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Level statistics of XXZ spin chains with a random magnetic field

Kazue Kudd
Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan

Tetsuo Deguchi
Department of Physics, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
(Received 29 October 2003; published 8 April 2p04

The level-spacing distribution of a spéw-XXZ chain is numerically studied under random magnetic field.
We show explicitly how the level statistics depends on the latticelsizke anisotropy parametér, and the
mean amplitude of the random magnetic fibldn the energy spectrum, quantum integrability competes with
nonintegrability derived from the randomness, where Xi€Z interaction is modified by the parametar
When A+#0, the level-spacing distribution mostly shows Wigner-like behavior, while wher0, Poisson-
like behavior appears although the system is nonintegrable due to randomness. Poisson-like behavior also
appears fold # 0 in the largeh limit. Furthermore, the level-spacing distribution depends on the latticd_size
particularly when the random field is weak.
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I. INTRODUCTION
H= JZ (S'S,,+8'S +1+Asjzsz+l)+2 h;S7,
Random matrix theories have been successfully applied to
analysis of the spectra of various physical systems such as
quantum spin systents® strongly correlated systemisand ~ where S*=(1/2)c and (o*,0”,0?) are the Pauli matrices;
disordered quantum systeffis! In quantum spin chains, if a h; is random magnetic field along theaxis at sitej; the
given Hamiltonian is integrable by the Bethe ansatz, theperiodic boundary conditions are imposed. The random mag-
level-spacing distribution should be described by the Poissonetic field h;'s are uncorrelated random numbers with a
distribution: Gaussian dlstrlbutlon(hj) 0 and (h,h,)=h?s,,. Here
we recall that the systeif8) is integrable whem=0, while
PeofS)=exp( —s). () tisnotwhenh70. A
We show explicitly how the level-spacing distribution
P(s) depends on the lattice site the anisotropy parameter
, and the mean amplitude of the random magnetic field
For some special cases of the Hamilton{8) the level sta-
5 tistics has been discussed. The present numerical results
Pyiq(S) = W_Sex% ™S ) ) should make explicit connections among them and even ex-
9 tend them. Whem #0, P(s) mostly shows Wigner-like be-
havior. For the Heisenberg casa£€1), it has been shown
In the Anderson model of disordered systerRgq(s) and that P(s) coincides withPy,(s). ' When A=0, Poisson-
Pwig(s) characterize the localized phase and the metallidike behavior appears although the system is nonintegrable
phase, respectivefy. due to the randomness. However, the result is consistent with

The numerical observations should be importart.in the Anderson localization of one-dimensioraD) systems.
fact, there has been no direct theoretical derivation for th&he Wigner-like behavior foA #0 suggests that the Ander-
suggested behavior of the level-spacing distribution. Furtherson localization in 1D systems should be broken by the in-
more, unexpected behavior has been recently found in theraction such as th&XZ coupling. Here we note that an
level statistics of someXXZ spin chain. Robust non- analogous phenomenon has been observed in the 2D Ander-
Wigner behavior has been seen in the level-spacing distribuison model with electron interactidrin the largeh and small
tions of next-nearest-neighbor coupkX Z chains, although h limits, Poisson-like behavior appears again -0,
they are nonintegrable. The reason why it appears is not cleavhich is consistent with the numerical results for spin-glass
yet, although we have considered two possible reasons: extrusters'® the open-boundary Heisenberg ch&imnd the 3D
symmetries or finite-size effects. Anderson model. Furthermore, we find thalP(s) depends

In this Brief Report, we discuss the level-spacing distri-on the lattice size., particularly when the random field is
bution of a disordere& XZ spin chain so that we may find weak.
possible clues to the unexpected behavior of X€Z spin There is another motivation for the present study. The
chains. We consider specifically the sginXXZ spin chain  symmetry of the integrable quantuXXZ spin chain can be
with random magnetic field, where quantum integrability nontrivial. An extraordinary symmetry appears for special
competes with nonintegrability due to the randomness. Thealues ofA: the XXZ Hamiltonian commutes with thel,
Hamiltonian onL sites is given by loop algebra whe is a root of unity, wherey is defined by

