain (g) [ % ] method is that if some atom, which should be taken into
FIG. 7. Temperaturd vs engineering straia from the same account, is missing from the surface of the void, its position

simulations as in Fig. 1. Compare with the plastic work plotted iniS filled with the triangles created by its neighboring atoms,

Fig. 6. See the caption of Fig. 1 for the detaila) Uniaxial, () ~ @nd thus the “hole” is well approximated by its neighbors.
biaxial, and(c) triaxial expansion. In Fig. 8 the porosity or the ratio between the volume of
the void and the total volume of the system,

angle associated with each mesh point, the atom that is clos-

est to the origin is defined to be the surface atom at that mesh f=Vy0ia/V, (18)
point. There are, however, some uncertainties related to this

method. If the mesh is too dense with its size diverging it cari_s plotted for a fraction of the simulations of the strain rates
capture almost all the atoms in the system. On the other hane=10'%sec, 18/sec, 5< 10%/sec, and 1¥sec. It should be

if it is too sparse, it may neglect some surface atoms, espatoted that in order to get information about the positions of
cially when void is anisotropic, nonspherical, and has somé¢he atoms for the strain values of the interést., close to
sharp edges in it. Therefore we introduced a width to each odnd after the onset of plasticjtthe calculations were re-
the atoms by drawing a circle around it that implies a widthstarted from already expanded system. After the restart the
(d¢,d0) to the angles, so that one atom can occupy severaxpansion was applied with the same strain rate as earlier but
mesh points in a fine mesh. We have typically 75—-100 pointsiow to the already expanded system, thus the strain rate was
for each angular coordinate, giving a total of 5625—10 000ncreased by a few percent compared to the origisaice
mesh points. In the surface of the void there are typically fewH, in Eq. (2) was the restart valjeTherefore these simula-
thousand atoms. Besides introducing the width to the atomgions are not precisely comparable with the ones plotted in
we also select atoms based on their radial distance: if akigs. 1-7, where the continuum quantities are shown. In
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FIG. 8. Void volume fraction vs engineering strain The evo-
lution of the ratio of the void volume to the total box volume is
plotted for strain ratess=10'Ysec, 18/sec, 5x10¥/sec, and
10%/sec. See the caption of Fig. 1 for additional detaila)
Uniaxial, (b) biaxial, and(c) triaxial expansion.
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void approaches the boundary of the simulation box or as a
start of the coalescence process of the void with its own
periodic image. The void-void interactions and the coales-
cence process of two voids in a less restrictive geometry will
be presented elsewheteThe shapes of the porosity curves
as a whole can be compared with the mean plastic strain
plotted in Fig. 4. Although the volume of the void is not
calculated throughout the whole simulation, one sees easily
that there is correspondence between mean plastic strain and
the volume of the void. There is of course an offset at the
elastic part of the simulations, since mean plastic strain
equals zero then, but the initial volume of the void is finite.
The correspondence will be revisited and studied more care-
fully in Sec. VI. However, it can be concluded already here
that the macroscopic quantity mean plastic strain captures
the microscopic behavior of the void growth very well. Ef-
fects such as the excess volume associated with defects are
negligible. This also means that the matrix material is plas-
tically incompressible, the dilation comes from the void
growth, and thus it is consistent with the Gurson type of
continuum model4®

B. Shape evolution of the void

Let us now look at the shape evolution of the void in more
detail. In Fig. 9 snapshots of the void are shown from

uniaxial expansion at the strain rage= 10°/sec. There are
several interesting aspects in the snapshots. In the first two
snapshots at strains=5.05% and 5.26% when the system
still behaves elastically, the void is expanded in xhdirec-

tion, which is the direction of the strain. However, after that
the void makes a rapid shape change and becomes more
extended in the transvergeandz directions, i.e., the strain-
free directions, thamx direction. This prolate-to-oblate tran-
sition may be counterintuitive, but the behavior has been
observed previously in continuum calculatidis®>*and it

