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Coulomb gap in one-dimensional disordered electronic systems
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We study a one-dimensional system of spinless electrons in the presence of a long-range Coulomb interac-
tion ~LRCI! and a random chemical potential at each site. We present a Tomonaga-Luttinger liquid description
of the system. We use the bosonization technique followed by the replica trick to average over the quenched
randomness. An expression for the localization length of the system is obtained using the renormalization-
group method and also a physical argument. We then find the density of states for different values of the
energy; we get different expressions depending on whether the scale of energy is larger than or smaller than the
inverse of the localization length. We work in the limit of weak disorder where the localization length is very
large, at that length scale, the LRCI has the effect of reducing the interaction parameterK to a value much
smaller than the noninteracting value of unity.
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In a strongly localized electron system with a long-ran
Coulomb interaction~LRCI! between the electrons, the de
sity of states~DOS! is expected to exhibit a gap at the Ferm
energy called the ‘‘Coulomb gap.’’1 A phenomenological
argument1 suggests that the DOS should go asD(v)
;uvud21, whered is the spatial dimensionality of the syste
andv is measured from the Fermi energy. We shall consi
here the one-dimensional case where the DOS is expect
show a logarithmic behavior in the extremely localiz
limit.2–5 In low-dimensional systems, the electron-electr
interactions play a dominant role leading to a behavior s
nificantly different from that of conventional Fermi liquids
Short-range repulsive interactions between the electrons
rise to a Tomonaga-Luttinger liquid~TLL !,6–8 whereas the
LRCI is believed to lead to a Wigner crystal.9

It is well known that for a one-dimensional noninteracti
electron system with random disorder, all the states are
calized due to repeated backscatterings of the electro10

However, the DOS of noninteracting electrons is finite at
Fermi energy.11 The presence of the LRCI together with ra
dom impurities modifies the DOS in a drastic way and s
posedly leads to the Coulomb gap behavior. In an ear
study, Vojta and John5 studied a one-dimensional electro
system, with LRCI and randomness, in the extremely loc
ized limit where the overlap of electronic wave functions c
be neglected. They find the form of the DOS to be5

D~v!;S ln
Ec

uvu D
21

, ~1!

whereEc is a cutoff energy.3,4 In a recent paper, Lee12 de-
rived the expression of the DOS of a one-dimensional sys
of spinless electrons with LRCI and impurities at rando
positions in the opposite limit where the quantum effe
~electron hopping! play a dominant role, and the pinning
weak, i.e., the localization length is much larger than
interimpurity distance. Following studies of a pinned Wign
crystal13,14 and using a semiclassical approximation, Le12

finds the DOS at low energy to be
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D~v!;uvuA11h/2, ~2!

where the exponenth @defined in Eq.~15! below# is deter-
mined by the localization length of the system.

In this paper, we study a model of spinless electrons w
LRCI as in Ref. 12~with quantum effects, i.e., with the elec
tron hopping term! in the presence of a random chemic
potential at each site. We find that a TLL picture,8 rather than
a semiclassical approach,12 provides a convenient descriptio
of the system. The localization lengthL0 is derived using a
renormalization group~RG! study of the effective disorder
averaged bosonized action,15 and is found to be very large in
the limit of weak disorder.~We also present a simple phys
cal understanding of the expression forL0.) Due to the
LRCI, the interaction parameterK of the TLL is found to be
effectively a function of the length scale. At the length sca
L0, the value ofK is given by a value much smaller tha
unity ~which is the value ofK for the noninteracting system!.
We should remark here that the present one-dimensional
ordered electron system with LRCI appears to be a uni
example of a TLL withK!1.

Once we make use of a TLL description, the DOS can
found in a standard way.8,16 We will show that for v
*vF /L0, the DOS is given by

D~v!;uvub,

b5
A11h

2
1

1

2A11h
21, ~3!

where,unlike a standard TLL,h itself depends onv as dis-
cussed below.@Equation~3! resembles the result of Lee12 for
h@1; however,h is not taken to be a function ofv in Ref.
12.# For v&vF /L0, we will argue that the DOS is given b
the expression in Eq.~1!.

