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Theory of impurity resonant tunnel magnetoresistance
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The Green’s-function approach is developed to study the tunneling magnetoresistance~TMR! in magnetic
tunnel junctions. The total conductance explicitly derived is a sum over electron direct tunneling and tunneling
via impurities in the barriers. It is found that, on resonance, even a single impurity may result in inversion of
TMR in small-area junctions. The conditions, under which large inverse TMR may occur, are investigated. The
statistical distribution and fluctuations of TMR in sign and magnitude varying with impurity density and cross
section of the junctions are calculated. Our results reproduce essential features of recent experimental mea-
surements on Ni/NiO/Co nanowire junctions.
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Tunneling magnetoresistance~TMR! in magnetic tunnel
junctions with two ferromagnetic~FM! electrodes separate
by an insulating layer1–3 has been the main focus of man
research activities in recent years because of its promi
device application. The TMR represents the effect that
tunneling resistance changes as the magnetizations o
two electrodes change their relative orientation under an
plied magnetic field. It originates from the spin polarizati
of conduction electrons in the FM electrodes,4,5 and may also
be strongly affected by other electronic properties of the t
nel junctions.6–10

In general, when both FM electrodes have spin polari
tion of the same sign@positive for Fe, Co, and Ni~Ref. 11!#,
the conductance (GP) for parallel ~P! alignment is greater
than that (GAP) for antiparallel ~AP! alignment, i.e., the
TMR ratio defined as TMR5(GP2GAP)/(GP1GAP) is
positive. Very interestingly, Tsymbalet al. and Sokolov
et al.12 observed both positive and negative TMR with ra
ranging from20.14 to 0.17 using a number of Ni/NiO/C
nanowire junctions of cross section smaller than 0.01mm2.
The inversion of TMR was ascribed to resonant tunneling
the impurity states in NiO. Some of the experimental d
were fitted reasonably well by a one-dimensional~1D! Lor-
entz conductance formula. The authors also introdu
Anderson disorder and inelastic scattering to reproduce
merically the measured statistical distribution of TMR
modeling the barrier as a 83838 tight-binding atomic
structure. However, too small cross section of barrier use
the calculation~three orders smaller than the experimen
value! makes the result not satisfactory. According to t
experiments,12 the distribution of the TMR should be sens
tive to the sample size.

The above experiments12 lead to an important topic in
spin-polarized electron transport. Impurity effect on the TM
has previously been studied both experimentally13 and
theoretically.14–17 It has also been predicted that electr
resonant tunneling via impurities may cause inversion of
TMR.16,17 However, these latter works were mainly bas
upon 1D approximation16 or numerical computation from 3D
tight-binding model.17 A transparent analytical theory for th
inversion of TMR that is applicable to realistic 3D junction
is highly desirable.
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In this work, the impurity effect on TMR is reexamine
based upon a nonperturbative Green’s-function approach
which the electron direct tunneling and tunneling via imp
rities are treated on an equal footing. A new conducta
formula of Lorentz form for resonant tunneling via impur
ties is explicitly derived. It is found that, on resonance, ev
a single impurity in the barrier can change the TMR drama
cally in a small-area junction~cross section&0.01mm2),
and in particular, may result in a rather large inverse TM
The statistical distribution and fluctuations of TMR in sig
and magnitude varying with impurity density and cross s
tion of the junctions are calculated. The results can exp
consistently the distribution of TMR observed in small-ar
Ni/NiO/Co nanowire junctions,12 as well as the very smal
TMR of 0.01 or less observed earlier in larger-area N
NiO/Co junctions.18

Let us consider a nanowire junction system consisting
two FM electrodes separated by an insulating barrier. T
cross section of the system is a square of sideW and the
width of the barrier isL. The current flows along thez axis
and the two FM electrodes are located atz,0 and z.L,
respectively. For simplicity, we assume that the system
symmetric: the two electrodes are made of the same
material. In the nanowire junction (0<x<W and 0<y
<W) without disorder, the single-particle model Ham
tonian can be written asH0(s,r )52¹2/2m1* 2sJ for z
,0, 2¹2/2m2* 1U0 for 0,z,L, and2¹2/2m1* 2hsJ for
z.L. Heres51 and2 are the spin index with respect to
fixed reference direction,h51 and21 correspond to P and
AP alignments, respectively. Different effective massesm1*
andm2* are used to describe the possibly quite different el
tron dispersion relations in the ferromagnets and in the b
rier. J stands for the exchange-split energy in t
ferromagnets6 andU0 is the barrier height.

