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Penetration-depth anisotropy in two-band superconductors
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The anisotropy of the London penetration depth is evaluated for two-band superconductors with arbitrary
interband and intraband scattering times. If one of the bands is clean and the other is dirty in the absence of
interband scattering, the anisotropy is dominated by the Fermi surface of the clean band and is weakly
temperature dependent. The interband scattering also suppresses the temperature dependence of the anisotropy.
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The two-gap superconductivity of MgBis established The systen{1),(2) should be complemented with an equa-
experimentally™> and by solving the Eliashberg equations tion for A(k). We will not use it here, rather taking(k) as
for the gap distribution on the Fermi surfateAccording to  a given. This simplifies the problem greatly because solving
the latter, the gap on the four Fermi surface sheets of thifor A(k) usually involves a number of assumptions which
material has two sharp maxima;~1.7 meV at the twor  are difficult to control.
bands and\,~7 meV at the twoo bands. Within each of We use the approximation of the scattering time
these groups, the spread of the gap values is small.

A number of physical properties of MgBwvere reason- f d?qp(q) W(k,q) f(q)=(f)/7; (3)
ably well described within a model with two constant gaps
on two separate Fermi sheets. Still, the data on anisotropy df - -) stands for the average over the Fermi surface. Clearly,
the magnetic-field penetration depthare controversial. The the approximation amounts to the scattering probability
anisotropy parametey, =\./\, has been calculated within = 1/7 being constant for anit andq.
the weak-coupling clean-limimodel and shown to increase  For two well-separated Fermi surface sheets, the prob-
from about 1.1 aT =0 to ~2.6 atT..2 A similar prediction  abilities of intraband scatterings may differ from each other
has been made within Eliashberg formali$Qualitatively, —and from processes involvirigand g from different bands.
the predictions were confirmed in scanning tunnelThe effects of the interband and intraband scattering upon
microscopy->**small angle neutron scatteritgand magne- various properties of the system are different, e.g., the intra-
tization experiments® However, other groups recorded dif- band scattering does not affe€t, whereas the interband
ferent behaviot*~'’ Given variety of samples used, it is im- does. Therefore, Ed3) is replaced by
perative to consider effects of scattering upoR, a
nontrivial problem given different roles of the intraband and 2 _
interband scattering in two-band materials. The problem has f 070 P(Ga) WK, 8e) F(0a) = el F)al Tpa- - (4)
been discussed by Golube¥ al.® who focused o\ (T) in
the absence of the interband scattering. The dirty Ikniitas
E;egﬁfenvsi::dhe%gegvﬁg “Sgi*?”{thhén vsggi?cbonglifr?g:mglslzrcri]e?n:p- relative densities of statebt; + N,=N(0), orv;+v,=1.

proach. It is shown below how arbitrary interband and intra—staﬂevgﬁjvgs?szunrgz tha? g;iﬁrog?;i}n:@?g‘a) dtsal:/I\?rgthir(ionE_
band scatterings can be treated within the weak-couplin 1 2 ’ 9Eq.

model ?1) for k in the first band, we have

Our approach is based on the quasiclassical version of the 121
BCS theory for a general anisotropic Fermi surface and for 0=2A,09;—2wf;+ T—n[91<f>1—fl<9>1]
an arbitrary anisotropic order parametkfk).?° In the ab-

Here a,8=1,2 are band indiceg;- - - ), denotes averaging
only over thea band, andv,= [d?q, p(q,)=N,/N(0) are

sence of currents and fields we have for the Eilenberger 12
Green’s functiond (k,w) andg(k,w), + 7—12[91<f>2—f1<9>2]- (5
0=2Ag—20f+l, 1=g2+f2. 1) For a uniform sample in zero field and withindependent

A’s in each band, the functiorfsg arek independent{f),,
Here the scattering terrhis given by the integral over the = f« @1d(@)«=0,. Then, we have

full Fermi surface,
0=A,01—of1+v5[09:f,—1951/2745. (6)

