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Anisotropic quantum dots: Correspondence between quantum and classical Wigner molecules,
parity symmetry, and broken-symmetry states
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We study electron systems confined in anisotropic quantum dots at high magnetic fields using the
configuration-interaction scheme with a multicenter basis of single-electron functions centered around different
sites. Elliptical, triangular, and square quantum dots are investigated. We study the relation between the
qguantum and classical charge density and conclude that at high magnetic field the quantum charge density
reproduces all the equivalent lowest-energy configurations of classical point charges. Quantum systems with a
classical counterpart of a unique lowest-energy configuration exhibit a smooth convergence of the charge
density to the classical limit at high magnetic field. In quantum systems with several equivalent classical
configurations the magnetic field induces discontinuous transformations of the ground-state symmetry associ-
ated with crossings of the corresponding few-electron energy levels. A linear combination of states with the
crossing levels yields a semiclassical charge density with a broken symmetry. At the magnetic field corre-
sponding to the level crossing this combination is an exact eigenstate of the Hamiltonian. For circular dots the
present findings give an additional insight into the properties of the magic-angular-momenta states and into the
physics behind the broken-symmetry mean-field solutions.
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[. INTRODUCTION Wigner molecule by a Gaussian impurity perturbation in an
isotropic confinement potential was recently studied by the
Quantum dots provide a convenient testing ground for quantum Monte Carlo approach?’

studying electron localization in potentials which can be, to a In this paper we perform a detailed study of the charge
certain extent, formed at will by proper etching techniques odensity of two-, three-, and four-electron systems confined in
chosen geometry of the applied gate electrodes. One of th@Nisotropic potentials using an exact diagonalization ap-
most interesting problems in this field is the Wigner crystal-Proach. We consider elliptical, square, and triangular shaped
lization of the electron system induced by a high magneti@uantum dots and investigate the magnetic-field-induced
field. The problem of Wigner crystallization in cylindrical Wigner crystallization. A relation between the quantum and

quantum dofs? has been widely discussed and at presenFIaSSical charge distributions in anisotropic structtftés
8und. In particular we discuss the high-magnetic-field be-

seems to be well understood both quantum mechanically ar\”navior of quantum systems whose classical counterparts pos
classically> Wigner crystallization, i.e., the separation of q N Sy . erp P
sess several equivalent lowest-energy configurations.

glectrons, in cylindrically symmetric potential appears in the A lot of attention was paféf to the problem of the se-

S . i . . aﬁ%ence of the ground-state angular momenta after the maxi-
electrons are not dlstlngwshaple in the r'otat|onally invariant, o density droplé® (MDD) breakdown in cylindrical
electron density. Therefore, in cylindrical quantum dotSq,antym dots. The magnetic field increases the absolute
method§ based on charge-density measurements are not aajye of the angular momentum of the confined electron sys-
propriate for the observation of Wigner crystallization. How- tem, but only certain angular momenta with magic quantum
ever, such an approach is possible in structures of lower symyumberé®2°-??are realized. For the magic angular momenta
metry. Previous exact diagonalization studies of a threethe classical symmetry is reproduced in the inner coordinates
electron system in a triangular quantum ‘dand of a system  of the quantum systefrand the electron-electron interaction
of six electrons in an elliptical quantum doshowed that energy as a function of the angular momentum presents local
Wigner crystallization can be observed in the charge-densityninima?® At the end of this paper we point out a relation
distribution of the electrons in the laboratory frame. More-between the magic angular momenta and the charge density
over, an exact study of the two-electron system has beeim the laboratory frame. We also consider the magnetic-field-
presented for triangular, square, and hexagonal quantuminduced parity transformations in elliptical dots which are
dots in the absence of a magnetic field and in an elliptical dotess thoroughly studied counterparts of the angular-
at zero magnetic fiell Wigner crystallization of few- momentum transitions appearing in circular dots.

electron systems in large polygonal quantum dots in the ab- To discuss the charge-density distribution the application
sence of an external magnetic field was studied usingf an exact diagonalization method is crucial since mean-
density-functional theor{*~° This theory was also applied field approaches may lead to an artifactal breaking of the
to evaluate the addition spectra in elliptical quantum dbts. symmetry of the confinement potentfalThe broken-
The addition spectra of elliptical dots have been studied wittsymmetry solutions present a semiclassical type of localiza-
Hartree-Fock methdd as well. The effect of pinning of the tion. On the other hand we foufftirecently that in the

0163-1829/2004/692)/12534415)/$22.50 69 125344-1 ©2004 The American Physical Society



SZAFRAN, PEETERS, BEDNAREK, AND ADAMOWSKI PHYSICAL REVIEW B59, 125344 (2004

strictly infinite magnetic-field limit the energy of the broken- 15 — T
symmetry solution with semiclassical localization becomes
equal to the energy of the exact solution. In this paper we
study the realistic case of high but finite magnetic fields and A
extend our previous work to anisotropic confinement poten-
tials. In particular, we reconsider the problem of the symme-
try breaking at the exact diagonalization level and demon-
strate that a construction of the exact broken-symmetry
solution of the few-electron Schimger equation is possible
for certain values of the magnetic field.
Some of the previous studies of Wigner crystaté’ and

Wigner molecules+?4?829ysed a multicenter basis of the

single-electron lowest-Landau-level functions. However, ob— v
these calculatiofd™2° used Hartree-Fock or similar ap- 0 5 10
proaches. In the present paper, we use the single-electron BIT]

multicenter basis for the construction of the configuration-

interaction approach which allows for an exact solution of FIG. 1. .The S'ngle'el.ECtron.SpECtrum Calcu""‘.tEd with the trial
wave function(3) for an isotropic quantum dot withw=3 meV

.the Schrwnger quatlon for few-electr.on systems .Conf'ned(solid lineg. Eleven centers have been used, one located at the
n ppterjtlals of arbl_trary sym.metry.. This approach IS a gen'origin and the others at the circumference of a circle with variation-
eralization of the SInq‘I%conflguratlonal mU|t'Center_ Hartee'aIIy optimized radius. Symbols show the exact Fock-Darwin energy
Fock (MCHF) method™? which we elaborated previously. levels corresponding to the lowegdots and higher bands

The paper is organized as follows. The second sectiofrosses The dotted line shows the estimate for the ground-state
describes the multicenter-configuration-interaction method agnergy obtained when the center located at the origin is excluded
applied in this paper as well as presents test calculations fGfom the basis.

circular dots. Sections lll, IV, and V contain discussion of

results obtained for elliptical, square, and triangular dots, re- M

spectively. The conclusions reached for lower-symmetry \p#(r)zz clipr (1), (3
structures are discussed in the context of circular dots in Sec. =1 '

VI. Summary and conclusions are given in Sec. VII. with

II. MULTICENTER-CONFIGURATION-INTERACTION _ |« o2 f _
ETHOD wR<r>—\/2Wexp{ 2 =RZH (= X)(y+Y)

We considerN electrons confined in a two-dimensional @)
(x,y-plane quantum dot subject to a strong external mag-
netic field oriented parallel to the axis. We solve the whereM=N is the number of centel®8=(X,Y). Next, the
N-electron Schrdinger equation with the Hamiltonian N-electron Hamiltonian(1) is diagonalized in a basis of
MI/N!I(M—=N)! Slater determinants constructed from the
« single-electron orthonormal eigenvectais, (3) with u
I