The unperturbed wave function for an electron of ene
E can be written in a variable-separated form:cs(E;r )
5xn(x,y)wns(z), where xn(x,y)5(2/W)sin(nxpx/
W)sin(nypy/W) with n5(nx ,ny) representing quantum num
bers in the lateral directions, andwns(z) is the longitudinal
wave function. For a wave incident from the left electrod
©2004 The American Physical Society14-1
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the outgoing wave function in the right electrode is given

wns(z)5tnsAvns
~L!/vns

~R!eikns
~R!(z2L) with the transmission am

plitude

tns5tns
(L) tns

(R)e2anLI ns . ~1!

Here, tns
(A)52Ainnvns

(A)/(vns
(A)1 inn), r ns

(A)5(vns
(A)2 inn)/(vns

(A)

1 inn), and I ns5(12r ns
(L)r ns

(R)e22anL)21 with A5R (L)
standing for the left~right! electrode.an5@2m2* (U02E)
1kin

2 #1/2 is the decay exponent in the barrier, andnn

5an /m2* with kin5(p/W)(nx
21ny

2)1/2. kns
(L)5@2m1* (E

1sJ)2kin
2 #1/2, kns

(R)5@2m1* (E1hsJ)2kin
2 #1/2, and vns

(A)

5kns
(A)/m1* are the longitudinal wave vectors and velociti

of electrons in the electrodes.
Next we considerNI attractive impurities in the barrier

Their potential is assumed to beV(r )52( iVie
2ur2Ri u/,,

whereRi5(Xi ,Yi ,Zi) is the position of impurityi. For sim-
plicity, we will take the point-impurity limit,→0. Here, to
focus on the inversion of TMR, we will not consider th
interaction or magnetic impurities, which might also play
important role in realistic junctions.13,14According to general
scattering theory,19 the scattered electron wave functio
Cs(E;r ) is determined by

Cs~E;r !5cs~E;r !2(
i

ViE d3r 8Gs~E;r ,r 8!

3e2ur82Ri u/,Cs~E;r 8!. ~2!

Here, Gs(E;r ,r 8) is the retarded Green’s function, whic
can be calculated in a similar way to calculating the Gree
function for a thin film.20 In the second termCs(E;r 8) is not
singular and can be replaced byCs(E;Ri) in the,→0 limit.
Settingr on both sides of Eq.~2! to Ri , we obtainNI self-
consistent equations for determiningCs(E;Ri). By substi-
tuting the solutions back into Eq.~2!, the wave function
Cs(E;r ) can be derived. In order to obtain an explicit resu
we confine ourselves to the case, where the average dist
between impurities is much greater thanL. In this case, the
inter-impurity tunneling is very small on an average and m
be neglected. In general, the impurity scattering leads t
mixing of different channels. The transmission amplitu
tns,ms from channelns to channelms is derived to be

tns,ms5tnsdnm1(
i

S 8pVi,
3I nsI ms

Annnm@11Vi Pis~E;Ri !#
D

3xn~Xi ,Yi !xm~Xi ,Yi !tns
(L)tms

(R)

3~e2andi
(L)

2r ns
(R)e2an(2L2di

(L))!

3~e2amdi
(R)

2r ms
(L)e2am(2L2di

(R))!, ~3!

where Pis(E;r )5*d3r 8Gs(E;r ,r 8)e2ur82Ri u/,, and di
(L)

5Zi (di
(R)5L2Zi) is the distance between impurityi and

the left ~right! interface. The bound state on impurityi cor-
responds to a pole of the Green’s function, of which t
energy is determined by 11ViRe@Pis(E;Ri)#50. We find
that there exists a bound state on the impurity at energyEi

I
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5U02D i if l i[A2m2* Vi,.1, whereD i5(12l i
21)2Vi is

the bound energy. For the denominator of the second term
Eq. ~3!, expanding its real part to the leading order in (E
2Ei

I), we obtain

tns,ms5tnsdnm1(
i

2g ins
(L) ~Ei

I!g ims
(R) ~Ei

I!

E2Ei
I1 i ~G is

(L)1G is
(R)!

, ~4!

where

g ins
(A) ~E!5Ap

an
S 2D i

m2*
D 1/4

I nsxn~Xi ,Yi !

