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Theory of impurity resonant tunnel magnetoresistance
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The Green’s-function approach is developed to study the tunneling magnetoresiitiRein magnetic
tunnel junctions. The total conductance explicitly derived is a sum over electron direct tunneling and tunneling
via impurities in the barriers. It is found that, on resonance, even a single impurity may result in inversion of
TMR in small-area junctions. The conditions, under which large inverse TMR may occur, are investigated. The
statistical distribution and fluctuations of TMR in sign and magnitude varying with impurity density and cross
section of the junctions are calculated. Our results reproduce essential features of recent experimental mea-
surements on Ni/NiO/Co nanowire junctions.
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Tunneling magnetoresistan€€MR) in magnetic tunnel In this work, the impurity effect on TMR is reexamined
junctions with two ferromagneti¢FM) electrodes separated based upon a nonperturbative Green's-function approach, in
by an insulating layér> has been the main focus of many which the electron direct tunneling and tunneling via impu-
research activities in recent years because of its promisingties are treated on an equal footing. A new conductance
device application. The TMR represents the effect that théormula of Lorentz form for resonant tunneling via impuri-
tunneling resistance changes as the magnetizations of thies is explicitly derived. It is found that, on resonance, even
two electrodes change their relative orientation under an apa single impurity in the barrier can change the TMR dramati-
plied magnetic field. It originates from the spin polarization cally in a small-area junctioricross section<0.01 xm?),
of conduction electrons in the FM electrodésand may also  and in particular, may result in a rather large inverse TMR.
be strongly affected by other electronic properties of the WnThe statistical distribution and fluctuations of TMR in sign
nel junctions _ _and magnitude varying with impurity density and cross sec-

In general, when both FM electrodes have spin polarizag,, of the junctions are calculated. The results can explain

tion of the same sigfpositive for Fe, Cq, and l\ﬂRef. 11], consistently the distribution of TMR observed in small-area
the conductanceGp) for parallel (P) alignment is greater Ni/NiO/Co nanowire junctiond? as well as the very small

than that Gpp) for antiparallel (AP) alignment, i.e., the L .
TMR ratio defined as TMR (Gp—Gap)/(Got Gag) IS TMR of_ 0.01_ or 8Iess observed earlier in larger-area Ni/
o . ; NiO/Co junctions:
positive. Very interestingly, Tsymbaét al. and Sokolov . o . -
Let us consider a nanowire junction system consisting of

et al1? observed both positive and negative TMR with ratiot EM electrod ted b insulating barrier. Th
ranging from—0.14 to 0.17 using a number of Ni/NiO/Co WO eleclrodes separated by an nsulating barner. fhe
cross section of the system is a square of ddend the

nanowire junctions of cross section smaller than QuOdZ. . o .
The inversion of TMR was ascribed to resonant tunneling viaVidth of the barrier isL. The current flows along theaxis

the impurity states in NiO. Some of the experimental dat2nd the two FM electrodes are locatedzat0 andz>L,
were fitted reasonably well by a one-dimensiofD) Lor- respectively. For simplicity, we assume that the system is
entz conductance formula. The authors also introduce§ymmetric: the two electrodes are made of the same FM
Anderson disorder and inelastic scattering to reproduce nunaterial. In the nanowire junction (x<W and O<y
merically the measured statistical distribution of TMR by <W) without disorder, the single-particle model Hamil-
modeling the barrier as a>88x8 tight-binding atomic tonian can be written a#ly(o,r)=—V2/2m; —aJ for z
structure. However, too small cross section of barrier used k<0, —V?/2m} + U, for 0<z<L, and—V?/2m} — »oJ for

the calculation(three orders smaller than the experimental;~| . Hereo=+ and— are the spin index with respect to a
valug makes the result not satisfactory. According to thefixeq reference directiony=1 and—1 correspond to P and

experiments? the distribution of the TMR should be sensi- 5p alignments, respectively. Different effective massgs

tive to the sample size. andm? are used to describe the possibly quite different elec-

The above experimerifslead to an important topic in tron di . lati in the f i din the b
spin-polarized electron transport. Impurity effect on the TMR ron dispersion relations in the ferromagnets and in e bar-
rier. J stands for the exchange-split energy in the

has previously been studied both experimentallpand _ _ ,

theoretically**~" It has also been predicted that electronferromagnetSand U is the barrier height.

