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Level statistics ofXXZ spin chains with a random magnetic field
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The level-spacing distribution of a spin-1
2 XXZ chain is numerically studied under random magnetic field.

We show explicitly how the level statistics depends on the lattice sizeL, the anisotropy parameterD, and the
mean amplitude of the random magnetic fieldh. In the energy spectrum, quantum integrability competes with
nonintegrability derived from the randomness, where theXXZ interaction is modified by the parameterD.
When DÞ0, the level-spacing distribution mostly shows Wigner-like behavior, while whenD50, Poisson-
like behavior appears although the system is nonintegrable due to randomness. Poisson-like behavior also
appears forDÞ0 in the largeh limit. Furthermore, the level-spacing distribution depends on the lattice sizeL,
particularly when the random field is weak.

DOI: 10.1103/PhysRevB.69.132404 PACS number~s!: 75.10.Pq, 75.10.Jm, 05.30.2d, 75.10.Nr
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I. INTRODUCTION

Random matrix theories have been successfully applie
analysis of the spectra of various physical systems suc
quantum spin systems,1–6 strongly correlated systems,7 and
disordered quantum systems.8–11 In quantum spin chains, if a
given Hamiltonian is integrable by the Bethe ansatz,
level-spacing distribution should be described by the Pois
distribution:

PPoi~s!5exp~2s!. ~1!

If it is not integrable, the level-spacing distribution should
given by the Wigner distribution:

PWig~s!5
ps

2
expS 2

ps2

4 D . ~2!

In the Anderson model of disordered systems,PPoi(s) and
PWig(s) characterize the localized phase and the meta
phase, respectively.8

The numerical observations should be important.1–11 In
fact, there has been no direct theoretical derivation for
suggested behavior of the level-spacing distribution. Furth
more, unexpected behavior has been recently found in
level statistics of someXXZ spin chains.6 Robust non-
Wigner behavior has been seen in the level-spacing distr
tions of next-nearest-neighbor coupledXXZ chains, although
they are nonintegrable. The reason why it appears is not c
yet, although we have considered two possible reasons: e
symmetries or finite-size effects.

In this Brief Report, we discuss the level-spacing dis
bution of a disorderedXXZ spin chain so that we may fin
possible clues to the unexpected behavior of theXXZ spin
chains. We consider specifically the spin-1

2 XXZ spin chain
with random magnetic field, where quantum integrabil
competes with nonintegrability due to the randomness.
Hamiltonian onL sites is given by
0163-1829/2004/69~13!/132404~4!/$22.50 69 1324
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H5J(
j 51

L

~Sj
xSj 11

x 1Sj
ySj 11

y 1DSj
zSj 11

z !1(
j 51

L

hjSj
z, ~3!

whereSa5(1/2)sa and (sx,sy,sz) are the Pauli matrices
hj is random magnetic field along thez axis at sitej; the
periodic boundary conditions are imposed. The random m
netic field hj ’s are uncorrelated random numbers with
Gaussian distribution:̂ hj&50 and ^hnhm&5h2dnm . Here
we recall that the system~3! is integrable whenh50, while
it is not whenhÞ0.

We show explicitly how the level-spacing distributio
P(s) depends on the lattice sizeL, the anisotropy paramete
D, and the mean amplitude of the random magnetic fieldh.
For some special cases of the Hamiltonian~3!, the level sta-
tistics has been discussed. The present numerical re
should make explicit connections among them and even
tend them. WhenDÞ0, P(s) mostly shows Wigner-like be-
havior. For the Heisenberg case (D51), it has been shown
that P(s) coincides withPWig(s).11 When D50, Poisson-
like behavior appears although the system is nonintegra
due to the randomness. However, the result is consistent
the Anderson localization of one-dimensional~1D! systems.
The Wigner-like behavior forDÞ0 suggests that the Ander
son localization in 1D systems should be broken by the
teraction such as theXXZ coupling. Here we note that a
analogous phenomenon has been observed in the 2D An
son model with electron interaction.9 In the largeh and small
h limits, Poisson-like behavior appears again forDÞ0,
which is consistent with the numerical results for spin-gla
clusters,10 the open-boundary Heisenberg chain,12 and the 3D
Anderson model.8 Furthermore, we find thatP(s) depends
on the lattice sizeL, particularly when the random field i
weak.