) The equation for the second band differs from this by re-
I(k):f d“ap(q) Wik, 9Lg(k)f(@—f(kg(@] (2)  placement 1+2. The fact thatr;; and 7,, do not enter the
system(6) is similar to the case of one-band isotropic mate-
with W(k,q) being the scattering probability frompto k at  rial for which nonmagnetic scattering has no effect ufign
the Fermi surface. The Matsubara frequencies are (the Anderson theoremlt is the interband scattering that
=7T(2n+1) with an integen (£ =1). Thelocal density of = makes the difference in the two-gap case, the fact stressed
statep(q) is normalized:fd?qp(q)=1. already in early work!#2
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Two equationg6) are complemented with normalizations vy
g2+f2=1 to form a sufficient set. Following Ref. 23, we vIlf;=2449; - 20f;+ ——[gs(f)1—F1(g)1]
introduce variablesu,=g,/f, and obtain after simple "
algebrg*?1:22:25 vy
+ 7_—12[91<f>2_f1<9>2]- (13
® Up—Uup Vo . . . .
A—=u1+ {————, §1=ﬂ; Here,v is the Fermi velocitylI=V +27i A/ ¢o. The second
1 Vuz+1 T1281 equation is obtained by 2. Two equations for the
“anomalous” functionsf * are obtained from these by com-

g U on ; plex conjugation and by — —v.?° The normalizationg?
AZ_UZ {2 m 52_2721A2' (@) +f,f5 =1 complete the system.

We look for solutions in the form
The Eilenberger functions in terms of variahlere

f=1/J1+u?, g=u/J1+u° (8)

In general, the systelfY) can be solved only numerically.
However, neaif;, u=g/f>1 and one obtains

— 0 1 i _ 0 1 —i
fo=(fO+11) el 7 =(fO4§HH)e-iom)

9.=05 49, a=12, (14

wheref(®) andg?) can be expressed in termsw$ obtained
solving the systen(7). The form(14) takes into account that
o o+ A+ A, in the London approximation on[y the overall pha@ede—
Uy=—— (9)  pends on coordinates. We obtain for the corrections after
Ap 0+ (L1t 82)A, straightforward algebra:

U, is obtained by +-2. Clearly,u,= w/A, in the absence

(WA (1) 7 _:£(0)

of interband scattering. Far=>1, we have 91" A1~ i @ =Ty "0 PR2,
WA -t wr=if PDouPr2,
Ut & 6*:(§1+§2)A1A2: gt et
LT e G181+ 0A,

for 7,,=7,;. Moreover, if the interband scattering is strong, whereP=V §+27A/ ¢, and
Eq. (10) holds at anyT. To see this, look for solutions of Egs.

A 10
(A) (10) 2gg(M)+ FO(FV+ F+) =0, (15)

(7) in the form Ap=Ag+ vy f 0127+ vt D127y, (16)
W (1):;_: o+ Vlgg_O)IZTll'f' Vzg(zo)/Zle. (17)
u“_e_*+va’ a=12, (11) The equations for the second baigcoupled from the first
_ _ _ are obtained by 4 2.
wherev , are small corrections. Substitute these in E@$. To evaluate the penetration depth we turn to the Eilen-
and keep only linear terms in to obtain berger expression for the current der&ity
* * __
O Gl Y j=—47|eNO)TIMY (vg), (18
Aq[14+9* (411 ¢2)] w=0
and compare it with the London relation
N € ({1811 HA) — A1 AL(L1+ E) 12 8
AA[1+g* (4 + ’ 4. _1[ Po
18,[1+9%(01+40)] TJi=—(?\2)ik1<2—V0+A _ (19
77 k

whereg* = w/Jw’+ €*?. For{,—%, v, remains small only

if €* is given by expressioflL0). Here, (\?); is the tensor of the inverse squared penetration

It is easy to see that™ is the common energy gap for depth; summation over is implied. We now findg{? from
both bands’ energy gaps. It does not seem possible to provigge systen(15),

a general expression fe* in terms ofA, and an arbitrary

interband scattering strength. Still, in principle, one can if02,p £(0)2g(0)
evaluate any thermodynamic property of a two-band material g(ll): , (2) ) =i ,1 vP; (20
knowing the solutionsi of the systen(7). 2(A1f17+ 01977) 2wy