resonant tunneling via impurities may cause inversion of the The unperturbed wave function for an electron of energy
TMR.2%17 However, these latter works were mainly basedE can be written in a variable-separated forg;(E;r)
upon 1D approximatioff or numerical computation from 3D = Xn(X,Y) ¢ns(2), where  xn(X,y)=(2/W)sin(nmx/
tight-binding model” A transparent analytical theory for the W)sin(n,my/W) with n=(n,,n,) representing quantum num-
inversion of TMR that is applicable to realistic 3D junctions bers in the lateral directions, ang,,(z) is the longitudinal

is highly desirable. wave function. For a wave incident from the left electrode,
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the outgoing wave function in the right electrode is given by=U,—A; if \j=2m3V,£>1, whereA;=(1—\; 1)?V, is
(pw(z)ztm,/Un(EUF/vn(R(Eeikfff)(zf L) with the transmission am- the bound energy. For the denominator of the second term in

plitude

thr=thothae o, (1)
Here, t') =2 \ivw DR +ivy), 1= —iv)/ (w4
+ivy), and l,,=(1-r{JrPe2aby=1 with A=R (L)
standing for the left(right) electrode.a,=[2m} (Uy,—E)
+kf]¥2 is the decay exponent in the barrier, ang
=a,/m}  with k‘gn:(w/vv)(n§+n§)1/2. k& =[2m? (E
+0d)—kf 1M K=[2m} (E+ #od)— k]2 and v

no

=kN/m? are the longitudinal wave vectors and velocities

of electrons in the electrodes.

Next we consideiN, attractive impurities in the barrier.

Their potential is assumed to Bé(r)=—3;V,e”I"Rillt

whereR;= (X, ,Y;,Z;) is the position of impurity. For sim-
plicity, we will take the point-impurity limit{ —0. Here, to

Eqg. (3), expanding its real part to the leading order i (
—E!), we obtain

2y (EN YR (E))

Thne mo=tneo, , 4
no,m n nm i E—E:-f—l(rl(:;)-f—rl(?)) ( )
where
1/4
(A)(E)= i Z_A' I X Y.
Yino(E) anl mt noeXn(Xi,Y})
n 2
xt@)(e” et —r(Be-an@-dD) - (5)

and TW=x _|y®(E|2. Here A represents the electrode

no

other thanA. The point-impurity limit of ¢ —0 andV,;—

focus on the inversion of TMR, we will not consider the has been taken under the constraint of fixgd The tunnel-
interaction or magnetic impurities, which might also play aning conductance can be calculated using the Landauer-

important role in realistic junctionS:**According to general

Buttiker  formul®'?? G=(el27¢)2,JdET,(E)[fo(E

scattering theory? the scattered electron wave function —€¢)—fo(E)], where ¢ is the bias voltage and ,(E)

V¥ ,(E;r) is determined by
VL (EiN)=iho(Esr) =2 Vif d®r' G (E;r,r')
|

xe " Rillby (E;r). ¥

=3 m Themol % IS the total transmission coefficient.

In Eg. (4), the first term represents the direct tunneling in
the absence of impurities, and the second term stands for the
resonant tunneling via the impurities. Let us first consider the
simplest case of single impurity, and omit the impurity index
i temporarily. ForE=E', the crossing terms if7,,.mo|?
between the direct and resonant transmission amplitudes are

Here, G,(E;r,r’) is the retarded Green's function, which proportional to E-E', and so make no contribution to
can be calculated in a similar way to calculating the Green'sy _(g). |t then follows thatT,(E)=T2(E)+ TR(E), where

function for a thin film?° In the second ter¥ ,(E;r’') is not
singular and can be replaced #y,(E;R;) in the€—0 limit.
Settingr on both sides of Eq2) to R;, we obtainN, self-

consistent equations for determiniflg,(E;R;). By substi-
tuting the solutions back into Ed2), the wave function
V¥ (E;r) can be derived. In order to obtain an explicit result,
we confine ourselves to the case, where the average distanée