—+BS,g* ug, (1) =1,... M. The position of the centel];, «, and g are

N
=1 r

H=_§l hi+ >,

N
iE>i i nonlinear variational parameters optimized for the total en-
ergy of theN-electron system. For three or more centers per
whereh stands for the single-electron Hamiltonian, electron the optimal value of the paramegetends toe B/7.
At high magnetic field the parametaralso takes this value
1 independently oM. For a= B=eB/#% the wave functiorn(4)
h=——(—iAV+eA)2+V(x,y), (2) is the lowest-Landau-level eigenfunction.
2m* The flexibility of the single-electron basis was verified for
an isotropic parabolic potentidl(x,y) =m* w?(x>+y?)/2,
g* is the effective Landdactor, S, the z component of the with #w=3 meV. Solid lines in Fig. 1 show the magnetic-
total spin,B the magnetic fieldug stands for the Bohr mag- field dependence of the single-electron spectrum calculated
neton,x=e?/4meye, € is the dielectric constant amd* the  with the trial wave function3) with ten centers located at
electron effective mass. We use the Landau gau#ge the circumference of a circle with equal angular spacings and
=(—By,0,0) and adopt material parameters for GaAs, i.e.the 11th center located at the origin. The radius of the circle
m*/my=0.067,e=12.9, andg* = —0.44. was optimized variationally. The dots in Fig. 1 show the
We assume complete spin polarization of the electron sysexact Fock-Darwin energy levels corresponding to the lowest
tem by the external magnetic field. The multicenter-band which at high magnetic field converges to the lowest
configuration-interactioitMCl) scheme is constructed in the Landau level. The crosses mark the energies of the higher
following way. First we diagonalize the single-electron Fock-Darwin bands. The present calculations with wave
Hamiltonian(2) in a multicenter basis function (3) reproduce the exact single-electron spectrum
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with a high precision. It is interesting to note that the basis — Or T I I -
(3) constructed of the displaced lowest-Landau-level wave = - MDD (a)3
functions (4) reproduces also higher Fock-Darwin bands. E sE J
Since we are using the Landau gauge the single-electron g C :
wave functions(3) are not eigenfunctions of the angular- GEJ E 1
momentum operator. However, for all the plots presented in g oF ]
Fig. 1, the expectation values of the angular momentum cal- E C ® exact ]
culated for the wave function®) reproduce exactly the cor- S .45 B3 centers -
rect eigenvalues. > r 6 centers .
. . c - —12 centers
The exact ground Fock-Darwin state wave function pos- ® L ll I - I — s

sesses the forrt¥) with X=Y=0. The dotted line in Fig. 1
shows the variational estimate of the ground-state energy ob-
tained when the center at the origin is excluded from the
basis. The related overestimation of the ground-state energy
is nonzero only at low magnetic field&2.2 T). We have
found that the center located at the origin has no influence on
the energy estimates for the single-electron states with non-
zero angular momentum. Its contribution to the energy of the
exciteds states tends to zero at higher magnetic field simi-
larly as for the ground state.

We have performed further tests for the isotropic har- 9 centers
monic confinement potential in order to verify the reliability -
of the present configuration-interaction approach to the few- 12 centers
particle states at high magnetic field. The results were com- | | |
pared with the standard exact diagonalization method with a 0.0 — 5 E— 10 E— 15 E— 20
basis constructed from the Fock-Darwin states of definite BIT
angular momenturfi**° The reference methét3° assumes [T]
neither spin polarization nor the occupation of the lowest
Landau level and foN<4 allows for nearly exact evaluation e hree-electron system confined in an isotropic quantum dot with
of the total energy. . hiwo=3 meV and the expectation values for the multicenter-

Figure 2a) shows the comparison of the exact total angu-configuration-interaction wave functions using various number of

lar momentum of the three-electron system and the expectaenters.(b) The overestimation of the total three-electron energy
tion values obtained with the MCI wave function for various with the multicenter approach for different number of centers.

number of centers placed on a circumference of a circle with
equal angular spacings. The plot startsBer 3 T for which  most curve of Fig. &)] is a nonmonotonous function &.
the ground state is the spin-polarized MBDThe MDD  The oscillations are due to the fact that the energy estimate
decays aB=4.6 T [cf. black dots in Fig. 2] to a nonpo- of MCI with M=N is a smooth function oB, while the
larized state with angular momentum5#4. For B>5.4 T  exact energy exhibits cusps at these valud foir which the
the ground state of the three-electron system is spin polaground-state angular momentum changes. The envelope of
ized. Then, the angular momentum takes the magi¢hese oscillations decreases to O in the infinite magnetic-field
value$329-22and changes by as the magnetic field in- limit.2* Introduction of six centers reduces the overestimation
creases. of the total energy as long as the total angular momentum is
The present method witM =N uses only a single con- reproduced by the MCI method witkl =6 [cf. dashed line
figuration and at high magnetic field is equivalent to thein the upper panel of Fig.(@)]. At higher magnetic field, for
multicenter HF method? For M=N=3 the MCI method Wwhich the overlaps of function@) centered around different
reproduces the angular momentum of the MDD sfatie  sites vanish, the precision of the MCI method with=6
squares in Fig. @]. After the MDD decay, the expectation deteriorates to the one obtained wiM=3, i.e., to the
value decreases linearly wihin contrast to the exact step- MCHF method?® The method withM =9 (12) centers gives
wise decrease. The MCI method with six centers reproducethe exact energy to a precision better than 0.15 n@@5
also the exact angular momentum of the first spin-polarizeaneV) for 5.4<B<20 T, i.e., in the studied range of mag-
state after the MDD decay, and at higher magnetic fields inetic field after the MDD breakdown for which the adopted
starts to decrease linearly witB. For M=12 the MCI  assumption of spin polarization is fulfilled. Results of similar
method yields correct expectation values of the angular motest calculations foN=2 and 4 show that the corresponding
menta of all spin-polarized states in the entire consideredipper bounds for the precision of the MCI method with three
range of magnetic fields. centers per electronM/N=3) equal 0.1 and 0.12 meV, re-
Let us now discuss the convergence of the energy estspectively.
mates obtained with the MCI method to the exact ground- Figure 3 shows the charge density of the three-electron
state energycf. Fig. 2b)]. The overestimation of the exact system atB=6 T for three, six, and nine centers. In the
energy with a single configuratidiM =N=3, cf. the upper- single-configuration charge densityM&3) the circular

FIG. 2. (a) Exact total angular momentum of the ground state of
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FIG. 3. MCI charge density obtained for the three-electron sys-
tem with differentM for Aw=3 meV andB=6 T. The darker the
shade of gray the larger the electron density.

y [nm]

symmetry of the external potential is broken. For six centers
the cylindrical symmetry is approximately restored, although 5}
at a closer inspection the sixfold symmetry—a trace of theg
choice of centers—can be noticed. fér=9 the charge den- =
sity shows a perfect cylindrical symmetry. The present nu-

merical method restores the cylindrical symmetry in a man-

| 121

ner alternative to the rotated-electron-molecule approach o 4°[
Yannouleas and Landman. = 2

We conclude that the single-electron wave functi¢®s £
used in the present MCI approach work similarly as the ™ -20}
Fock-Darwin functions with definite angular momentuah

) ] 20T
)

Figs. 1 and 2 At high magnetic fields the precision of the
MCI method is not worse than the MCHF metRddhich in

turn gives exact results in the infinite magnetic-field liddit. &
The applicability of the present configuration-interaction ap- =
proach is not limited to cylindrically symmetric potentials. ~ “20[
The MCI method allows for a flexible choice of the position  -40f

{ clas.

of centers which can be tailored to any smooth external po-

tential of arbitrary profile and symmetry. %[nm]

X [nm]

-40-20 0 20 40 -40-20 O 20 40 -40-20 0 20 40

x [nm]

FIG. 4. Charge density of two-, three-, and four-electron sys-
tems for an anisotropic parabolic potential witlb,=3 meV and
fioy=4 meV for different magnetic fields. The lowest panel pre-
sents the lowest-energy configurations of the classical point-charge
systems. FoN=3 the two energy-equivalent configurations are
marked with full and open circles.

