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Electric-field and exciton structure in CdSe nanocrystals
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Quantum Stark effect in semiconductor nanocrystals is theoretically investigated, using the effective mass
formalism within a 4<4 Baldereschi-Lipari Hamiltonian model for the hole states. General expressions are
reported for the hole eigenfunctions at zero electric field. Electron and hole single-particle energies as functions
of the electric field Eqp) are reported. Stark shift and binding energy of the excitonic levels are obtained by
full diagonalization of the correlated electron-hole Hamiltonian in presence of the external field. Particularly,
the structure of the lower excitonic states and their symmetry properties in CdSe nanocrystals are studied. It is
found that the dependence of the exciton binding energy upon the applied field is strongly reduced for small
guantum-dot radius. Optical selection rules for absorption and luminescence are obtained. The electric-field
induced quenching of the optical spectra as a functioE«g is studied in terms of the exciton dipole matrix
element. It is predicted that photoluminescence spectra present anomalous field dependence of the emission
lines. These results agree in magnitude with experimental observation and with the main features of photolu-
minescence experiments in nanostructures.
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[. INTRODUCTION QDr's in the strong confinement regime have been performed
in the framework of the parabolic mod®&!’ The simple
Semiconductor nanostructures under longitudinal electriparabolic model was able to provide a relative good picture
field produce pronounced effects on optical propertiédt  for the description of the electronic states in the conduction
has been shown that the field induces a red shift of the excband. This approximation breaks down for the calculation of
ton peaks in the photoluminescence and electro-optical spethe hole levels due to the fourfold degeneracy and the ad-
tra. The shift of the excitonic peaks to lower energy with themixture of the light- and heavy-hole bands present in the
increasing electric fields is known as quantum Stark effect|l-VI and IlI-V compounds with zinc-blende lattice structure.
while the reduction of the overlapping between the electronA reliable description of the energy-band dispersion is ruled
hole pair wave function by the field is related to quenchingby the Baldereschi-Lipari Hamiltonia. Within this ap-
of the fundamental transition in the luminescence spectrunproach, calculations of the influence of an external electric
Zero-dimensional systems as colloidal semiconductor quarfield Eqp were done in Ref. 19. However, this calculation
tum dots(QD’s) under electric fields are appropriate candi- presents several limitationdor a detailed discussion see
dates for several device applications, including optical comRef. 20. As is well known, the dependence of the interband
puting and fiber-optical communicatiofsee Ref. 8, and optical transitions upon the light frequendpbsorbed or
references therejnAlso, the microphotoluminescence spec- emitted reflects the structure of the conduction and valence
troscopic technique in single spherical QD’s has allowed tdands.
study fundamental issues of the excitonic stdtes. In this paper we study the excitonic Stark effect of spheri-
The electro-optical properties, the Stark shift, and the deeal QD’s taking into account the valence band admixture
pendence of the peak intensity in the optical spectra upon thesing the Baldereschi-Lipari Hamiltoniaf Supported by a
applied field should depend strongly upon the details of theigorous treatment of the exciton wave functions, we have
band structure. This was demonstrated for quantum wells iobtained the interband dipole matrix elements taking into
the 19803°%*?|t is interesting to investigate the analogous account the fundamental symmetry properties of the QD.
effects in QD’s, as the three-dimensiof®) confinement From the dipole matrix elements we have obtained the opti-
causes properties that are beyond the naive enhancementaaf selection rules that allow the identification of the exciton
the effects observed in quantum wells. For example, in QD’devels observed in absorption and luminescence experiments.
the band dispersion no longer exists, the energy spectrum /e present numerical calculations that reveal the combined
totally discrete and depends qualitatively upon the dot geomeffects of band admixture, Coulomb interaction, QD size,
etry. Moreover, the high surface to volume ratio originatesand electric-field intensity.
effects that are intrinsic to QD’s. Perhaps, the most spectacu- In Sec. Il we examine the energy dependence upgp
lar finding up to date is the discovery of high luminescencefor the electrons and holes in CdSe QD’s. Explicit analytical
in porous Si-> where QD's are believed to play an important solutions for the hole levels &#qp=0 are derived. The in-
role}* Other striking effects can be found in the dark mag-fluence of Coulomb correlation and valence-band coupling
netoexciton luminescendd,and the blinking and spectral on the quantum Stark effect is analyzed in Sec. Ill. Section
shifting of single QD luminescence under external electriclV is devoted to study the electric-field induced optical
fields® properties. The main results of the paper are summarized in
Calculations of the quantum Stark effect in sphericalSec. V.
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Il. SINGLE-PARTICLE STATES The electron states under external electric fields are found