The Hamiltonian of a disordered system of spinless el
trons with LRCI consists of three parts,H5H01HC
©2004 The American Physical Society16-1
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1Hrandom. The noninteracting partH0 and the Coulomb in-
teraction partHC are written in terms of the continuum ele
tron fields as follows,

H05vFE
2`

`

dx~2 icR
†]xcR1 icL

†]xcL!, ~4!

HC5
1

2E2`

`

dxdyU~x2y!r~x!r~y!, ~5!

where the form ofU(x2y) will be specified later, andr is
the electron density.@The fieldscR(cL) are the right-moving
~left-moving! electron operators.# The random part of the
Hamiltonian consists of two parts,~i! the forward-scattering
part H f , where the scattered electrons remain in the vicin
of the same Fermi point, and~ii ! the backward-scattering
part Hb , where an electron is scattered from2kF to kF , or
vice versa.

We now rewrite the full Hamiltonian in the language
bosonization.8,16 The low-energy and long-wavelength exc
tations of the noninteracting part can be written as

H05
vF

2pE2`

`

dx$@]xu~x!#21@]xf~x!#2%, ~6!

while the Coulomb part is given by

HC5
1

2p2E2`

`

dxdy U~x2y!]xf~x!]yf~y!. ~7!

The forward-scattering part is given by

H f5E
2`

`

dxh~x!@cR
†~x!cR~x!1cL

†~x!cL~x!#

52
1

pE2`

`

dx h~x!]xf~x!. ~8!

The forward scattering is due to the real random fieldh(x);
its effect can be taken care of by a rescaling of the boso
field f,15 and we shall henceforth ignore this part. The ba
scattering part can be written as

Hb5E
2`

`

dx@j~x!cR
†~x!cL~x!1j* ~x!cL

†~x!cR~x!#

5
1

paE2`

`

dx@j~x!ei (2f(x)12kFx)1H.c.#, ~9!

where H.c. denotes the Hermitian conjugate. The ba
scattering is due to a complex random fieldj(x) with the
probability distribution

P@j~x!#5expF2Dj
21E dxj* ~x!j~x!G , ~10!

so that^j(x)&50 and^j* (x)j(x8)&5Djd(x2x8).
The Hamiltonians given in Eqs.~6!, ~7!, and~9! constitute

the complete low-energy description of the model in t
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bosonic language. We now write the Coulomb interaction
Eq. ~7! in momentum space as

1

2p2E dxdyU~x2y!]xf~x!]yf~y!

5
1

4p3E dkk2Û~k!f̂~k!f̂~2k!, ~11!

whereÛ(k) is the Fourier transform of the Coulomb inte
action. We can expandÛ(k) in powers ofk as

Û~k!5Û01Û1k1Û2k21•••. ~12!

Considering the scaling dimensions of the various terms
Eq. ~12!, we conclude that the constant term is margin
under renormalization, whereas the terms involving pow
of k are irrelevant. Hence, the important contribution arisi
from the Coulomb interaction in Eq.~11! can be written as

HC5
Û0

4p3E dkk2f̂~k!f̂~2k!5
Û0

2p2E dx@]xf~x!#2.

~13!

The constantÛ0 is given by

Û05E
2L/2

L/2

dx
q2

Ax21d2
52q2ln

L

d
, ~14!

whereq is the charge of the electron, andd is the width of
the wire which is of the order of the lattice spacinga. The
meaning of the cutoff lengthL will be discussed below.~We
have assumed thatL@a,d, this will be justified later.! We
now define a dimensionless quantity

h5
2q2

pvF
ln

L

a
. ~15!

Then the Hamiltonian can be written in the formH5H0
1HC1Hb , where

H01HC5
vF

2pE dx@~]xu!21~11h!~]xf!2#. ~16!

Equation~16! can be brought into a standard form by defi
ing

K5
1

A11h
and u5vFA11h. ~17!

We then arrive at the expression

H01HC5
u

2pE dxFK~]xu!21
1

K
~]xf!2G . ~18!