has been related to the appearance of shallow dimples in the
fractography studies of ductile fracture surfaces in low tri-
axiality conditions. See also studies of nonspherical
voids>?%% For example, Budianskgt al, Ref. 50, investi-
gated void shape change in a nonlinear viscous plastic flow
model. They explained the oblate growth of voids under
uniaxial loading as due to a nonlinear amplification of the
shear stress on the surface of the void, with the maximal void
growth rate at the locations of maximal von Mises stress: the
equator. Their analysis does not apply directly to our simu-

these plots, as for the mean plastic strain, in most cases firkttions since they neglect elasticity, and the nonlinear viscous

the void grows exponentially and théifithe calculation has
been carried out that longt changes to a linear growth, see
especially Fig. &) and the strain rates 1Bec and 5

solid model they have used is not expected to be a precise
description of the plastic flow early in our MD simulation
when the prolate-to-oblate transition takes place. Further-

X 10°/sec there. The crossover to the linear growth happensiore, it is not clear from our simulations what value should
at the same point as the rate of decrease of the mean strd®3 assigned to the strain-rate exponent that controls the non-
slows. Although it is beyond the scope of this paper to gdinearity in the model of Budianskegt al., although a large
into the analysis, the reduction in the growth rate coincidewalue is reasonable. Despite these differences, the same lo-
with the point at which the dislocation density along the calization of plastic flow to the equator of the void and the

shortest distance between the void and its periodic infage
the apices of the faceted void, cf. Sec. Y ®®aches satura-

transition to an oblate shape does appear in both our simula-
tions and the viscous solid model of Budiansiyal. Fol-

tion, and the nature of the dislocation activity changes dratlowing some additional expansion beyond the transition, the
matically. This can be interpreted as a finite-size effect as thgoid begins to become faceted, as visible in the last three
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FIG. 9. Snapshots of the atoms comprising the surface of the void during uniaxial expansienwithe, = e,=0. The simulation box
is oriented along100) direction, so that the axis is out of the paper. The strain ratesis 10°/sec. See the caption of Fig.al for additional
details. The panels show snapshots at different stréang=5.05%, (b) £¢=5.26%, (c) e=5.47%,(d) £¢=5.68%, (e) £=5.89%, andf)
£=6.10%.

snapshots. It should be mentioned that the anisotropy visibleeen in spallation experiments in the fcc metal alumirtim,
in this uniaxial case is less pronounced in the biaxial caseand also in experiments on the equilibrium void shape of
The cases with the hydrostatic loading are the most isotropianother material, silicon, too, where it has been used to cal-
and the octahedral shape, somewhat visible in Fif), Be-  culate anisotropic surface energies through an inverse Wulff
comes more pronouncéd.The octahedral shape has beenconstructior?® In void growth associated with dynamic frac-
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ture in copper, several effects contribute to the faceting: théng the growth, and the tessellation is used to minimize their
low surface energy and high adatom energy of {h&1} effect on the moments. In calculating the volume of the void
surfaces common to fcc metals, the high anisotropy of thehe triangulation gave one face of the tetrahedra that acted as
copper elastic constantf\ & 3.21), and the{111} disloca-  small volume elements for the total volume. Here the trian-
tion glide systems. These effects are analyzed in detagjulation is used to weight the atoms by the amount of solid
elsewheré! angle associated with each surface atom. In particular, each
In order to characterize the shape change of the void ngfjangle in the tessallation contributes one-third of its pro-
only qualitatively and visually, but also quantitatively, mul- jected solid angle to each of the three atoms that make up its

tipole moments of the void shape are calculated. To the begjertices, where the solid angle of a triangle is computed us-
of our knowledge, this is the first time that multipole mo- ing the formula 8Q=A,+A,+A;—m, where A,
1 |

ments have been used to characterize surface shape. They ar ) P

X " = ar L —C . 1—cs — ¢ .
a powerful way to quantify the evolution of the complex %CCOA@(C' C'flc'”)/(\/ Ciavl C'*Z)A] _ and C'_
surface containing thousands of atoms, and they are suitabféXi+1-Xi+2 for i=1,2,3 (mod3 and wherex; is th% unit
for use in continuum models and experimental void characYector in the direction of theth vertex of the trianglé® The

terization as well. Using spherical harmonics weight of each atom is the sum of these solid angle contri-
butions. This reduces the sensitivity of moments to the
Ylm(F)EYIm{ 0(;)'¢(;)}, (19 atomic discretization of the surface, since evanescent atoms