If it is not integrable, the level-spacing distribution should be
given by the Wigner distribution:
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TABLE I. Matrix size of the largest subspace and the number of 1r .
samples calculated in this work for each lattice size. °, A=0 °
sl o A=0.1 &
Lattice size Matrix size Number of samples ) Saa ﬁfgg g
s00Wa © A=l o+
8 70¢70 10000 06 o¥, & %
10 252¢ 252 3000 @ | .8 o a0
o o3 A ©
12 924 924 1000 0.4l © 8,0
14 34323432 900 0 ®a 000
a QQ AQ
0.2} °3
A=(q+1/q)/2.23 The loop algebra is an infinite-dimensional
Lie algebra, and the dimensions of degenerate eigenspaces 00 05 ] 15 5 55 3
are given by some exponential functions of the system size, s

which can be extremely largdé® It should, therefore, be

trivial h the | d . ved b . FIG. 1. Level-spacing distributions fok =14, h/J=0.5, A
Peogr:’azlt\)/illﬁy ow the large degeneracies are resolved by nor"néo,o.l,O.Z,O.S,l. Broken line, the Poisson distribution; solid line,

the Wigner distribution.

Il. NUMERICAL PROCEDURE the system is nonintegrable due to the random magnetic

In the Hamiltonian(3), total 7 is conserved. The eigen- f€ld- AsA increasesP(s) rapidly changes t@yy(s).
states with differen&? are uncorrelated. Therefore, we con- _ L€t US explain the Poisson-like behaviord#0 in terms
sider only the largest subspa8&=0. The largest sectors for of the Ar_lderson Iocallza_tlon. The Hamiltonig(8) can be
the lattice sizeL=8,10,12,14 have 70,252 924,3432 eigen_mapped into almodel of interacting 1D free fermions under
values, respectivelysee Table)l random potential:

To find universal statistical properties of the Hamilto-
nians, one has to deal with unfolded eigenvalues instead of H="12
raw eigenvalues. The unfolded eigenvalues are renormalized 4
values, whose local density of states is equal to unity every-
where in the spectrum. In this Brief Report, the unfolded
eigenvalues; are obtained from the raw eigenvalugsin
the following method. Let us define the integrated density of

L-1
t t Mot T
j§=:1 (€jCj+11Cj41C)) — (= 1)¥(c citcqcy)

L
J
+A 2 jzl (4CJ-TC]-CJ-T+1C]- 1 4CJ~TCJ- +1)

states as - 1
+ hj(——c}c,-). (6)
N =1 2
n(E)=Z,1 O(E—E)). (4) Here,L is the number of sitesyl is the number of fermions;

_ ) ) cJ-Jr andc; are the creation and annihilation operators of fer-
Here 6(E) is the step function andll is the number of the  mjons on thejth site, respectively. And the Anderson model
eigenvalues. We choose some points of coordinatessf noninteracting disordered fermions is given by
(E; ,n(E;)) fori=1,21,41 ... N. The average of integrated
density of stategn(E)) is approximated by the spline inter-
polation througﬁ the zzhosen points. The unfolded eigenval- H=2 ejcjcj+ > V(ciej+clcy), (7)
ues are defined as J a0

wheree; is the random potential at thieh site;V is a con-

Xi=(n(Ey). (5 stant hopping integrali(i,j) denotes summation over
The level-spacing distributions are given by the probabilitynearest-neighbor sites. One can find that &g.for A=0
function P(s), wheres=x;,;—X; . corresponds to Ed7) of the 1D case. It is known that local-

We have calculated 10000,3000,1000,900 samples dration always occurs in the 1D case, while the 3D Anderson
P(s) for L=8,10,12,14, respectivelisee Table)land aver- model has the metallic phase and the localized phase. Here
aged the samples for eathTo calculate the eigenvalues, we We recall that the metallic phase correspond®yg,(s) and
have used standard numerical methods, which are containd@e localized phase tBp,(s). Thus, the observed Poisson-

in the LAPACK library. like behavior forA=0 is consistent with the Anderson local-
ization.
IIl. LEVEL-SPACING DISTRIBUTION Let us discuss a consequence of the Wigner-like behavior

for A#0. The Hamiltonian(3), namely, Eq.(6), for A#0
Depending on the anisotropic parameter(0sA<1), corresponds to interacting 1D fermions under random poten-
the level-spacing distributiorP(s) changes between the tial. Thus, the Wigner-like behavior d#(s) for A #0 might
Wigner distribution Pyy4(s) and the Poisson distribution suggest that the interaction among fermions should break the
Ppo(S) as shown in Fig. 1, wheré=14 andh/J=0.5.  Anderson localization in 1D chains. The suggestion could be
When A=0, P(s) almost coincides withPp,(s) although consistent with the observation on the 2D interacting lattice

