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Surface-plasmon dispersion relations in chains of metallic nanoparticles:
An exact quasistatic calculation
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We calculate the surface-plasmon dispersion relations for a periodic chain of spherical metallic nanoparticles
in an isotropic host, including all multipole modes, in a generalized tight-binding approach. For sufficiently
small particles kd<1, wherek is the wave vector and is the interparticle separatipnthe calculation is
exact. The lowest bands differ only slightly from previous point-dipole calculations provided the particle radius
a=d/3, but differ substantially at smaller separation. We also calculate the dispersion relations for many higher
bands, and estimate the group velocityand the exponential decay lengh for energy propagation for the
lowest two bands due to single-grain damping. &= 0.33, the result fo&y is in qualitative agreement with
experiments on gold nanoparticle chains, while for smaller separation, suahda€.45, vy and & are
expected to be stronglydependent because of the multipole corrections. When the particles touch, we predict
percolation effects in the spectrum, and find surprising symmetry in the plasmon band structure. Finally, we
reformulate the band-structure equations for a Drude metal in the time domain, and suggest how to include
localized driving electric fields in the equations of motion.
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[. INTRODUCTION cause the higher multipole excitations may produce fields
which vary rapidly in space, whereas numerical studies with
Recently, it has been shown that energy can be transmitasufficient discretization may not achieve adequate resolu-
ted along a one-dimensionélD) chain of equally spaced tion. Thus, an exact calculation in a simple geometry may
metallic nanoparticles, via propagating surface-plas(@&  Nnot only provide physical insights into this system, but also
modes!~® These modes are basically linear combinations opives useful guidelines for the validity of numerical calcula-
single-grain SP modes, i.e., oscillations of electronic charg&ons in more complex geometries. _
within a single grairf. The single-grain modes are accompa- !N the present work, we will show how these multipolar
nied by an oscillating electric momeftipole and higheron corrections can be calculatedacyly using a straightforward
the grain. The electric field of this moment in turn generateé"ma!yt'cal. apprpac_h. The formallsm IS apalogous to the gen-
oscillating moments on neighboring spheres. eralized tight-binding method in conventional band theory. In

The propagating SP modes are simply traveling waves o&hls ?‘ppm?‘Ch’ one constru_cts BlO.Ch states fror_n |n_d|V|duaI
S . tomic orbitals, and then diagonalizes the Hamiltonian ma-
these oscillating moments. They are characterized by we

defined di . lati K) which relate their f rix in the basis of these atomic orbitals. In the surface-
elined dispersion rela '022( ) whic relate their frequen- plasmon analog, the individual atomic orbitals are multipolar
ciesw and wave vector&.“” If the damping is sufficiently

. SP oscillations for each sphere. The matrix elements needed
small, the energy transmitted by these ways may travel & calculate the Hamiltonian matrix are easily constructed,
speeds up to Ocl Thus, one can imagine a variety of pos- especially for a periodic 1D chain of spheres. The diagonal-
sible uses for these waves. ization needed to calculate the bands is readily carried out.
The calculation ofw(k) typically involves several ap- The entire calculation is made simpler in 1D systems, be-
proximations. The first of these is theear field cause the Hamiltonian matrix decomposes into separate
approximation—that is, one assumes tket<1, wherekis  blocks, one for each azimuthal quantum numiver
the wave number and the interparticle separation. This as- The basic formalism necessary to carry out this
sumption permits the electric fiel to be calculated in the calculatiort® has thus far been applied only rather sparingly,
quasistatic limit, in whiclE is expressed as the gradient of a because there have been few experimentally available real-
scalar potential. izations of the ordered geometry required for this approach.
A second common approximation is that the field pro-It has been applied mainly to calculating the effective com-
duced by a given particle at its neighbors is that giant  plex dielectric functione.(w) of a periodic composite me-
dipole However, this second assumption is stronger than theium, which requires the SP band structure only at Bloch
quasistatic approximation, and becomes inaccurate when thectork=0. Only recently has it become possible to pro-
particles are closely spaced. Under these conditions, the quduce well-controlled ordered metallic structures at the nano-
sistatic fields may be modified significantly by multipolar scale, and hence to generate and detect these SP waves at
interactions. Typically, these multipolar fields have been ingeneral wave vectors. In this paper, we describe and numeri-
cluded by numerical techniques such as finite-differenceally solve the equation necessary to calculate this band
time-domain calculations. However, it may be difficult to structure in the general caselo#0 in 1D systems.
obtain accurate results by these numerical techniques, be- Besides giving the solutions in the full multipolar case,
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we also include damping of the SP modes due to losses
within the individual metallic particles. For a Drude metal, o,  =(—1)('*"
these losses can be treated by including a finite relaxation T
time 7 in the Drude dielectric function. This damping can be
included approximately by adding an imaginary part to the
SP frequencies. We also briefly discuss why the damping due
to radiative energy losses is expected to be small. These
losses arise from the breakdown of the quasistatic approxi- (€+€¢"+m—m')!
mation, and can, in principle, also be approximately included X P P
by adding an imaginary part to the surface-plasmon fre- (€M +m)H(C—m)H (e’ —m() 2
quency.