by numerical diagonalization df . in the basis provided by

In the eff_ective mass approximation, the Sta'f" effect OnEq. (1). The matrix elements of the Stark term are provided
the electronic states at the bottom of the conduction band & the Appendix

be /r;:preser)tre]d By. pro?‘ucts %f ﬂES E’Ioijh (fjunctionsl For the hole states in the bottom of the valence band we
(r[1/253,) (with s being the conduction-band-edge angular, se the well-known Baldereschi-Lipari Hamiltont4R%3in
momentum ands,= +1/2) times envelope functions. The Iﬁ)resence of a constant electric field, that is,

later ones are obtained from the effective mass Hamiltonia

with a uniform electric field|e|Eqprcoss. Here, e is the M Bo o)
electron charge anBqp, is the electric-field intensity inside Hh_ZmO P §(P I |+ Va(r) e[ Eqpr cose.
the nanocrystal. At zero electric field, the envelope functions 2

take .the IormRm(r)Y,,z(a,go). Ry (r) are .the radial Wave y,(r) being the confinement potential for the valence band,
functions® and Y, (6,¢) are the spherical harmoni€s.  p(2) a3nd3@ are spherical tensors of Rank 2 built from linear
These states are in thes coupling scheme and have well- and angular momentum operatogs=2y,/y,, andy, and
defined values of the squared orbital and spin angular moy, are the Luttinger parameters of CdSe in the spherical
menta. Instead, we will use thef coupling scheme, where approximationy,= ;. The hole eigenfunctions at zero elec-
the states have well-defined totd=l+s) angular momen- tric field can be cast as

tum projectionz f, and square valug?f(f+1), that is,

(INLFF)= > > (K3/2LJ|FF,)R{(T)
(rIniffz)= 3 (1318 f)R(1)Y (6,0)(r]1125,), R R

(1) XYk (0,0)(r|3/2,,), )

where (31,s,/ff,) are the Clebsch-Gordan coefficients, where(r|3/2,]z>. are the hole Bloch functions of theg va-
=1,+s,, and|l —1/2|<f<I+1/2.2%If the hole states in the lence band with band-edge angular momentur 3/2.
valence bands are described by an spherical44k.p The hole Bloch funct!ons are related with the valence
Hamiltonian, thel-f coupling scheme for the electron wave €l€ctron  Bloch _ functions 9.3;) by _the rule RN
function is more convenient to build up the excitonic states=(—1)’%4J,—J,) (derived from the time-reversal opera-
in a spherical QD. The hole and electron states present tHén). Our Bloch functiong3/2,J,) have the following phase
same symmetry properties, allowing to use all inherent propconvention: [3/2,=3/2)= ¥ (i/\2) (X=iY)| =), and [3/2,
erties of the Clebsch-Gordan coefficiefits. +1/2)=(i/\/6)[2Z|+)F (X*iY)|+)]. The phase factors
Since thes,= +1/2 bands are uncoupled, the states de-of the above Bloch functions are implicit in the optical di-
scribed by Eq(1) have energiegy, | that are independent of pole matrix elements.
the quantum numberg f,. In the simulation of the real For F=1/2, according to the rule of the addition of two
electronic states, the confinement potential is chosen as @&igular momentall —3/2 <F<L+3/2, the states defined
spherical box with an effective radili&,;, which is greater in Eq. (3) reduce to two uncoupled states=1 (K=1) and
than the structural nanocrystal radiRsThis effective radius L =2 (K=2) which correspond t®,,, and D, states with
is introduced in order to take into account, approximatelyradial wave function®R{? (L=1,2). In this case the eigen-
the penetration of the electron wave function in the surroundfunctionsR&’f) fulfill two independent radial effective mass
ing medium. In our calculations, we determiRg; from the  equations with light hole effective masey,=mg/(y1
condition that the energy of the sl state E;, +2v,).
=ﬁ2772/2meR§f be equal to the energy calculated for a For F=3/2, the radial wave function@f\,F,)((r) are solu-
spherical well with depttV,=600 meV?® tions of the coupled differential equatiéiis®

d> 2d L(L+1)

