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from icosahedral B,C

Yejun Feng: G. T. Seidlet2" J. O. Crosg;2 A. T. Macrande? and J. J. Refr
!Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
2PNC-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, lllinois 60439, USA
3Advanced Photon Source, Argonne National Laboratory, Argonne, lllinois 60439, USA

(Received 19 June 2003; published 8 March 2004

We report nonresonant x-ray Raman scattefXBS) measurements for the icosahedral boron carbige B
for transferred momentum from 1 to 9 A~%. The observed}-dependence together with site-specifizinitio
calculations identify a near-edge peak in the XRS spectrapatype (Al=1) exciton due to dominant boron
occupation at the sole atomic site in the unit cell having inversion symmetry. This result constrains models of
substitutional disorder in BC, introduces a new application of XRS, and emphasizes the utility of full multiple
scattering calculations of the site-specific projected density of states for interpretation of the near edge region
of XRS spectra.
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[. INTRODUCTION Here we will utilize core-exciton spectroscopy using both
g-dependent x-ray Raman scatteri®§RS) (Refs. 35—-38
Icosahedral boron-rich compourtdsave enjoyed several measurements arab initio calculations®® Traditionally, core
decades of intense stuldy? as a result of their extreme me- excitation spectra such as XANES and EELS have been
chanical strength;* interesting electronic and optical widely interpreted using the molecular orbital thedHow-
properties, and the frequent occurrence of icosahedralever, the careful consideration of many-body effectsain
structures- The icosahedral configuration is the result of ainitio calculation schemes have made tremendous advances,
tendency for three-centered covalent bonds due to a defallowing quantitative comparison with experiments in the
ciency of valence electroffs® Examples of icosahedral near-edge regiof** The fact that these calculations yield
phases include all four crystalline phases of béf8rand  not only the absorption coefficient but also the projected den-
other boron rich materials such as® B,As,, B,P,,}  sity of states (-DOS) (Ref. 35 for the final state provides an
BsO,'! and YBs.1? additional spectroscopic tool which can be exploited in XRS,
Among all the icosahedral boron materials, the site-but notin XANES or EELS. Specifically, XRS allows one to
substitutionally disordered boron carbidg@represents a simultaneously control the photoelectron enewgyd mo-
special interest®>*Strictly speaking, BC is a class of ma- mentum; this latter degree of freedom, which is absent in
terials with a stoichiometry of B,,Cs_,, for which the = XANES and of only limited value in EELS, makes XRS
carbon concentration varies continuously from 9 to 19 at. %uniquely well suited to study multipole contributions to the
(0.06<x<1.7) 23 Neutrort* and x-ray> *° diffraction stud-  transition probability. In our case, the combinatioradf ini-
ies find a rhombohedral crystal structisee Fig. 1 with the  tio theory andy-dependent XRS convincingly resolves a key
unit cell consisting of 15 atoms with 12 atoms at icosahedrapart of the site-substitution disorder problem: we find domi-
sites(the B1 andB2 sites in the figureand a linear three- nant boron occupation at th&3 site. This conclusion is fur-
atom chain(the B3 and C4 sites in the figurealong the ther supported by general symmetry considerations, i.e.,
threefold diagonal axis of the conventional cell. However,through a general relationship between site-specific inversion
the very similar scattering factors 618 and *°C for both x ~ symmetry and parity conservation. This is the first time that
rays and neutrons rendered the diffraction studies insensitivERS has been used to address a site-substitution disorder
to the locations of the carbon in the unit c&l. problem.
Consequently, less-direct transport measurements such asIn the sections that follow we will present and discuss our
electrical conductivity, thermoelectric Seebeck coefficientsevidence for g-type core exciton from th83 site in B,C.
and Hall constart'~2® in addition to other spectroscopic In Sec. II, we review the theory of XRS and highlight the
techniques such as infrarét optical Ramarf® NMR,?®?’  important differences between XRS and traditional x-ray ab-
electron energy loss spectroscofBELS),?® and x-ray ab-  sorption spectroscopigAS). In particular, we emphasize
sorption near-edge structdre®? (XANES) have been used that the transition matrix element can no longer be solely
to address this puzzle. A variety of compositional models fortreated in the dipole limit but instead the full multipole ex-
the three-atom chain have also been proposed, each charg@ansion of the photoelectron wave function must be consid-
terized by different carbon occupancy on the icosahedragred. The experimental results are presented in Sec. Ill. Their
sites?*#3*4The most recent density functional theory calcu-most significant feature is a near-edge peak having mono-
lations have succeeded in interpreting part of the infraredtonically decreasing intensity with increasiggSite-specific
Raman, and NMR spectra as favoring CBC for the compoab initio calculations for a wide range of structural models of
sition of the three-atom chaifi. carbon occupation are presented in Sec. IV and provide two
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to surface contamination but also allows potential applica-
tions to situations not compatible with the high-vacuum con-
ditions required by EELS and soft-x-ray XAS. Second, it is
often possible to measure XRS over a wide enough range of
momentum transfer to identify some aspects of the multipole
components of the final state:®® In recent years,
g-dependent XRS has revealed many-body final state effects
both in metal¥38and insulatorg®>’