that occasionally appear and disappear from the fluctuating
expressed as polynomials of Cartesian coordinates, in courface only make a small, local change to the value?oft
trast to more commonly used trigonometric forfisye are  may be of interest to note that in the course of the develop-
able to define different multipole moments of the void basednent of these surface multipole moments, several different
on its surface atoms: variations on the definition of the moments were tried. The
definition presented her€20) produced substantially less
noise(up to a factor of 5 less noigéhan the other definitions
we tried, even though they all showed the same trends in the
o shape evolution. Using these weights for the atoms and after
where the mean square radids= (1/4m) [r2(0,$)d€. This  normalizing each atom’sx(y,z) coordinate by its distance
is in contrast to the volume integral more commonly used = (x2+y2+ z?)*2 from the center of the void all the terms
when calculating multipole moments. The axial index of thein Egs.(A1)—(A4), and Eq.(22), are calculated. The center
moment rangesn=—I, ... |, and for eachm exceptm  of the void is defined to be the point where the three com-
=0, Q,, has both real and imaginary parts. Here we confonents ofQ,,,, as given by Eq(Al), are zero.
centrate on=1, 2, 3, and 4. Only the positive moments of  Due to space limitations, only a fraction of the multipole
m are calculated, since the negative ones are related by moment data is shown here. In Fig.(&0the quadrupole
momentsQ,, for all the positivem of the void are shown in

Qi -m=(—1)MQj,. (21 the uniaxial case for the strain rate= 108/sec. This is the

In all 24 different terms are calculated. The polynomial S2Me simulation as the snapshots in Fig. 9. Indeed, the quad-
forms used here of the moments are listed in the Appendix/UPole moments are able to represent numerically the shape
The moment<Q,,, are not rotationally invariant, but de- €hanges one sees in the snapshots. In Figs.ahd 9b) at
pend on the way the coordinatesy, andz are chosen. The Strainse=5.05% and 5.26% the void is elongated to the
set of (2+1) moments at fixed form an irreducible repre- direction of the load, which is visible aQ,,>0. Between
sentation of the S@) rotation group, and are mixed by ro- Strainse =5.47%[Fig. 9(c)] and 5.68%Fig. (d)] the void
tations according to the usual transformation rules. They ma{f €xtended more transverse to the direction of the strain,

be combined into a single rotationally invariant combinationthusQ20<<0, and later it starts to become more of octahedral
for eachl according to shape and the absolute value@j saturates.

Figures 10b—d) show the rotational invariant multipole
112 momentsQ,, Eq. (22), in cases with uniaxial, biaxial, and
Z [Qiml?| (22 triaxial loading, respectively. Each of the cases has strain rate

21+1 & . o )

e=10%/sec. In the plots it is clear that the behavior that the
see, e.g., Ref. 58. Their use drastically reduces the amount gtiadrupole moment has first a nonzero value and then makes
data to be shown. Only the positive’'s are needed foQ), a rapid dip but returns back to a nonzero value due to the
due to the square of the norm @, and Eq.(21). transverse elongation is the strongest in the uniaxial case. On

Technically the calculation of the multipole moments hasthe other hand the octahedral shape measured g more

been done using the information about the shape of the voigronounced in the biaxial and triaxial cases than in the
obtained from the surface triangulation procedure explainedniaxial case as explained qualitatively earlier. Hence we
earlier. As in the calculation of the void volume, some re-find that the multipole moments introduce a good method to
finements have been introduced to reduce the uncertainty imeasure the shape changes of the void. The nonzero values
the values of the moments that arises from single atoms ne#or Qs, as well asQ, in other cases than uniaxial, indicate
the threshold for inclusion as surface atoms. These bordethat the void is not(cubically symmetric in these simula-
line atoms can appear intermittently on the void surface durtions. It should be mentioned that these first four moments