) d®2 2L+5d (L+1)(L+3)
S 4 Wr,E) G, —

—(1+Cy)

—+

dr2  rdr (2 dr2 roodr r2 R(,\‘F’)L(r)}_O “
@ 2L+1d L(L+2) e 2 2d (L+2)(L+3) W E RGO (0]
I TR —(1+Cy) PR A (r,E)

whereW(r,E) =2mg[ Vi (r) — E]/%2y,.
The coefficientC,, C,, andC; are reported for several states in Refs. 18 and 29. Following the argument of Baldereschi
and Lipari, we have obtained the general expressions
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Cl(L,F)=,u,\E(_1)3/2+|_+;:
L L 2 2L(2L+1)(2L+2)
a2 20 oV

32 312 F (2L+3)(2L—-1) °’
(59
Ca(L,F)=py30(—1)%>+F
L+2 L 2] [(L+1)(L+2)
x 32 32 F 2L+3
(5b)
Cs(L,F)=Cq(L+2F)=—Cy(L,F). (50

The resultC;=—C; has been verified numerically. We also

found numerically thaC2+ C3=u? andC,/u>0.
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FIG. 1. Single-particle energies vs electric-field intensity. Note

In the case of abrupt infinite confinement potential, theihat £, =72/2m;R? depends upon the quasiparticle effective mass.

solutions of Eqs(4) are

_ i (VBKIIR)jL(K)
RE) (1) =A| j, (kr/R)— ) (63)
N,L( ju( jL(\/Ek)
R}, o(r)=—A[C1/C,+\[(C,/C)?+1]
. jL+2(\/[_3kr/R)jL+2(k)>
X\ jLsa(kr/R)— :
oK) i o(VBK)

(6b)

whereB=my, /my (Mp,=mg/(v1—27,)) is the heavy-hole
mass. The parametérfulfills the transcendental equation,

JiL(VBK)j L1 2(K)[C1/Cy+\(C1/C5)%+1]
=jL12(NBK)jL(K[C1/C,—(C1/C,)2+1],
(7

andA is a normalization constant, such that,

J (RUT(N2+R{) o)A rdr=1. (8)

The hole energies are equal By =7%2k?/2m;,,R?.

|F,| for each states are indicated and, as it can be seen, at
nonzero electric field the-|l,| and the+|F,| degeneracies
remain. For the electrons, due to the absence of Bloch-
envelopgspin-orbit-like coupling, there is an additional de-
generacy. Thus, the electron energy levels only depend upon
the modulus of the angular momentum projectjbh, being
degenerate in the spin projection. The results for the elec-
trons here shown reproduce those of Ref. 16. The light hole
energies, which correspond o= 1/2, are higher and are not
included in Fig. 1.

The hole Hamiltoniar(2) does not include band warping
terms that arise from the cubic symmetry of the nanocrystal
lattice. The cubic corrections are proportional to the cubic
coupling parametét 6= (y3— v,)/ y;. The Luttinger param-
eter v5 has not been determined for CdSe, but it has been
estimated as 0.5@Ref. 25 assuming that the ratig;/y, is
equal in CdTe and CdSe. Hence, a valte 0.066 is ob-
tained, which is one order of magnitude smaller than the
spherical coupling parametgr. Therefore, the cubic correc-
tions can be included using perturbation theory. For zinc-
blende semiconductors parity-breaking terms exist in prin-
ciple. However, this effect seems to be smaller and the
optical properties of acceptor levels have been explained
without considering them For zero electric field, the hole
statesP,,, and D, belong to the irreducible representations

As in the case of the conduction-band levels, the hold’¢ andI'; of the point grougly, respectively, whil&;, and
states under external electric field are found by numericaPs, states belong to the irreducible representatiogn
diagonalization of the HamiltoniaH, in the basis provided Hence, their energies do not split and the selection rules are
by Eq. (3). The matrix element of the Stark term are pro-not modified for these states. However, the energy values

vided in the Appendix.

shift in second order o, unless coupled quasidegenerate

Figure 1 shows the energy levels of electrons and holes aiates are presefit.This is the case of the coupled states
functions of the electric-field intensity. The energies are in2S;,— 1Ds,, Where the shift is first order id. For each

units of E,=%2/2m;R? (i=e,hh) and the electric-field in-
tensity is in units ofEy/|e|R. In this figure,R for the elec-