Following the short-range order thebtyand the general
guidelines of Doniaclet al,*® the angular parts of both the
electron wave functions and the transition matrix element are
expanded in the spherical harmonics basis as

FIG. 1. The unit cell of the B-CBC structure has four distinct
crystallographic sitegRef. 14. Six B1 (small black sphepe'equa-
torial’ sites and sixB2 (small white sphere“polar” sites form an pi(r)= ,Z, le'm'(r)Yl’m'(a"P)
icosahedron. The chain-end sites are labe®# (large white tm
spherg while the chain-center is calleB3 (large black sphejle  and
Sites involved in other models for site substitution on the chains
retain the numerical index, i.e., a boron atom at a chain-end site is

e
referred to aB4. The sticks are not indications of chemical bonds, e'd’= % A7 i(ar) Y im(6g.¢0q) Yin(0,¢),

but of the nearest-neighbor relationships and the boundary of the '

unit cell. with R, (r)=(Y,|f). The initial core state is assumed

. dicti b h q K Fi h to bes-type, and the final state is usually a mixture of partial
major predictions about the near-edge peak. First, that {f,yes pecause of the ligand-field influence in a solid system.

must be due to dominant boron occupancy of B® site. g pitution of these expansions into Efj) separates the
Second, that it is g-type exciton. These hypotheses are ;g jar variables of the transferred momentgrirom its
critically tested in Sec. V by consideration of the magnitude

g-dependence of the XRS. The experimentally obseryed
dependence of the near-edge peak is fundamentally inconsis-
tent with s- or d-wave contributions but is instead in quali- S(q,0)= >, ‘E Stim(A) Yim(0g., ¢q)
tative agreement with the predictions of thk initio calcu- Fopim
lations and also in reasonable quantitative agreement with a
simplified model for a purelp-wave exciton. In addition, we where
argue that the stronglg-type character is necessarily related
to the conserved parity of the final state. Ip@parity con- _ =,
servation is unique to excitations at tB8 site, i.e., the only Sf'm(q):'lmfo Ji(anRin(r)R(r) -rdr
site with inversion symmetry. In Sec. VI, we report addi-
tional simulations which address the spatial extent of thds the magnitude of the Y,-projected momentum space con-
exciton and the importance of the full multiple scatteringvolution between the initial stat®) and each final staté|.
treatment. Finally, we summarize our conclusions in SecS(q,w) is now composed of contributions from different mul-
VII. tipole (I,m) waves of the final-state wave function, each
with a differentg-dependence.
Il. THEORY To better understand this multipole contribution (@),
we will now discuss the projection of the density of states
XRS is a weak inelastic scattering process for hard x raysnto different spherical harmonics, which is known as

from the K-shell electrons of lowZ elements. In the single |-DOS. The total electron densip(r,w) is defined as
electron picture, the dynamic structure factdg,®) is ex-
pressed &$43

