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Coulomb gap in one-dimensional disordered electronic systems
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We study a one-dimensional system of spinless electrons in the presence of a long-range Coulomb interac-
tion (LRCI) and a random chemical potential at each site. We present a Tomonaga-Luttinger liquid description
of the system. We use the bosonization technique followed by the replica trick to average over the quenched
randomness. An expression for the localization length of the system is obtained using the renormalization-
group method and also a physical argument. We then find the density of states for different values of the
energy; we get different expressions depending on whether the scale of energy is larger than or smaller than the
inverse of the localization length. We work in the limit of weak disorder where the localization length is very
large, at that length scale, the LRCI has the effect of reducing the interaction pararieter value much
smaller than the noninteracting value of unity.
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In a strongly localized electron system with a long-range D(w)~|w[TF772, 2
Coulomb interactioLRCI) between the electrons, the den-
sity of stategDOY) is expected to exhibit a gap at the Fermi
energy called the “Coulomb gap:”A phenomenological

argury_eln’t suggests that the DOS should go BY«) In this paper, we study a model of spinless electrons with
~|w|®"%, whered s the spatial dimensionality of the system | pc| a5 in Ref, 12with quantum effects, i.e., with the elec-
andw is measqred fr(_)m the Fermi energy. We shall considefyqp, hopping term in the presence of a random chemical
here the one-dimensional case where the DOS is expected fyiantial at each site. We find that a TLL pict@reather than
show a logarithmic behavior in the extremely localizedy semiclassical approathprovides a convenient description
!|m|t. - In Iow—dlmenspnal systems, _the electron—el_ectr(_)nof the system. The localization length is derived using a
interactions play a dominant role leading to a behavior Sigyenormalization grougRG) study of the effective disorder-

where the exponeny [defined in Eq.(15) below] is deter-
mined by the localization length of the system.

rise to a Tomonaga-Luttinger liquiTLL),°~8 whereas the
LRCI is believed to lead to a Wigner crystal.

It is well known that for a one-dimensional noninteracting
electron system with random disorder, all the states are |

calized due to repeated backscatterings of the eIec’tPons.unity (which is the value oK for the noninteracting system

However, the DOS of noninteracting electrons is finite at thee should remark here that the present one-dimensional dis-
Fermi energy! The presence of the LRCI together with ran- ordered electron system with LRCI appears to be a unique

dom impurities modifies the DOS in a drastic way and SUp'exampIe of a TLL withK <1.

posdedly '?ads Ejo th%]COlél.orgb gap t&ghaviqr. Inl a? earlier Once we make use of a TLL description, the DOS can be
study, Vojta and Johhstudied a one-dimensional electron ¢) .4 in a standard wdy'® We will show that for w

system, with LRCI and randomness, in the extremely Iocal->U /Lo, the DOS is given by
ized limit where the overlap of electronic wave functions can F-o
be neglected. They find the form of the DOS tc be

cal understanding of the expression fby.) Due to the

LRCI, the interaction parametét of the TLL is found to be

effectively a function of the length scale. At the length scale
o, the value ofK is given by a value much smaller than

D(w)~w|?,
D(w) (l o)™ &
~ n_ s
7 ol i+n 1
B=—5—+ -1, 3
whereE, is a cutoff energy:* In a recent paper, Lé&de- 2\1+7

rived the expression of the DOS of a one-dimensional system

of spinless electrons with LRCI and impurities at randomwhere,unlike a standard TLL itself depends om as dis-
positions in the opposite limit where the quantum effectscussed below.Equation(3) resembles the result of LEefor
(electron hoppingplay a dominant role, and the pinning is 7> 1; however,z is not taken to be a function @ in Ref.
weak, i.e., the localization length is much larger than thel2.] For o<vg/Ly, we will argue that the DOS is given by
interimpurity distance. Following studies of a pinned Wignerthe expression in Eq1).