132404-2



BRIEF REPORTS PHYSICAL REVIEW B59, 132404 (2004

1 : : : , :
1.2t + h/J=0.1 + ’~.++ h/J=0.1 +
h/J=0.5D o+ h/J=0.5 D
1+ hiJ=t o 08 ‘*A_ + hiJ=1 o
hi=2 & > %2880, hiJ=2 &
@08 4‘+ . _8 _08p ©p/Tx 0 B
o6l 2oB%ac0ly - & [o RIYCR- L=10
5 _‘_‘-_AAOD 0.4 [m] -\A o
20 Aol:| +_§AO o
298 #2040
0.4 o + '._‘Agg ‘~-423
e, 085 o tica
0.2/o ey E Ag_‘ ‘y 0.2 ++~Jr
+++ & 4
CEETS ;
0 §§ 0 é
0 0.5 1 S1.5 2 25 K] 0 0.5 1 S1,5 2 25 3
1 1
hiJ=0.1 + h/J=0.1 +
08 h/J=0.5 O 0.8 h/J=0.5 o
a hiJ=1 o ] s hid=1 o
A A5.$+O$ o hi=2 o “ Aég %0+ hid=2 2
_os} b Pa %DD 106 . Fs oy*D
25 IN ® L=12 @ AA S L=14
o oy A ¢ O a o+ s ©°D
0.4 é_AAQQ 0.4 4‘4AA°0+
“afe y TR
0212 “229 02/ b
0 B8
0 0.5 1 RE 2 25 3 0 0.5 1 RE 2 2.5 3

FIG. 2. Level-spacing distributions f&r=8,10,12,14h/J=0.1,0.5,1,2 A=0.5. Broken lines, the Poisson distribution; solid lines, the
Wigner distribution.

fermions where the level-spacing distribution changes from=0. In fact, the Hamiltonian foh=0 is the integrableXXZ
Ppoi(S) to Pyig(s) as the electron-electron interaction in- spin chain, which should have Poisson-like behavior. Fur-
creases from zero. thermore, the integrabl&XZ Hamiltonian atA =0.5 has the
We now discuss how the level-spacing distributi®(s) sl, loop algebra symmetr} and the level-spacing distribu-
depends on the random magnetic fieldWe consider only tion should show a peak &=0.% In Fig. 2, the graph of
the case oA+ 0. In Fig. 2 the graphs d?(s) are shown for  P(s) for L=8 andh/J=0.1 suggests such behavior.
some values oh/J andL, whereA=0.5. We first consider Let us discuss finite-size effects on the level-spacing
the case of largh. As h/J increases from the value of 0.5, distributions. In order to observe the size dependence
we observe that the form d?(s) changes fronPy4(s) to  of P(s) clearly, we employ the following parameten
Pprof(S). The observation suggests that the effect of random= fzo[p(s)_ PWig(S)]dS/fgo[PPoi(s)_PV\ﬁg(S)]dSv where
magnetic field on each site should become larger than that of —0.47D ... is the intersection point ofPp.(s) and
the correlation between adjacent spins, as the random fiel 4(5).12*2Thus, we have;=0 whenP(s) coincides with
h/J increases. The spins should become more independent Plug(s), and 7=1 when P(s) coincides withPp,(s). In
each other a$/J increases, since the effect of correlation
decreases effectively. Thus, the Poisson-like behavior of 1.4