2
S(Ei—Ep—thw),

2

p(r,w>=2 S(Er—Eo—Hhw) ¢ (1) iy(r)

S(q,0)=2 [(fle'7[0)]?8(E;~Eg—fiw), (1) 1
' == ZImG(r.r,) &)

with the transferred momentumas a free parameter uncor- 7

related to the transferred energw. In the dipole limit of  using a Green’s function approaciwith

small q, Equation(1) simplifies to give the sam&-edge

spectrum as EELS and XAS, Set (r') (1)

However, XRS has two important features which can re- ~ G(r'.1,0)=(r'|G(w)[r) = e———— == g

sult in information complementary to or inaccessible by 0

EELS and XAS. First, the use of hard x rays renders XRS &he projected electron density of statdsOS) p,(w) is

bulk technique, which not only implies a lack of sensitivity consequently defined as
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Rnm
p(@)=2 f pim(F, @) 47T 7dr, 4 #, B,C
m 0 ?‘!ﬂl II
L O
where  pym(r,w)=—(Lm)ImY 10| G(r' 1, ) |[Yim) e =1 s I‘;%; = it
andRyy is @ Norman radius® Thus the dynamical structural IR
factor SQ@,w) is essentially a manifestation of Fermi’s . f ¢ “’*
golden rule: 217 N 3%
1 2 P = 4
- xxﬁﬁ:,,x, M
38 :xf =
dQ, w)st(q). 8 LSS A -
S(q,0)= Jsm ©)d0g~ 2 pim(©)Sin(). . e, )
501 i ;

For XANES measurements in the dipole limit, only the
=1 term dominates. On the other hand, for XRS the differ-
entq dependences of different partial waves give a continu-
ous variation of the relative weights on differdADOS asq
increases. 7.09 ,fff

©
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relative intensity (arb. units)
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lll. EXPERIMENT | 805, rf N
All measurements were performed at beamline 20-ID of N
the PNC-CAT sector located at the Advanced Photon Source op—20
in Argonne National Laboratory. Beamline 20-IRef. 45 20 10 0 10 20 30 40 50 60
has been optimized for scanning-energy x-ray spectroscopies energy from the edge (eV)

and provides a monochromatic beam with~5

X 10'2 photons/sec eV with a bandwidth of 1.3 eV. An 11.4-
cm-diameter Si(5, 5, 5 spherically-bent crystal analyzer
with a 1-m radius of curvature and 0.010-srad collection
angle was ysed in the B_ragg back-scattering geometry; com- IV. SITE-SPECIEIC AB INITIO CALCULATIONS

plete experimental details are reported elsewfgre.

Micron-size B,C polycrystalline powder(Alfa Aesar Here, we use FEFF8.2&Ref. 39 to perform site-specific
40504, 99.4% was packed in a 3-mm-thick disk with two ab initio calculations of the full photoelectron transition
25-um Kapton windows and measured in the transmissiorprobability and projected density of statdsOS) for this
geometry. The boroK-edge XRS spectra were measured forprocess. This software has proven reliable in numerous XAS
q=1.05, 2.17, 3.83, 5.01, 6.03, 7.09, 8.05, and 9.0.A studies®**%° |t uses a real space full multiple-scattering
The carbonK-shell XRS is observabf® but too weak and scheme analogous to the Korringa-Kahr-Rostocker Green’s
broad to be statistically useful in refining any structuralfunction method with a Hedin-Lundqvist self-energy. As
model. The resolution from the elastic peak width varieslisted in Table I, five crystalline structures have been studied.
from a 1.45 to 1.87-eV full width at half maximum This includes all of the basic models which have been pro-
(FWHM). The background-free XRS spectra, obtained byposed for site occupancy of carbon in,B Note that
subtracting characteristic forms for the Compton background;,-BBB is not a legitimate structural model since at least
(see Ref. 46 for detailsare presented in Fig. 2. The near- one carbon is required in the,8 unit cell to make it stable;
edge spectra from that5 to +5-eV range have been nu- otherwise the pure boron phase would &e-B, with an
merically broadened to the largest resolution 1.87 eV. Thdcosahedron on every vertex of the rhombohedral unit-cell,
absolute energy shift at the edge is 1990062 eV. The rela- but lacking the three-atom chain. The variation in carbon
tive intensities of the different spectra were normalized byconcentration was also taken into account in simulations, us-
integration for energies from 20 to 61 eV past the edgeing bare structural data taken from a recent neutron diffrac-
mimicking the f-sum rule, and naturally introducing @  tion study of B,C with different carbon concentratiof$The
factor?64’ core-hole potential was included in each simulation and is

