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Impurity resonances in carbon nanotubes
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Analytical expressions are derived for the self-energies of electrons in carbon nanotubes while interacting
with impurity atoms. Results are reported for armchair and zigzag tubes. It is shown that the impurity causes
a bound electron donor or acceptor state beneath every semiconductor band edge. If the tubes are metallic,
these bound states become resonance states. The analytical formulas give resonance shapes in good agreement
with former numerical calculations.
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[. INTRODUCTION strip, and then rolling the strip into a cylinder. Although na-
ture does not prepare them that way, the idea of rolling up a
Several papers have been written on the effect of a nitrostrip is useful theoretically, since it provides a simple model
gen impurity on the density of states of a carbonfor the electronic properties of the nanotubes.
nanotubé® Kostyrko et al? showed that a nitrogen impu-
rity gave a resonance in metallic tubes. This same resonance A. Graphene
was later found by other worke?s® The energy of the reso- , .
nance is below any of the semiconductor bands, and not 1he energy bands of a pure SWCNT are easily derived
simply related to the energy levels of the nitrogen impurity.from thes_P?ght-blndlng Hamiltonian for a sheet of
These calculations were all entirely numerical. graphené:
The same resonance is derived here by analytical argu-
ments. The analytical derivation gives a simple interpretation H=Hy+V, 2
to the origin of the resonance.
Our interest in these resonances comes from trying to un- + i
derstand the large Seebeck coefficient observed in multiwall Ho= _3025: [CajsCB,j+5sTCgj+ssCajsl (3
nanotube$* Since single wall tubes have electron-hole hos
symmetry, the Seebeck coefficient should be zero. A large
Seebeck can only be obtained by breaking electron-hole
symmetry. Defect states do break symmetry, and offer a pos-
sible explanation for the large value of the Seebeck. In me-
tallic tubes, the electrons are highly conducting. Are thereGraphene has two carbon atoms per unit cell, that are de-
resonances in these bands? Our analysis suggests that tisted A and B. Each atom has three neighbors, in the hon-
resonances are primarily in the semiconducting bands. To @ycomb lattice. The indek denotes a sit&®; of the A sub-
first approximation, a multiwall tube can be considered aattice, andj + & are theB neighbors ofA. The vectors; has
system of parallel conductors: each tube is a separate lingaree values. The index denotes electron spin. It does not
The effective Seebeck coefficient of parallel conductors is play a role in the analysis, so it is dropped from the notation.
The coefficientJg~3.0 eV is the transfer integral for a

N
V= Eoegl C/T\jsCAjs- (4)

zero, and that defines the energy zero of the problem. We
have also simplified the problem by having all of the nitro-
where (o;,S;) are the conductivity and Seebeck coefficientgen impurities on thé sublattice. It matters not which site is
of each parallel tube. This classical formula suggests that thesed for calculations of thE matrix for single site scattering.
Seebeck coefficient in multiwall tubes is dominated by me-Details are given in the Appendix.
tallic tubes with a high conductivity. How do the resonances The sign ofE, depends upon the impurity. F&;<0 one
affect these results? This topic is taken up in Sec. V of theggets donor resonances, while f&;>0 one has acceptor
paper. resonances. Both situations are found in carbon nanotubes by
introducing different gases into the sample chamber. Some
gases cause a positive Seebeck coefficient while others cause
a negative Seebeck coefficient. Presumedly the gases are ad-
The word “graphene” denotes a single carbon layer withsorbed and cause scattering centers.
the graphite structure. A single wall carbon nanotube The hopping HamiltoniarH, is easily diagonalized by
(SWCNT) could be constructed by cutting graphene into agoing to wave vector coordinates

2 s SWCNT. The perturbatioVv is from the N nitrogen impu-
j T rities on the lattice. We follow chemical convention, and in-
(S)y=——, (1)  clude the impurity by giving it a different site energy than
E o; that of a carbon atom. The site energy for carbon is given as
J

II. HAMILTONIAN
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1 )
AJ:\/_NEK: e RiCu, 5
1 ik-(Ri+0)
CB,j+6:\/_N§k: € 179 Cpy, (6)

Ho= _‘]0; [CaCery() +CLCay* (0], (D

y(k)=2§ ko, (8)

andN is the number ofA atoms in the tube. In graphene, the gjrectionz, ky=
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B. SWCNT

Repeat the above analysis for a SWCNT. Rolling up the
graphene sheet to make a cylinder, and a nanotube, makes
the system periodic in one direction. In the case of an arm-
chair(n,n) tube, the system is periodic in tixedirection. For
n equivalentA sites around the circumference, which age 3
apart, then an=2xR, whereR is the radius of the tube.
The quantization gives2Rk,=2p, wherep is an integer.
These relations mean that