1
Q|mEr——2f Yim(6,6)r?(6,¢)dQ, (20

Q=
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FIG. 10. Multipole moments of the void surface calculated using (. (a) Quadrupole momen®,,, with m=0,1,2 for uniaxial
expansion at=10%/sec.(b)—(d) The moment®), for | =1,2,3,4 in(b) uniaxial, (c) biaxial, and(d) triaxial cases. They are calculated using
Eq. (22) and the strain rate = 10*/sec. See the caption of Fig. 1 for details of the simulations.

are enough to characterize the shapes of the void and thevolution is related to the stress-triaxiality as the system is
higher moments contain little relevant information. This wasexpanded. By plotting most of the measured values together
checked by creating a three-dimensional surface based on the one figure for the uniaxial simulation at the strain rate
moment values and drawing it in the same figure with the_ 1 8/sec it is possible to compare the evolution sequence
aCt“"’?' positions o_f the surface atoms using a standard comg, investigate causality, see Fig(d1 For clarity, we have
mercial visualization program. The surfaces overlapped Veryy osen not to plot many quantities in the figure, e.g., plastic
well. strain, plastic work, and temperature. However, their con-
V1. SUMMARY OF THE UNIAXIAL CASE comitant behaviors are included in the verbal explanation
: below and shown in previous figures. The data shown in this

Based on the data shown earlier in this paper for the shapégure are from the restarted simulati¢gee the explanation
and volume changes of the void as well as the stress-straimear Fig. 8, as are the data in Figs. 8—10. The mean stress
behavior and the stress triaxiality, it is evident that theand stress triaxiality data are from that simulation, too, and
uniaxial loading raises many interesting aspects to be studiettius are different from the data shown in Fig&)land 3a).
in more detail. Therefore we now concentrate on the uniaxialn any case, the overall behavior stays the same as well as
case when summarizing how the void evolves and how théhe other details such as the system size, etc.
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X ©,[GPa] fQ The early departure from elastic behavior prior to the plateau
120 P ' ' RRRE is much less pronounced. The change in the void shape be-
1020 570 0.012 gins just at the point the mean stress deviates from elastic
020 565 oot Y behavior:Q,, goes rapidly from the positive value acquired
820 5 g oot 005 during elastic expansion to a negative value, i.e., from a pro-
20 late shape(elongated in the direction of the straito an
620 353 0009 0.00 oblate shapéexpanded in the transverse directipr@,, on
T 550 0.008 the other hand, drops from a positive value, almost reaching
M o ¢ zero at the prolate-to-oblate transition poiat<{5.45%) and
420 ' oto rising even larger value after than fact, the oblate shape is
sa0 S40f 0.006 somewhat more pronounced than the earlier prolate shape,
220 535 —— . . , : 0,005 -0.15 seen as a larger absolute value@; in Fig. 10@]. When
500 520 540 560 580 600 620 Q, starts to dropQ, starts to rise. Then after the prolate-to-
strain () [ % ] oblate transition pointQ, begins to saturate. At a strain of
x o, [GPal fQy £=5.55%,Q, is 1.5 times as large as its value at the end of
oap 2 ' ' ' ' ' ) 0040 0.20 the elastic phases(=5.25%). Mean plastic strain, equiva-
mo 1B f 1/ 006 s lent plastic strain, plastic work, and temperature increase to-
200 695 | 002 gether with porosity. Their increase starts immediately at the
18.0 6.65 0028 yield point, i.e., when the mean stress first deviates from the
160 635 0024 003 elastic behavior. A bit later than the plastic strain, equivalent
140 ¢0s 0020 000 plastic strain, plastic work, and temperature, the stress triaxi-
120 . 0016 _y s fahty increases simultaneously with the f|rst. substant!al drop
100 ool in the von Mises stress. The fact that the increase in stress
8.0 -0.10 triaxiality follows later is dependent on how the ratio be-
60 > 0.008 o5 tween mean stress and von Mises stress develops, as dis-
40 483 0004 cussed earlier. In Fig.(8) and in the data reported in Table |
20 4 o 700 730 760 790 820 850 ss0 L the stress triaxiality started to increase simultaneously with
strain (€) [ % ] the mean and von Mises stresses deviating from the elastic