The near-edge peak present in each spectrum in Fig. 2 important; we will discuss this in more detail below.
the most significant feature of this system. The same peak The simulated absolute cross-sections for the boron sites
has previously been observed in EELRef. 28 and of each of these five structures are plotted in Figs. 3 and 4.
XANES (Refs. 29-31 measurements of /&, but is absent One of the major results of this paper is that only B site
from similar measurement ofa-rhombohedral boron spectra possess a strong near-edge peak, and that this is true
(a-r-B).*8 This fact is significant becauser-B consists sim-  for every model composition studied. Note that the small
ply of B, icosahedra without the three-atom chain present irpeaks at this location in some of tiB andB2-site calcu-
the unit cell of BC.2° A site-specific analysis of the contri- lations disappear when the effects of instrumental broaden-
bution to the photoelectron transition spectrum is obviouslying (1.87 e\) are included.
called for®! but has not previously been performed. Focusing on the B-CBC structure, as we show in Fig. 5,

FIG. 2. Boron XRS spectra from & at eight different trans-
ferred momentdfrom top to bottom: 1.05, 2.17, 3.83, 5.01, 6.03,
7.09, 8.05, and 9.01 A
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TABLE I. List of crystalline structures used in simulations.

Structure Independent Lattice parameters used from Ref.
(icosahedror- chain) crystalline sites 14 for carbon concentration of:

B,,-BBC B1la, Blb, B2a, B2b, 10%

B3 B4, C4

B,»-CBC B1, B2 B3 C4 13%

B,,-CCC B1, B2 C3 C4 20%

BoC;-BBB Cla, B1b, B2a, B2b, 20%
(carbon on site 1) B3, B4a, B4b

B,C;-BBB B1la, B1lb, C2a, B2Db, 20%
(carbon on site 2k B3, B4a, B4b

stoichiometric additior{solid line) of theseB1, B2, andB3 tipole effects. Hence, prior to discussing the experimentally-

calculations after Gaussian broadening to the instrumentaibservedg-dependence of the XRS in Sec. V, we present

resolution of 1.87-eV FWHM results in reasonably goodcalculations of thé-DOS for theB3 site (Fig. 6).

agreement with our experimental ddfdéled circles with er- Comparing calculations with and without the core-hole

ror barg at a relatively long=23.83 A~1. The dashed line in effect (solid and fine-dashed lines, respectivelthe near-

Fig. 5 corresponds to the addition of only tB4 and B2 edge peak is identified as an exciton, and the core-hole effect

sites. Hence, these calculations strongly suggest that thie significant for the first 35 eV of the edge, as is typical for

near-edge peak in the XRS spectrum is due to dominant boXANES region®*In addition, the calculations demonstrate

ron occupation at thB3 site. Note, however, that the results that the nature of this exciton is strongiytype, withs- and

are otherwise insensitive to the details of site-substitution. d-type component$Fig. 6) at least 100 times smaller. This
The discussion above was entirely within the context ofpeak has previously been explained as*aresonance, char-

the dipole limit. However, one of the unique advantages ofacteristic of the chemical bonding in the CBC ch#iilAs