crystal*!* and using a semiclassical approximation, ¥ee ~ The Hamiltonian of a disordered system of spinless elec-
finds the DOS at low energy to be trons with LRCI consists of three partl=Hy+Hc
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+Handom The noninteracting pattly and the Coulomb in-  bosonic language. We now write the Coulomb interaction in
teraction partH¢ are written in terms of the continuum elec- Eq. (7) in momentum space as
tron fields as follows,

1
- —— | dxdyUx—y)dyd(X)d,d(y)
Ho=ve f dx(—igtodrtivlom), @ zWZJ YUX=Y)3xb(X) 3,y

dxdyUx—y)p(x)p(y), 5

— o0

1 “ n “
(- - = [ akeomdnod-n,  an
HC:EJ’ 41

whereU (k) is the Fourier transform of the Coulomb inter-

where the form olU(x—y) will be specified later, ang is action. We can expanﬁ(k) in powers ofk as

the electron densityThe fieldsyr(¢, ) are the right-moving
(left-moving) electron operatork.The random part of the VIS N L2
Hamiltonian consists of two parté) the forward-scattering Ulk)=UpHtUsk+ Upk™ - - (12
partH¢, where the scattered electrons remain in the vicinityConsidering the scaling dimensions of the various terms in
of the same Fermi point, an@i) the backward-scattering Eg. (12), we conclude that the constant term is marginal
partH,, where an electron is scattered fronkg to ke, or ~ under renormalization, whereas the terms involving powers
vice versa. of k are irrelevant. Hence, the important contribution arising
We now rewrite the full Hamiltonian in the language of from the Coulomb interaction in Eq11) can be written as
bosonizatior:'® The low-energy and long-wavelength exci-
tations of the noninteracting part can be written as

_£ . I — :& 2
Ho= 5 [ akebbd—= 5 [ axiad T,

HOZ;_;ffde{[ﬁxa(X)]2+[0X¢(X)]2}, (6) (13)

. ey The constant], is given by
while the Coulomb part is given by

. L/2 q° L
1 (= UO=J dx =2q%In—, (14)
chﬁf_md)(dy Ux—y)dxp(X)dyp(y).  (7) L2 \X?+d? d

whereq is the charge of the electron, adds the width of

The forward-scattering part is given by the wire which is of the order of the lattice spaciagThe
meaning of the cutoff length will be discussed belowWe
H.= dxh T oyt have assumed that>a,d, this will be justified late). We
! ffoo XhOOLYR(X) Y00 + 10 (0] now define a dimensionless quantity
1 (= 29> L
=——| dx h(x)dxd(x). 8 =—1In—
= (X) dyp(X) (8) ” valna' (15)

The forward scattering is due to the real random fig(d); ~ Then the Hamiltonian can be written in the forkh=H,
its effect can be taken care of by a rescaling of the bosoni¢- Hc+Hy, where
field ¢,° and we shall henceforth ignore this part. The back-

scattering part can be written as Ho+Hc=;—7FTf dX[(0,0)2+(1+ 7)(dx$)?].  (16)
Hy= f:dx[g(x) PR L (X) + EX(X) ] (X) hr(X) ] _Equation(16) can be brought into a standard form by defin-
ing
= ifx dx] &(x)e' P02k 1 H ¢ ], (9) 1
Ta) K= N and u=veJ1+7. (17)

where H.c. denotes the Hermitian conjugate. The back- , )
scattering is due to a complex random figlek) with the e then arrive at the expression
probability distribution

u 2 1 2
HO+HC=EJ dX K(3x0)°+ 0 ()| (18)

: (10

P[f(x)]=exp[—Dgl f dx&* (X) &(X)

so that(£(x))=0 and(&* (x)&(x"))=D 6(x—x").
The Hamiltonians given in Eg$6), (7), and(9) constitute So+5c=if dxdr
the complete low-energy description of the model in the 2