behavior. The increase of stress triaxiality is caused by von

FIG. 11. (a) The mean stress,, (thick solid ling), stress triaxi- ~ Mises stress plummeting in contrast to nearly constant mean
ality y (dotted ling, volume fractiorf of the void(dashed ling and  stress. The drop in von Mises stress follows from the flow of
the quadrupole momer@,, (thin solid ling from the simulation  dislocations nucleated at the void and from the relaxation of
with uniaxial expansion at=10%/sec. See the captions of Figs. 1, the shear stress of the system due to the flow.
3, 8, and 10 for the detailgéb) As a comparison the same measures  The third region is when the void fraction, mean plastic
as in(a), but now for the case having an initial void radius of 1.1 strain, equivalent plastic strain, plastic work, and tempera-
nm and 863 543 atoms in the system undergoing uniaxial expansiofure switch from rapid increase to a linear growth or even
at the same=10%/sec. saturate. Subsequently the increase of the stress triaxiality

slows down and plateaus. The value at the plateau is related

The evolution of the void and the system’s stress-strainn continuum models to the ratio of the mean stress threshold
behavior can be divided into three or even four differentfor void growth to the flow stress. At the plateau von Mises
regions. The first region is when the system expands elaststress saturates at a small value, close to the tensile strength,
cally. The mean and von Mises stresses increase smoothlgnd the shape of the void starts to become more of octahedral
nearly linearly, and the stress triaxiality stays nearly constanshape although having a nonzero quadrupole moment, too.
Through the elastic region the void volume fraction remainsHence at the second and third regions the mean stress is
nearly constant, too. It is not exactly constant, since due tmearly constant, but von Mises stress and the stress triaxiality
the free surface of the void, the elastic expansion is a bithanges.
greater at the surface of the void compared to the total sys- A conclusion might be that once the threshold for void
tem. Trivially the mean and equivalent plastic strains as welgrowth is reached, the population of dislocations rises suffi-
as the plastic work are equal to zero in the elastic region, andiently to relax the shear stress quite effectively and it drops
temperature decreases in the system. The quadrupole mima low value(the flow stresg the mean stress, on the other
ment has a nonzero value because of the elongation in theand, plateaus since it is relaxed by void growth and requires
direction of the strain. that the stress at the void surface be sufficiently high to con-

The second region begins at what we call the yield pointfinue to nucleate dislocations. The fourth region is the fail-
i.e., the onset of rapid growth of the void facilitated by plas-ure, when the system breaks, and it is not studied here.
tic deformation. Heterogeneous nucleation of dislocations at In order to see if the rapid changes studied above are due
the void surface is the primary mechanism for plasticity into the smallness of the size of the void we have done one
the simulation, and thus it is at this point that the measureédditional simulation with a system in which the initial void
guantities start to deviate from their elastic behavior. Theadius is half that in the other simulations; otherwise, the
mean stress begins to plateau here, but fluctuating somewhalstem size is the same, see Fig(bl1For the small void
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simulation, uniaxial strain at a strain rate= 10°*/sec has 0.016

been used. Here the difference is that the quadrupole moment 0.013

suffers stronger fluctuation due to the smallness of the void, o o

where each of the surface atoms contribute more to its value = 0013

and therefore is even more sensitive to the selection criterion % 0.012

of surface atoms, and also the shape changes are harder to £ oo11

determine based on th@,, behavior. The other main differ- 2 0010

ence is that the growth of the void is linear all the time. Also g 0.009

the changes in stress triaxiality in fact advances the porosity )

when saturating, and the mean stress does not fluctuate but 0.008

drops more rapidlythis can be compared with the case with- 007 s 54 se  ss 60 62
out the void, where the mean stress drops abruptly strain () [ % |

We have also compared the mean plastic strain and the
void volume fraction calculations. In continuum solid me-  FIG. 12. Porosityf calculated from the actual void fraction as in
chanics, it is assumed that solid materials are plastically inEd- (18) with ér=0.58, (see the text for details ofr) and from
compressible. Any local dilation, as indicated by a change irfhe mean plastic straiaf, as in Eq.(24) from the simulation with
the mean strain, is attributed either to elastic dilation or to ainiaxial expansion at=10"/sec. See the captions of Figs. 1, 4, 8,
change in the porosity of the material, where the porosity igihd 11 for the simulation details.
equated to the void volume fraction. The poroditgnd the
mean plastic straire” are then related according to the indicating a linear correspondence betwéamde/, as long
equation® as the void fraction is small.