F>3/2, the eigenstates of the cubic Hamiltonian are formed
of linear combinations of states with differeft,. These

trons is the effective radius above introduced. The states dihear combinations transform according to the irreducible
zero field are indicated by the usual spectroscopy notationepresentations of 4 that are compatible with the represen-

NA, with A=SP,D,...(s,p,d,...) for the L

tation D¢ of the (3D) rotation groupO(3). Hence, the ana-

=0,1,2...(1=0,1,2...) hole (electron states. In the case lyzed level splits proportionally ta5 in several levels, ac-

of the hole energies, the quantum numbBaes indicated by a
subindex, that isNAg. In the figure the values df,| and

cording to the compatibility tables of groufig andO(3).%?

The optical selection rules are relaxed for these states and
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additional transitions should appear with low intensity. The ' '
effects of the cubic anisotropy has been studied numerically
for CdSe QD’s using the effective bond orbital metifdd,
which implicitly takes into account the lack of inversion
symmetry. It was shown that the spherical approximation is
very good, specially for large nanocrystals.

400

IIl. EXCITON STATES

—
[=]
[=]

The exciton Hamiltonian can be written as the sum of the

w
[=

Optical Dipole (Debyez)

electron and hole Hamiltonians plus the screened Coulomb 392 )

interactionV,_,= —e?/e|r,—ry|, € being the dielectric con- - == ]

stant. Excitonic states can be obtained using an expansion in 390 t L ]
a basis of electron-hole pair wave functions with well- . 100 200,300,400, , ]
defined total angular momentum squarM (M +1) and 0 100 200 300 400
projectionfi M, E,p, (kV/em)

FIG. 2. Energy levels vs electric field of the lower excitonic
states of a CdSe nanocrystal 2 nm in radius. The inset shows the
allowed optical dipole matrix elements squaresge Sec. Y. By
symmetry the component®,|? and|D,|? are equal.

W)= C./NNILfF;MM,),
a={n,N,I;’L,f,F,M,M}

9
where

degenerate. It is important to remark that the above descrip-
tion is valid for larger nanocrystals in the strong confinement
regime.

The dependence of the binding energy ugQy,, corre-
sponding to the | and Il exciton levels are shown in Fig. 3 for
several nanocrystal radii.

The energy levels witiv,=0, up to 100 meV above the
lowest exciton, are plotted in Fig. 4. The states are labeled by
the pure electron-hole pair contribution at zero field. Notably,

INNILEF;MM)= >, (FFf,F,IMM,)|nlff)®|NLFF,).
i (10)

It is important to remark that in Eq$9) and(10) the condi-
tion for the addition of two angular momenta for electrons
and holes|f—1/2<I<f+1/2 and |F—-3/2<L<F+3/2,
respectively, is implicit. The matrix elements of the Coulomb
interaction in the basi§9) are reported in Ref. 33. The ma-

trix elements of the Stark term are provided in the Append|x.no anticrossing behavior is observed in levels1S,, and

As the electric field is chosen along thaxis, the exciton 15-1Ps,, and there is a weak anticrossing betwesflDs,

the Hamitontan can be diagonalized independenty i cffer 10 1253 In the region 100-150 kvicm,. The anticross-
gona P yi ings should not be altered by the effect of the cubic terms in
ent M, subspaces. We have built thé, subspaces using as

basis all the possible electron-holes stdfé3 that fulfill the E:r;]imgc:e Hamiltonian, although  the absolute values wil
condition 2n;R?E/#2<90 (i = e,hh). With these criteria the '
dimensions of the diagonalized matrices are 532, 502, and

z

415 for|M,|=0, 1, and 2, respectively.

Figure 2 shows the structure of the lower exciton energy

level as a function of the applied electric fidig) in a CdSe
nanocrystal 2 nm in radius. The lower exciton at zero electri
field is eightfold degenerate: three states with=1 and five
states withM=2. All these states are originated from the

C

IV. FIELD-INDUCED OPTICAL PROPERTIES

In the optical experiments the intensity of the absorbed or
emitted light is proportional to the exciton oscillator strength
(squared absolute values of the dipole matrix element be-
tween the ground and excited states of the quantum toé