(20

3 P
E :—k E¢p_

The y axis is along the length of the nanotube. Call this
k,. Since the unit cell length along the tube

three neighbors of are given in terms of the nearest neigh- jg ¢= \fa/2 then 6,=6=k.c. The quantum numbers of

bor distancea:

a a
5123(1,0), 5225(_11‘/3)1 5325(_11_‘/:?)1 (9)
y(k)=€"%+2 cog 6,)e %2, (10)

V3
0,=k,a, 0y:7 kya. (11

The Hamiltonian(7) can be diagonalized by writing/(k)
=|y(k)|e'¢® and absorbing the phagék) into the operator
CBk:

Car=Cgie'¢®, (12

Ho= _Jo; | ¥(K)|[CACai+ CLiCaxl, (13

| v(k)|=[1+4 cog36,/2)coq 6,) +4 cod(6,)]*%  (14)

Define a set of new operators

1 ~

akzﬁ(CAH‘ Cek), (15
1 ~

:Bk:%(CAk_CBk)a (16)

Ho= 2% [Ea(k) akaict Eg(k) Bibid, (17

Eo(K)=—=Jo[¥(K)[, Eg=Jo|¥(K)|. (18)

In terms of these states, the interaction with nitrogen is

HMZ

E [af+ Bl aw + B lexdiR;- (k' —k)1.
k,k’
(19

The form of this interaction changes in the nanotube.

Eo
2N

electron states in the armchair tube are, ), where
—mlc<k,<wlc,p=0,1,2,..n—1. The total number oA at-
oms in the tube iN=nN,, whereN, is the number of unit
cells along the axis of the tube. For an armchair tube, the
Hamiltonian is

kz.P) ek pete, ot Ep(Kz.P) BL 0B, ],
(2D)

Ho=k2p [E.(

Enp(Ky,p)=FJo[1+4 cog 6)cog ¢,) +4 cod(6)]"?,
(22

2 2 [alz,pwlz,p][ak;,p/wk;,p/]

2nNZ| 1 k k

xexditi(k,—k,)c+i2m(p—p’)m;/n], (23
where¢ is the unit cell along the tube, amdis the position
of the A atom around the tube. These two indices denote the
position of theA-atom in the tube. Interactiof23) forms the
basis for the calculation of the resonance state.

If p=0, cosgy)=1, the armchair tube has a dispersion of

E. (k0= FJo[1+2 cog ) ]. (24)

The energies vanish #=2/3,cosf)=—1/2. These bands
are called “metallic bands” since they have no energy gap.
The other armchair bands are called semiconductor bands
since they have a gap. Write the dispersion as

Ea,p(Kz,p)=FJo{[cOL pp) +2 cog 6) 1>+ sin2(¢p)}1/(2és)

The minimum value of the square root occurs when
2 cosf)=—cos(,). The semiconductor energy gap is
Eq(p) =2Jo sin(ey).

A similar analysis can be done for zigzagr{pPtubes. In
this case, the strip is cut so thatxis is along the axis of the
tube, and becomes the newdirection. They axis is around
the tube, andly = ¢, and 6,=k,c= 6. The interaction also
has the form of Eq(23), except now the electron eigenval-
ues are
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Eap(Ky,p)=FJo[1+4 cog 0)cod ¢,) +4 cod(¢,) ]2
(26)

2|€|80
n

Eooi(E)=

For zigzag tubes the minimum band energy is at two loca-

tions: (i) #=k,c=0,
Eo5(0.0)=FJo|1+2 cog ¢y)|. (27

This dispersion is zero only i,= mp/n=2m/3, which re-
quires thatn be divisible by three(ii) The second minimum
is at =1

Eop(m,p)=FJo|1—-2 cog ¢p)], (28)

which vanishes ifg,= /3.

[ll. SINGLE SITE SCATTERING THEORY
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1

X% {[(1+2cy)?—e?][e?— (1—2c,)* ]}

(39

In both terms the expression is zero if the argument of the
square root is negative. A special case is metallic zigzag

tubes where cosgf,)

=C,=*1/2. The real part has a root

Je?(e?—4) and is only nonzero ife|>2. The imaginary
term has a root/e%(4— £?) and is only nonzero if 2|¢|. At
E=0 this term isEyo;(0)=¢gq/n. The imaginary term is
proportional to the density of states of the tube without im-

purities.

