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Temperature-dependent effective-mass renormalization in two-dimensional electron systems
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We calculate, as a function of temperature and density, the electron-electron interaction induced quasiparticle
effective-mass renormalization in two-dimensional electron systems within the leading-order dynamically
screened Coulomb interaction expansion. We find an unexpected nonanalyticity and nonmonotonicity in the
temperature-dependent effective mass with the renormalized mass linearly increasing with temperature at low
temperatures for all densities.
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[. INTRODUCTION effective-mass renormalization scales with (small and
larger, respectively, corresponding to weakly and strongly
A key insight of the Landau Fermi-liquid theory is that interacting electron system®ne expects interesting and im-
interactions in a Fermi system lead to the renormalization oportant many-body quasiparticle renormalization in 2DES,
the single-particle fermion mass giving rise to “quasiparti- particularly at large 5. It is therefore not surprising that the
cles” with renormalized effective mass whose low-energyissue of the effective-mass renormalization in 2DES has been
behavior is qualitatively similar to the corresponding nonin-extensively  studied, both experimentdlly and
teracting free particles? Then, various single particles’ theoretically~° over the last 30 years. All these theoretical
properties, e.g., specific heat, density of states, etc., in thgtudies of quasiparticle mass renormalization have, however,
interacting Fermi system are simply given, at least in thebeen restricted td@ =0 both in the 2D(Refs. 5-9 and 3D
leading-order theory, by replacing the bdre., “free par- (Ref. 10 system. While this zero-temperature restriction
ticle”) massm by the corresponding renormalized effective makes perfect sense in 3D systems where the relevant Fermi
massm*. In this paper we present, to our knowledge, thetemperaturel = Er /kg (defining the temperature scale for
very first microscopic calculation of thetemperature- the electron systejris extremely high Te~10* K in met-
dependenteffective-mass renormalization in an interacting als), it makes little sense for extremely low density 2DES of
two-dimensional electron syste(@DES, finding in the pro-  current interest **whereTe<1 K, makingT/Tg~1 in the
cess an unexpected nonanalytic and nonmonotonic behaviexperimental temperature range. The temperatuyssd
of the effective mass™* (T) as a function of temperature in density) dependent effective-mass renormalization calcula-
the 2DES. In particulann* (T) first increases linearly with tion presented in this paper therefore takes on additional sig-
temperature in a 2DES reaching a density-dependent maxiificance because a number of recent experiments have re-
mum aroundT/T=<0.1-0.5, wherd is the noninteracting ported large 2D effective-mass renormalization® at low
Fermi temperature, after which it decreases with increasingensities and low temperatures. We note in this context that
temperature. This nonmonotonic behavior, in particular thehe 2D effective-mass renormalization*/m in our finite-
temperature induced enhancement of the 2DES quasipartictemperature many-body theory is a function of two dimen-
effective mass at low temperatures, is entirely unexpectedionless parameters, («xn~*?) and T/Tz (<n~?!, since
because the naive expectation is that quantum many-bodiTe=7A%n/m in 2DES, which are howevemot com-
electron-electron interaction effects(underlying the pletely independent of each oth@ince they both depend on
effective-mass renormalization phenomenoshould de- the electron densily—in particular, T/Te~r2 for a fixed
crease with increasing temperature since the hightemperature and changing density.
temperature system is necessarily a classical system. The The structure of this paper goes as following: In Sec. Il
nonanalytic lineaif dependence ain* (T) is also quite un- we present the theory for our effective-mass calculation. In
expected since the usual fermionic Sommerfeld thermal exSec. Il we provide our numerical results of our calculated
pansion always results in a quadratic temperature correctiogffective mass as a function of and T. In Sec. IV we
Our work is partially motivated by the great deal of recentpresent the analytical results for effective mass inrtjre1
activity in semiconductor-based 2DES, e.g., Si inversion layand T/Te<1 limit. We conclude in Sec. V with a brief dis-
ers, GaAs heterostructures, and quantum wells, etc., wheggssion.
the 2D carrier density can be vari¢by tuning an external
gate voltagg modifying the strength of the electron-electron
interaction usually measurk@iby the dimensionless param-
eterr,=me?/(#%\/7n) with n being the 2D carrier density ~ We consider a 2DES interacting via the long-range Cou-
and m the bare(i.e., band mass. Ther parameterin 3D lomb interaction. The effective-mass renormalization is mi-
metals(defined with respect to 3D densitjds typically 3—5  croscopically calculatédrom the electron self-energy func-
whereas in semiconductor 2DES could vary from 1(or  tion %(k,i»,) defined at the Matsubara imaginary frequency
lesg to 20 (or highey, depending on the specific semicon- iv; and 2D wave vectok. To calculate the electron self-
ductor system and carrier density being studied. Since thenergy, we make the well-knownGW"’
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Equation(6) is exact, while ourGW approximation is the
@ = first-order perturbation expansion in the dynamically
screened interaction. There has been much discussion on
whether one should use exact Ef) for the effective mass
________ O or the so-called on-shell approximation, keeping only first-
_|_ +O O+ +0% order interaction terms by taking the first-order iteration of
: ; : ; : : Eq. (6):
FIG. 1. The Feynman diagram for the self-energy. The circles

are polarization bubbles, the dashed lines the Coulomb interaction, E =&+ Rex(k,&y). (7)
and the solid lines the electron Green'’s function.