TUE) =3 |tn,|? and TH(E)=4T PTFI(E-E)2+ (T
+FETR))2]. It is interesting to see that the present resonant
transmission coefficienTE(E) has the same form as the 1D
formula, Eq.(2) in Ref. 12, wherdW(E) was a phenom-
enological parameter and assumed proportional to
(Me=2¢d™ \yith « the decay constant and® the density

between impurities is much greater thianin this case, the ©f states in electrodé. The present Eq(4) is much more
inter-impurity tunne"ng is very small on an average and maﬂeneral than EC{Z) of Ref. 12. It is suitable for realistic 3D
be neglected. In general, the impurity scattering leads to #Innel junctions, where for a given energy many channels
mixing of different channels. The transmission amplitudecontribute to the transport, and includes a competition be-

Tho.mo ffOM channelno to channeimo is derived to be

Cs S 8mVil3 1, o
7-0', 0': [
nme T S v 14 VP (EiR) ]

X xn(Xi, YD) xm( X, YOt R

X (e~ () r(Re- “n(2L—di(L)))
(R) (R)
X(efamdi _r%gefam(ZLfdi )), (3)
where P, (E;r)=/d'G,(E;r,r")e” " ~Rill* and d

=Z; (d®=L-Z2,) is the distance between impurityand
the left (right) interface. The bound state on impuritgor-

tween the direct and resonant tunneling processes. The con-
ductance formula in Ref. 12 has been used to fit with some of
experimental data for the bias voltage dependence of TMR
with prefactors in['(Y and I''P) as adjustable parameters.
Here, we will not repeat this fitting. Instead, we discuss a few
of new results implied by Eq4).

The calculated TMR at zero-bias voltage as a function of
the impurity positionR is plotted in Fig. 1a) for E=E'.
The region ofZ>0.5L (or X>0.5W) is symmetric to that in
Fig. 1(a). To be close to the experimental conditfnthe
size of the junction is taken to b&=1.5 nm andW
=80 nm. The electron effective mass in the FM electrodes is
assumed equal to the bare electron ma$s-m,. For insu-
lating NiO, the experimental width of the unoccupied con-

responds to a pole of the Green's function, of which theduction band is 18 e% We estimate the effective mass

energy is determined by4V,Rq P, (E;R;)]=0. We find

m3 =0.2m, by expanding a tight-binding dispersion relation

that there exists a bound state on the impurity at enE:{gy at the band bottom. In Fig.(8), we see that the TMR has no
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FIG. 1. (a) TMR as a function of normalized
impurity positionX/W andZ/L for Y=0.5W and
Er=E', and (b) TMR as a function ofE—E'
and Z/L for X=Y=0.5W. Here J=1.6 eV, E,
=2 eV, andU,=4 eV for both figures.
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height below which TMR is always positive. This behavior
can be understood by the following argument. As mentioned

vanishes. If the impurity is close to the middle plane of theabove, negative TMR may possibly occur only when the

barrier Z=0.5.), for P alignment we hav& " =T and
henceT}(E)=1. Since its maximum value is TX(E) for P

impurity is away fromZ=0.5L. The resonant transmission
can be roughly estimated a§(E) e~ 20(-~22) with a pref-

alignment must be greater than that for AP alignment, yield-actor of order 1, wherero=[2mj3 (U,—E)]Y2 At the same

ing a positive TMR. IfZ deviates fromz=0.5_ by a suffi-

time, the direct transmission is roughT)E(E)oce*Z‘*OL and

ciently long distance, assumed in the left half of the barriercontains a big prefactor of the same order of magnitude as

we havel'M>T® so that TR(E)=4I'®/T Y | The total
resonant transmission coefficieﬁt,Tff(E) will be denoted
as TE(E) for P alignment andTR-(E) for AP alignment.
Their difference can be obtained aSp(E)— The(E)
~— 4@ P-TP) TP -T1)yrOT", where subscript
(1) stands for the majorityminority) spin in the correspond-
ing FM electrode. In generdl,{">T" because more chan-
nels contribute to the summation overof '™ in the

majority-spin band. It follows thal3-(E)>TR(E). Thus,

the number of lateral states belds¢ due to the summation
overnin TE(E). If the barrier heighUg is higher than but
very close toEg, «aq is small and hence the exponential
factors in the two transmission coefficients are close to each
other. In this case, the direct tunneling dominates and the
TMR is positive for all the values oZ/L. With increasing
Uy, ag increases and the exponential factor'ﬁﬁ(E) be-
comes much greater than that'ITﬁ(E). As soon as the dis-
proportion of the two exponential factors prevails over the

. D . .
the spin-dependent resonant tunneling via the impurity give819 prefactor of T;(E), the resonant tunneling dominates

rise to a negative TMR in the region of 027Z/L<0.45.

and an inverse TMR occurs. The positive TMR at either

With further decreasing, TX(E) decreases exponentially, so small or largeZ/L and the existence of criticdl, are two

that TE(E) dominates and the TMR returns to positive for

Z/L.<0.27. The calculated TMR as a function 8fL and
E-—E'is shown in Fig. 1b). It is clear that the Fermi energy
must be close enough to the impurity energy, dBg—E'|

<8 meV for the parameters chosen, to obtain an inversq.