- i i O]
(Ol)f the ground-state functiongwhich we call now ™, gt is obtained by replacement-12. Substitutingg® in
g‘?’) are known, one can study perturbations of the unn‘ormE (18) and comparing with Eq(19) we obtain @
state such as penetration of a weak magnetic field, i.e., the™ paring ‘

problem of the London penetration depth. The perturbations 16m2e®N(0)T f2g
f(, g™ should be found from the full Eilenberger A\ lt=————— 2 V(v (2D)
equations® we have for the first band c @ W,
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with B%2=w?+ A2 . This expression appears in the standard
penetration depth calculations, see, e.g., Ref. 27. For known
A (T), the sums in Eq(21) can be evaluated numerically;
however, forT—0, T., and in the dirty limit they can be
done analytically.

At T=0, the sums are replaced with integrals according

0.15

4 0.10
= to 27TS,=[idw. Denoting Z(T)=2xT=,A%B%B
“ +1/27) we obtainZ(0)=1 for 7—o~ andZ(0)=w7A for

TA<1.
Near T., g—1 and we have for clean band,f% o’
=7{(3)A%87°T3, whereas for dirty bands it isA2/4T2.
Different impurities introduced to MgBmay affect dif-
ferently the scattering within the bantfs:*° It is of interest
0 o2 o4 o8 o8 o to see how the anisotropy of is affected by differences in
T scattering timesry; and 75,. We first look at two limiting
° situations when one of the bands is clean while the other is
FIG. 1. The anisotropyy,=\/A,, and the inverse square of dirty. If the first () band is clean and the second)(is a
the penetration depth?/\2, vs T/T.; L2=16m72e®N(0)(v2)/c2.  dirty extreme (r»,A,—0), one can disregard the contribu-
The curves labeled 1 correspond to the clean limit, aflake zero.  tion of the dirty band to obtain for both=0 andT=T,:
The curves labeled 2 and 3 are calculated for a weak interband

0.05

) . 2
scattering:71,A 1(0)=500, 7,;A,(0)=2000 ¢;=1); the curve 2 is (v
for a cleans band, 7;A;(0)=10, and a dirtyo, 7,,A,(0)=0.1; M(0) =Y\ (To)=~ (02 ~0.89. (24)
the curve 3 is for a dirtyw and cleano: 7;A4,(0)=0.1, Ve/1

72282(0)=10. Curves 4 are for the intermediate interband scatterif the 7 band is dirty and ther is clean, we have
ing strength 7,A1(0)=5, 75,A,(0)=20, and 7;A,(0)=0.05,

7oA 5(0)=2. <v§>2
Only the unperturbed function§,g enter the penetration M(0)=n(Te)= (2)
depth; for brevity we dropped the supersciip). Equation ¢’z
(21) is our main result. Thus, to evaluate the penetrationThese two estimates constitute the minimum and maximum
depth for given order parametess, in the presence of scat- possible values fok anisotropy of MgB. Thus, when one
tering, one has to solve the systd for u,(w), then to  of the bands is clean and the other is dirty we expect a
substitute the equilibrium functiorfs,, g, [given in Eq.(8)]  Weakly T dependenty, , the value of which is determined by
in Eq. (21) to sum up ovew. the clean band.

The band calculatioR8 yield for MgB,: »;~0.56, v, If the intraband scattering is strong in both the bands
~0.44, (v2),~33.2, (v3),~42.2, (v)),~23, and (v2), (T11A1~T72A,<1, 71,=), the bands contribute to the su-
~0.5x 10" cm?/s2. Tensorgv;vy); and(v;v), have oppo- perfluid density tensor\?);* as two independent dirty su-
site anisotropies: perconductors. To see this, we note that-g,/27,, and the
sums overw in Eg. (21) can be evaluated exactly,

~6.8. (25

2 2
1% v
< §>1~0.79, < ;‘)2%46, (22) , ,
(ve) (ve)2 D f101 < 2mil1 sl ! 26
whereas averaging over the whole Fermi surface yields a © ) P w2+A§ 2T hZ_T

nearly isotropic result{v2)/(v2)~1.2.