3tns
(A)~e2andi

(A)
2r ns

(Ā)e2an(2L2di
(A))!, ~5!

and G is
(A)5(nug ins

(A) (Ei
I)u2. Here Ā represents the electrod

other thanA. The point-impurity limit of,→0 andVi→`
has been taken under the constraint of fixedD i . The tunnel-
ing conductance can be calculated using the Landa
Büttiker formula21,22 G5(e/2pf)(s*dETs(E)@ f 0(E
2ef)2 f 0(E)#, where f is the bias voltage andTs(E)
5(nmutns,msu2 is the total transmission coefficient.

In Eq. ~4!, the first term represents the direct tunneling
the absence of impurities, and the second term stands fo
resonant tunneling via the impurities. Let us first consider
simplest case of single impurity, and omit the impurity ind
i temporarily. ForE.EI, the crossing terms inutns,msu2
between the direct and resonant transmission amplitudes
proportional to E2EI, and so make no contribution t
Ts(E). It then follows thatTs(E)5Ts

D(E)1Ts
R(E), where

Ts
D(E)5(nutnsu2 and Ts

R(E)54Gs
(L)Gs

(R)/@(E2EI)21(Gs
(L)

1Gs
(R))2#. It is interesting to see that the present reson

transmission coefficientTs
R(E) has the same form as the 1

formula, Eq.~2! in Ref. 12, whereGs
(A)(E) was a phenom-

enological parameter and assumed proportional
rs

(A)e22kd(A)
with k the decay constant andrs

(A) the density
of states in electrodeA. The present Eq.~4! is much more
general than Eq.~2! of Ref. 12. It is suitable for realistic 3D
tunnel junctions, where for a given energy many chann
contribute to the transport, and includes a competition
tween the direct and resonant tunneling processes. The
ductance formula in Ref. 12 has been used to fit with som
experimental data for the bias voltage dependence of T
with prefactors inGs

(L) and Gs
(R) as adjustable parameter

Here, we will not repeat this fitting. Instead, we discuss a f
of new results implied by Eq.~4!.

The calculated TMR at zero-bias voltage as a function
the impurity positionR is plotted in Fig. 1~a! for EF5EI.
The region ofZ.0.5L ~or X.0.5W) is symmetric to that in
Fig. 1~a!. To be close to the experimental condition,12 the
size of the junction is taken to beL51.5 nm and W
580 nm. The electron effective mass in the FM electrode
assumed equal to the bare electron massm1* 5me . For insu-
lating NiO, the experimental width of the unoccupied co
duction band is 18 eV.23 We estimate the effective mas
m2* .0.2me by expanding a tight-binding dispersion relatio
at the band bottom. In Fig. 1~a!, we see that the TMR has n
4-2
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FIG. 1. ~a! TMR as a function of normalized
impurity positionX/W andZ/L for Y50.5W and
EF5EI, and ~b! TMR as a function ofEF2EI

and Z/L for X5Y50.5W. Here J51.6 eV, EI

52 eV, andU054 eV for both figures.
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visible dependence on the lateral impurity coordinateX ~and
Y by symmetry!, except on the boundary wherexn(X,Y)
vanishes. If the impurity is close to the middle plane of t
barrier (Z.0.5L), for P alignment we haveGs

(L).Gs
(R) and

henceTs
R(E).1. Since its maximum value is 1,Ts

R(E) for P
alignment must be greater than that for AP alignment, yie
ing a positive TMR. IfZ deviates fromZ50.5L by a suffi-
ciently long distance, assumed in the left half of the barr
we haveGs

(L)@Gs
(R) so thatTs

R(E).4Gs
(R)/Gs

(L) . The total
resonant transmission coefficient(sTs

R(E) will be denoted
as TP

R(E) for P alignment andTAP
R (E) for AP alignment.

Their difference can be obtained asTP
R(E)2TAP

R (E)
.24(G↑

(R)2G↓
(R))(G↑

(L)2G↓
(L) )/G↑

(L)G↓
(L) , where subscript↑

(↓) stands for the majority~minority! spin in the correspond
ing FM electrode. In general,G↑

(A).G↓
(A) because more chan

nels contribute to the summation overn of G↑
(A) in the

majority-spin band. It follows thatTAP
R (E).TP

R(E). Thus,
the spin-dependent resonant tunneling via the impurity gi
rise to a negative TMR in the region of 0.27,Z/L,0.45.
With further decreasingZ, Ts

R(E) decreases exponentially, s
that Ts

D(E) dominates and the TMR returns to positive f
Z/L,0.27. The calculated TMR as a function ofZ/L and
EF2EI is shown in Fig. 1~b!. It is clear that the Fermi energ
must be close enough to the impurity energy, e.g.,uEF2EIu
&8 meV for the parameters chosen, to obtain an inve
TMR.