IIl. ELLIPTICAL QUANTUM DOT
A. Wigner crystallization

In this section we applied the MCI method to analyze
Wigner crystallization in elliptical quantum dots with aniso-
tropic parabolic potentiaV/(x,y) = m* (wx?+ w7y?)/2 with

w,>w,. Calculations were performed witkl = 12 centers counterpartgcf. lowest panel of Fig. ¥ which results from

) o the shrinkage of the Landau radius with growing magnetic
put on an ellipse symmetric with respect to thandy axes field. ForB=8 T a central hole in the three-electron charge

with equal angular spacings. .
Figure 4 shows the calculated charge densities for tWO_dens|ty appears. The plots of the three-electron charge den-

three-, and four-electron systems at different magnetic ﬁeld§'tIes for 12 and 20 Tcf. Fig. 4 show an appearance of two

(the energies obtained are listed in TableThe lowest panel ;maller maxima of the.cha.rge density along yhaxis. This
shows the position of the classical point charges in theS shown more clearly in Fig. 5 for the three-electron charge

lowest-energy configurations. The classical two- and four—denSIty atB=30 T. The two charge maxima at theex-

electron systems in the studied potential possess a unique )
lowest-energy configuration. On the other hand the classical -;AB:;E. |. Total energy of thel;-?lectron Sysite”;h“: (in mev\)/
system of three electrons possesses two equivalent config@?‘g flin(f =|2 ;ne\?msotroplc parabolic potential witlw,=3 me
rations(marked by “black” and “white” symbols in the low- y '

est panel of Fig. ¥ Existence of several equivalent classical

configurations will be referred to asassical degeneracy B(M = Es E4
At relatively low magnetic field4 T) the electron puddles 4 15.35 30.33 49.29
look very similar and exhibit two maxima at their left and 8 20.99 39.02 60.71
right (x) ends. ForB=8 T the electrons in the two- and 12 27.20 48.20 72.94
four-electron systems start to become spatially separated. At 16 33.71 58.04 85.95
higher magnetic field the electron charge densities Nor 20 40.33 67.95 99.29

=2 and 4 tend to the charge distributions of their classical
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sical system possesses a single lowest-energy configuration
for 3 meV<7w,=5.1 meV with electrons situated along the
x andy axes. Foriw, larger than 5.1 meV the electrons
o leave the axes and as a consequence two equivalent configu-
rations appear. A8 w, is increased further the classical elec-
trons become localized on thxeaxis and the classical degen-
eracy is removed. Note that the classical system exhibits a
FIG. 5. Charge density of the three-electron system for an anzigzag transition as discussed in more detail in Ref. 18. The
isotropic parabolic potential withw,=3 meV,nw,=4 meV, and  classical configurations and the quantum charge distribution
B=30T. (cf. left panel of Fig. 6 are clearly related. In the absence of
classical degeneracyfif,=5 and 9 meV the quantum
tremities of the charge puddle are spread out alongythe charge density possesses four nearly equal maxima localized
direction into two distinct maxima. The results of Figs. 4 andclose to the positions of the classical electrons in equilib-
5 show that the density distribution for the system of threerjum. The plot forfiwy=9 meV represents a nearly one-
electrons at high magnetic field tends to a linear combinatioglimensional case of a Wigner molectfejn which the
of the two distributions of the degenerate classical configucharge maxima at the ends of the puddle are slightly more
rations(cf. the lowest panel of Fig.)4 pronounced than the maxima in its interior. A trace of the
Evidence of Wigner crystallization in the four-electron classical degeneracy féro,=6 meV in the quantum charge
charge density is not always as apparent as in the case showansity is the elongation of the central maxima in thei-
in Fig. 4. The left panel of Fig. 6 displays the charge densityrection. These central maxima fbr,=5.5 meV merge into
of the four-electron system &=20 T foriw,=3 meV and 3 single ringlike plateau with a hole in the center. For this
differentw, . The right panel of the figure shows the cor- special case the separation of electrons is not complete, since
responding configurations of the classical systéifhe clas-  the charges of the two central electrons occupy the same
island. We have found that in this case the separation of the

i
7
o

i
T
e
RO A
5"';"0'»‘.“\“‘3‘:\"33‘3“:‘
R

40 two electrons cannot be observed even in the pair-correlation
= functior? plots. Therefore, the four-electron system in this
T = ° S potential forB=20 T presents an interesting casepaftial
E 0 ° ° Ly Wigner crystallization.
5 PY II>\
-20 S]
= .
-40 B. Parity symmetry
40 > Let us now consider the spatial symmetry of the few-
2 QE) elect.ron wave functﬁon in an elliptical dot. In an 'anisotropic
T e o confinement potential the angular momentum is no longer
£ O o e 0 quantized. However, the wave functions of the few-electron
> 20 ® v e systems in an elliptical dot have a definite parity with respect
g to the rotation byw angle. In cylindrical quantum dots the
-40 parity of the states is eveidd if the angular momentum is
40 an even(odd) multiple of 2. The MDD states for two, three,
20 > and four electrons have angular momentum equal-to,
T ) c —3h, and— 6%, respectively. Therefore, the two- and three-
£ 0 o 2 4 0o electron MDD states are of odd parity and the four-electron
> 20 éx MDD state is of even parity. At magnetic fields above the
= MDD breakdown the angular momentum of the ground state
-40 takes the magic valug$?°~?2and changes bi%. As a con-
40 sequence the two- and four-electron systems in the MDD
2 > state and after its decay possess always the same fadtity
T £ for N=2 and even foN=4), while for three electrons the
£ O e o o o0 | o» parity changes with each ground-state transformation.
™ o0 s Solid lines in Fig. 7a) show the two lowest-energy two-
é electron levels in the magnetic-field range corresponding to
-40 the MDD decay in a circular quantum dot. The displayed
40 20 0 20 40 -40 20 0 20 40 energyE’ is calculated with respect to the lowest Landau
% x [nm] level, i.e., E'=E—N#(w.+S,g* uaB)=E— 0.85(meV/T)