15-1Sy, electron-hole pairs. The electric field splits this field will modify the electron and hole wave functions which

level in two quartets: the lower or{é) belongs to states with
M, = i 1,22 while thg hlgh_er Ie!edll) in Fig. 2 gorregponds the expansion(9) for the lower excitonic states | and Il shown in
to exciton wave function with1,=0,0=1. The insetin Fig. -, 57 o e fielq intensitgp— 500 Kv/cm

2 displays the matrix elements of the dipole operator, which g QP '
determine the optical properties and will be discussed in the
following section. Table | illustrates the fraction contribution

TABLE I. Fraction of the dominanit! componentCy(M,)|? to

evel | 1l

|Cm(M,)|? of the dominant components in the expansion E—E, 390.7 meV 393.4 meV

(9) to the excitonic levels | and Il &op=500 kV/cm. It is |Cw(M,)|? fraction |Cw(M,)|? fraction
worth to note that the states wit¥l,= +1 are derived from M\M, (£2) (1) 0 0 (*1)
theM =1 and 2 zero-field exciton wave functions, which areo 0 0 0 0.01 0
coupled by the electric field through remote states. The fol4 0 0.74 0.02 0.96 0.25
lowing group of exciton levels arises from thes-1P;, 2 0.99 0.25 0.96 0.03 0.74
electron-hole pairs, with a splitting pattern similar to that of 3 0.01 0 0.02 0 0.01

the lower level. In general, all th®l,=0 levels are doubly
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140 T T T T TABLE Il. Parameters used in the calculations.
Level I

120 F 2 nm - - -_Le_ve_l ]E | Parameter Cdse
S Eg (eV) 1.841(Ref. 26
° 100 1 Me /Mg 0.13(Ref. 25
b Y1 1.66 (Ref. 25
2 Y2 0.41(Ref. 25
5 2myP? (eV)? 20 (Ref. 27
ks € 9.53 (Ref. 28
s Ve (eV) 0.6 (Ref. 25
M Vy, (eV) » (Ref. 29

3P = — (S| pyX)/my.

0 100 200 300 400
Ep(kV/em) vectors in the spherical representation. This accounts for the

optical selection rules in the dipole approximation: the only
FIG. 3. Exciton binding energy vs electric field for the levels | gptically active electron-hole pairs hai,=0,=1, andM

and Il shown in Fig. 2 for four QD radiug, 3, 4, and 5 nm =1. According to the results of Table I, the exciton level |

) , , i in Fig. 2 is optically active for light polarize@with electric
determine the exciton oscillator strength. As the field delo-

calizes the electrons and holes in opposite directions, in prin2®larization vectorg) along e or eAquwaIentIqu?MZ:ﬂ,
ciple, the allowed excitonic transitions should decrease as thehile the state Il is allowed fog||e,|ey o or &ledley - 1.
applied electric field increases. This is related to the quenchfhe corresponding squares of the dipole matrix elements
ing of the luminescence spectfa’® Moreover, the field |p —&, Dy of2 and|D, =&, Dy |2 for the states I and Ii
. . . z s X s
breaks the inner spherical symmetry of the dot and forbidden e shown in the inset of Fig. 2. Note that at zero electric
excitonic transitions should appear in the optical spectra fofqq the sum of|D,|2 over all M,==1 states equals to
X z -

large electric fields. 2 ) : 0
T_he opti.cal _matrix element of the dipole operator for thel[grfila;q_as required by the spherical symmetry of our Hamil
exciton(9) is given by Figure 5 shows the dependencd Bf|? upon the electric-
field intensity for the lower excitonic states with quantum
Dy = E Co(¥)*D, ., (11 numberM,=0 for CdSe nanocrystals of several radii. In the
a={n.NLLEFM M} inset we present the same results shown in the figure but
where G represents the nanocrystal ground state By rescaI%d according to the laws R{/R)|D,|* an;:i
—ile|#(a|p|G)/my(E,— Eg) are the dipole matrix elements (R/Ro)*Eqo, whereRo=2 nm. It can be noticed Eh3@2|
for the uncorrelated electron-hole paiss[Eq. (10)], which §cales almost &R, while tge electrlq field scales & °. The
are given in Ref. 33. These dipole matrix element are differ/Inear dependence 4b,|* uponR is a consequence of the
. . ~ Coulomb interaction, i.e., an excitonic effect. For sake of
ent froAm zeroﬂonly f?rl\/l =1 andAare Proportlonal By, comparison in the Fig. 5 the free-electron-hole calculations
WhereeMZ:o:eZ and eMZ:ﬂ:I(exiiey)/\/E are the unit