XRS in comparison to more traditional XANES measure-we will explain in Sec. VI, however, the range of the exciton

ments is the ability to control both the energgd momen- and especially the absence of dominant scattering paths

tum of the photoelectron, allowing the investigation of mul-

(A) B_C_.-BBB (C1) |-B1
C 101 A 973 Y e B2
12 A) i
( B,,-CBC |-~ B1 —
10} ---B2 8
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FIG. 4. FEFF simulations of absorption coefficients from two
FIG. 3. FEFF simulations of absorption coefficients from threeadditional crystalline structures of boron carbidd) B,C,;-BBB
different crystalline structures of boron carbidé.) B,,-BBC, (B) with all carbons orC1 sites forming trianglegB) ByC5-BBB with
B;,-CBC, and(C) B;,-CCC. See Fig. 1 for an explanation of the all carbons orC2 sites forming triangles. See Fig. 1 for an expla-
notation for crystallographic sites. nation of the notation for crystallographic sites.
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FIG. 5. Comparison of experimental XRSolid dots with error
barg and simulations for B-CBC including all atomgsolid line)
and only icosahedral sitdglashed ling

relative intensity (arb. units)
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along the CBC chain are inconsistent with the molecular
orbital interpretation.

In summary, our dipole-limit calculations suggest that the
pre-edge peak observed in our lgnXRS data and in the
prior EELS (Ref. 28 and XANES (Refs. 29—32 studies is -4 -2
due to dominant boron occupation of tB8 site. This is
consistent with the most recent studies on NMR and infrared F|G. 7. Enlarged view of the near-edge region for the boron
results®® Also, calculations of thé-DOS specifically con- xRS spectra for BC (points, compare with Fig. 2. The solid lines
clude that this feature is@type exciton; we will investigate are the estimate®1+B2 background for the B-CBC structure,
this prediction below. compare with Fig. 5. Note the steady decrease in the intensity of the

pre-edge feature with increasing

0 2 4
energy from the edge (eV)

V. THE g-DEPENDENCE OF THE EXCITON . . . ) .
AND INVERSION SYMMETRY we first scale théB1+ B2 contribution to best fit the main

edge intensity and shape at differeyd, as shown in Fig. 7.
Given the above prediction of ptype exciton and the Clearly, there is a monotonic decrease in the intensity of the

prior success of XRS in unambiguously identifying different pre-edge peak with increasimg In Fig. 8 we show the areas
single-typed excitons in L¥ LiF,** andh-BN,* one is led to  underneath the near-edge peaks are integrated frdno 5
investigate the-dependence of the boron XRS from® In eV after subtraction of the estimat&d. + B2 contribution to
order to approximately separate the proposed exciton featutie spectrum; the error bars representing the combination of
from the primaryB1 andB2 contributions to XRS spectra, statistical uncertainties and 1% of the subtracted intensity

due to the statistical uncertainty of the fitting scaling factors.

—p-DOS
......... s-DOS 5 I I | |
i —d-DOS
S & S B U p-DOS nohole NO"
=1r G _
Z )
g T
S £ ° |
w =
S SR S T 2
-1 8 i |
B,,-CBC ®
B3 site E’
L ]
N RN : -
0 @y L [ n ...,.-"":"""«a a
1% Ognergy from the Fermi leval (V)
nergy from rmi lev I l I I
energy from the Fermi level (eV) % 2 *q e ° *

FIG. 6. Projected density of statds[DOS) at theB3 site of the
B,,-CBC structure. The twg-DOS calculated with and without FIG. 8. Theg-dependence of thgtype exciton(solid dots with
the core-hole effect indicate the excitonic nature of the near-edgerror bar: integrated exciton weight from experimental XRS data.
peak(see inset The exciton is stronglp type, withs- andd-DOS (solid curve: theoretical calculation of1§_2p(q)/q2 froma lsto a
suppressed by a factor of 10 hydrogen-like  orbital in a boron atom.Eq. (5)].
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The dominant source of systematic erfahich may be sub-
stantia) in this analysis is of course from the reliability of