FIG. 6. Left panel: Charge density of the four-electron system at< NB. The two-elect_ron MDD decays &=5.75T as the
B=20T for iw,=3 meV and different values ofw,. Right  energy of the state with angular momentun3: crosses the
panel: Classical lowest-energy configurations. kes,=5.5 and MDD energy level withL=—7. The dashed lines present
6 meV two equivalent configurations are marked with differentthe magnetic-field dependence of the two lowest levels for
symbols. an elliptical quantum dot withiw,=3 meV and i w,
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: 28 L 1 L [ s 1
C 4 5 6 7 84
3441 y B[] BT
[ N=4 ] ] . ]
ol v v vty FIG. 8. Expectation value of the electron-electron interaction
‘5.5 6.0 6.5 energy in the two-electron syste@ and of the angular momentum
BIT] (b) in the three-electron circulafi,=fw,=3 meV—solid lines

and elliptical ¢w,=3, fw,=3.5 meV—dashed lingsquantum
FIG. 7. Two lowest-energy levels of tw@) and four(b) elec- dot.

trons forf w,=3 meV calculated with respect to the lowest Landau

level as functions of the magnetic field. companied by a stepwise decrease of this quantity. The in-
teraction energy for the two-electron elliptical dot presents a
"Emooth dependence on the magnetic flefd dashed line in

ig. 8@)]. In circular quantum dots the sharp breakdown of

he MDD is related with a level crossing leading to a sudden
increase of the electron-electron correlatfband formation

=3.125 meV. Instead of a level crossing we observe a
avoided crossing. The avoided crossing is due to the fact th
the states involved are of the same odd parity. A similart
avoided crossing related to the MDD decay in elliptical dot

is observed for fo.ur ejectror[sf. Fig. 7b)]. Both the.energy of a molecular configuration in the inner coordinates of the
levels presented in Fig(l) correspond to even parity states. quantum systeri®2°3n the presence of the avoided cross-

Fpr bothN=2 .anld 4, further avoided_ cro;sings appear a'ings the formation of the Wigner phase becomes a continu-
higher magnetic fields. In the harmonic ellipsoidal quantumg ;o process.

dot 'the genter-of-lmrgzssf tht'OH sepi':lrattles'frorr thg rerl]atlve In the three-electron system confined in an elliptical dot
motion eigenproblert. If the energy levels involved in the g magnetic-field-induced level crossings are still present

avoided crossing corresponded to different center-of-masge ase, like in circular dots, the subsequent ground states
states, the level crossing would still be observed in spite o ossess opposite parities. Figure 9 shows the two lowest-
the same parity of the_conS|dered few_—electron states. Th@nergy levels as function of the magnetic field. One of the

appearance of the avoided level crossingsNer2 and 4 5 |gwest-energy levels corresponds to the odd-parity state

indicates that these levels are associated with the SaMeojid line) and the other to the even-parity stattashed
(ground state of the center of mass. In the two-electron sys-

tem the energy gaps between the anticrossing energy levels 21
[AE, cf. Fig. 7@] for the same degree of anisotropy
(wy/w,) are about four times larger than in four-electron
systems. The extent to which the anisotropy mixes the 203
magic-angular-momenta states of circular dots is a distinctly

0.4 1
0.3 b

0.2 1

(Eproken-Eexact) [Mev]

decreasing function of the differences of their angular mo- =

. . ) > 19 0.1+ .
menta (N%). The appearance of the avoided crossings in £ A A
function of the anisotropy of the elliptical confinement in o 0.0 s 0 o5
absence of a magnetic field has been discussed for an elec- 18 odd

tron pair in Ref. 10.
The magnetic-field-induced ground-state transformations
in the circular quantum dots are accompanied by cusps in the 17
energy as a function of the magnetic field and stepwise
changes of the angular momentum. Moreover, they appear
along with discontinuous changes of the average size of the

Systenﬁo the eIeCt,ron'eleCtron Interaction gne?@y,and FIG. 9. Two lowest-energy levels of a three-electron elliptical
abrupt transformat_|ons_ of the charge densny. When t,h%lot (hwy=3 meV, hw,—4 meV) calculated with respect to the
energy-level crossing is replaced by an avoided crossing,yest Landau level. The energy level plotted with sdfished
(like in two and four elliptically deformed dotshe changes jine corresponds to the state of otiever) parity. Dotted line shows

of physical quantities lose their sharp character and becom@e expectation value of the energy for the broken-symmetry state
continuous. As an illustration, a plot of the interaction energy[cf. Sec. 11l C and Eq(5)]. The inset presents half the energy spac-
in the two-electron system is presented in Figg)8or cir-  ing between the two energy levels, i.e., the energy overestimation
cular (solid line) and elliptical(dashed linpquantum dot. In by the expectation value of the Hamiltonian calculated for the
the circular dot the interaction energy grows with magneticbroken-symmetry statéef. Sec. Il Q. Signs “—” and “ +” corre-

field between the ground-state transformations which are aspond to odd and even parity of the ground state, respectively.
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w
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FIG. 10. Phase diagram for the parity of the three-electron spin-

polarized ground state in an elliptical quantum dot fow, for the three-electron system confined in a circular dbw|
=3 meV. The parity is even in the region marked by a plus S|gn=hwy=3 meV) in the MDD phaséupper panel cf. point marked

bounded by the solid line and odd outside of it. The dotted Ilneby “A"in Fig. 10) and in the ground state with=— 6% appearing

shows the position of the avoided crossing of the lowest two odd-t higher magnetic fieldlower panel cf. point marked byB" in
parity energy levels. The insets show schematically the qualitativ, : 1% The gosition of one of tF;le elect.rc‘))ns in the PCF ylot marked
picture of the charge density in the different phases. For the verticatl) ) P P

g
dashed lines and the symbols, see text. y X is fixed at pointx=0, y=21 nm.

FIG. 11. Charge densitfleft pane) and PCHright panel plots

) o . also resembles a similar effect appearing in circular dcts
line). In the three-electron elliptical dot the changes of phys"right panel of Fig. 12 The charge-density plot for the same
cal properties conserve their stepwise character as funCtioﬁhase at a higher magnetic fiel8£8 T—point “E” in Fig.

of the magnetic field due to the parity transformations. Flg-lo) was presented in Fig. 4. A qualitative change in the

ure 8b) shows the expectation value of the angular momengarge density is observed at higher magnetic fields when the
tum for the three-electron system. Although, the angular mop,q. phase border is crossed. In the odd phase above this

mentum in an elliptical dot is not quantized, its expectationborder, the two local maxima of the charge density appear at

value presents discontinuous changes. For higher values gfs y axis (cf. Fig. 4 for B=12 T andN=3). At higher

w, the angular momentum is quenched to zero as the conyagnetic field the charge density tends to reproduce both the

finement potential starts to resemble a quasi-one-dimensiongLgenerate classical configuratidoé discussion of Fig. %