Similar expressions for the armchair tubes are more com-
The scattering potenti@®3) is the basis for the scattering Plicated. The metallic tubespE=0,c,=1) have

between the band electrons and the nitrogen defect. The first
step is to derive the single simatrix for scattering of an g, (g p—0)= 22 sgne—1) sgne+1)
electron from one impurity® Using standard Green’s func- omr N J(e-3)(e+1) (e+3)(e—1)]|
tion methods?® gives a self-energy ) (36)
. cEo g9 1 1
Soliog)=7—7——, 29 i =VU)=— :
oli om) 7 Egolion) (29) Eooi(E,p=0)=— Feoes - NerareEn
(37)
U(iwm)Z—Z . ! + - ! , Again the terms are nonzero only if the argument of the
NN icp lom—=Eu(kz,p)  Tom—Eg(k;,p) square root is positive. The real part is zero ford>—1.
B0  The imaginary term is nonzero for3s > — 3 but both terms

where iw,, is the Matsubara discrete frequertfyand ¢ Ccontribute only for I>e>—1. The terms in Eqsi31) and
=N, /N is the concentration of defects. The summation ove32 With p#0 have an imaginary part
p=0,1,...n—1. This expression is derived in the Appendix.

The retarded function is found from the analytical con- Eooi(E)= eole| > A
tinuation iw,—E+i%n, where 7 is infinitesimal. The re- n % Q \/4—(cp+Qp)2
tarded o(E+i7n)=0,(E)—io;(E) has real and imaginary
i =— 1
parts. SinceEg E,, then n , (39)
\/4—(cp—Qp)2
(E)= 2E2 = dé 1 (31
T s | 2n EP-EL(6.p)% Qp=e?-52, (39)
Each term in the series overis zero unless?>s2. The
T T do . . P
oi(E)=—>, f —{5[E—E_(6,p)]+S[E+E,(6,p)]}. integral for the real part has two expressions depending upon
n< J-n2m the sign ofe?—s:

(32 If £2>s5 then
The integrals are easy to do for a zigzag tube
€0€ 1 1
E E BB 2 g, Jcp+ Q) —4
0 . p —
e=3,r F0T3 Co=C0 ¢p), Sp=SsiN(¢p), PP
1
33 T — (40)
2ece (Cp_Qp) -4
Eoo(E)= : If 82<S,2; then
VA +4+E2-¢c2
. sgn(e?— 1-4c?) an,(E)=—% p @
5 {[e%—(1+2cy)[2— (1—2¢,) 2}’ P
(34) El=si—e?, Al=(e2+3)%+1622. (42)

125407-3



G. D. MAHAN PHYSICAL REVIEW B 69, 125407 (2004

A dimensionless self-energy for the electron is defined from5 ——— T T
Eq. (29 as I
i (a)
So(iwn)=cIpZ(iwy), 43 4l \
Slo)=o—0 44 : \
(on) = (i @y
The retarded function is obtained by the analytical

continuation®i w,=E+i, and the real and imaginary parts
are 2

S(E)=Re[{3(E+in)} (45) /

- 1 : -
I'(E)=—Im{S(E+in)}. (46) ; / o \/‘
This function is useful to calculate since it is independent of r’/ ]

concentration. 0
Figure 1 shows a graph df(E) for armchair(6,6) and
zigzag (0,6 tubes. The horizontal axis is=E/J, over 0
a limit scale. For these figures we have selectgd Eq/J, 3 —
= —2.0, which are typical numbers for nitrogen impurities. i /\

0 0.2 0.4 0.6 0.8 1

Several peaks are shown. Each peak is associated with
semiconductor band edge. P& shows an armchair tube.

For n=6 there are semiconductor band edges &t0.50, i (b) \
0.866, and 1.00. Each resonance is caused by the factor ¢
(1—-Epo,) going to zero ass, diverges at the van Hove : /

2.5

singularity. Since the tubes are metallic, the imaginary part
of the self-energy is nonzero, so the result is a Fano shapeq s -
resonance. Precisely this behavior is found in all of the nu- | / \

merical calculations. Similar results are shown in gaytfor r
zigzag tubes. For €0,6) tube, semiconductor band edges are 1 / \ \

found ate=0.732 and 1.00. This case has only two peaks.