400
200 + 1s-2P,,1s-1F,, -
s 8 ‘/\\ 0t k-

1s-1P,,

300

l.——1s-1Dy,

150 o 250
s & £
5 g1 2 200,
& 100 g 150F oy, S
X 100 _oooooo%o 000000 ooooo%éaggxéii?f)oabop_giw 055‘6‘9(,\99320
20 A s "
S0¢ 40 A
0 I 1 I |
. . L L 0 100 200 300 400
0 100 200 300 400 E gy (kV/cm)

Eyp, (kV/em)
FIG. 5. Allowed dipole matrix elemeni®,|? of the lower ex-
FIG. 4. Exciton energies with quantum numbkt,=0 vs citonic states Il as function of the applied electric field for CdSe
electric-field intensity for a CdSe nanocrystal 4 nm in radius. nanocrystals of several radii.
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] 6, is strong at Eqp=0 and disappears atEgp
R=4nm ] ~180-220 kV/cm. The opposite can be argued for the
= 1s-1D5;, and 1s-1F, transitions, for which the dipole ma-
trix elements reach a maximum and at higher-field intensities
they have practical zero oscillator strength. Furthermore, the

300

‘“E 200 1 transition 1s-2S;, reappears at highdfqp .
2 ]
N_"N . V. DISCUSSION

_18—253/,_, 1S_]\~‘P3/3

,_.
=3
<

Our calculation reproduces the magnitude of the Stark
shift, which can be as large as 80 meV for internal field
intensity of 500 kV/cm in nanocrystals 4 nm in radius. This

0 : . . X
. . . . ] value agrees well in magnitude with the experimental obser-
0 100 200 300 400 vations of Ref. 8 if one considers that the maximum of the
E,p (kV/cm) optical gap indicates the zero of the internal electric field

under an applied external potential. The presence of an inter-
FIG. 6. Dipole matrix elemenfD,|* for a CdSe nanocrystal 4 nal electric field and other features of single-dot lumines-

nm in radius as function dEq for different excitonic states with  cence are currently attributed to trapped charges near the
angular momentum projectiod ,=0. surface of the nanocrystaf®—3°Large dipole moments for