We will also present the multipolar SP equations in the
time domain for a Drude metal, where they take the form of .
a set of coupled second-order ordinary differential equationd-lere we have introducel= (n’ —n)dz, which is the vector

In this form, it is straightforward to include single-particle separation between the grains centered’at and nz, and
damping(and also, in principle, radiative dampingviore-  the polar and azimuthal angle and ¢y, for this displace-

over, one can also _inc_orporate driving terms, arising, €-9ment vector. Since=bz, 0, is either O orm, depending on
from external electric fields. These equations may thus be

useful in modeling specific types of experimental probesVhetherb is positive or negative. 1b>0, Py se = Om m:

which produce localized time-dependent electric fields. whereas ifb<0, P'{)“,';gm:(—l)f'*fgm,’m_ Incorporating
The remainder of this paper is organized as follows. Inthese simplifications, we find that with

Sec. Il, we describe the formalism needed to calculate the SP

band structure, and specialize to the calculation for a 1D P

chain. Section Il presents numerical results in this 1D chain _ 0 im '

system. In Sec. IV, we discuss our results, and suggest som&nemnrerm =(—1) (m)

possible extensions to other geometries. Finally, the Appen-

dix presents an alternative formulation of the equations of

motion in the time domain, and describes how localized

time-dependent driving electric fields can be included in

these equations.

)€+€'+1

[n—n’|d

oo 1/2

(20+1)(2¢'+1)

x exfi gp(m' —m)IPT,  M(coshy).  (2)

e 12

(20+1)(2¢'+1)

» (€+€¢")!
[(€+m)l (€ +m)(€—m)!l (€' —m)1]*2
Il. FORMALISM , et
n’—n
We consider a 1D chain of spherical particles of ragius ( = n|> Om,m’ - ()

separated by a distanak (d=2a). The particles are as-
sumed to be arranged along tleaxis with centers at
=0, =d, £2d, .... Weassume that the particles and host
have dielectric functiong(w) and e,(w). To be definite,
we may consider the particles as metallic and the host a8
insulating, but the discussion below applies to any choice of
€n and e, . All the formalism is given in terms of a fre-
guency variables defined by

The matrix elements are diagonal in because the one-
dimensional chain is unchanged on rotation by any angle
bout thez axis.

Next, we define the matrix element

Qfm;f’m’(k):rgo Q0,€m;n€’mexfxinkd)5m,m’ ) (4)

1
= 1
1-emlen @ where the sum runs over all positive and negative integers

exceptn=0. We have used the fact that, for this periodic 1D
systemQpem:n¢rm 1S @ function only oh—n’ and vanishes
®r m=m’. After a little algebra, using Eq$3) and(4), we
obtain

S

As will be seen below, and as is discussed indirectly in Ref
10, all the allowed propagating SP frequencies correspond
s in the range Gs<1, or equivalently, to—o<e¢,/€,
<0, assuming that,, and e}, are both real.