In the cleanlimit (all 7,,—%*) ©'=w andA/=A,. Be-
sides,u,=w/A, and f2g,/w/=A2/(w?+A2)%2 Expres-
sion (21) reduces to the result given in Ref. 8. For Mgt A2 A
gives nearly isotropic penetration depth at low temperatures: (xz)ﬁ(lz— E gi(f)Aatanhz—“, (27)
at T=0 the sums ovew in Eq. (21) are the same; this gives c’h “a T
7x(9):)\cc/)\aa: (va)/(ve)~1.1. NearT,, the sums are \yhere the anisotropic conductivities of the two bamdg!
*A,, and the contribution of the strongly anisotropic = 2e2(3,,),,7,.7.N(0) are introducedwe write here#

band with the large gap dominates; this give$Tc)~2.6.  explicitly to avoid confusion in dimensionsThis yields,
The curve 1 in Fig. 1 shows, (T) for this case.

Then, we arrive at the result obtained by Gurevich with the
help of the dirty limit Usadel equatiorts,

If only the intraband scattering is presentr(,= 75, oA+ oA,
=), the functionsf,g are the same as in the clean limit. Y2(0)= D LD (28
We readily obtain oAt oA
29, A2 o MAZ+ g2A2
Je_ “ (23) YA(Tp) = 2asil a2 (29

0, BABat 127, o2+ DA%’
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Finally, we discuss the possibility of strong interband ior can be modeled assumingy,(T)~A (0)tanh/1it—1
scattering As was shown above, in this case= w/e* with, e.g.,A,(0)=4A,(0)=2T,. Figure 1 shows results of
+0(1/¢) in both bands, see E{l1). The Eilenberger func- the numerical evaluation of, (T) for scattering parameters
tions are also the same in the two bantis:e* / w2+ €*2, given in the captionwhich are not that extreme as in the
g=w/Jw?+e* 2, " =(A). Evaluation of the sums oves  above discussionThe curvesy, (T) are obtained by solving

in Eq. (21) is simple provided the intraband scattering is EAS-(7) for u's in two bands and then by evaluation of the
sums in Eq.(21). It is worth noting that although th& de-

strong too, ; _ X . .
pendences shown in the figure are obtained using approxi-
,_, 8mEN(0) € mate A(T), the end points of these curves B0 and T
(A= € tanh= 2 vvivaTer (30 =T, are exact.
¢ “ We conclude that both the interband and intraband scat-
T11T12 TooTo1 tering affect strongly the superconducting anisotropy of two-
M=~ T2T (3D band superconductors in general and of MdB particular.

B + ’ B + ' = . ; .
V2Tt e 1Tz V2Tl If one of the MgB, bands is dirty, the anisotropy is domi-

Thus, all components of\();, have the sam@& dependence nated by a cleaner bang; (T) is close to unity(and might

and the anisotropy parameterTisndependent, be even less than)lif the 7 band is in the clean limit,
5 <UZ> ot p <v2> , whereas.in _the opposite situation of a clean 'y>}(T) is

y2= Na/i’l’ P2\ Tar2tz (320  large, being in both cases weaKlydependent. The interband

v1(02) 171+ v (v2) o7y scattering suppresses thelependence of, as compared to

the clean limit discussed earliér.
If all 7's are the same, we havgl=(v2)/(v2). For T

—T,, this result was obtained in Ref. 8; we now see thatit We thank J. Clem and S. Bud'ko for useful discussions.
holds at any temperature. Ames Laboratory is operated for the U.S. Department of En-

To recover the behavior of, (T) between O and’. one  ergy by lowa State University under Contract No. W-7405-
needs explicit dependencidg T). Qualitatively, this behav- Eng-82.
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