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Impurity resonances in carbon nanotubes

G. D. Mahan
Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA

~Received 2 October 2003; published 17 March 2004!

Analytical expressions are derived for the self-energies of electrons in carbon nanotubes while interacting
with impurity atoms. Results are reported for armchair and zigzag tubes. It is shown that the impurity causes
a bound electron donor or acceptor state beneath every semiconductor band edge. If the tubes are metallic,
these bound states become resonance states. The analytical formulas give resonance shapes in good agreement
with former numerical calculations.
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I. INTRODUCTION

Several papers have been written on the effect of a ni
gen impurity on the density of states of a carb
nanotube.1–5 Kostyrko et al.2 showed that a nitrogen impu
rity gave a resonance in metallic tubes. This same reson
was later found by other workers.3–5 The energy of the reso
nance is below any of the semiconductor bands, and
simply related to the energy levels of the nitrogen impur
These calculations were all entirely numerical.

The same resonance is derived here by analytical a
ments. The analytical derivation gives a simple interpretat
to the origin of the resonance.

Our interest in these resonances comes from trying to
derstand the large Seebeck coefficient observed in multi
nanotubes.6–14 Since single wall tubes have electron-ho
symmetry, the Seebeck coefficient should be zero. A la
Seebeck can only be obtained by breaking electron-h
symmetry. Defect states do break symmetry, and offer a p
sible explanation for the large value of the Seebeck. In m
tallic tubes, the electrons are highly conducting. Are th
resonances in these bands? Our analysis suggests tha
resonances are primarily in the semiconducting bands. T
first approximation, a multiwall tube can be considered
system of parallel conductors: each tube is a separate
The effective Seebeck coefficient of parallel conductors

^S&5

(
j

s jSj

(
j

s j

, ~1!

where (s j ,Sj ) are the conductivity and Seebeck coefficie
of each parallel tube. This classical formula suggests that
Seebeck coefficient in multiwall tubes is dominated by m
tallic tubes with a high conductivity. How do the resonanc
affect these results? This topic is taken up in Sec. V of
paper.

II. HAMILTONIAN

The word ‘‘graphene’’ denotes a single carbon layer w
the graphite structure. A single wall carbon nanotu
~SWCNT! could be constructed by cutting graphene into
0163-1829/2004/69~12!/125407~7!/$22.50 69 1254
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strip, and then rolling the strip into a cylinder. Although n
ture does not prepare them that way, the idea of rolling u
strip is useful theoretically, since it provides a simple mod
for the electronic properties of the nanotubes.

A. Graphene

The energy bands of a pure SWCNT are easily deriv
from the tight-binding Hamiltonian for a sheet o
graphene:15–17

H5H01V, ~2!

H052J0(
j ,d,s

@CA js
† CB, j 1d,s1CB, j 1d,s

† CA js#, ~3!

V5E0(
,51

Ni

CA js
† CA js . ~4!

Graphene has two carbon atoms per unit cell, that are
notedA and B. Each atom has three neighbors, in the ho
eycomb lattice. The indexj denotes a siteRj of the A sub-
lattice, andj 1d are theB neighbors ofA. The vectord i has
three values. The indexs denotes electron spin. It does n
play a role in the analysis, so it is dropped from the notati
The coefficientJ0;3.0 eV is the transfer integral for a
SWCNT. The perturbationV is from the Ni nitrogen impu-
rities on the lattice. We follow chemical convention, and i
clude the impurity by giving it a different site energyE0 than
that of a carbon atom. The site energy for carbon is given
zero, and that defines the energy zero of the problem.
have also simplified the problem by having all of the nitr
gen impurities on theA sublattice. It matters not which site i
used for calculations of theT matrix for single site scattering
Details are given in the Appendix.

The sign ofE0 depends upon the impurity. ForE0,0 one
gets donor resonances, while forE0.0 one has accepto
resonances. Both situations are found in carbon nanotube
introducing different gases into the sample chamber. So
gases cause a positive Seebeck coefficient while others c
a negative Seebeck coefficient. Presumedly the gases ar
sorbed and cause scattering centers.