We will calculate the SP band structure in an “atomic” (e +1 @

. » ; a cog nkd)
basisn,€,m. Here,{ andm label the “angular momentum Qemerm (K)= Al — 1 Keot mOmm - (9)
of the eigenfunction, ana labels the grain. Thus, the al- n=1n

lowed values of these indices are=0, =1,£2,..., ¢ ,

=1,23...,andm=—¢,—€+1,... £. In order to calcu- for £+¢" even, and

late the SP band structure in this basis, we first need the (4041 P

matrix elemenQp¢m:n ¢'m’» Wheren#n'. This matrix ele- Qem-e/m(k)Z(E ww o mOmm (6)
ment is given by(see, e.g., Ref. 10 ' d A=1 péreer o ne i
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for €+ ¢' odd, where can be inverted to expregs as a function ok. For a reals,
2 the correspondinge has both a real and imaginary part.
_ am e’ Thus, we can map an eigenvalag(k) (wherea is a band
Keerm=2(=1) (20+1)(2¢' +1) index to acomplexeigenvalue
(e 0 oK)= Vw}s,(K) = 1(47%) —i/(27). (13
[(€+m)L(€ +m)l(€—m)l (€' —m)!]¥2 The imaginary part describes the damping of this mode due

) to the finite lifetime of the surface plasmons in the individual
spheres. lfw,7>1, this damping is small, and the shift due
Finally, in terms of the matrix elemen@/m; the SP  to the dampinglas embodied in the factor & within the
structure is given by square rogtis even smaller. Note that we have not included
radiative damping in this expression. In contrast to single-
dets—H|=0, (8)  particle damping, the radiative damping depends on the par-
ticle size, being greater for larger particles. For 10 nm radius

where the "Hamiltonian”H has matrix elements gold spheres, it has been estimated that only 1.5% of the total

o, = , o, damping rate is due to radiative dampittcAlso, according
Hffn’e nT(k) Sedue +Q€m.’€ (k). ® to Refs. 3 and 4, the radiative damping should be small for
and the “atomic” eigenvalues, are given by particles of such a size because of strong near-field interac-
¢ tions.
Sp==. (10) In the Appendix, we present an alternative formulation of
- 26+1 the equations of motion in the time domain to obtain the SP
Note thats, = 1/3, whiles,— 1/2 asf —. band structure, assuming a Drude dielectric function. In this

The full SP band structure at wave veckds obtained by ~formulation, which has the advantage that it can deal with
diagonalizing the matri%9). As in conventional band theory, Ipcahzed tlme-dependent (_jrlvmg _electrlc fields, these radla-
there are many band energies for a giverand one need tive corrections could_ easily be included, as has been dis-
consider only the bands in the first Brillouin zone, i.e., in thisCuSSed, for example, in Ref. 3. , ,
case, for— m/d<k=<m/d, since the states at other values of N order to compare with experiment, we will consider
k are equivalent to those in the first zone. For this one{W0 more quantities which can be obtained from the disper-
dimensional system, the Hamiltonian breaks into separat@ion relationw(k): First, the k-dependent group velocity
blocks, one for each value af; this conveniently reduces vq(K) IS given by the relation
the size of the matrix which needs to be diagonalized. Fi-
nally, as in the linear combination of atomic orbitaiCAQO) vo(K)= do (14)
method of conventional band theory, the band structure that g dk
results from this analysis is composed of bands which origi-and can be easily computed numerically, give(k). Sec-
nate from various atomic orbitals. In the present case, th%nd we can also use Eq4.3) and (14) to estimate the en-
atomic states are multipolar SP modes associated with the

individual spheres. These are degenerate at diffengstnce 1oy loss f.rom a plas_mon propagating alonga chai_n, which is

the individual particles are sphejesnd have eigenvalues important in applications. For this purpose, we define energy
s,= /(26 +1) decay lengthsp(k) for the lowest longitudinal and trans-
e_ .

The band structure that results from diagonalizing the may e modes, as the distance over which the energy density

. . : ) in the wave amplitude decreases by a factor exi( If the
trix (9) is expressed in terms of the varialde Thus, the . ;
bands have the forrs,(k), where « labels the individual complex band frequency is denoted (k) +iw,(k), then

bands. These may be converted into frequencies using tH‘:@(k) is defined by
relation (1). This dispersion relation will take on various K K 1 de(k

forms, according to how,, (ande;) depend onw. Here we ¢o(k) = vg(K) =— (k) ) (15)
assume that the system consists of Drude metal particles in d 200 20, d(kd)

vacuum, so that,=1 andep(w)=1-wp/[w(0+i/7)]. I Note that in the case of the Drude approximation, the imagi-
wp7—, then the appropriate conversion is given by nary part of the complex band frequency does not depend on
k, and thusép, is just proportional ta 4(k).