f=3(1—f)el, (23 VIl. CONCLUSIONS AND DISCUSSIONS

where the dots denote time derivatives. Integration with re- !N this paper void growth in copper has been studied in a

spect to time, porosity fronf, to f, and mean plastic strain high range of_straln rates at the atomistic level. T_he model

from zero toe", gives has been designed to simulate the growth of a void nucleat-
m:?

ing from a very weakly bound inclusion during strain-

controlled dynamic fracture. In order to see the effect of
various modes of expansion and the related stress triaxiality,
three different modes have been applied, namely, uniaxial,
biaxial, and triaxial. The molecular dynamics method devel-

ther effect h | iated with dis| oped here has been shown to be efficient enough to explore
other eflects such as excess volume associated wi ISIOCRe different loading conditions and strain rates varying over

tion cores, vacancies, or othgr Qefects could require COMeGLur orders of magnitude. A uniform expansive loading of a
tions. In comparing the porosity inferred from the mean plas-

. . ; . . m with periodi ndar nditions h n imple-
tic strain and that calculated directly as the void fraction, thersg e?:l?ed ustingpz vc\)/gllcidt;:?ilé e?:las{:a?% gdr;gtr?x n?Ztr? gde Forecr? e

e?éngest calculations, the MD method was parallelized suc-

f(eP)=1+(fo—1)exp —3eh). (24)

where fy is the initial porosity. It is interesting to check
whether this relationship holds for the MD simulation, where

that the porosity from the mean plastic strain is overesti-
\r/n?éed' che belllr:ave Thalt tt?ne dtlﬁcn\elp%ncf:?/ atri|s§s Vt\)lecsuse 3ff stic strain, plastic work, and temperature have been cal-
f_o dstlrjl ace_a cfa cu? 9 ?h 0 h?ﬁ on, te ?the € culated and compared with the microscopic quantities mea-
inéd the void surtace 1o pass throug € center of € SUls, o at the atomistic level, such as the volume of the void
face atoms. However, the properties of the surface atoms a

i . hd its shape change. A method to describe the shape
distinct from the bulk atoms. Therefore, there is some ambi- hanges in the void is introduced and employed, namely,

gu!]Ey in Wr??tri“ thef ?;]Jrface fshoulddt_)e” placf[edihan(g ?ks.maﬁalculations of the multipole moments of the void based on
unirorm- Shitt or of the surtace radially into the DUulk 1S spherical harmonics in polynomial, not trigonometric, form.

enough 1o account for the discrepqncy. In Fig. 12 we haY%hen calculating the volume of the void with an unknown
plotted the comparison of the porosity from the mean plasu"”shape or defining solid surface for the multipole moment

strain, Eq.(24), and from the void fraction, Eq18), using a calculation a useful method, namely, optimal triangular tes-

constant radius increas¥ =0.58a,, wherea, is the lattice sellation, has been introduced. This method has been ex-

cr:)nsta}gt for the ymdfyolume calculatéqn. The c]?rr((af#on fortended from the usual planar case to nonplanar objects such
the void sizedr, is a fit parameter and it varies for different < o surface of the void.

strain rates and slightly for different loading modes, but is When the different measured quantities are compared
always positive and of the order of the latt'C? consttlt with each other during an MD simulation in uniaxial expan-
should be noted, too, that by Taylor expanding B#) and g5, it is found that at early stages of plasticity von Mises
discarding the higher-order terms, it becomes stress, and thus also stress triaxiality, plays a more significant
o b role to the void growth and its shape change than expected.
flem)=Tfo+3(1—fo)en, (25 On the other hand, most of the macroscopic plastic quantities

ises stress, stress triaxiality, mean plastic strain, equivalent
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as mean and equivalent plastic strain as well as plastic worind they capture if the object is offset. The dipole moments

and temperature, seem to be more dependent on the simultare

neous saturation of the mean stress. These calculations show

a counterintuitive behavior, observed previously in con- 1 \/§ 1

tinuum void growth modeling®°!*that a prolate-to-oblate Q=3 ;r—_zJ rzda,

transition occurs. When the system starts to yield, the expan-

sion of the void switches from its original elastic extension

) S - ; 1 /31

in the direction of the load to transverse plastic expansion. ReQy= — =\ /_:f rx dQ,
The yield stress values for the lowest strain rated st 2 N 22

are in reasonable agreement with the experimentally mea-

sured spall strengthThe fact that mean plastic strain can be 1 /31
mapped to the growth of the void is consistent with con- ImQy,=—7 ZT_ZI ry dQ, (A1)
tinuum models?®