In the imaginary time representation, we obtain

1
K[(97¢(X1 T)]2+ R[é’x(ﬁ(xa 7_)]2

132416-2



BRIEF REPORTS PHYSICAL REVIEW B9, 132416 (2004

1 i2 2k 1(~ -
sb:—f dxdd &(x)ePexnN+2exi Ly el (19 ch—f dxp(X)po f dyU(x—y)
Ta 2) x+Lo
The randomness is dealt with by using the standard replica x—Lg
method and averaging over the randomness using the distri- + jﬁx dyU(x—y)|, (23
bution in Eq.(10). The final form of the disorder-averaged
n-replicated action is found to be wherep, is the average density. Equati¢23) represents a
1 uniform one-body potential. On the other hand, when two
u lectrons are closer to each other thagthat their positions
_ a 24 — a 2 elec : . ! p )
Sh 2 ; f dxdr K[9:47(x,7)] K[ﬂxq5 (x,7] are correlated, then their Coulomb interaction has to be in-

cluded in the quadratic part of the bosonic Hamiltorlign.
D, > J’ dxdrds’ 94 4P , (7) to be specifi¢ which governs the density fluctuations. In
(ra)? &b xdrdr'cog 2¢%(x,7) —2¢°(x,7')], short, portions of the system which are separated by dis-
tances larger thah, are uncorrelated, whereas, within a dis-
(200 tancel,, the system can be described in terms of a TLL with
K<1.

Before proceeding further, we would like to present a
simple physical understanding of the important result in Eq.
(22) which does not make use of the replica idea. First, let us

— =(3—-2K)D, consider a weald-function impurity of strengthv, at one
dl point in a TLL. According to a RG equation derived by Kane
and Fishel’ the impurity strength/ flows according to the
dK__Liep ang Yo _UKp (o)  ©quationdV/di=(1-K)V; hence, at a distance scalewe
dl 2 L T S have V(L)~Vy(L/a)1 K. From quantum mechanics, we
5 ) ) know that the reflection amplitude for an electron scattering
where D= (2D «a)/mu® and|=In(L/a) is the logarithm of  from a single impurity is proportional t¥ if /v is small.
the length scale. FOK>3/2, the disorder is irrelevant. For Now suppose that each site in the lattice has a random im-
tion. The localization length, denoted hy, can be obtained =D,5(x—y). This means that at each sité(x) is of the
by integrating the RG equations in EQ1). At the length  ,4er of \D,, and its sign is random. Over a lendththere
scalea, we begin with some values & (much smaller than g /4 reflections since there is a reflection at each site. In
1), andu, K given in Eq.(17). [The latter requires a Knowl- ,ger that these /a reflections should add up to a total re-
edge of the length scale through Eq.(15), this will be  fection amplitude of order twhich would localize the elec-
determined self-consistently by the solution of E(&L).] tron), we must haveyL/aV(L)~1 (assuming that/a is

Since we are assuming tht<1, the quantitiesK andu 540 and using the well-known result for the sum of a large
flow very little while D flows from a small number of order number of random terms in a Brownian motiofihis gives
D¢ to a number of order 1. The length scale at which the g he  estimate Lo/a~1[V(Ly)]?, ie., Lola

disorder strength becomes of order 1 is given by ~1[Vo(Ly/a)t ]2 Since V0~\/D_ we obtain L,/a

wherea,b are the replica indices running from 1 to The
RG equations oD,,K, andu are given by®

L 1\ 1(3-2K) ~(1/D ) M3=2K),
-0 _) (22) We are now ready to discuss the density of states. For
a D energies satisfyingp=vg /L, the disorder parametd is

small, and our system can be described by a clean TLL. The

The physical meaning df, will be discussed below. DOS of a TLL is given by the relatiéh

In the limit of weak disorder @ ,—0), the form of the
localization length in Eq(22) implies, in a self-consistent D(w)~]|w|?
manner, thati) Ly>a, (i) the parameter>1 [replacingL '
by Ly in Eq. (15)], and(iii) the interaction parametét<1
due to Eq.(17). Hence the localization length in the—0 B= (1-K)? _ Vit 7.y 1
limit assumes the classical vallg/a~ (1/D )3, 2K 2 21+ 7

The significance of the localization length is as follows.