,(K)=wpVs,(K). (11
For ¢=1 there are three degenerate modes at frequency
wp/\/§, while for € —, the modes approach the limiting IIl. NUMERICAL RESULTS

value of w, /2.

If the relaxation time is finite, then the relation We have diagonalized the matii8) to obtain the surface-

plasmon band structure for various values of the parameter
1 w(w+il7) a/d. We include all bands up t6=80, which is sufficient to
= (12 insure convergence of,(k) to within 1%. The results are
shown in Fig. 1. For comparison, we also show the results of

S: =
1—enlep ‘1’,23
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tonian matrix. For small values @f/d (i.e., a/d<0.3), the
lowest three bands are very similar to the bands obtained
when only thef =1 matrix elements are included. This be-
havior is not surprising, since at these valuesaddl the
matrix elements connecting tife= 1 states to those of higher

¢ are quite small, for any value & This smallness origi-

nates in the factors ofa(d)‘*¢'*1 which appear in all the
expressions for the matrix elements. The smallest factor con-
necting¢ =1 to higher¢ is (a/d)* for k=0, and @/d)® for
k=0. Thus, for relatively small values &/d, these con-
necting matrix elements are substantially smaller than the
diagonal ones.

When a/d=0.35, the interband matrix elements start to
become substantial. When this happens, the shapes of the
lowest bands start to depart significantly from the purely
dipolar form seen for smallea/d. As is evident, by the time
a/d—1/2, the band structures of the lowest bands are so
altered that they no longer bear any obvious relation to these
dipolar band shapes. Preciselyadtd=1/2, the lowest state
at k=0 reaches the limiting valus=0. This behavior is a
percolation effect: whema/d=1/2, the two neighboring
spheres just touch, and the entire line of spheres becomes
one connected chain. Thus, one might expect that the lowest
eigenvalues of this chain would resemble that of a very long
cylinder, which indeed has as its lowest eigenvaee.

The band structure also acquires a striking symmetry near
a/d=1/2. First, there appears to be a nearly perfect reflec-
tion symmetry about the line=1/2. In addition, there is
another reflection symmetry about the like 7/(2d), i.e.,

FIG. 1. Dispersion relations(k) for the surface-plasmon bands at the middle value ok in the first Brillouin zone. As par-
propagating along a chain of spherical nanoparticles of dielectrigicylar examples of these symmetries, there appear to be ei-

function ¢, in a host of dielectric functiore,,, plotted vs wave
vector k. (a) a/d=0.25, (b) a/d=0.33, (c) a/d=0.4, (d) a/d
=0.45, (e) a/d=0.49, (f) a/d=0.5 (spheres touching The solid
and dashed curves correspondnte=0 andm= *1, respectively,
for the full band structure, incorporating all bands upfte 80, as
obtained diagonalizing the full Hamiltonian matifigg. (9)]. The
open squaresnf=0) and circles {h=*=1) denote calculations for
the =1 modes in the dipole approximation. Note that tme
==*1 modes are degenerate.

truncating the Hamiltonian matrix &t=1. In this latter case,
the Hamiltonian matrix is a diagonal>X33 matrix with ele-
ments

3 cos(nkd)

1
2 Kiim, (16

H 1m; 1m(

where K, 1 0=—4/3 andK,;.,=2/3. The corresponding
plasmon bands, expressed ggk), are shown as open
square (n=0) and circle m==1) in Fig. 1. If we use the

genvalues 06=0 ands=1 atk=#/d, just as there are at
k=0. We do not fully understand the reasons for these sym-
metries. Thes~0 eigenvalue ak=#/d apparently corre-
sponds to a longitudinal modéipole moment of the spheres
parallel to thez axis) in which each sphere oscillates 180°
out of phase with its neighbors. The multitude of modes near
s=1/2 presumably originate in the high“atomic” modes,
which have eigenvalues approachisg 1/2.