W|re!|ke dot. . ) Figure 10 shows that with increasing anisotropy of the
Figure 10 shows the phase diagram for the parity of th&onfinement the even-parity phase is pushed to higher mag-

spin-polarized three-electron system as a function of theqyic fields and finally forhiw,>4.4 meV it is eliminated
strength of they confinement and the magnetic field for y

hwy=3 meV. The ground state is of even parity in the cen-

tral region bounded by the solid line and marked by the’* 40
sign. The left vertical dashed line corresponds to circular 20
symmetry of the confinement potential. The changes in the
charge density occurring at the crossing of the border be-
tween the odd and even phases along this line are illustrated -20
in Fig. 11. The upper panels of Fig. 11 show the charge .40
density (left pane) and the pair-correlation functioPCH
(right panel corresponding to the MDD phase in the point
marked by “A” in Fig. 10. The lower panels correspond to
the point marked by B” in Fig. 10. Results of Fig. 11 show
that the MDD decay is accompanied by the formation of a
hole in the charge-density centéand a distinct growth of
the electron separation in the inner coordinates presented at -40
the PCF plots. Figure 12 displays the charge density and the -40 20 0 20 40 40 20 O =20 40
PCF plots at the crossing of the border between the odd- and o] 3 [

even-parity phases for elliptical dot withw,=4 meV (cf. FIG. 12. Charge densitleft pane) and PCHright pane) plots
the points marked by C” and “ D" in Fig. 10). The charge  for the three-electron system in an elliptical ddtef,=3 meV,
density in the even-parity ground state has a hole in the CeNrw,=4 meV). The upperlowen panel corresponds to the odd-
ter, similarly as for the even-parity state in the cylindrical dot(even) parity state in the point marked byC” (“D”) in Fig. 10.
(cf. Fig. 11). An increase of the electron-electron correlationThe position of one of the electrons in the PCF plot markecbig
appearing at the crossing of the borders between the phastgd at pointx=0, y=20 nm.

62T

E of |
>

6.4T

. ¥y [nm]
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40 40
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g £ o
S > .20
>

-20 -40
40

-40
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-40 20 0 20 40 =

x [nm] & 0

FIG. 13. Charge density for the three-electron system in an el-
liptical dot (iw,=3 meV, iw,=5 meV) for B=6 T. The plot
corresponds to the point marked b¥™in Fig. 10.

-40-20 0 20 40 -40-20 0 20 40
x [nm] X [nm]

from the phase diagram. The charge-density plot presented in 1. 14. Charge density of the broken-symmetry three-electron
the upper panel of Fig. 12 for pointC” in Fig. 10 shows  states[cf. Eq. (5)] in an elliptical dot w,=3 meV, hoy,

that the odd-parity state forms a charge-density maximum in-4 mev) forB=6.3 T (a,b, 14.125 T(c), and 25 T(d). For the

the center of the dot. The stroiygconfinement prevents the chosen fields the plots correspond to exact ground states.
formation of the even-parity statghe lower panel of Fig.

12) in which this central charge-density maximum is re-14(a) and 14b) correspond to “black” and “white” degen-
moved. The right vertical dashed line in Fig. 10 marksyhe erate classical configurations depicted in the lowest panel of
confinement energy above which the zigzag stru¢tokthe Fig. 4. Plots 14a) and 14b) have been obtained with oppo-
classical three-electron systedef. lowest panel of Fig. #is  site sings oft in formula(5), so they correspond to orthogo-
suppressed to theaxis. Figure 13 shows the electron chargenal wave functions. Figures (&), 14(c), and 14d) show that
density plotted forhw,=5 meV andB=6 T (the point as the magnetic field grows the charge density of the broken-
marked by ‘F” in Fig. 10). The observed three charge- symmetry state converges to one of the degenerate classical
density maxima at higher magnetic field shrink and tend toconfigurations of point charges.

ward the single nondegenerate classical configuration. In the The expectation value of the energy calculated for the
quasi-one-dimensional regime of stroggconfinement the broken-symmetry statiEqg. (5)], independently of the phase
convergence of the three-electron charge density to the clasf c, is equal to the arithmetic average of the two lowest-

sical limit is not accompanied by any level crossings. energy levels. It means that this expectation value overesti-
mates the exact ground-state energy by half of the energy
C. Broken-symmetry states spacing between the two lowest levéts. inset of Fig. 9.

or the magnetic fields corresponding to degeneyatand

The preceding results show that the quantum systems Wltﬁz statecf. Eq. (5)], i.e., to the energy-level crossings pre-

classical degeneracy at high field contain all the classicall ented in Fig. 9, the broken-symmetry stats are exact
degenerate configurations. As a consequence, the corre:

sponding charge density does not resemble any single Clag_round eigenstates of the Hamiltonian. The magnetic fields

sical charge distribution. One has to break the svmmetry o hosen in Fig. 14 correspond to these level crossings. There-
9 o y Y ore, the charge densities presented in this figure correspond
the external potential in order that the quantum charge den[—

sity reproduces one of the degenerate classical configurao the exact ground-state solutions of the Sdinger equa-
Ity rep 9 MgUEon. Conversely, for an arbitrary value of the magnetic field
tions. Let us construct such broken-symmetry statgsin

form of a linear combination of the two lowest-eneray few- the exact ground-state wave function can be constructed
. 9y from a superposition of the wave functions of two broken-
electron statesy(; and y,, respectively,

symmetry states with semiclassical electron localizafiin
Figs. 14a) and 14b)].

Uos=(xa+ Cx2)V2, () Fios-14@ and 14b)]

where |c|?=1. Usually, the charge density of a state con- IV. SQUARE QUANTUM DOT

structed in this way does not reproduce the symmetry of the ) ) ) _

confinement potential. We constructed such broken- [N order to verify the conclusions concerning the high-

symmetry states for the system of three electrons in an ellipf@gnetic-field evolution of the charge density in elliptical

tical dot with %iw,=3 meV andhw,=4 meV (cf. Fig. 9. dots we per.formed a study o_f Wigner cryspalllzat|on in quan-

We have found that the broken-symmetry charge density exium dots with square and triangular confinement potgntlals.

hibits three maxima. For a properly chosen phase of the cd-°f the square quantum dot we used a smooth confinement

efficientc in Eq. (5) the positions of these maxima coincide Potential with a square profile,

with the position of the electrons in one of the degenerate 1ok, 203,21 \,2
X : . ; : Y)=3 + 1+cog4¢)/5], 6

classical configuration&f. the lowest panel of Fig.)4Fig- VoY) =zm* 0T (x*+yo)l 4] ©®

ure 14 shows the charge density of the broken-symmetryhere ¢ is the angle between the position vectary) and

states for different values of the magnetic field. Plots in Figsthe x axis. We takei w=3 meV. The potential is illustrated

=
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N=2 N=3 N=4
30
£ 10
£
>-10|
-30
30
£ 10
e
-20 0 20 =-10
X [nm]
-30
FIG. 15. Equipotential lines for the square confinement potential -
(6). The different types of symbols mark the position of the elec-
trons in one of the four energy-equivalent configurations for the = 10
three-electron system. £
>-10]
in Fig. 15 along with the degenerate classical lowest-energy  -30
configurations of three electrons. On the other hand for two 30 -10 10 30 -30 -10 10 30 -30 -10 10 30
electrons there are only two equivalent configurations in X [nm] x [nm] x [nm]

which the electrons reside in the opposite corners of the _ ) _

Squaré’f' and forN=4 the classical system is nondegenerate FIG. 17. Pair-correlation function for the two-, three-, and four-

with electrons occupying all the corners. electron system in the square quantum dot. The cross marks the
The MCI calculations for potential6) have been per- Position of one of the electrori{ —12,12), (~17.17), (-20,20)

formed with 12 centers placed on the circumference of 427 N=2, 3, and 4, respectivelin nanometers.

square with equal spacings along its sides. The size of th L -

square was optimized variationally. The obtained charge de Jot when one of the electrons is fixézfoss in Fig. 17along

sity is presented in Fig. 16. In the system of four electron"€ of the diagonals. At high magnetic field the plots for

the charge density becomes distinctly separated into four 2 @nd 4 show that the other electrons become localized

single-electron islands. Fot=2 and 3 the formation of the semiclassically at the corners of the square. On the other

charge maxima at the corners of the square appears with I}ﬁnd the two remaining electrons in the three-electron sys-

pronounced delay in magnetic-field strength with respect tgem are smear_ed OUF over Fhe two oppos[te sides of the
the four-electron system square and their localization is weaker than in the two- and

The PCF plot presented in Fig. 17 gives an additionafour-electron systems. This weaker localization is related to

insight into the electron distribution in the square quantumthe degeneracy of the cla§S|caI three-electron system an_d to
the fact that the electrons in the degenerate classical configu-

N=2 N=3 N=4 rations occupy nearby positions.