The hopping HamiltonianH0 is easily diagonalized by
going to wave vector coordinates
©2004 The American Physical Society07-1
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CA, j5
1

AN
(

k
eik•RjCAk , ~5!

CB, j 1d5
1

AN
(

k
eik•~Rj 1d!CBk , ~6!

H052J0(
k

@CAk
† CBkg~k!1CBk

† CAkg* ~k!#, ~7!

g~k!5(
d

eik•d, ~8!

andN is the number ofA atoms in the tube. In graphene, th
three neighbors ofA are given in terms of the nearest neig
bor distancea:

d15a~1,0!, d25
a

2
~21,) !, d35

a

2
~21,2) !, ~9!

g~k!5eiux12 cos~uy!e2 iux/2, ~10!

ux5kxa, uy5
)

2
kya. ~11!

The Hamiltonian~7! can be diagonalized by writingg(k)
5ug(k)uei j(k) and absorbing the phasej(k) into the operator
CBk :

C̃Bk5CBke
i j~k!, ~12!

H052J0(
k

ug~k!u@CAk
† C̃Bk1C̃Bk

† CAk#, ~13!

ug~k!u5@114 cos~3ux/2!cos~uy!14 cos2~uy!#1/2. ~14!

Define a set of new operators

ak5
1

&
~CAk1C̃Bk!, ~15!

bk5
1

&
~CAk2C̃Bk!, ~16!

H05(
k

@Ea~k!ak
†ak1Eb~k!bk

†bk#, ~17!

Ea~k!52J0ug~k!u, Eb5J0ug~k!u. ~18!

In terms of these states, the interaction with nitrogen is

V5
E0

2N (
i 51

Ni

(
k,k8

@ak
†1bk

†#@ak81bk8#exp@ iRi•~k82k!#.

~19!

The form of this interaction changes in the nanotube.
12540
B. SWCNT

Repeat the above analysis for a SWCNT. Rolling up
graphene sheet to make a cylinder, and a nanotube, m
the system periodic in one direction. In the case of an a
chair ~n,n! tube, the system is periodic in thex-direction. For
n equivalentA sites around the circumference, which are 3a
apart, then 3an52pR, whereR is the radius of the tube
The quantization gives 2pRkx52pp, wherep is an integer.
These relations mean that

3

2
ux5

3

2
kxa5

pp

n
[fp . ~20!

The y axis is along the length of the nanotube. Call th
directionz, ky5kz . Since the unit cell length along the tub
is c5)a/2, then uy[u5kzc. The quantum numbers o
electron states in the armchair tube are (kz ,p), where
2p/c,kz,p/c,p50,1,2,...,n21. The total number ofA at-
oms in the tube isN5nNz , whereNz is the number of unit
cells along the axis of the tube. For an armchair tube,
Hamiltonian is

H05 (
kz ,p

@Ea~kz ,p!akz ,p
† akz ,p1Eb~kz ,p!bkz ,p

† bkz ,p#,

~21!

Ea,b~kz ,p!57J0@114 cos~u!cos~fp!14 cos2~u!#1/2,
~22!

V5
E0

2nNz
(
i 51

Ni

(
kz ,kz8 ,p,p8

@akz ,p
† 1bkz ,p

† #@ak
z8 ,p81bk

z8 ,p8#

3exp@ i , i~kz82kz!c1 i2p~p2p8!mi /n#, ~23!

where, is the unit cell along the tube, andm is the position
of theA atom around the tube. These two indices denote
position of theA-atom in the tube. Interaction~23! forms the
basis for the calculation of the resonance state.

If p50, cos(fp)51, the armchair tube has a dispersion

Ea,b~kz,0!57J0@112 cos~u!#. ~24!

The energies vanish atu52p/3,cos(u)521/2. These bands
are called ‘‘metallic bands’’ since they have no energy g
The other armchair bands are called semiconductor ba
since they have a gap. Write the dispersion as

Ea,b~kz ,p!57J0$@cos~fp!12 cos~u!#21sin2~fp!%1/2.
~25!