P(s) should appear in the limit of large/J. Similar shifts 1ol
from Pyy4(S) to Ppyi(S) as randomness increases have been '
discussed for the 3D Anderson mofekhe spin-glass 1t
clusters'® and the open-boundary Heisenberg cHain. :o .
For the case of smalh, the level-spacing distribution |
P(s) strongly depends on the system dizeand the behavior 0.6}
of P(s) is dominated by finite-size effects. In Fig. 2, we
observe that the form d?(s) for h/J=0.1 is different from 04¢
that of the standard Wigner distribution, particularly when 0.2t
is small. WherL is small, random magnetic field is irrelevant

to energy levels if it is smaller than the order of 14n fact,
energy differences should be at least in the order bf ahd
random magnetic field can be neglected if it is much smaller FiG. 3. Dependence of the parametepn the lattice size. for
than some multiple of 1/. Thus, for the case of smdi| the  h/J=0.1,0.5,1,2 andA=0.5. =0 corresponds to the Wigner
level statistics should show such a behavior as thah of distribution and»=1 to the Poisson distribution.
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Fig. 3, the value ofy for h/J=0.1 strongly depends on the A=0, the level-spacing distributioR(s) almost coincides
lattice sizeL. Moreover, we observe that d&sincreasesy;;  with the Poisson distribution although the system has the
decreases foh/J=0.5, while z increases foh/J=2. The randomness. A4 increases from zerd(s) rapidly shifts to
observation suggests thatapproaches either the value 0 or the Wigner distribution. The behaviors &f(s) have been

1 asL increases. In other words, it should become moreexplained in terms of Anderson localization. Po# 0, P(s)
definite whetheP(s) has Wigner-like behavior or not, as the strongly depends oh when h is small. WhenL is finite,

system size becomes large. P(s) should show Poisson-like behavior in the snialimit.
In the largeh limit, however, P(s) should become close to
IV. CONCLUSIONS the Poisson distribution independentlof

In conclusion, we have calculated the level-spacing distri-
butions of finite spins XXZ chains under random magnetic
field, and shown how the level-spacing distributions change The authors would like to thank K. Nakamura and T. Kato
between the Poisson distribution and the Wigner distributiorfor useful discussions. The present study was partially sup-
depending on the lattice size the anisotropy parametéy, ported by the Grant-in-Aid for Encouragement of Young Sci-
and the mean amplitude of the random magnetic fielHor  entists(A): Grant No. 14702012.

ACKNOWLEDGMENTS

*Electronic address: kudo@degway.phys.ocha.ac.jp 8B.1. Shklovskii, B. Shapiro, B.R. Sears, P. Lambrianides, and
"Electronic address: deguchi@phys.ocha.ac.jp H.B. Shore, Phys. Rev. B7, 11 487(1993.
1G. Montambaux, D. Poilblanc, J. Bellissard, and C. Sire, Phys.°R. Berkovits and Y. Avishai, J. Phys.: Condens. Ma®er389

Rev. Lett.70, 497 (1993. (1996.
2T.C. Hsu and J.C. Angied'Auriac, Phys. Rev. BA7, 14 291  1°B. Georgeot and D.L. Shepelyansky, Phys. Rev. L&tf.5129

(1993. (1998.
3D. Poilblanc, T. Ziman, J. Bellissard, F. Mila, and G. Montam- Y. Avishai, J. Richert, and R. Berkovits, Phys. Rev6g 052416

baux, Europhys. Let22, 537 (1993. (2002.
4P. van Ede van der Pals and P. Gaspard, Phys. Re\®, 9  °L.F. Santos, cond-mat/0310085npublishejl

(1994. 13T, Deguchi, K. Fabricius, and B.M. McCoy, J. Stat. Phy82,
5J.C. Angles d’Auriac and J.M. Maillard, Physica 821, 325 701 (2002.

(2003. 14K. Fabricius and B.M. McCoy, iMathPhys Odyssey 20padited
6K. Kudo and T. Deguchi, Phys. Rev. &, 052510(2003. by M. Kashiwara and T. MiwdBirkhauser, Boston, 2002 p.
M. Faas, B.D. Simons, X. Zotos, and B.L. Altshuler, Phys. Rev. B 119.

48, 5439(1993. 15T, Deguchi, J. Phys. 85, 879(2002.

132404-4