The on-shell approximation is expected to be more accurate
within the GW scheme as it effectively accounts for some
vertex corrections and obeys the Ward identities. This ap-
proach has previously been used in @&ef. 5 and 3D(Ref.
10) zero-temperature effective-mass calculations, and is re-
42 Vv 1 garded to be better than solving the full Dyson equaj®Baq.

4 q (6) abovd. The two approaches are identical in the high-
(2m)2 “on €Qiwn) ivFiog—& density limitrs<1. Forrg>1, they give qualitatively simi-

(1) lar but quantitatively different results. The effective mass can

then be derived from the relation mf
= (k™ *dEc/dK)|,-\., remembering that the bare band mass

approximation'®*of a leading-order expansion in the dy-
namically screened Coulomb interacti@he corresponding
Feynman diagram for the self-energy is shown in Fig. 1
obtaining =1 throughout

E(k,im):—f

wherqu=27re2/q is the 2D bare Coulomb potentialy,
=i(21+1)7kgT andiw,=i2nwkgT are the usual fermion/ o 71
boson odd/even Matsubara frequenciés i integers, & M is given by Im= (k™ “déy/dk) |k
=k?/(2m)—pu, u the chemical potential, ané(k,iw,) is
the random-phase approximati@RPA) dynamical dielectric

* -1
function, given by the sum of the polarization bubble dia- m_: 1+ TiReE(k,gk) , 8
grams: m k dk K=k
' =
e(kiiwn)=1=Vell(k,iwn), @ where kg is the Fermi momentum for the noninteracting
with TI(K,i w,) being the electronic 2D polarizability. Within 2DES.
RPA, we have We use three different techniques in calculating the self-
energy: frequency sum, frequency integration, and plasmon-
_ d’q Ne(€q) —NE(Eq—k) pole approximation. The first two techniques are equivalent
H(k,lwn)ZZJ S - (3)  to each other, and correspond to different ways of doing the
(27) gq quk""wn

analytic continuation of the imaginary frequency self-energy.
whereng(x) = 1/(e¥'T+ 1) is the Fermi distribution function. TNe frequency sum technique is explained in Ref. 15, and the

The form of retarded polarizabilityT(k,w)=TI(k,i w, frequency integration technique, also called spectral repre-
— w+i0") has been provided by previous workt zero sentation, in Ref. 2. In the frequency sum method, the re-

temperature: tarded self-energy is given by
- omoom? \/ k>\? 2uk® d2q
ok ) == T+ Tl V| @t 5] Rez<k,w>=—f(2—)2vqnp<§qk>
o
k2 2 2 k2
—\/ w——) - J. (4) d’q 1
2m 2m —f V¢R -1
, , . . (2m)? €(0,éq-k— @)
where u is the chemical potential. The finite-temperature
form of retarded polarizability can obtained from H4) by X[Ng(€g—k— @) +Ne(&q-1)]
2
=, Tg(k,@,u') _f da _r
M(k,o,:) = | “d i om 2 Vi gy L
4T cos ( oT ) L
o (o) ©
The quasiparticle energl, is obtained from the Dyson ton=(§g-k—®)
equation using the analytically continued retarded self-
energy= (K,iv,—o+i0")=3(k,w): whereng(x)=1/(e“T—1) is the Bose distribution function.
For the frequency integration method, the retarded self-
E =&+ Re2(k,Ep). (6) energy is
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d2 d? T
ReZ(k,w)Z—fﬁanF(qu)_ (2:)2
dv 1 ng(v)+ne(éq-k) S
szwzvq'me(q,w PR —y g
(10

The plasmon-pole approximatiotPPA) is a simpler
techniqué®’ for carrying out the frequency sum in the
RPA self-energy calculation by using a spectral doke, aé
function) ansatz for the dynamical dielectric function
e(k,w):

Ime 3k, 0)=Cl (w—w)— dw+w)l2, (11 1 & % % B8 7 B & B0

where the spectral weigt@, and the polew, of the PPA FIG. 2. Calculatedr=0 effective mass as a function of in a
propagator in Eq(11) are determined by using the Kramers- 2DES in the highr region.