Table Il shows that the present MCI approach gives a
decent convergence of the energy estimates even for the
three-electron system whose localization in the square quan-
tum dot is rather vicious.

The gathering of the electron density at the corners of
the square dot that we observe at high magnetic field is
in qualitative agreement with previous exactand
density-functional-theory*? results for large quantum dots
in the absence of magnetic field.

The symmetry of the electron states in square quantum
dots is higher than in elliptical dofS.In the symmetric
gauge the Hamiltonian eigenstates are also eigenstates of the

40
20

y [nm]
L

-20)
-40)
40
20

y [nm]

-20)
-40)
49
20

TABLE Il. Convergence of the total energyn meV) for the
three-electron system in the square quantum(@ipas function of
the number of centers used in the wave funcii@n

y [nm]

-20) )
-40) M

-40 -20 0 20 40 -40 20 0O 20 40 -40 -20 0 20 40 B(T) 4 8 12 16

x [nm] x [nm] x [nm]

4 28.51 28.08 27.99 27.98

FIG. 16. Charge densities of two-, three-, and four-electron12 48.87 46.38 46.27 46.26
systems in the square quantum dot for various values of the@Q 70.22 66.35 66.12 66.08
magnetic field.
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FIG. 19. Two lowest-energy levels of the three-electron square
FIG. 18. Two lowest-energy levels of the two-electron Squarequantum dot calculated with respect to the lowest Landau level. The
o dd- (even) parity energy level is plotted with soliglashedl line.

guantum dot calculated with respect to the lowest Landau level he inset ts the half of th ing betw the tw
functions of the magnetic field. Both energy levels are of odd parity. € Inset presents the hall of I energy spacing between the two

The inset shows half of the energy spacing between the two Ioweslgwest-energy levels.

energy levels. obtained by rotating the coefficiewtby #/2 in the Gauss

7/2 rotation operator corresponding to eigenvalued plane. It is interesting to note that_a linear combinati.on of _the
(even-parity statgsand =i (odd-parity statés Since we are two Iowefst-gne'rgy states can yield all four ;emmlassmal
using the Landau gauge, in which the Hamiltonian does nofharge distributions. On the other hand any pair of the four
commute with ther/2 rotation operator, we cannot discuss broken-symmetry states is sufficient to reconstruct the _exact
these symmetries propef§.However, we have found that 9round state. The broken-symmetry states corresponding to
the ground state of two electrons for the MDD and the othetthe classical configurations marked by squares and open dots

spin-polarized ground states at high magnetic fields is alwaygu” dots and crossgsin Fig. 15 are mutually orthogonal.

of odd-parity-like in circular and elliptical quantum dots. With increasing magnetic field the charge maxima presented

Figure 18 shows the two lowest-energy levels of two-n Fig. 20 shrink to the classical point-charge distributions.
electrons in a square quantum dthte lowest excited state is h 'Il'fhe fe?]ergy overestimate Sf the bro#er}—symmletr)éstate
also of odd parity. Contrary to the case of elliptical dots the (half of t e energy spacing between the lowest ev S
crossings between the odd-parity energy levels are nd?regented in the insets of Figs. 18 ar_1d 19, respectively. We
avoided. Thus we can conclude that the interchanging twonotice the_‘t the envelo_pe of the_ oscillation of the energy over-
electron energy levels presented in Fig. 18 correspond t stimate is a decreasing function of the magnetic field. Simi-
orthogonal eigenstates with eigenvalues of the 7/2 rota- ar decreasing tendency can be noticed for the three-electron
tion operator system in an elliptical dafcf. inset of Fig. 9, but in that case

For three electrons the oscillations of the ground-stat hg parity of the grounq state has a visible influ'ence on the
parity with magnetic field are observed like in circular and eight (.)f the local maxima of the. energy overestlmgte due to
elliptically deformed dotgcf. Fig. 9. The two lowest-energy th_e shrlnk_age of th_e stability region of t_he even-parity phase
levels forN=23 are presented in Fig. 19. with growing y-confinement energicf. Fig. 10.

The two- and three-electron systems in square quantum

dots are similar to the three-electron system in an elliptically 40
deformed dotwith comparable confinement energies in xhe — 20
andy directiong in three points. First, all these systems ex- E o
hibit classical degeneracy. Second, their energy levels exhibit > 50
crossings as function of the magnetic fiétd. Figs. 13, 18, )
and 19. Third, it is possible to extract a single semiclassical
broken-symmetry charge distribution as a linear combination 40
of the two crossing lowest-energy levels. = 20
Figure 20 shows the charge density of a superposition of S O
the two lowest-energy states of two- and three-electron > o0 )
square dot calculated using E&). The other semiclassical 40l (d)
configuration of the two-electron system corresponding to 4020 0 20 40 4030 0 20 40
electrons gathering at the other diagonal of the square can be x [nm] % [nm]
obtained by changing the sign afin Eq. (5). The three-
electron charge density plotted in Figs.(@0and 2@d) cor- FIG. 20. Charge density of the broken-symmetry solutiofs

responds to the classical charge density marked by squaresHu. (5)] of the two-(a, b and three-electron square quantum dot,
Fig. 15. The three other equivalent configurations can béor B=5 T (a), 12 T(b), 8 T (c), and 16 T.
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20K 40
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FIG. 21. Equipotential lines for the triangular confinement po-  -40
tential (7) with 2o =3 meV. Different symbols show the three de- 40
generate classical lowest-energy configurations for the two-electror 5
system.

" 20T

-20

y [nm]

The four-electron spin-polarized ground state in a square
dot is of even paritylike in circular and elliptical dotsand -40
no level crossings as function of the magnetic field are ob-
served. In this respect the four-electron system confined in a
square quantum dot is similar to the two- and four-electron 5 o Charge densities of two-, three-, and four-electron sys-
systems in elliptical dots as well as to three-electrons ingms in a triangular quantum d6t) with %w=3 meV for various
strongly deformed wirelike quantum dotsf. discussion of yaues of the magnetic field.