This study leaves many open questions. For instance, r§gherer2= 1/4x [r2(6, $)d(Q.

when the system yields. Since the fcc crystal studied here igonzero values if there is ellipsoidal shape in the object. The
perfect apart from the void, the dislocations form from void’s g adrupole moments are as follows:

surface. They are also responsible for its growth by carrying
material away. Thus the characterization of plasticity sur- 1 [51
rounding a growing void at the level of dislocations should QZOZZ\/::ZJ 322-r%dQ,
. . . . . o
be investigated, too, especially with respect to the stress tri- r
axiality. These investigations are undenrffayTheir results
are beyond the scope of this paper, other than to mention that REO, = — 1 /Eif <z d
the identification of the yield point in this paper does indeed 21 2 N 27,2 ’
correspond to the point of initial nucleation of dislocations.
Another topic that is beyond the scope of this article and 1 151
needs further investigation, but is closely related to the stud- ImQ,=— Exlz—:f yz A},
ies here, is the quantitative connection between the shear m
stress, and thus the mode of the loading, and the onset of the
void growth and the resulting change in the stress state. 1 /151 ( ,
Other areas where this study can be extended are different ReQ2=7"\ ﬂr—_zf xT—y dQ,
materials including different lattice structures such as body-
centered-cubic lattices; in the uniaxial case other orientations
g ) . ) 1 /151
of the lattice as_(llO) and (111); continuously changing |mQ22:§w IZ_:ZJ' xy dQ). (A2)
stress triaxiality in order to create the full yield surface to the T
stress space similarly as in Gurson type of continuum )
studiest® to include grain boundaries, defects, preexisting Terms withl=3 are the octupole moments and they get

I,2

dislocations, several voids, etc. nonzero values for tetrahedron shapes:

1 /71(1 ) )
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APPENDIX: MULTIPOLE MOMENTS

The 24 different polynomial terms of the multipole mo- R@gzzi\lg’%f 1z(x2—y2) dQ,
ments used in this study are listed befere the conven- 4N 2me2) x

tional notation is used, so that the principal axis of the coor-

dinates is thez direction. When these formulas are used in 1 /1051 (1
interpreting the void shape evolution, the principal axis is the IMQz2=5"\ ﬁr—_zj TXyzd,
direction with uniaxial loading, i.e., the coordinate in the

paper. Similarly the load-free directiolysand z correspond

1 /351 (1
to x andy be|0W: _ ReQz=—5 —:2f —(x3-3xy?) dQ, (A3)
The polynomial terms wheh=1 are the dipole moments 8NV me2)r
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1 /351 (1 3 )
ImQs3=35 ?r——zJ’ 7 (y7—3x%) dQ.

And finally the terms withl =4 are listed. They are the
hexadecapole moments and capture octahedron shapes:

3 111
_Z\/;r__zf r_2(3r4—30rzzz+3524)d9,
3\F1J L 792
3 ;r_—z r—zxz(z
51
|mQ41—__ f
3 [51(1
ReQq=3 ZT‘J S O-yA(T2-r%) da,

ReQ41= — —3r?)dQ,

1
—Zyz(722—3r2) dqQ,

PHYSICAL REVIEW B69, 134101 (2004

3 /511 .
ImQ42=Z Er_—zj r—zxy(7z =TI )dQ,
1
ReQ3= — \/> J _2(X3_3Xy2)2 dQ,
3 /811 ., 3
3 /3B1l(1
ReQus=75V Er__z‘f r—z(X4—6X2y2+y4) dQ

3 /3511
IMQas=7 Er——zf r—ZXY(X —y9dQ.  (Ad)

IMQu3= —
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