Kronig relation(i.e., causality and thef-sum rule(i.e., cur-

rent conservation We mention that, in Eq. (11) doesnot ~ @greement, we will only show here our effective-mass results
correspond to the real plasmon dispersion in the 2DES, bu#Sing RPA frequency sum method for the sake of brevity.
simulates the whole excitation spectra of the system behav-

ing as an effective plasmon at low momentum and as the IIl. NUMERICAL RESULTS
single-particle electron-hole excitation at large momentum,
as constrained by the Kramers-Kig relation and thé-sum First, we present our extreme low-temperature 2D result

rule. Details on the PPA are available in literatbt@jnclud-  (T/Te=~10 %) in Figs. 2 and 3, to be compared with the

ing the finite-temperature generalizattfnThe PPA, which  existing T=0 2D results,”® for m*(rg) in the rg=0—10

is knowrf1®17to give results close to the full RPA calcula- range, showing that the effective-mass renormalization could

tion of self-energy, allows a trivial carrying out of the fre- be almost as large as 5 for dilutg~10 2DES. We empha-

quency sum in the retarded self-energy function leading to size that the results presented in Figs. 2 and 3 based on the
T—0 limit of our finite-temperature theory are gquantita-

2q tive agreement with the existing=0 2D RPA effective-
ReX(k,w)=— J —— Vgne(&g-1) mass calculatioswhich were, however, restricted to thg
271_)2 .
( (<5) regime.
42 T+ In Fig. 4 we show our calculated 2D* (T) as a function
_J _qv nEiwq) NE(q-1) of T/Tg for different values of the 2D interaction parameter
(2m)2 a-a wq— (€q-k— ) rs (=1-10). Figure 5 shows the effective-mass temperature

dependence at high densities. In the low-temperature region

. nB(—;q)ﬁLnF(éqk)] (12 the effective-mass first rises to some maximum, and then
wq+(§q—k_w) 114
We calculate the self-energy by carrying out the 2D mo- 112k

mentum integrationEgs. (9), (10), and(12)] as well as the £
frequency suniEqg. (9)] and the frequency integriEq. (10)] 3 O1AF
in order to obtain the quasiparticle effective-mégs. (8)]. &
We emphasize that our reason for carrying out our calcula-  '-98f
tion of the electron self-energy by three different techniques
(RPA frequency sum and integration, and PR&to com-
pletely ensure the numerical accuracy of the calculated 104}
temperature-dependent effective-mass by comparing the con-
sistency among the three sets of results. This is particularly  1.02f
significant since there is no existing temperature-dependent
effective-mass calculation in the literature for us to compare
with. The fact that our three sets of results are consistent with i ’ ; ; i
each othefand we reproduce the existiig T=0 effective- 0 02 04 , 06 08 1
mass results from our finite-temperature theopyovides s

compelling support for our conclusions in this paper. Since FIG. 3. Calculatedi =0 effective mass as a function of in a
our results obtained in the three techniques are in goodDES in the lowr region.

1.06f
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FIG. 6. Calculatedn*/m at fixed values of temperatureBis in

FIG. 4. Calculated 2D effective mass as a functiorT6f ¢ for the units of Tp atrg=1.
different highrg values:r¢=10—1 from top to bottom. Note that
Texrg 2, making the absolute temperature scale lower for higher
values. corresponding/Tg values become large enougfihis non-
monotonic behavior om* (rg) as a function of ¢ for fixed
decreases as temperature increases. This peculiar behaviof§§'Peratures showing a tempe*rature-dependent maximum
present at all densities. The nonmonotonic trend is systenfWith the value ofr at which them* peak occurs decreasing
atic, and the value of/Tr where the effective mass peaks With increasingT as in Fig. § is complementary to the non-
=< I .
increases with increasing. The initial increase ofn* (T) is ~ Monotonicity ofm*(T) in Fig. 4 as a function off/Tg (at
linear inT/Te asT—0, and the slope(m*/m)/d(T/Tg) is  fixedrs) and arises from the relationship between the dimen-
’ . . . _ / .
almost independent aof for very smallrg (<1), but in-  Sionless variable$/Te (“rs_z) andfs_(_“TFlz) due to their
creases with ¢ for largerr values. We mention that we get deqel?dence on the carrier densitye., Trxn and ry
somewhat stronger temperature dependefice, larger >N 2)-_ _ o
dm*/dT) in our PPA calculatiorinot shown here One immediate consequence of our results shown in Figs.
In Fig. 6 we show the dependence of the effective-mas4 and 6 is thatm*(T/Tg,r)=m*(T,n) in 2DES could
renormalization as a function of the interaction parameger Show a strong enhancement at Ighwt finite) temperatures
for a few values offixed temperature(rather than fixed and low electron densitiedarge rs). Comparing with the
T/Te, remembering thatTeecr_ 2 since Texn and r actual system parameters for 2D electrons in Si inversion
L5y Ty for lues is qure  layerstand GaAs h fégand taking i
«n~Y?). The calculatedn* (r) for fixed T values is quite '2Yers™and GaAs heterostructu ign taking into ac-
striking: For low fixed values of, m*/m initially increases count the quasi-2D form factor effectsieglected in our
with r . even faster than the correspondifig O result, even- strictly 2D calculation we find that, consistent with recent