the ground state and the lowest unoccupied molecular orbital
of |D,|? are shown by the triangles and circles for dot radiiin intrinsic CdSe nanocrystals were predicted by a set of
equal to 2 nm and 4 nm, respectively. As can be seen in theseudopotential calculatiof$,which can also account for
figure, the exciton effects are large, even for small radius ofhe linear Stark shift in single dots. This intrinsic dipole mo-
2 nm. This means that the usual strong confinement approximent is associated with the lack of inversion symmetry in
mation, where the Coulomb interaction is considered as awurtzite lattice and depends upon dot structural details and
small perturbation, breaks down for small CdSe nanocrysthe dielectric response of the surrounding medium. The same
tals. This effect can be explained due to the finite confinecalculation also reports null dipole moments for CdSe dots
ment barrier of the electron allowing the penetration of thewith zinc-blende structure, thus supporting our theoretical
exciton wave function in the surrounding medium. Also, Fig.model.
5 indicates that for small radius the optical dipole is not Our results are qualitatively similar to those of Fref.
qguenched, while for large radius the reduction in photolumi-41) for InP QD, with the exception of nonzero dipole mo-
nescence intensity should be significant. For example, for enent at zero field. Due to the inversion symmetry of our hole
field of 150 kV/cm the square dipole matrix element de-Hamiltonian(2), the hole eigenstates have definite parity and
creases approximately by 66% for a QD 50 A in radius,zero dipole moment. A finite dipole moment, caused by the
while for a QD of 20 A,|D,|? is almost a constant for the lack of inversion symmetry in the zinc-blende structure, can
range of the experimental values of the electric field that came obtained if a linear term ik is included in thek-p
be considered. The explanation of the above considered fe&tamiltonian (2). This effect is tiny in bulk semiconductors
tures lies in the interplay between the confined and electriand is usually neglected. In nanocrystals the dipole may arise
energies, i.e., the kinetic energy and the external potentigfom mixing of the hole statesS;;, and 1P5,. The amount
energy depend aR 2 and R, respectively. In Fig. 6, the of mixing depends upon the ratio of tkelinear term matrix
behavior of the oscillator strengt®,|* as a function 0Eq,  element (<1/R) to the energy separation of the level
is shown for several excitonic states with angular momentung=1/R?). Hence, the dipole should be small for small nanoc-
projectionM,=0. At Eqp=0 the exciton oscillator strength rystals with zinc-blende lattice. For large nanocrystals the
is diagonal and only transitions between electrons and holdsulk regime is approached and the linear terms are again
with Ssymmetry are allowed. The field breaks this selectiomegligible. Although it is not possible to predict with certi-
rule and transitions with different symmetry are allowed, i.e. tude the dipole behavior for intermediate dot sizes, its abso-
the electric field couples states withl #0 and the oscillator  lute value should not grow. This is consistent with the calcu-
strength becomes different from zero fer P, s—D, ... lations of Refs. 40 and 41.
electron-hole pair transitions. The mixing effect, due to An anomalous field dependence of emission lines of self-
Eqp. reduces the overlapping between electron and holessembled quantum ddSAQD) has been observed through
states withS symmetry, allowing other electron-hole transi- microphotoluminescence measureméntere certain tran-
tions. In Fig. 6, the transition st1S;, is the strongest one sitions lines of the luminescence spectrum disappear and re-
over the full range of electric-field intensity. For higher tran- appear as the electric field is tuned. This feature could not be
sitions, there are kinks at 300 and 480 kV/cm, which are duaccounted for using a 1D model of the quantum
to avoided crossings between higher levels, e.g., betweetpnfinement. The dipole matrix element of the state
1s-1Dy5 and Is-1F5;, at 300 kV/icm(see Fig. 4 Another  1s-2S;, (Fig. 6) displays that behavior, which could be a
interesting feature is the disappearance and the appearancepobperty of the 3D confinement. However, a detailed calcu-
several transitions as the field is tuned. For example, thé&tion with the SAQD symmetry is needed to test this hy-
dipole of the transition §-2S;,, shown as thick line in Fig. pothesis.
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— T T T T T The effect of the cubic terms depend upon the orientation of
the crystal axes relative to the electric fieldElf, is parallel
to a three-order axis, the symmetry is reducedQsg, .
Hence, the excitons witM,=0 andM,= =1 belong to the
I'y andT'; irreducible representations @f;,, respectively,

0 and are not modified by the symmetry reduction. Excitons

Absorption Spectrum
I R=4nm
¢, LEqp

100 E with higher|M,| can split and give rise to weak optical tran-

Z sitions. If the electric field is not oriented along a three-order

200 o axis, all the degeneracies are removed and additional

@ transitions should appear. However, as the cubic anisotropy

300 L; is induced fundamentally through the hole states, the split-

400 § tings and intensities of the extra lines should be extremely

e e e sl

R e e 500 The fine structure that we have revealed can be modified
1.860 1.880 1.900 1920 1.940 by other effects present in real nanocrystals, such as shape

asymmetry, crystal fieldin wurtzite nanocrystajs and the
electron-hole exchange interactibhThese effects lead to a

FIG. 7. Absorption spectra for a CdSe nanocrystal at differentsplitting pattern of the eight-fold lowest exciton into five
electric field intensities. The light wave vector and its polarizationlevels, which is combined with the electric-field-induced
g are perpendicular to the electric field. splitting. Nonadiabatic phonon-induced efféétand dielec-