The minimum value of the square root occurs wh
2 cos(u)52cos(fp). The semiconductor energy gap
Eg(p)52J0 sin(fp).

A similar analysis can be done for zigzag (0,n) tubes. In
this case, the strip is cut so thatx axis is along the axis of the
tube, and becomes the newz direction. They axis is around
the tube, anduy5fp and ux5kzc5u. The interaction also
has the form of Eq.~23!, except now the electron eigenva
ues are
7-2
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Ea,b~kz ,p!57J0@114 cos~u!cos~fp!14 cos2~fp!#1/2

~26!

For zigzag tubes the minimum band energy is at two lo
tions: ~i! u5kzc50,

Ea,b~0,p!57J0u112 cos~fp!u. ~27!

This dispersion is zero only iffp5pp/n52p/3, which re-
quires thatn be divisible by three.~ii ! The second minimum
is at u5p

Ea,b~p,p!57J0u122 cos~fp!u, ~28!

which vanishes iffp5p/3.

III. SINGLE SITE SCATTERING THEORY

The scattering potential~23! is the basis for the scatterin
between the band electrons and the nitrogen defect. The
step is to derive the single siteT matrix for scattering of an
electron from one impurity.18 Using standard Green’s func
tion methods,18 gives a self-energy

S0~ ivm!5
cE0

22E0s~ ivm!
, ~29!

s~ ivm!5
1

nNz
(
kzp

d 1

ivm2Ea~kz ,p!
1

1

ivm2Eb~kz ,p!e,
~30!

where ivm is the Matsubara discrete frequency,18 and c
5Ni /N is the concentration of defects. The summation o
p50,1,...,n21. This expression is derived in the Appendi

The retarded function is found from the analytical co
tinuation ivm→E1 ih, where h is infinitesimal. The re-
tarded s(E1 ih)5s r(E)2 is i(E) has real and imaginary
parts. SinceEb52Ea , then

s r~E!5
2E

n (
p
E

2p

p du

2p

1

E22Ea~u,p!2 , ~31!

s i~E!5
p

n (
p
E

2p

p du

2p
$d@E2Ea~u,p!#1d@E1Ea~u,p!#%.

~32!

The integrals are easy to do for a zigzag tube

«5
E

J0
, «05

E0

J0
, cp[cos~fp!, sp5sin~fp!,

~33!

E0s r~E!5
2««0

n

3(
p

sgn~«22124cp
2!

$@«22~112cp!2#@«22~122cp!2#%1/2,

~34!
12540
-

rst

r

-

E0s i~E!5
2u«u«0

n

3(
p

1

$@~112cp!22«2#@«22~122cp!2#%1/2.

~35!

In both terms the expression is zero if the argument of
square root is negative. A special case is metallic zig
tubes where cos(fp)5cp561/2. The real part has a roo
A«2(«224) and is only nonzero ifu«u.2. The imaginary
term has a rootA«2(42«2) and is only nonzero if 2.u«u. At
E50 this term isE0s i(0)5«0 /n. The imaginary term is
proportional to the density of states of the tube without i
purities.

Similar expressions for the armchair tubes are more co
plicated. The metallic tubes (p50,cp51) have

E0s r~E,p50!5
«0

n F sgn~«21!

A~«23!~«11!
1

sgn~«11!

A~«13!~«21!
G ,

~36!

E0s i~E,p50!5
«0

n F 1

A~32«!~«11!
1

1

A~«13!~12«!
G .

~37!

Again the terms are nonzero only if the argument of t
square root is positive. The real part is zero for 1.«.21.
The imaginary term is nonzero for 3.«.23 but both terms
contribute only for 1.«.21. The terms in Eqs.~31! and
~32! with pÞ0 have an imaginary part

E0s i~E!5
«0u«u

n (
p

1

Vp
F 1

A42~cp1Vp!2

1
1

A42~cp2Vp!2G , ~38!