In Fig. 2, we show the eigenvalues of the two lowest
bands ak=0 plotted as a function od/d. Here, the lowest
band corresponds to longitudinal mode=0) and the sec-
ond lowest band to degenerate transverse moehes<1).

We performed two different calculations: In the first calcula-
tion, shown as open circles and squares, we assumed the
dipole approximation and included only tiie= 1 part of the
Hamiltonian matrix. This calculation corresponds to the
tight-binding approximation used in Ref. 3. In the second,
we included all bands up t6=2380, which is sufficient to
ensure the convergence of these two bands, as in Fig. 1, and

Drude expressiona)i(k):wgsa(k), then these correspond this inclusion of the higher multipoles starts to make a sub-
exactly to the dipolar SP band structures obtained in Ref. 3stantial difference foa/d=0.35.

This behavior is as expected, since when we retain only the The inset to Fig. 2 shows the splittiys between the
¢=1 terms in the Hamiltonian, we are neglecting all thelongitudinal and transverse modekat0, plotted as a func-

guasistatic contributions except the dipole fields.

tion of a/d. In the dipole approximatiodashed ling this

As is evident, the plasmon bands take on quite a differensplitting increases monotonically @gd increases? How-

form when the higher values df are included in the Hamil-

ever, as shown by the solid line in the inset, when the higher
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0.5

04 r

03 r

(x)/(np

s(k)

02 r

0.1

a/d

FIG. 2. Eigenvalues(k) for the lowest two bands of the band
structure shown in Fig. 1 &=0, evaluated as a function afd.
Solid and dashed curves correspondrte 0 andm=*1, respec-
tively, for full multipole calculations. Open squarem€0) and
circles (m==*=1) are point-dipole calculations. Inset: Splittidgs
between lowestn==*1 andm=0 bands ak=0 as calculated in
the dipole approximatiofopen squargsand using full Hamiltonian
matrix (solid line).

multipoles are included, the splitting reaches a maximum 0 1 2 3
neara/d=0.46, then decreases again. kd

In order to compare with experiment, one needs 0 reex- i 3 (a) Dispersion relations(K) for the lowest two bands
press the band structure as dispersion relationseftk) i, 3 chain of metallic nanoparticles atd=0.33 or 0.45. The solid
rather thans(k), using Eq.(1). With the resultingw(k), we  (m=0) and dashedng=+1) lines correspond ta/d=0.45; the
can also obtain (k) from Eq.(14) and ép from Eq.(15.  open squaresn=0) and circles f1==1), to a/d=0.33. The
We show the resulting dispersion relationgk)/w, in Fig.  curves are computed using the full Hamiltonian ug/te80, using
3(a), and the resultingp (k) andvy(k) in Fig. 3(b) for the  a Drude dielectric function for the metdb) Energy decay lengths
lowest longitudinal and transverse bands as a functidedof &5, in units of the lattice constard, and corresponding group
We denote these results as open square and circla/tbr  velocitiesv in units of w,d, plotted vskd for the lowest two
=0.33, the value used in experiments, and also as solid arfghnds, assuming/d=0.33 or 0.45. The labeling of the curves
dashed lines for/d=0.45, which is near the maximum of follows the notation of Fig. &).
the splittingA’s. In order to calculates(k)/w,, we choose
w,=6.79< 10" rad/s andr=4 fs, as used in Ref. 7. This  For a/d=0.45, which is near the maximum of the split-
choice allows us to compare the present result &d  ting As, the multipole corrections to the band structure are
=0.33 with those given in Refs. 5 and 7. much greater. As/d approaches the maximum splitting be-