There is another motivation for the present study. T
symmetry of the integrable quantumXXZ spin chain can be
nontrivial. An extraordinary symmetry appears for spec
values ofD: the XXZ Hamiltonian commutes with thesl2
loop algebra whenq is a root of unity, whereq is defined by
©2004 The American Physical Society04-1
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D5(q11/q)/2.13 The loop algebra is an infinite-dimension
Lie algebra, and the dimensions of degenerate eigensp
are given by some exponential functions of the system s
which can be extremely large.14,15 It should, therefore, be
nontrivial how the large degeneracies are resolved by no
tegrability.

II. NUMERICAL PROCEDURE

In the Hamiltonian~3!, total Sz is conserved. The eigen
states with differentSz are uncorrelated. Therefore, we co
sider only the largest subspaceSz50. The largest sectors fo
the lattice sizeL58,10,12,14 have 70,252,924,3432 eige
values, respectively~see Table I!.

To find universal statistical properties of the Hamilt
nians, one has to deal with unfolded eigenvalues instea
raw eigenvalues. The unfolded eigenvalues are renormal
values, whose local density of states is equal to unity eve
where in the spectrum. In this Brief Report, the unfold
eigenvaluesxi are obtained from the raw eigenvaluesEi in
the following method. Let us define the integrated density
states as

n~E!5(
i 51

N

u~E2Ei !. ~4!

Here u(E) is the step function andN is the number of the
eigenvalues. We choose some points of coordina
„Ei ,n(Ei)… for i 51,21,41, . . . ,N. The average of integrate
density of stateŝn(E)& is approximated by the spline inte
polation through the chosen points. The unfolded eigen
ues are defined as

xi5^n~Ei !&. ~5!

The level-spacing distributions are given by the probabi
function P(s), wheres5xi 112xi .

We have calculated 10 000,3000,1000,900 samples
P(s) for L58,10,12,14, respectively~see Table I! and aver-
aged the samples for eachL. To calculate the eigenvalues, w
have used standard numerical methods, which are conta
in the LAPACK library.

III. LEVEL-SPACING DISTRIBUTION

Depending on the anisotropic parameterD (0<D<1),
the level-spacing distributionP(s) changes between th
Wigner distribution PWig(s) and the Poisson distributio
PPoi(s) as shown in Fig. 1, whereL514 and h/J50.5.
When D50, P(s) almost coincides withPPoi(s) although

TABLE I. Matrix size of the largest subspace and the numbe
samples calculated in this work for each lattice size.

Lattice size Matrix size Number of samples

8 70370 10000
10 2523252 3000
12 9243924 1000
14 343233432 900
13240
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the system is nonintegrable due to the random magn
field. As D increases,P(s) rapidly changes toPWig(s).

Let us explain the Poisson-like behavior ofD50 in terms
of the Anderson localization. The Hamiltonian~3! can be
mapped into a model of interacting 1D free fermions und
random potential:

H5
J

4
2F (

j 51

L21

~cj
†cj 111cj 11

† cj !2~21!M~cL
†c11c1

†cL!G
1D

J

4 (
j 51

L

~4cj
†cjcj 11

† cj 1124cj
†cj11!

1(
j 51

L

hj S 1

2
2cj

†cj D . ~6!

Here,L is the number of sites;M is the number of fermions
cj

† andcj are the creation and annihilation operators of f
mions on thej th site, respectively. And the Anderson mod
of noninteracting disordered fermions is given by

H5(
j

« j cj
†cj1(

^ i , j &
V~ci

†cj1cj
†ci !, ~7!

where« j is the random potential at thej th site;V is a con-
stant hopping integral;^ i , j & denotes summation ove
nearest-neighbor sites. One can find that Eq.~6! for D50
corresponds to Eq.~7! of the 1D case. It is known that local
ization always occurs in the 1D case, while the 3D Anders
model has the metallic phase and the localized phase. H
we recall that the metallic phase corresponds toPWig(s) and
the localized phase toPPoi(s). Thus, the observed Poisson
like behavior forD50 is consistent with the Anderson loca
ization.