For p=3 the band has no dispersioa= 1) and the imagi- I e

nary part diverges. 0.5 - V
The general behavior puts a resonance peak at energie T

below each semiconductor band edge. If the tubes wereno | = | o L L N

metallic, the first resonance would be sharp in energy—it 4 0.2 0.4 0.6 08 1

would be a true bound state. For higher band edges, the E/Jo

imaginary part is nonzero and the resonance has a nonzero
width. FIG. 1. I'(E) from Eq. (46). (&) For an armchair tube witm

=6. Resonances occur at the three semiconductor band edges at
=E/J,=0.50, 0.886, and 1.00b) For a zigzag tube witm=6.
Resonances occur at semiconductor band edges #hén732 and

The various resonance states found numerically were usf-00-
ally part of the density of states. The above expressions for
the self-energy are used to derive an analytical expression fdrhis integral is similar to Eq(31), with E replaced by E
the density of states. The starting point is B§16) fromthe ~ —2o(E)]. Keep in mind that(E) is a complex function

IV. DENSITY OF STATES

Appendix: with real and imaginary parts.
As an example, we evaluate the density of states for zig-
. 1 2(ip—2p) zag tubes. Start from Eq@34), and replacee—¢e—c(S
a(ip)= N; (ip—30)2—E, (k)2 (47) —iI'). The imaginary part is
The density of states is the imaginary part of the retarded 2cg sin(U,)
form of this expression: N(e)=— > v (49
P p
T dé 2[E-3(E)]
=— —_— 4
N(E) lm[% 777277 [E—EO(E)]Z—EQ(&D)Z . U] :EE o tar(a-)= cl (50)
(48 P2&s 7 e—cS—gy’
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1

N(E) |

Our present model assumed the impurity could be mod-
eled by a site energy. If we change the sign of the site energy
(Ep), the resonance moves to negative energies. For a donor
or acceptor impurity, where the interaction with the electron
is Coulomb’s law, the calculation will be somewhat different.
Recently we solveld the problem of an electron bound to a
donor on a nanotube using=—e?/r. In this case there are
\ \ also bound states below every semiconductor band edge.

\ ] This case give similar resonances below every band edge.

- Using a Coulomb potential, rather than a site energy, does
———— ~ not change the basic phenomena. Both cases yield reso-
1 nances.

The Seebeck coefficient has been measured for several
nanotubes systems: mats of tubes, multiwall tubes, and ropes
of tubes. In most cases the Seebeck is a relatively large num-
oL . — ber at room temperature, such as 60+80K. Such a large .

0 02 0.4 06 08 ] number is unexpected for an energy band system with
EN, electron-hole symmetry. The Seebeck coefficient must be re-
lated to extrinsic processes, such as defects. This viewpoint

FIG. 2. Density of statedN(E) from Eq. (49 for a zigzag s reinforced by the experimental observation that the sign of
tube withn=6 a_ndc:0.02. _Results are plotted for three bands: the Seebeck can be changed by exposure to external
p=0, 1, 2.p=2 is the metallic band. gases® 2% Presumedly the gas molecules attach themselves
to the tubes, and create a local electronic perturbation. The
sign of the Seebeck coefficient depends upon whether the
electronic perturbation acts as an acceptor or as a donor.
(51) There has been several suggestions that the Seebeck co-

efficient is due to phonon drdg}*?*2>We have an unpub-
This expression is graphed in Fig. 2 far=0.02¢, lished proof that the phonon-drag gives a negligible Seebeck
=-—2.0, and several values pffor a (0,6) zigzag tube. The in a system with electron-hole symmetry. If there is phonon
bands fop=0 and 1 are semiconductor bands. The impuritydrag, it must exist because of its coupling to the defect states.
state makes a resonance in the density of states of these b€ so-called “phonon-drag peak” also changes sign with
bands. The resonance is located beneath the energy ba@gposure to different gases. In one dimension, unlike two or
minimum of the impurityless crystal. The band with=2 is  three dimensions, the electronic coupling to defects and
the metallic conduction band wham=6. In this case the Phonons cannot be treated separately. Issues such as localiza-
impurity state makes no discernable resonance in the densitien require they be treated together. Our own guess, at this
of states. The metallic band is carrying most of the electricaPoint, is that the phonons do play a role in conjunction with
current, and this band does not have a density of state reste defect states. The first step in such a theory would be an
nance from the nitrogen defect. Any contribution to the Seeunderstanding of the defect states, which is the topic of the
beck coefficient, from this defect, must occur by one of twoPresent paper.
mechanisms(i) The electron lifetimei/ 7(E)=cI'(E) does
have a resonance, and this enters the calculation of the See-
beck coefficient:(ii) An electron in a metallic band pould_ ACKNOWLEDGMENTS
scatter to a semiconductor band by either phonon or impurity
scattering. This scattering could be virtual, but the electron | thank Professor Peter Eklund for many useful discus-
could have a resonance behavior. This latter process is proBion. Research support is acknowledged from NSF Grant No.
ably weak. Our conclusion is that the defect levels mainlyDMR-03-04178.
affect the Seebeck coefficient, of electrons in metallic bands,
through the contribution to the quasiparticle lifetime. There
is a negligible contribution to the density of states.
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APPENDIX: MULTISITE SCATTERING