In the imaginary time representation, we obtain

S01SC5
u

2pE dxdtFK@]tf~x,t!#21
1

K
@]xf~x,t!#2G ,
6-2
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Sb5
1

paE dxdt@j~x!ei [2f(x,t)12kFx]1H.c.#. ~19!

The randomness is dealt with by using the standard rep
method and averaging over the randomness using the d
bution in Eq.~10!. The final form of the disorder-average
n-replicated action is found to be15

Sn5
u

2p (
a
E dxdtFK@]tf

a~x,t!#21
1

K
@]xf

a~x,t!#2G
2

Dj

~pa!2 (
a,b

E dxdtdt8cos@2fa~x,t!22fb~x,t8!#,

~20!

wherea,b are the replica indices running from 1 ton. The
RG equations ofDj ,K, andu are given by15

dD

dl
5~322K !D,

dK

dl
52

1

2
K2D, and

du

dl
52

uK

2
D, ~21!

where D5(2Dja)/pu2 and l 5 ln(L/a) is the logarithm of
the length scale. ForK.3/2, the disorder is irrelevant. Fo
K,3/2, the disorder grows under RG and leads to locali
tion. The localization length, denoted byL0, can be obtained
by integrating the RG equations in Eq.~21!. At the length
scalea, we begin with some values ofD ~much smaller than
1!, andu, K given in Eq.~17!. @The latter requires a knowl
edge of the length scaleL through Eq.~15!, this will be
determined self-consistently by the solution of Eqs.~21!.#
Since we are assuming thatK!1, the quantitiesK and u
flow very little while D flows from a small number of orde
Dj to a number of order 1. The length scale at which
disorder strength becomes of order 1 is given by

L0

a
;S 1

Dj
D 1/(322K)

. ~22!

The physical meaning ofL0 will be discussed below.
In the limit of weak disorder (Dj→0), the form of the

localization length in Eq.~22! implies, in a self-consisten
manner, that~i! L0@a, ~ii ! the parameterh@1 @replacingL
by L0 in Eq. ~15!#, and~iii ! the interaction parameterK!1
due to Eq.~17!. Hence the localization length in theK→0
limit assumes the classical valueL0 /a;(1/Dj)

1/3.
The significance of the localization length is as follow

Although two electrons which are separated by more than
distanceL0 do interact with each other through the Coulom
potential, the overlap of their wave functions is exponentia
small, and hence their positions are uncorrelated. Such in
actions will therefore only contribute to a uniform and sta
chemical potential which is the same for all electron
Namely, the Coulomb potential felt by an electron from oth
electrons which are separated from it by a distance la
thanL0 is described by a part of Eq.~5! given by
13241
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HC5
1

2E2`

`

dxr~x!r0F E
x1L0

`

dyU~x2y!

1E
2`

x2L0
dyU~x2y!G , ~23!

wherer0 is the average density. Equation~23! represents a
uniform one-body potential. On the other hand, when t
electrons are closer to each other thanL0 that their positions
are correlated, then their Coulomb interaction has to be
cluded in the quadratic part of the bosonic Hamiltonian@Eq.
~7! to be specific# which governs the density fluctuations. I
short, portions of the system which are separated by
tances larger thanL0 are uncorrelated, whereas, within a di
tanceL0, the system can be described in terms of a TLL w
K!1.

Before proceeding further, we would like to present
simple physical understanding of the important result in E
~22! which does not make use of the replica idea. First, let
consider a weakd-function impurity of strengthV0 at one
point in a TLL. According to a RG equation derived by Kan
and Fisher,17 the impurity strengthV flows according to the
equationdV/dl5(12K)V; hence, at a distance scaleL, we
have V(L);V0(L/a)12K. From quantum mechanics, w
know that the reflection amplitude for an electron scatter
from a single impurity is proportional toV if V/vF is small.
Now suppose that each site in the lattice has a random
purity of strength V(x) which satisfies ^V(x)V(y)&
5Djd(x2y). This means that at each site,V(x) is of the
order ofADj, and its sign is random. Over a lengthL, there
areL/a reflections since there is a reflection at each site
order that theseL/a reflections should add up to a total re
flection amplitude of order 1~which would localize the elec-
tron!, we must haveAL/aV(L);1 ~assuming thatL/a is
large, and using the well-known result for the sum of a la
number of random terms in a Brownian motion!. This gives
us the estimate L0 /a;1/@V(L0)#2, i.e., L0 /a
;1/@V0(L0 /a)12K#2. Since V0;ADj, we obtain L0 /a
;(1/Dj)