First, we compare our results fafd=0.33 with experi- tween longitudinal ;n=0) and transversenf=*+1) modes,
ment. Fora/d=0.33, the result of the full calculation for the variation ofv 4 with k becomes nonmonotonic. In contrast
w(K) is not significantly different from the dipole approxi- to the dipole approximation, which gives a maximum group
mation, since multipole effects produce only a minor alter-velocity atk= 7/(2d), our exact calculation actually gives a
ation to the lowest bands in this case. However, the multipoléocal minimumin v for this value ofk (for both polariza-
effects can be seen much more clearly in Kidependent tions). As can be seen from Fig(13, v4(K) has, in fact, two
group velocityv4(k) for these bands, and this quantity can maxima as a function of for this separation, for both lon-
be easily computed numerically, using tagk) shown in  gitudinal and transverse modes. The maximum estimated ex-
Fig. 3(@). In contrast to the result from the dipole approxi- ponential decay length shown in Fig(b3, for the optimum
mation of Ref. 3, the maximum in, for a/d=0.33 does not  k, corresponds to am=0 wave, and is about three times
occur atk=/(2d), but instead aroun#t=7/(4d), when larger than that fom/d=0.33. But this decay length is cal-
the multipolar corrections are included. However, if we as-culated for a wave witlk vector corresponding to the maxi-
sumed=75 nm, w,=6.79X 10" rad/s, andr=4 fs as in  mum group velocity. The actualy is stronglyk dependent,
Ref. 7, themagnitudeof the maximunu, for the longitudi-  especially for the largea/d. Thus, a typical wave, which
nal (m=0) mode is approximately 12910 m/s, which is  would likely propagate as a packet of many different wave
close to the result of Ref. 7, while the magnitudevgffor  vectors, would likely have a quite different decay length, and
the transversenj=*1) modes is slightly larger than the also would probably not decay exponentially. It is possible
value (1.2x 10" m/s) estimated in Ref. 7. Also, the values of that thisk dependence is related to the nonexponential spatial
¢p in the lowest longitudinal and transverse modesdft  decay of SP’s found in the numerical simulations of Ref. 1.
=0.33 are comparable to the experimental values for gold, as We have not commented thus far about the role of the
given in Ref. 6. higher SP bands. For values afd greater than about 0.33,
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most of these bands are nearly dispersionless, with eigenvdicles of different shapes, e.g., ellipsoids or short cylinders,
uess,(k)~1/2. The SP modes corresponding to these bandalthough the calculation of the single-particle eigenstates and
will thus propagate with very small group velocity,,  the overlap integrals might be more difficult. We plan to
=dw,(k)/dk, and are likely to contribute very little to en- carry out some of these extensions in the near future.

ergy transport along the chain.
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IV. DISCUSSION

. , If the small spherical particles are described by a Drude
—1/2, the lowest band shapes are entirely different from th‘?ielectric function, the SP band structure can be also ob-

point-dipole predictions. Thus, an accurate comparison %fained, in perhaps a more intuitive way, by writing down a
t_heory to experiment should take into account these correcsg; of coupled equations of motion iime for the multipole
tions, whena/d exceeds about 1/3. _ moments. We first introduce the scalar quantitigs,,, de-

In our results neaa/d=1/2 we see conspicuous percola- finaq as the ¢m)th multipole moment of thenth particle.

tion effects. Specifically, thk=0 mode approaches zero fre- Then, in the absence of damping, the coupled equations of
quency for a chain of Drude spheres in an insulating hosty,qtion can be written in the form

Furthermore, whena/d—1/2, the entire band structure

shows remarkable reflection symmetry, both aroukd . ) 5 ,

= x/(2d) and around the frequency midpointsat 1/2. We Onem™ ~ O¢mbnem™ @p 2 , Qneminre'm Anrerm »

do not presently understand the reasons for this symmetry. ¢rm'n Al
Besides producing shape distortions in the lowest bands, (A1)

the present calculations also lead to an infinite number ofvhere the prime over the sum indicates a sum only over the

higher propagating SP bands. We believe, however, thagrainsn’#n. For spherical grains, the single-grain resonant

these will contribute little to energy propagation, becausdrequencies are given by

they are characterized by much lower group velocities than

the lowest two bands. w2 = ¢ w2 (A2)
Our calculations in Fig. 3 have, of course, been carried m=2¢+17P

out in the Drude approximation. As mentioned earlier, We. \d the coupling constan@¢mn:¢m are given by Eq(3).