TMR.

In Fig. 2, the zero-bias TMR on resonance is plotted as

function of Z/L for different value of barrier height/y. An

important finding is that there exists a critical value of barrier

04F <

02|

0.0

TMR

0.2

04F

-0.6
0.0

ZIL

FIG. 2. TMR as a function of normalized impurity positi@nL
for different barrier heights. Her&{=Y=0.5W and the other pa-
rameters are the same as in Figa)l

typical examples that can not be understood by using the
simple formula of Ref. 12. Systems with one or a few impu-
rities actually represent an optimal case, where largest in-
verse TMR may probably be observed.

After clarifying the physical picture of sign inversion of
MR in the single-impurity case, we now turn to studying

c%he many-impurity case, which very likely corresponds to the

feal magnetic tunnel junctions used in the experim&nt8.
The total transmission coefficient is given by, (E)
=T2(E)+=,TR (E) with TR (E) as the transmission coeffi-
cient via impurityi. For an ensemble of identical junctions,
the positions and energies of the impurities are random, and
soTiR(,(E) is a random variable. For lardé¢ , the asymptotic
behavior of the total transmission coefficieh;(E), as a
sum of individualTR (E), can be analyzed by applying the
central limit theorent? As a result, the variance of the TMR

is found to decrease asNy/; i.e.,

TMR?) — (TMR)?] , (6)
K )~ (TMR)“] LW
with n; as the impurity density in the barrier. It indicates that
the TMR has small fluctuations around its average in large
area or dirty tunnel junctions, while larger negative or posi-

tive TMR may be observed in small-area or high-purity junc-
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- - - - - . a narrow impurity band of widthw aroundEg. The calcu-
Ll lated PDF of TMR are shown in Fig. 3. The three solid lines

5L N — 5000, W — 800 /, | describe how the PDF changes whih for fixed cross sec-
o« Ittt et A tion. The PDF fomN,=50 is similar to the experimental TMR
= N, =200, W =160nm f distribution, Fig. 1 of Ref. 12. Forsthissl,, the density of
iS] R . . L -
g 0 N =50, W =80nm lh 1 impurity bound states is;=0.5x 10°%m?, being of the cor-
o

=y rect order compared with the carrier density’Lo° in the
: barrier deduced from the Mott-Schottky analySisThere-
fore, in the present theory, the experimental TMR distribu-

o tion is attributed to the randomly distributed attractive impu-
0 - AU rities, which is a clear and straightforward picture. In Fig. 3,
B P 01 02 ®3  the three curves withN,=50, 200, and 5000 illustrate the

variation of the PDF with changing the cross sectitff of
FIG. 3. PDF of TMR for some values of impurity number and the magnetic junctions for fixed impurity density,
lateral size of the tunnel junction. Heve=10 meV and other pa- (=N,/LW?). With increasing the cross section, the PDF nar-
rameters are the same as in Fi¢a)1 rows around an average TMFD.02. This explains theoreti-
cally why very small TMSR were observed in large-area Ni/
tions. This conclusion is very general, independent of theI\“O/CO tunnel junctions?

specific form of the distribution function of impurities. For ~ D.Y.X. thanks the support from the State Key Program for
given distribution function of impurity positions and ener- Basic Research of China, and the support from the National
gies, we can calculate the probability distribution functionNatural Science Foundation of China under Grant No.
(PDF of TMR quantitatively. Since information about the 10374046. D.N.S. was supported by ACS-PRF Grant No.
impurity distribution is not available currently, we simply 36965-AC5, Research Corporation Grant No. CC5643, the
assume that the positions of impurities are random throughNSF Grant Nos. DMR-00116566 and DMR-0307170, and
out the barrier, and their energies are distributed randomly ithe KITP at Santa Barbara through Grant No. PHY99-07949.
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