Fig. 10. Another feature common to almost all these systems

is that their classical counterpart is nondegenerate. The onbharge maxima at the corners of the triangle appears with a

exception is the four-electron system for elliptical dots withyisible delay and the localization of electrons along the sides

wy/ o, ratio corresponding to the zigzag classical configurais observed like in the three-electron system in the square

tion (cf. Fig. 6. We did not obtain level crossing for this quantum doicf. Fig. 16.

system, although for certain magnetic fields the excited odd- The three- and four-electron systems in the triangular dot,

parity state can closely approach the even ground state.  for which their classical lowest-energy configuration is non-
degenerate, do not exhibit any level crossings as function of

V. TRIANGULAR QUANTUM DOT the magnetic field, but the two-electron systéctassically

degeneratedoes. The crossing lowest-energy levels are pre-

The confinement potential for a triangular dot is takeh assented in Fig. 23. The electron systems in the triangular con-

finement potential do not possess a definite parity. However,
V(x,y)=3m* 0’(X*+y?)[1+2c0834)/7], (7))  (in the symmetric gaugethe Hamiltonian eigenfunctions

, , should also be eigenstates of the/3 rotation operator cor-
with w=3 meV. Classical three- and four-electron systems

in this potential are nondegenerate; the electrons occupy all 840
the corners of the triangle, and one of the electrons in the C
four-electron system resides in the center of the triaffyle.
On the other hand the classical two-electron system is three-
fold degenerate. The profile of the potential and the positions
of electrons in the degenerate two-electron classical configu-
rations are presented in Fig. 21.

The calculations were performed with 12 centers situated
at the circumference of an equilateral triangle with equal
spacing along its sides. For four electrons an additional 13th
center was introduced in the center of the triangle. As in the 6.0
preceding calculations, the size of the triangle was optimized
variationally. The obtained charge density is plotted in Fig. oY S IR AT MR
22. In systems of three and four electrons the magnetic field 10 15 20 25
induces the formation of single-electron islands around the BIT]
positions of classical electrons in the nondegenerate lowest- i 23, Two lowest-energy levels of a two-electron triangular

energy configurations. The clear localization of electrons folyyantum dot calculated with respect to the lowest Landau level. The

N=3 and 4 resembles the one for four-electrons in thansets present the charge density of the broken-symmetry solutions
square quantum ddtf. Fig. 16 as well as the plots foN  obtained for the subsequent energy-level crossings appearing at
=2 and 4 in the anisotropic confinement potential presente¢hagnetic fields 5.9, 12, 18.3, and 24.4 T, respectively. The bar in

in Fig. 4. On the other hand fdd=2 the formation of the the inset shows the length scale for the charge-density plots.

-40-20 0 20 40 -40-20 0 20 40 -40-20 0 20 40
x [nm] x [nm] x [nm]

7.5
36 nm
7.0F

E' [meV]

6.5

[&)]
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FIG. 24. Two lowest-energy levels of the two-electron system in
circular dot withZiw=3 meV calculated with respect to the lowest
Landau level. The numbers-(1, —3, —5, —7, and—9) give the
angular momenta of the two lowest-energy stdbed: units).

FIG. 25. Broken-symmetry charge densities of the superposition
of two lowest-energy states fdt=2 for a circular dot. Plot$éa—d
correspond to magnetic fields 6, 11.5, 17.5, and 25 T, respectively.

responding to eigenvalues equal to three complex cubic root@0se to the level crossings presented in Fig. 24. At the level
of 1. It may be expected that each level of the crossing pair§rossings the broken-symmetry states are exact ground
presented in Fig. 23 corresponds to a different eigenvaluestates. The corresponding charge densities shrink to pointlike
Similarly as in the dots studied in the preceding part of thedensity distributions with growing magnetic field. The modi-
paper the energy spacings between the two lowest levels efication of the phase afin Eq. (5) results in a rotation of the
hibit oscillations decreasing with the external field. FormulaProken-symmetry Wigner molecules, which can be pinned at
(5) still successfully produces the semiclassical charge@n arbitrary angle for a properly chosen phéisie s a strik-
density distributions. The insets of Fig. 23 show the plots ofing feature of the quantum superpositidfy. (5)] that for an

the broken-symmetry solutions drawn for the magnetic fieldgrbitrary magnetic field the exact ground state with circularly
corresponding to the level crossings. The presented charg&mmetric charge density can be reconstructed from the
densities correspond to the classical configuration marked byave functions of two broken-symmetry Wigner molecules
crosses in Fig. 21. We have verified that the other two semiPinned at any two different anglé¢sf. also the discussion in

classical distributions can be obtained by rotatiorw of Eq. ~ connection with Figs. 2@) and 2@d)].
(5) by 27/3 in the Gauss plane. The energy levels of the three- and four-electron system

(cf. Figs. 26 and 2i7exhibit the same qualitative behavior as
for N=2. The envelope of the lowest-energy-level separa-

VI. EXACT BROKEN-SYMMETRY STATES tion presented foN=2, 3, and 4 electrons in the insets of
FOR CIRCULAR DOTS Figs. 24, 26 and 27 exhibits very similar dependence on the

- . . magnetic field, however “the fr ncy” of th illa-
From the present findings for anisotropic dots we ma L agnetic field, however *the frequency” of these oscilla

g . ; .“Jtions grows fast with the number of electrons. The broken-
Wongler W_hether it is also possible to ob_tam the classica ymmetry charge densities in the neighborhood of the
configurations for circular dots. The classical electron sys-
tems in circular dots are infinitely degenerate with respect to
rotation over an arbitrary angle. From the point of view of 91—
the preceding discussion, the cylindrical symmetry of the
exact charge density can be considered as a superposition of
all classically degenerate configurations. Like most of the 18
classically degenerate systems discussed in this paper, the
electron systems in circular quantum dots exhibit level cross-
ings as function of the magnetic field.

The two lowest-energy levels of the two-electron circular
dot are displayed in Fig. 24. For an arbitrary magnetic field
the ground and the first excited states correspond to adjacent 16
magic angular momentégiven by numbers close to the

17

E'[meV]

curves in Fig. 24 The inset shows half of the energy spacing N=3 15 ]
between the lowest levels. The superposition of the two 15 é — '1'0' — '1'5' — '20
lowest-energy states calculated according to(Bpgive the B

; ) S ; . (7]
broken-symmetry semiclassical distributions which are dis-
played in Fig. 25. The magnetic fields chosen for Fig. 25 are FIG. 26. Same as Fig. 24 but fov=3.

125344-12



ANISOTROPIC QUANTUM DOTS: CORRESPONDENE. . . PHYSICAL REVIEW B 69, 125344 (2004

40
20
0

y [nm]
. yIm]

-20
-40

40
20
0

y [
yInm]

-20

-40

-40 20 0 20 40 -40 -20 O 20 40
x [nm] x [nm] 40 20 0 20 40 -40 20 0 20 40
X [nm] X [nm]

FIG. 27. Broken-symmetry charge densities o+ 3 for a cir-
cular dot. Plotga—d correspond to magnetic fields 4.9, 7.5, 15, and  FIG. 29. Broken-symmetry charge densities o+ 4 for a cir-
18.4 T, respectively. cular dot. Plot§a—0d correspond to magnetic fields 4.75, 6.5, 11.5,
and 16 T, respectively.