The scattering of an electron from a single defect is given
by Eq.(29), which is theT matrix for the scattering. A com-
V. DISCUSSION plete theory also has _contributions from scattering by more
than one defect at a time. Here we derive a formula for this
We have derived analytical expressions for the self-energgontribution. The potential energy, such as Etp), has a
of electrons in armchair and zigzag nanotubes when scattephase factor. In each order of perturbation theory, we must
ing from point impurities. The impurity is modeled as a lat- find all terms that make this phase factor vanish. It is just a
tice site with a different site energlfy than carbon sites. counting problem, and it is easier to use the notation of Eq.
This model is used by chemists in doing tight-binding mod-(19) then the similar expressiof23) for a SWCNT. Define
els for molecules. the operatol,= a,+ B, and the Green’s functidf
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=g (0) (0)
g<°)(ip,k)=—Joﬁdre‘PT(TTAk(r)Al(O» (AD) G=G"1+G"(cEy/2)[1+(Ep/2)(o+cG'?)

+(Eo/2)(0+¢cG?V)2+---]} (A7)
1 1
= +- c(Eo/2)G }
_ _ — L0
ip—E.(k)  ip—Eg(k) G [1+ 1=(Ej2)(0 G (A8)
B 2ip AD
~ -2 (A2) o 3,6 1 g©
a =g+ =550 1-3.G0 (A9)
(1) In first order perturbation theory, one hles=k and 0 0
the phase factor vanishes. The self-energ§ /8= cE,/2. V\{hereE_o is defin_ed in Eq.(29)._ This derivation gives the
(2) In second-order perturbation theory, the self-energysingle siteT matrix. However, it does not account for the
has the form third-order term witha(®. This latter contribution comes
from using interacting Green’s function
E2
3ip)= iz =, G0ip.pexiti(p=k)- (R =R, 1
e 3(ip)=y 2 9(ip.p). (A10)

The phase factor can be zero two waffsp=k which gives
3®2gO)ip k), or else (i) Rj=R,, which gives that Using the expansion faf in Eq. (A7) gives the series
c(Eql2)%a(ip):

2(2)(ip)=C(E0/2)2[0'(ip)+Cg(O)]. (A3) B'(ip):O""C(EO/Z)O'(z)""“ . (A11)

The second term in brackets is a correctiorOgt?).
(3) In third-order perturbation theory, we have many

We have checked in higher orders of perturbation series, and
found this interpretation is correct, in that all terms in the

t ) above series are generated. It does not account for all higher-
erms:
order terms.
Eg A better derivation includes the possibility that the impu-
3®= PTOE > G9%ip,pyd(ip,pyo) rity atom is equally likely to be on thé or B site. The
(2N)%py p . em number onA is N4;, and that orB is Ng;:
Xexgipy- (Re—=R))+ip2 (Rj—Rpy) N+ Ng; Nai— Ng;
J J m c= Ai BI, _ Ai BI- (AlZ)
. N N
+ik-(Ry—Rp)]. (A4)

we assume the impurity locations are random, the statistics
large numbers gives thdis)=0, and({5*)=c?/N;. We
can setN,;=Ng;j=N;/2 and neglect the fluctuations around
this mean configuration.
We repeat the above derivation. In summing over sites,
the A sites cannot equal to tH# sites. The same self-energy
(29) is obtained but now it is the self-energy Gf andGg:

There are many ways to make the phase factor vanish. Eaclé
term is multiplied by Eq/2)%:

k=p;=p, gives c3G'%(ip k),
R;=R;=R;, gives ca(ip)?

k=p;#p,, Rm=R, gives c?a(ip)G%(ip,k),

Go(ip,k)= - —, (A13)
—E (k-

k=p,#p;, R¢=R; gives the same as above, P~ Ealk) = 2oiP)

p1=p2#k, R;=Ry gives cc®(ip), where gﬁ(ip’k):ip—EB(k)—Eo(ip)’ (A14)
_ 1 : 1
0'(2)(IP)ZN% G9ip.p)>. (A5) 5(ip)=ﬁg [Galip.K)+Gp(ip. k)], (A15)
The total of all of these terms is .
- 1 2(ip—29)

3(ip)= 1 > ° (A16)

3@ =c(Egf2) [ (0 +cd®)2+co?].  (AB) < (ip—2o)*~Ea(k)™

All of these self-energy terms multipl{®)2. Dyson’s equa- The latter expression is the starting point for the calculation
tion for a single site is generated by the expansion of the density of states.
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