Let us discuss a consequence of the Wigner-like beha
for DÞ0. The Hamiltonian~3!, namely, Eq.~6!, for DÞ0
corresponds to interacting 1D fermions under random po
tial. Thus, the Wigner-like behavior ofP(s) for DÞ0 might
suggest that the interaction among fermions should break
Anderson localization in 1D chains. The suggestion could
consistent with the observation on the 2D interacting latt

f

FIG. 1. Level-spacing distributions forL514, h/J50.5, D
50,0.1,0.2,0.5,1. Broken line, the Poisson distribution; solid li
the Wigner distribution.
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FIG. 2. Level-spacing distributions forL58,10,12,14,h/J50.1,0.5,1,2,D50.5. Broken lines, the Poisson distribution; solid lines, t
Wigner distribution.
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fermions where the level-spacing distribution changes fr
PPoi(s) to PWig(s) as the electron-electron interaction i
creases from zero.9

We now discuss how the level-spacing distributionP(s)
depends on the random magnetic fieldh. We consider only
the case ofDÞ0. In Fig. 2 the graphs ofP(s) are shown for
some values ofh/J andL, whereD50.5. We first consider
the case of largeh. As h/J increases from the value of 0.5
we observe that the form ofP(s) changes fromPWig(s) to
PPoi(s). The observation suggests that the effect of rand
magnetic field on each site should become larger than tha
the correlation between adjacent spins, as the random
h/J increases. The spins should become more independe
each other ash/J increases, since the effect of correlatio
decreases effectively. Thus, the Poisson-like behavior
P(s) should appear in the limit of largeh/J. Similar shifts
from PWig(s) to PPoi(s) as randomness increases have b
discussed for the 3D Anderson model,8 the spin-glass
clusters,10 and the open-boundary Heisenberg chain.12

For the case of smallh, the level-spacing distribution
P(s) strongly depends on the system sizeL, and the behavior
of P(s) is dominated by finite-size effects. In Fig. 2, w
observe that the form ofP(s) for h/J50.1 is different from
that of the standard Wigner distribution, particularly whenL
is small. WhenL is small, random magnetic field is irreleva
to energy levels if it is smaller than the order of 1/L. In fact,
energy differences should be at least in the order of 1/L, and
random magnetic field can be neglected if it is much sma
than some multiple of 1/L. Thus, for the case of smallh, the
level statistics should show such a behavior as that oh
13240
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50. In fact, the Hamiltonian forh50 is the integrableXXZ
spin chain, which should have Poisson-like behavior. F
thermore, the integrableXXZ Hamiltonian atD50.5 has the
sl2 loop algebra symmetry,13 and the level-spacing distribu
tion should show a peak ats50.6 In Fig. 2, the graph of
P(s) for L58 andh/J50.1 suggests such behavior.

Let us discuss finite-size effects on the level-spac
distributions. In order to observe the size depende
of P(s) clearly, we employ the following parameter:h
5*0

s0@P(s)2PWig(s)#ds/*0
s0@PPoi(s)2PWig(s)#ds, where

s050.4729 . . . is the intersection point ofPPoi(s) and
PWig(s).10,12Thus, we haveh50 whenP(s) coincides with
PWig(s), and h51 when P(s) coincides withPPoi(s). In

FIG. 3. Dependence of the parameterh on the lattice sizeL for
h/J50.1,0.5,1,2 andD50.5. h50 corresponds to the Wigne
distribution andh51 to the Poisson distribution.
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Fig. 3, the value ofh for h/J50.1 strongly depends on th
lattice sizeL. Moreover, we observe that asL increases,h
decreases forh/J50.5, while h increases forh/J52. The
observation suggests thath approaches either the value 0
1 as L increases. In other words, it should become m
definite whetherP(s) has Wigner-like behavior or not, as th
system size becomes large.

IV. CONCLUSIONS

In conclusion, we have calculated the level-spacing dis
butions of finite spin-12 XXZ chains under random magnet
field, and shown how the level-spacing distributions chan
between the Poisson distribution and the Wigner distribut
depending on the lattice sizeL, the anisotropy parameterD,
and the mean amplitude of the random magnetic fieldh. For
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