Vp5A«22sp
2. ~39!

Each term in the series overp is zero unless«2.sp
2. The

integral for the real part has two expressions depending u
the sign of«22sp

2:
If «2.sp

2 then

E0s r~E!5
«0«

n (
p

1

Vp
F 1

A~cp1Vp!224

1
1

A~cp2Vp!224
G . ~40!

If «2,sp
2 then

E0s r~E!52
««0

n&
(

p

ADp141Jp
22cp

2

JpDp
, ~41!

Jp
25sp

22«2, Dp
25~«213!2116Jp

2. ~42!
7-3
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A dimensionless self-energy for the electron is defined fr
Eq. ~29! as

S0~ ivn!5cJ0S̃~ ivn!, ~43!

S̃~ ivn!5
«0

22E0s~ ivm!
. ~44!

The retarded function is obtained by the analytic
continuation18 ivn5E1 ih, and the real and imaginary par
are

S~E!5Re$S̃~E1 ih!% ~45!

G~E!52Im$S̃~E1 ih!%. ~46!

This function is useful to calculate since it is independent
concentration.

Figure 1 shows a graph ofG(E) for armchair~6,6! and
zigzag ~0,6! tubes. The horizontal axis is«5E/J0 over
a limit scale. For these figures we have selected«05E0 /J0
522.0, which are typical numbers for nitrogen impuritie
Several peaks are shown. Each peak is associated w
semiconductor band edge. Part~a! shows an armchair tube
For n56 there are semiconductor band edges at«50.50,
0.866, and 1.00. Each resonance is caused by the fact
(12E0s r) going to zero ass r diverges at the van Hove
singularity. Since the tubes are metallic, the imaginary p
of the self-energy is nonzero, so the result is a Fano sha
resonance. Precisely this behavior is found in all of the
merical calculations. Similar results are shown in part~b! for
zigzag tubes. For a~0,6! tube, semiconductor band edges a
found at«50.732 and 1.00. This case has only two pea
For p53 the band has no dispersion («51) and the imagi-
nary part diverges.

The general behavior puts a resonance peak at ene
below each semiconductor band edge. If the tubes were
metallic, the first resonance would be sharp in energy—
would be a true bound state. For higher band edges,
imaginary part is nonzero and the resonance has a non
width.

IV. DENSITY OF STATES

The various resonance states found numerically were
ally part of the density of states. The above expressions
the self-energy are used to derive an analytical expression
the density of states. The starting point is Eq.~A16! from the
Appendix:

s̃~ ip !5
1

N (
k

2~ ip2S0!

~ ip2S0!22Ea~k!2 . ~47!

The density of states is the imaginary part of the retar
form of this expression:

N~E!52ImH(
p
E

2p

p du

2p

2@E2S0~E!#

@E2S0~E!#22Ea~u,p!2J .

~48!
12540
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This integral is similar to Eq.~31!, with E replaced by@E
2S0(E)#. Keep in mind thatS0(E) is a complex function
with real and imaginary parts.

As an example, we evaluate the density of states for z
zag tubes. Start from Eq.~34!, and replace«→«2c(S
2 iG). The imaginary part is

N~«!5
2««0

n (
p

sin~Up!

Vp
, ~49!

Up5
1

2 (
j 51

4

a j , tan~a j !5
cG

«2cS2« j
, ~50!

FIG. 1. G(E) from Eq. ~46!. ~a! For an armchair tube withn
56. Resonances occur at the three semiconductor band edges«
5E/J050.50, 0.886, and 1.00.~b! For a zigzag tube withn56.
Resonances occur at semiconductor band edges when«50.732 and
1.00.
7-4
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Vp5 P
j 51

4

@~«2cS2« j !
21c2G2#1/4, « j56~162cp!.

~51!