ground-state level crossings fbi=3 and 4 are displayed in
Figs. 27 and 29. The charge density presented in Fige)27 momentum eigenstates, since they form a complete basis.
has been obtained as a superposition of states with angulpfowever, a superposition of more than two states would
momenta—3#% and —6#A. The charge densities of these never give an exact value of the ground-state energy, since
states in the neighborhood of their energy-level crossingshe ground state in spin-polarized circular dots is at most
were shown in Fig. 11. twofold degenerate. The subsequent magic angular momenta
The present broken-symmetry charge densities, which argorrespond to states which exhibit ground-state level cross-
constructed from the superposition of the exact diagonalizai-ng (each of the crossing levels corresponds to the ground
tion solutions, are very similar to charge densities obtainggtate at its side of the level crossinghe level crossings

by the unrestricted Hartree-Fock method, e.g., compare Fig, oy the semiclassical laboratory-frame charge distribution

271\_/\ch Fig. 1:?[ ?f OFIQ'ef. 38. id insiaht into th bl to appear as a realizable feature of the exact ground state at
€ present finding prov eszgt_gzmsyg INto the probiemy, magnetic field corresponding to the crossing. We have to
of the magic angular momenta: A linear combination

of any pair of states with different angular momenta pro_note here that this conclusion has been reached for systems

duces a broken-symmetry charge density. The exception%oma'n'ng a small number of electrons and we cannot ex-

feature of the states with adjacent magic angular momenta | ude a different behavior for large.

that their superposition reproduces the semiclassical Char%eMse?:r_:ee:? %??L%aggﬁﬁnzﬁgf: Sgtzztt?anle:unin?grakg}q[he
density, which at the infinite magnetic-field limit tends to one Iectr{)n Wa\)é function after the MFI)DD deca yAIthouyh this
of the degenerate classm.al pomt-chgrge Q|str|but|ons: It I%ﬁect is a notorious artifact,it is generall y.believedg tf]at

obvious that any charge distribution, including the semiclas- ' 9 y

sical one, can be reproduced by a superposition of angulawere IS some deeper physics behind it. The exact sqlutlons
show a rapid increase of the electron-electron correlation af-

ter the MDD breakdown. This increase appears in the inner
BT T T coordinates and can be observed in the PCF fldtsFigs.
' 11, 12, and Ref. 30 Since the mean-field theories cannot
give a complete description of the inner-coordinate space,
they tend to account for the electron-electron correlation in
the externallaboratory frame of reference, which results in
the symmetry breaking.

The energy overestimates obtained with the broken-
symmetry solutions exhibit oscillations with amplitude de-
creasing with the magnetic field. The precision of the
ground-state energy estimates obtained by the HF wave func-
tion with semiclassical localizatidhalso possesses an oscil-
latory dependence on the magnetic field with minima at the
gl magnetic field corresponding to the exact ground-state trans-

5 10 15 20 . .
B[T] fqrmanpns. Contrary to the broken—symm_etry so_Iuthns ob-
tained in the present paper at the exact-diagonalization level
FIG. 28. Same as Fig. 24 but fot=4. the HF energy overestimates take on nonzero values at their
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minima?* The present paper shows that the fact that the HFhand, cusps related to spin or parity transformations should
broken-symmetry solutions overestimate the exact groundemain sharp.

state energy at the fields inducing its transformations is not Quantum Wigner molecules in anisotropic quantum dots
due to their broken symmetry, but to their mean-field charare related with the lowest-energy configurations of their
acter. The broken-symmetry states constructed from the dé&lassical counterparts. At high magnetic fields the quantum
generate exact solutions presented in this paper contain @arge density tends to simultaneously reproduce all the de-
complete description of the inner-coordinate space. Due t§enerate lowest-energy classical configurations. Classical de-
this fact they provide the exact ground-state energy for finitg€neracy occurs when the lowest-energy configuration is of a
values of the magnetic fields corresponding to the grounddifferent symmetry than the confinement potential. We found
state transformations. The HF broken-symmetry solutionﬂ.“at the quantum charge density is a superposition of all
account for the separation of the electron charges but the re ese degenerate classical configurations. Consequently, the

. : gquantum-mechanical charge-density reproduces the symme-
of the correlation effects, most probably the reaction of an[ry of the confinement potential. We conclude that the obser-

electron on the actual positions of th.e e'?CtFO”S inside th?/ation of Wigner crystallization through its charge-density
other charge puddies, is mlsse.d. Th|§ missing part Of.th istribution will be facilitated in low-symmetry quantum
correlat_lon is squeezed to zero in the !nfmlte magnetic fieldyots for which the symmetry of the classical configuration
for which th charge puddles shrink to point-chargecqnforms with the symmetry of the external potential, i.e., in
distributions systems which do not exhibit classical degeneracy.
Moreover, we have found a relation between the occur-
VIl. SUMMARY AND CONCLUSIONS rence of the magnetic-field-induced level crossings and clas-
We presented a detailed study of the magnetic—field—s’ical degeneracy. None of the studied quantum systems .With
induced Wigner crystallization of the two-, three-, and four_nondegengrate cla_ssmal counterpart exhibit suc;h Crossings.
electron spin-polarized systems in quantum dots. The obThe formation of ngn_er.phase mthesg systems is a continu-
tained results, although limited to small numbers of OUS Process. For majority of the studied quantum systems

electrons, cover several symmetries of the confinement pdlyl'[h degenerate classical counterparts these crossings are ob-

tential. We studied quantum dots of elliptical, square, trian-S€7v€d- The only exception is the four-electron system for

gular, and circular symmetry. In the present study, we devel(_alliptical dots for which the classical configuration has a zig-

oped a configuration-interaction scheme which was based offd form- We have shown that in the presence of the cross-

single-electron wave functions expanded in a multicenter ba!'9S @ superposition of the two lowest-energy states produces

sis. The method, verified for the well-known case of an iso-2 broken-symmetry state whose ch_arge _density reproduces
one of the degenerate classical configurations. These broken-

tropic harmonic-oscillator potential, can be applied to the d for th .
case of any smooth confinement potential with arbitrary?fymmetry states are exact ground states for the magnetic
Ids for which the crossings appear and for which the

symmetry. The arbitrariness in the choice of centers in basige d . fold d h d d
(3) allows us to achieve a high accuracy and flexibility of the3ro0und state is twofold degenerate. The ground-state degen-

present MCI method accompanied with its relatively simplee.racy allows the semiclassical broken-symmetry charge dis-
applicability to low-symmetry nanostructures. tr|b_ut|0n to b_e a realizable property of the quantum system.

We have studied the parity transformations in the spin-Th'S conclusion holds also for circular dots. The superposi-
polarized electron systems confined in elliptical quantumtlon of the adjacent magic-angular-momenta states allows the

dots and found anticrossings between the energy levels of tHner symmetry of the quantum system to appear in the labo-
same spatial symmetry. The experimental identificafigh ratory frame of reference.

of the magnetic-field-induced ground-state transformations
for the N-electron system in a cylindrical quantum dot is
based on detection of cusps of the chemical potential, i.e., This paper has been partly supported by the Polish Min-
the difference of the ground-state energy of theand N istry of Scientific Research and Information Technology in
—1 electron system. Based on the present results we expettte framework of the solicited grant PBZ-MIN-008/P03/
that the ellipsoidal deformation of the quantum dot potential2003, the Flemish Science FoundatigfWO-VI), the
results in a smoothening of the cusps of the charging 4ines Concerted Action progranflUAP), and the University of
corresponding to the ground-state transformations betweefintwerpen(VIS and GOA. One of us(B.S. was supported
states of the same spin and parity symmetry. On the othdsy the Foundation for Polish Scien¢ENP).
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