-
N
T

cluster size, # atoms

IS
T

spectrum normalization The first factor is alleviated by the
reasonable agreement between our calculBted B2 back-
ground and the core excitation spectrumesf-B,*® which
consists entirely of boron icosahedra. As for the second fac- o
tor, it is important to note that thB1 andB2 sites are of

relatively low-symmetry, and correspondingly theDOS
calculations at these sif®show a strong admixture of dif- FIG. 9. Convergence of simulations of the exciton with increas-
ferent partial-waves at all energies, with essentially the sami@g cluster size. Note that the simulations essentially overlap for
energy dependence fer, p-, andd-DOS for the first 20 ey radii of 6.95 and 8.07 A.

above the Fermi level. We believe, then, that a conservative

estimate of the systematic error in Fig. 8 is 20%. Such am physical explanation for the observpdype character. In
error is insufficient to remove the strong decrease in intensitjuture studies, we propose that the occurrence of single-
of the pre-edge feature with increasigg typed excitons can be used as a spectroscopic indication of

This monotonically decreasing §(q? for the exciton  strong local symmetries. For example, elsewhere we report
shown in Figs. 7 and 8 is typical of p-type excitor®*®>  our measurements of a puretytype exciton in hexagonal
Note that S@) of the observedstype exciton in LiF(Ref. ~ BN.*"*®This strongly anisotropic system has only reflection
36) and the predictedl-type excitod® show the opposite (rather than inversiorsymmetry, a fact with significant con-
behavior: S@)/g?=0 atq=0, and a steady increase with sequences for the angular characteristics of the excitdfion.
increasingg.

The complex structure of B does not presently allow a
g-dependenab initio calculation ofs;,,(q). Here we have to
rely on a crude model of transition between as dnd a
hydrogen-like 2 final state for a semi-quantitative explana-  So far we have deduced the existence pftgpe exciton
tion of the observed)-dependence of the exciton shown in from both experimental and theoretical approaches. How-
Fig. 8. The dynamical structure factor sf) can be ex- ever, further knowledge about this excitation is still avail-
pressed as a sum of partial wave contributions, after averagle. In this section, we will perform additional simulations
ing over theq direction for a powder sample, i.e., to explore the spatial properties of this exciton state, and to

investigate whether a small number of photoelectron scatter-
) ) 2 22 26 ing paths might dominate or if instead the full multiple scat-
f dr-r*Rap(r)j2(an)Rys(r)] «a”(k*+0a%)°  tering (FMS) approach used in this study is indeed critical.
(5) First, note that the dynamic structure factorqs{) is
indeed a convolution of initial and final electron states in
Herek=(Z+Z'/2¢)lay; Z'=Z+1 is the equivalent atomic momentum space
number for the core-hole potential; ang-7 is a reasonable
value for the static dielectric constant of the material.
Sls_zp(q)/q2 is plotted in Fig. 8(solid curve with a single S(q,0)= >, |(f|€'Y|0)|28(AE—hw)
free parameter to scale the overall amplitude, but not, e.g., f
the parametek=10.3 A~*, which determines the half width 2
of the curve and is set purely by atomic physics: boron’s :E f Yi(p—q)ho(p)dp| S(AE—fw). (6)
atomic numbe#Z and the Bohr radiua,. The agreement on f
the overall g dependence between experiment and this
simple theory is additional evidence in favor ofpatype  Thus theg-dependence is actually a measure of the momen-
exciton. tum distribution of the photoelectron in the final exciton

Further support for this conclusion comes from generaktate. On the other hand, the spatial extent of the photoelec-
symmetry considerations. Single-typed excitons have to b&on in the exciton state can also be determined by studying
associated with a strong local symmethere theB3 site  the convergence of the FMS calculation with an increasing
is unique in the BC unit cell as being the only site with cluster size® as shown in Fig. 9. Simulations of the exciton
inversion symmetry. The presence of inversion symmetry reconverge with a 200 atoms cluster of a radius about 7 A. This
quires both the initial and final states to be eigenstates o considerably beyond the unit-cell-sized cluster of 2.95-A
parity, and the fact that the lowest emptp 2tate in boron radius, and is consistent with the extent of p. &ate in a
has different parity than theandd states leads naturally to statically screened core-hole field as calculated in Bg.