This expression is graphed in Fig. 2 forc50.02,«0
522.0, and several values ofp for a ~0,6! zigzag tube. The
bands forp50 and 1 are semiconductor bands. The impur
state makes a resonance in the density of states of these
bands. The resonance is located beneath the energy
minimum of the impurityless crystal. The band withp52 is
the metallic conduction band whenn56. In this case the
impurity state makes no discernable resonance in the de
of states. The metallic band is carrying most of the electr
current, and this band does not have a density of state r
nance from the nitrogen defect. Any contribution to the S
beck coefficient, from this defect, must occur by one of t
mechanisms:~i! The electron lifetime\/t(E)5cG(E) does
have a resonance, and this enters the calculation of the
beck coefficient.~ii ! An electron in a metallic band coul
scatter to a semiconductor band by either phonon or impu
scattering. This scattering could be virtual, but the elect
could have a resonance behavior. This latter process is p
ably weak. Our conclusion is that the defect levels mai
affect the Seebeck coefficient, of electrons in metallic ban
through the contribution to the quasiparticle lifetime. The
is a negligible contribution to the density of states.

V. DISCUSSION

We have derived analytical expressions for the self-ene
of electrons in armchair and zigzag nanotubes when sca
ing from point impurities. The impurity is modeled as a la
tice site with a different site energyE0 than carbon sites
This model is used by chemists in doing tight-binding mo
els for molecules.

FIG. 2. Density of statesN(E) from Eq. ~49! for a zigzag
tube with n56 andc50.02. Results are plotted for three band
p50, 1, 2.p52 is the metallic band.
12540
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Our present model assumed the impurity could be m
eled by a site energy. If we change the sign of the site ene
(E0), the resonance moves to negative energies. For a d
or acceptor impurity, where the interaction with the electr
is Coulomb’s law, the calculation will be somewhat differen
Recently we solved19 the problem of an electron bound to
donor on a nanotube usingV52e2/r . In this case there are
also bound states below every semiconductor band e
This case give similar resonances below every band e
Using a Coulomb potential, rather than a site energy, d
not change the basic phenomena. Both cases yield r
nances.

The Seebeck coefficient has been measured for sev
nanotubes systems: mats of tubes, multiwall tubes, and ro
of tubes. In most cases the Seebeck is a relatively large n
ber at room temperature, such as 60–80mV/K. Such a large
number is unexpected for an energy band system w
electron-hole symmetry. The Seebeck coefficient must be
lated to extrinsic processes, such as defects. This viewp
is reinforced by the experimental observation that the sign
the Seebeck can be changed by exposure to exte
gases.20–23 Presumedly the gas molecules attach themse
to the tubes, and create a local electronic perturbation.
sign of the Seebeck coefficient depends upon whether
electronic perturbation acts as an acceptor or as a dono

There has been several suggestions that the Seebec
efficient is due to phonon drag.12,14,24,25We have an unpub-
lished proof that the phonon-drag gives a negligible Seeb
in a system with electron-hole symmetry. If there is phon
drag, it must exist because of its coupling to the defect sta
The so-called ‘‘phonon-drag peak’’ also changes sign w
exposure to different gases. In one dimension, unlike two
three dimensions, the electronic coupling to defects a
phonons cannot be treated separately. Issues such as loc
tion require they be treated together. Our own guess, at
point, is that the phonons do play a role in conjunction w
the defect states. The first step in such a theory would be
understanding of the defect states, which is the topic of
present paper.
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APPENDIX: MULTISITE SCATTERING

The scattering of an electron from a single defect is giv
by Eq. ~29!, which is theT matrix for the scattering. A com-
plete theory also has contributions from scattering by m
than one defect at a time. Here we derive a formula for t
contribution. The potential energy, such as Eq.~19!, has a
phase factor. In each order of perturbation theory, we m
find all terms that make this phase factor vanish. It is jus
counting problem, and it is easier to use the notation of
~19! then the similar expression~23! for a SWCNT. Define
the operatorAk5ak1bk and the Green’s function18

:

7-5
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G~0!~ ip,k!52E
0

b

dteipt^TtAk~t!Ak
†~0!& ~A1!