used values of H/andw, as best fits to experiments on bulk Equation(A1l) is readily solved for the eigenfrequencies b
gold, as described in Ref. 7. In actuality, the complex dielec- d y 9 q y

tric functions of silver, and especially gold, have substantiaﬁUbStItUtIng assumed solutions of the form
interband contributions, and cannot be described by a Drude Unem(t) = RE gy mexplinkd—iw,t)] (A3)
dielectric function in the visible. An accurate translation of
the SP band structure from the variatieo the variable into Eq.(Al). Hereqp is the amplitude of thedm)th mul-
em(®)/ e, should use this more accurate dielectric function,tifole in a propagating mode of wave vectar With this
e.g., by using a fit of the experimental,(w) to a sum of subst|tu_t|on, Eq(Al).reduce§ to a set of cogpled homqge-
free-electron and Lorentz oscillator parts. This more compli€ous linear algebraic equations. A solution is obtained if the
cated procedure might somewhat change the plasmon ba,qi@_termmant _of the matrix of coefficients vanishes. This con-
structures, especially for gold. Another possible complicatiorfiition is equivalent to that of Eq8), (9), and(11).
is that, in typical experiments, the nanoparticle chains are Equation(Al) has a straightforward physical interpreta-
laid down on a substrate, whose dielectric constant differion. The right-hand side of E¢A1) describes two contribu-
from that of vacuum. Thus, the chain is not really embeddedions to the force acting on the multipole momet,,. The
in a homogeneous dielectric. Some workers have taken thi#/St term is the restoring force due to charge motion within a
complication into account by treating the host as homogeSingle particle. The second term on the right comes from the
neous but with a dielectric function which is an average oveglectric fields of all the multipole fields from the other par-
the air and substrate dielectric functich@nce again, this ficles, evaluated at the position of théh particle. Damping
correction, if included, would also modify the calculated SPiS easily included in Eq(A1) by adding to the right-hand
band structure. side the term—q,¢y/7. TO obtain solutions in the presence
The present work could be readily be generalized toof damping, we assume the forA3) but with a complex
higher dimensions, e.g., to an ordered layer of spheres dérequencyw,(k)=w,+iw,. The resultingw,(k) is given
posited on a substrate. This extension should be straightfoby Eq. (13).
ward, since the matrix elements required are the same as An appealing feature of EqAL) is that one can easily
used here. The same approach could also be applied to paed a driving term. For example, if a uniform electric
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field E,(t) is applied to thenth grain, the interaction 1 w?a®

energy between that field and theth grain would be Unem= — ©fmbnem— —Gnem+ p—En,l,m(t)ﬁe,l
H’=—p,-E,(t), wherep, is the dipole moment of thath T S

grain. To calculate the force on thgh grain, we writep, ,

=0X,, whereq is the total electronic charge in tim¢h grain, +w,2) E Qnemnrerm Anerm: - (A4)
andx, is its displacement from its equilibrium position. The n"¢'m’

interaction energy between this charge and the applied

field is thus —qgx,-E,(t). The corresponding force on . . o . .
. - . Equation(A4) is generalization of the equations written

the charge is jusyE=Mx,, whereM is the to_t_al m?ss down in Ref. 3 which include all multipole moments, within
of the electronic charge in the grain. Thup,=0X, the quasistatic approximation, and single-grain damping
— 2 — 3 2 _ (23,2 el . . .
=Q°/ME=(4ma’n.e/3me)E=(awy/3)E, where m,  within the Drude approximation. They also include the ef-
=3M/(4ma’n,) is the electron mass=3q/(4man,) is  fects of a uniform but time-dependent electric field applied to
the magnitude of the electron chargg,is the electron den- the nth nanoparticle.
sity, and(u,2)=47-rnee2/me is the squared plasma frequency. Finally, we note that we have not included radiative cor-

Finally, to incorporate the damping and driving terms intorections to the calculated SP bands. However, the present
the right-hand side of EQAL), we express the applied elec- work could also be extended beyond the quasistatic approxi-
tric field in terms of the spherical componems=0 andm  mation to include radiative corrections, in a simple manner,
=x1. Thus, we write E,;o(t)=E,(t), En1-1(t) by adding an additional imaginary part to the eigenvalues.
=Enx(t) =E, y(t). We then obtain the following equations These corrections could easily be included within the dipole
of motion: approximation, as has been discussed, for example, in Ref. 3.
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