N
T

the simulatedB1+ B2 background. There are two possible %10—
forms of such an error: the shape of B&+ B2 background 3 A Bl
in the near-edge region may be incorrect at the fine level of % 8r ——52A,87 atoms ]
Fig. 7, or there may be a strong energy-dependence ajthe = | 3inmaems | ]
dependence of the background either in the near-edge region @ 6 —_25A 9atoms
of Fig. 7 or in the extended regidwhich is used for overall 2 54 3atoms

®

2

K

o

2 2 6 8
energy from the Fermi level (eV)

VI. SPATIAL PROPERTIES OF THE EXCITON AND THE
IMPORTANCE OF FMS

Sis-2p(Q)
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i.e., radial distribution of the electron density maximizes at 150
2.6 A, and 99% of the total electron density are within the 12r + | —absolute cross section]
7-A radius. .ot

ot bey F + FMS order
g

Second, we do indeed find that the FMS scheme used here 1
is critical for near-edge simulations of the® system. For ‘;': 100
comparison, the traditional multiple-scatterifddS) path ex- A
pansion was carried out for up to eight scattering legsanda <
total path length of 12.4 A. Similar parameters were used for m)
approximations of FMS by MS, and allowed discussions of T
dominant photoelectron scattering paths in model extended
x-ray absorption fine structu&XAFS) studies of molecular
0, (Ref. 52 and Cu system® However, the analogous cal-
culations here failed to converge for,8 system and no o5 50020 580
dominant scattering paths were found. There are two expla- energy from the Fermi level (eV)
nations for this observation. First, the relatively low local-
Symmetry in ac results in a low degeneracy for ph0t0e|ec- FIG. 10. (SO"d line and left axi}s The calculated absorption
tron scattering paths. Second, while the occurrence ofcefficient for theB3 site in B CBC. (Crosses and right axis
dominant scattering paths in the extended region of XAFS id he number of scattering legs required for convergence of a mul-

well understood* this phenomenon may not extend into thet'ple scattering calculation, as determined by the iterative Lanczos

near-edge region. In particular, the low photoelectron energf}lgor'thm'

results in essentially isotropis-wave scattering, unlike in
the extended XAFS region where the higher photoelectron
energy leads to strongly anisotropic scattering which, in turn, In conclusion, using)-dependent non-resonant x-ray Ra-
can give so-called focusing effects and strong back scatteringnan scatteringXRS) andab initio calculations, we find con-
among other mechanisms leading to a finite number of scatlusive evidence for dominant boron occupation of the
tering paths with dominant weight in the overall cross-chain-centeB3 site in B,C and an associated delocalized
section. p-type exciton. To our knowledge this is the first time that
On the other hand, recent developments using the LaneXRS has been used to address site-substitutional disorder.
zos algorithm® allow one to directly test the order of MS The methodology of this study may prove useful in other
needed for convergence by iterative|y increasing the numbefases where site-substitutional disorder occurs for sites with
of scattering legs in the calculation. In Fig. 10 we show thevery different symmetries. We also propose that the occur-
results of such a calculation for th88 site. The solid curve rence of single-typed excitons can be used as a spectroscopic
and left axis refer to the calculated absolute cross sectiorindication of strong local symmetries in future studiés?®
while the right axis and crossés-) provide the number of
scattering legs needed for convergence at the specified en-
ergy from the Fermi edge. Note that over 100 scattering legs
are needed in the near-edge region, again emphasizing the We acknowledge stimulating discussions with E. A. Stern,
importance of the FMS approach for the near-edge region. A. L. Ankudinov, J. A. Soininen, E. A. Miller, and B. D.
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