Although two electrons which are separated by more than thethere we have used the relatiét=1/\1+ ». This is the
distancel, do interact with each other through the Coulombresult quoted in E¢3). However, we now have to determine
potential, the overlap of their wave functions is exponentiallywhat value ofL one should take in Eqg(l5) in order to
small, and hence their positions are uncorrelated. Such intedetermine the value ofy to be used in Eq(24).

actions will therefore only contribute to a uniform and static It turns out thatw itself determines the appropriate value
chemical potential which is the same for all electrons.of  to use in Eq.(24). If w=vg/Ly, the length scale of
Namely, the Coulomb potential felt by an electron from otherinterest isvr/w=L,. The value ofy to use in Eq.(24) is
electrons which are separated from it by a distance largethen given self-consistently by Eq4d.5) (with L replaced by
thanL, is described by a part of E¢5) given by Lo), (17), and(22). However, ifo>vg /L g, then the relevant

1, (24)
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length scale i4 =v/w which is smaller thaty. Then the  smoothly from one regime to the other, but this cross over is
Coulomb interaction should be cut off at the length staées  difficult to determine analytically.
indicated in Eq(14). This follows from the basic idea behind Let us summarize our key results. In the limit of weak
the RG method, namely, that the properties of a system at disorder, the system is power-law correlated only over a
length scalel (or energy scale (/L) are governed by the |arge distance of orddr,, called the localization or pinning
modes whose wavelengths are smaller thafiThe modes |ength. At that length scale, the system is described by a TLL
with wavelengths larger thaln only contribute to a uniform i, which the LRCI reduces the interaction parame{eto a
and static chemical potential in the sense described in Eq,5)ue much smaller than unithWe note that in the absence
(23).] If the Coulomb interaction is cut off at the distanice o gigorder, the LRCI leads to a Wigner cry&tédr which a
the value ofy to be used in Eq(24) is simply given by Eq. 11 gescription is not valid. In our formalism, we can see
(15) We thus conclude that fchv,:/Lo, the DOS is given this by nOting that if the disorder was abSQhe., D :0)'
by Eqg. (24) where » depends onw through Eq.(15) with o \would haveL,=%, =%, andK=0; hence tl’§1e TLL
L=ve/w. o _ description would no longer be validJp to the length scale
We note that the expression in E(®) agrees with the | "o 71| description enables us to derive the DOS easily
semiclassical result in Eq2) in the limit >1. Moreover, qing well-known relations without having to make use of a
Eq. (3) correctly reproduces the expression of the DOS of &emiclassical approadh.Beyond the length scaley, the
noninteracting disordered electronic systéfor which 9° 11} gescription is no longer valid since the disorder strength
=0, and thereforey=0 andK=1), where there is a finite 5 ¢ order 1. In this regime, the DOS is given by E):;

DOS at the Fermi enerdy. , . thus asw—0, the DOS goes to zero logarithmically rather
We now consider the case of low energies satisfying han as a power law.

<vg/Lg. Then Egs.(21) imply that the disorder strength
flows to a value of order 1; hence the system cannot be A.D. and L.F. gratefully acknowledge important and en-
described by a clean TLL. However, this is precisely thecouraging discussions with R. Oppermann. A.D. also ac-
regime described by the localized limit discussed in Refsknowledges the hospitality of the Institutrfdheoretische
3-5, where the localization length, is smaller than the Physik und Astrophysik, UniversitaNurzburg, where the
length scale of interest, namely=vg/w. We therefore ex- initial part of the work was done, and Deutsche Fors-
pect the DOS in this regime to be described by 89. chunggemeinschaft for financial support via Project No.
We have thus found expressions for the DOS in the reOP28/5-2. D.S. thanks the Department of Science and Tech-
gimes w=vg/Ly and w=<vg/L, (strictly speaking, @  nology, India for financial support through Grant No. SP/S2/
>velly andw<<vg/Ly). The DOS must of course cross over M-11/00.
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