1/(322K).
We are now ready to discuss the density of states.

energies satisfyingv*vF /L0, the disorder parameterD is
small, and our system can be described by a clean TLL.
DOS of a TLL is given by the relation8

D~v!;uvub,

b5
~12K !2

2K
5

A11h

2
1

1

2A11h
21, ~24!

where we have used the relationK51/A11h. This is the
result quoted in Eq.~3!. However, we now have to determin
what value ofL one should take in Eq.~15! in order to
determine the value ofh to be used in Eq.~24!.

It turns out thatv itself determines the appropriate valu
of h to use in Eq.~24!. If v5vF /L0, the length scale of
interest isvF /v5L0. The value ofh to use in Eq.~24! is
then given self-consistently by Eqs.~15! ~with L replaced by
L0), ~17!, and~22!. However, ifv.vF /L0, then the relevant
6-3
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length scale isL5vF /v which is smaller thanL0. Then the
Coulomb interaction should be cut off at the length scaleL as
indicated in Eq.~14!. This follows from the basic idea behin
the RG method, namely, that the properties of a system
length scaleL ~or energy scalevF /L) are governed by the
modes whose wavelengths are smaller thanL. @The modes
with wavelengths larger thanL only contribute to a uniform
and static chemical potential in the sense described in
~23!.# If the Coulomb interaction is cut off at the distanceL,
the value ofh to be used in Eq.~24! is simply given by Eq.
~15!. We thus conclude that forv*vF /L0, the DOS is given
by Eq. ~24! whereh depends onv through Eq.~15! with
L5vF /v.

We note that the expression in Eq.~3! agrees with the
semiclassical result in Eq.~2! in the limit h@1. Moreover,
Eq. ~3! correctly reproduces the expression of the DOS o
noninteracting disordered electronic system~for which q2

50, and thereforeh50 andK51), where there is a finite
DOS at the Fermi energy.11

We now consider the case of low energies satisfyingv
,vF /L0. Then Eqs.~21! imply that the disorder strengt
flows to a value of order 1; hence the system cannot
described by a clean TLL. However, this is precisely t
regime described by the localized limit discussed in Re
3–5, where the localization lengthL0 is smaller than the
length scale of interest, namely,L5vF /v. We therefore ex-
pect the DOS in this regime to be described by Eq.~1!.

We have thus found expressions for the DOS in the
gimes v*vF /L0 and v&vF /L0 ~strictly speaking, v
@vF/L0 andv!vF /L0). The DOS must of course cross ov
ed
P.

13241
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smoothly from one regime to the other, but this cross ove
difficult to determine analytically.

Let us summarize our key results. In the limit of wea
disorder, the system is power-law correlated only ove
large distance of orderL0, called the localization or pinning
length. At that length scale, the system is described by a T
in which the LRCI reduces the interaction parameterK to a
value much smaller than unity.@We note that in the absenc
of disorder, the LRCI leads to a Wigner crystal9 for which a
TLL description is not valid. In our formalism, we can se
this by noting that if the disorder was absent~i.e., Dj50),
we would haveL05`, h5`, and K50; hence the TLL
description would no longer be valid.# Up to the length scale
L0, the TLL description enables us to derive the DOS eas
using well-known relations without having to make use o
semiclassical approach.12 Beyond the length scaleL0, the
TLL description is no longer valid since the disorder streng
is of order 1. In this regime, the DOS is given by Eq.~1!;
thus asv→0, the DOS goes to zero logarithmically rath
than as a power law.
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