In Fig. 2, the zero-bias TMR on resonance is plotted a
function of Z/L for different value of barrier heightU0. An
important finding is that there exists a critical value of barr

FIG. 2. TMR as a function of normalized impurity positionZ/L
for different barrier heights. Here,X5Y50.5W and the other pa-
rameters are the same as in Fig. 1~a!.
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height below which TMR is always positive. This behavi
can be understood by the following argument. As mention
above, negative TMR may possibly occur only when t
impurity is away fromZ50.5L. The resonant transmissio
can be roughly estimated asTs

R(E)}e22a0(L22Z) with a pref-
actor of order 1, wherea05@2m2* (U02E)#1/2. At the same
time, the direct transmission is roughlyTs

D(E)}e22a0L and
contains a big prefactor of the same order of magnitude
the number of lateral states belowEF due to the summation
over n in Ts

D(E). If the barrier heightU0 is higher than but
very close toEF , a0 is small and hence the exponenti
factors in the two transmission coefficients are close to e
other. In this case, the direct tunneling dominates and
TMR is positive for all the values ofZ/L. With increasing
U0 , a0 increases and the exponential factor inTs

R(E) be-
comes much greater than that inTs

D(E). As soon as the dis-
proportion of the two exponential factors prevails over t
big prefactor ofTs

D(E), the resonant tunneling dominate
and an inverse TMR occurs. The positive TMR at eith
small or largeZ/L and the existence of criticalU0 are two
typical examples that can not be understood by using
simple formula of Ref. 12. Systems with one or a few imp
rities actually represent an optimal case, where largest
verse TMR may probably be observed.

After clarifying the physical picture of sign inversion o
TMR in the single-impurity case, we now turn to studyin
the many-impurity case, which very likely corresponds to t
real magnetic tunnel junctions used in the experiments.12,18

The total transmission coefficient is given byTs(E)
5Ts

D(E)1( iTis
R (E) with Tis

R (E) as the transmission coeffi
cient via impurity i. For an ensemble of identical junction
the positions and energies of the impurities are random,
soTis

R (E) is a random variable. For largeNI , the asymptotic
behavior of the total transmission coefficientTs(E), as a
sum of individualTis

R (E), can be analyzed by applying th
central limit theorem.24 As a result, the variance of the TMR
is found to decrease as 1/NI ; i.e.,

@^TMR2&2^TMR&2#}
1

nILW2
, ~6!

with nI as the impurity density in the barrier. It indicates th
the TMR has small fluctuations around its average in la
area or dirty tunnel junctions, while larger negative or po
tive TMR may be observed in small-area or high-purity jun
4-3
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BRIEF REPORTS PHYSICAL REVIEW B69, 132414 ~2004!
tions. This conclusion is very general, independent of
specific form of the distribution function of impurities. Fo
given distribution function of impurity positions and ene
gies, we can calculate the probability distribution functi
~PDF! of TMR quantitatively. Since information about th
impurity distribution is not available currently, we simp
assume that the positions of impurities are random throu
out the barrier, and their energies are distributed randoml

FIG. 3. PDF of TMR for some values of impurity number an
lateral size of the tunnel junction. Herew510 meV and other pa-
rameters are the same as in Fig. 1~a!.
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a narrow impurity band of widthw aroundEF . The calcu-
lated PDF of TMR are shown in Fig. 3. The three solid lin
describe how the PDF changes withNI for fixed cross sec-
tion. The PDF forNI550 is similar to the experimental TMR
distribution, Fig. 1 of Ref. 12. For thisNI , the density of
impurity bound states isnI.0.531025/m3, being of the cor-
rect order compared with the carrier density 1025/m3 in the
barrier deduced from the Mott-Schottky analysis.12 There-
fore, in the present theory, the experimental TMR distrib
tion is attributed to the randomly distributed attractive imp
rities, which is a clear and straightforward picture. In Fig.
the three curves withNI550, 200, and 5000 illustrate th
variation of the PDF with changing the cross sectionW2 of
the magnetic junctions for fixed impurity densitynI
(5NI /LW2). With increasing the cross section, the PDF n
rows around an average TMR.0.02. This explains theoreti
cally why very small TMR were observed in large-area N
NiO/Co tunnel junctions.18
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