tric  mismatch-induced modifications of the Coulomb

Let us consider two simple configurations for photolumi- interactiort® contribute also to the magnitude of the split-
nescence experiments. First, the emitted light, with waveings. For CdSe QD’s with wurtzite structure the relative
vector i, is recorded along thEqp direction and its polar-  orientation of the crystallographic axes and the external elec-
ization vector is parallel toe, , (that is,q e, Egp). Inthis tric field must have observable signatures in the optical spec-
case the dipole elemeid,=e,- Dy ¢ is not zero and, ac- tra. These effects may be stronger than those produced by the
cording to Table II, the states withl,=+1 of the lowest Cubic anisotropy. Since our approach ignores these effects
excitonic level are optically active. Photoluminescence specour discussion is approximate.
tra should provide the Stark splitting presented in Fig. 2. In summary, we have studied the influence of the electric
Second, the emitted light is observed perpendicular to théield on the electron and hole single-particle states in CdSe
field («eL Eqp). Here, we have two choices for the light po- nanocrystals, as well as on the exciton states and the optical
larization, (i) &|Eqp or (i) §LEqp. In the case(i), properties. We have described the electric-field-induced
Q||éz||éw|2=o and the emitted light corresponds to the exci-quenching of the absorption and luminescence spectra and
tonic state Il and the photoluminescence spectrum present§€ importance of the exciton effects. We have found that the
only one peak. In the configuratidii), both excitonic states Coulomb interaction has a large influence on the strength of
| and Il are activated and the Stark splitting of Fig. 2 appearsthe optical transitions, even for small quantum dots. This fact
The casdii) is illustrated in Fig. 7 for the absorption spectra is related to the penetration of electron wave function in the
of a single QD at different electric fields. In the figure, the embedding medium, that partially breaks the strong confine-
quenching of the absorption lines and the split of thement regime. Moreover, we have shown that for small QD’s
1s-1S;,, exciton peak as the electric field increases arghe dependence of the exciton binding energy upon the ap-
clearly observed. plied electric field is strongly reduced. For zero electric field

The above picture is slightly modified by the cubic anisot-we have reported very general expressions for the solutions
ropy. At zero electric field, the eightfold degenerate1lS;,,  of the 4<4 hole Hamiltonian in spherical QD’s.
excitons belong to the representatidng (M=1) andD,
(M=2) of groupO(3). It is remarkable that the Coulomb
interaction does not remove the degeneracpefandD,, , ACKNOWLEDGMENTS
and neither does it for higher levels. According to the com-
patibility tables for groupsO(3) and Ty4,%* D, =TI's and
D, =T'3+I'4. Hence, theM=1 triplet is not splitted. As
only I'5 is dipole allowed, the selection rud =1 remains
valid for the ground exciton state. Only exciton states
ns-NS;, belong toD; and are dipole allowed in the spheri-
cal approximation. The rest of the states, exageptN Py, The Stark term in the electron effective mass Hamiltonian
split in different levels that includ&'s and should produce is a component of an irreducible spherical tensor of Rank 1.
weak lines in the optical spectra. For nonzero electric fieldThe theorem of Wigner-Eckart and the reduction formulas
the O(3) symmetry is reduced t€.,,, and the irreducible for compound systems detailed in Ref. 24 allows us to write
representations correspond to the different value$Mf . the matrix elements as

Photon Energy (eV)

This work was patrtially supported by Alma Mater project
(Project No. 26-20000f Havana University.

APPENDIX: MATRIX ELEMENTS OF THE STARK TERM
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(n'1"f£}]|€|Egpreosf|niff,)=(— 1)1~ 32+ f|g|Eqp(2F + 1) (2f + 1)

f’ 1 f f’ f 1 " 1 |
)[ ]( ) (2|'+1)(2|+1)f R (DR ()3,

X
—f, 0 f,/|1 1" 12Jl0 0 O
(A1)
where the terms insidg} and () are Wigner’s §-and 3j symbols, respectively.
For the hole states we have found the expression
(N'L'F'F}|—|e|Eqpr cosb|NLFF,)=(—1)F ~F 32 F|e|Eop (2F '+ 1)(2F + 1)
F' 1 F F' F 1)|/K' 1 K
x| o >
-F, 0 F/gx K K 32f/{0 0 O
><\/(2K’+1)(2K+1)j RE L (NRE(rrédr. (A2)

For the exciton states we found the expression

(n'N'I"L"f'F’;M'M,||e|Eqp(recosfe—rncosty,)InNILFF; MM )
M 1 M
-M, 0 M,

=|eIEQD(—1)M'M£5MZ,M£( )\/(2M+l)(2M’+l)

, f" f 1)(M M 1
X1 SN OL L O pr(—1)FPMATH *1’2\/(2f’+1)(2f+1)(2I’+1)(2I+1)I ol f ¢ E

I 1 | )
X o o OH Rot (o) Rui(Fe)r3dre— 8y e 81 10 8¢ ¢ (— )M 132028 JOF 1) (2F + 1)
F' F 1)(M" M 1)/K' 1 K )
x T+ + RG k(T REX(ru)ridry .
K%, V(2K'+1)(2K 1)[ K K’ 3/2” B f]( 0 0 0)] ek (M) Rk (PR rRdry

(A3)
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