5
1

ip2Ea~k!
1

1

ip2Eb~k!

5
2ip

~ ip !22Ea
2 . ~A2!

~1! In first order perturbation theory, one hask85k and
the phase factor vanishes. The self-energy isS (1)5cE0/2.

~2! In second-order perturbation theory, the self-ene
has the form

S~2!~ ip !5
E0

2

~2N!2 (
p, j ,,

G~0!~ ip,p!exp@ i ~p2k!•~Rj2R,!#.

The phase factor can be zero two ways:~i! p5k which gives
S (1)2G(0)( ip,k), or else ~ii ! Rj5R, , which gives that
c(E0/2)2s( ip):

S~2!~ ip !5c~E0/2!2@s~ ip !1cG~0!#. ~A3!

The second term in brackets is a correction ofO(c2).
~3! In third-order perturbation theory, we have ma

terms:

S~3!5
E0

3

~2N!3 (
p1 ,p2 , j ,,,m

G~0!~ ip,p1!G~0!~ ip,p2!

3exp@ ip1•~R,2Rj !1 ip2•~Rj2Rm!

1 ik•~Rm2R,!#. ~A4!

There are many ways to make the phase factor vanish. E
term is multiplied by (E0/2)3:

k5p15p2 gives c3G~0!~ ip,k!2,

Rj5R,5Rm gives cs~ ip !2,

k5p1Þp2 , Rm5R, gives c2s~ ip !G~0!~ ip,k!,

k5p2Þp1 , R,5Rj gives the same as above,

p15p2Þk, Rj5Rm gives c2s~2!~ ip !, where

s~2!~ ip !5
1

N (
p

G~0!~ ip,p!2. ~A5!

The total of all of these terms is

S~3!5c~E0/2!3@~s1cG~0!!21cs~2!#. ~A6!

All of these self-energy terms multiplyG(0)2. Dyson’s equa-
tion for a single site is generated by the expansion
12540
y

ch

G5G~0!$11G~0!~cE0/2!@11~E0/2!~s1cG~0!!

1~E0/2!~s1cG~0!!21¯#% ~A7!

5G~0!d11
c~E0/2!G~0!

12~E0/2!~s1cG~0!!e ~A8!

5G~0!d11
S0G~0!

12S0G~0!e5 G~0!

12S0G~0! ~A9!

whereS0 is defined in Eq.~29!. This derivation gives the
single siteT matrix. However, it does not account for th
third-order term withs (2). This latter contribution comes
from using interacting Green’s function ins:

s̃~ ip !5
1

N (
p

G~ ip,p!. ~A10!

Using the expansion forG in Eq. ~A7! gives the series

s̃~ ip !5s1c~E0/2!s~2!1¯ . ~A11!

We have checked in higher orders of perturbation series,
found this interpretation is correct, in that all terms in t
above series are generated. It does not account for all hig
order terms.

A better derivation includes the possibility that the imp
rity atom is equally likely to be on theA or B site. The
number onA is NAi , and that onB is NBi :

c5
NAi1NBi

N
, d5

NAi2NBi

N
. ~A12!

If we assume the impurity locations are random, the statis
of large numbers gives that^d&50, and ^d2&5c2/Ni . We
can setNAi5NBi5Ni /2 and neglect the fluctuations aroun
this mean configuration.

We repeat the above derivation. In summing over sit
the A sites cannot equal to theB sites. The same self-energ
~29! is obtained but now it is the self-energy ofGa andGb :

G0~ ip,k!5
1

ip2Ea~k!2S0~ ip !
, ~A13!

Gb~ ip,k!5
1

ip2Eb~k!2S0~ ip !
, ~A14!

s̃~ ip !5
1

N (
k

@Ga~ ip,k!1Gb~ ip,k!#, ~A15!

s̃~ ip !5
1

N (
k

2~ ip2S0!

~ ip2S0!22Ea~k!2 . ~A16!

The latter expression is the starting point for the calculat
of the density of states.
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