tually decreasing withr g at large enough valugsvhere the experimental finding&;~* our theoretical calculations pre-
dict (according to Figs. 4 and 6 as modified by subband form

factory m*/m to be enhanced by a factor of 2—4 for the
=10 experimental densities and temperatures used in recent

i 78, measurements® Due to the approximate nature of our
£ /’//_\09 theory we do not further pursue the comparison with experi-
E 1.1 /\ ' mental data in this paper leaving that for a future study.

1.14r

07 IV. ANALYTICAL RESULTS IN  r¢<1, T/Tg<1 LIMIT
(p——— s . . .

0.6 We have also carried out an analytic calculation of the
1.o4-""""’_"—_—\0‘,5 temperature-dependent 2D effective-mass in the leading-

- ' order dynamically screened interaction. This turns out to be
1-02/—\0-4 an extremely difficult task due to the highly complicated

i 03 nonanalytic structure of the integrand in Ed), or equiva-
— 02 lently Egs.(9) or (10). It is only possible to carry out our
0.98 : 0.1 analytical work in the high-densityr (<1), low-temperature
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(T/Te<1) limit. It is well established that at zero tempera-

ture one can do ang expansion for the quasiparticle self-
FIG. 5. Calculated 2D effective mass as a functiorT 6T for energy in the <1 limit since the leading-order contribution

different lowr g values:r¢=1—0.1 from top to bottom. in rg comes only from the ring diagrams, which are exactly
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what we calculated in our theol¥ig. 1). In this sense, RPA  must be nonmonotonic with a peak somewhere at an inter-
is exactin the high-density limit, and one can calculate anmediate temperature as shown in Fig. 4. We point out, how-
exact quasiparticle effective-mass from the diagrams of Figever, that this nonmonotonicity would not be easy to observe
1 in therg—0 limit. In the current work we carry out an experimentally since the quasiparticle is unlikely to be well
exact expansion in the;,—0 andT/Tg—0 limit. At finite defined at finite values of/Tg (~0.2—0.8) where the peak
temperatures, our analysis shows that it is valid to expandf m* (T) lies. On the other hand, it should be possible to
self-energy and effective-mass m, and T/Tg in the rg  experimentally verify our predicted nonanalytic linearTin
<1, TITe<1 region. Again we prove that the leading-order enhancement of the quasiparticle effective-mass at low
contribution inrg and T/Tg also only comes from the ring T/Tg.
diagrams, and therefore RPA rema@sactin this limit. Out Finally, we comment on the approximations used in our
calculation shows that calculation. First, our theory leaves out quasi-2D form factor
5 (and related solid-state physjadffects which are straightfor-
m—*—A(r VL B(r )(l) Lery T In(TF 13 ward to includé by appropriately modifying the bare inter-
m S S\ Te S\ Te ' actionV in the theory, and would not lead to any qualitative
changes in the resultdut would reduce the magnitude of
the mass renormalization by a factor of 1.2—2 depending on
the electron densily Second(and more importantly our
use of the leading-orde&W-RPA approximation, which is
exact only in the high-densityr {<1) limit, is open to ques-
tion. Although we believe that at finite temperatures the
%G W-RPA approximation becomes more accurpa@ed our
quasiparticle energy calculation of E@) approximately in-
corporates some vertex corrections going beyond the
leading-order expansion in the dynamically screened
thteractior'%), our principal rationale for carrying out the

T

whereA(rg), B(rg), andC(rg) are functions independent of
temperature, an8(rg)~By>0 andC(r¢)<O0 for rg<1.

In Eq. (13) the first termA(r) is responsible for the non-
monotonic behavior of; dependence ah* at zero tempera-
ture, i.e., whenT=0, r <1, effective-mass first deceases
with increasingrg, and then increases. This corresponds t
our zero-temperature effective-mass curve as a functiog of
in r¢<1 region, which is shown in Fig. 3. We mention here
that this nonmonotonic zero-temperaturgdependence of
the effective mass has already been found by previou

5-9
WO;_'?]S' q in Eq13 for the leadi GW-RPA many-body calculation is thds) it is the only

e second term in Eq13) accounts for the leading- gy qtematicmany-body perturbative calculation that is fea-
order temperature correction to the effective-mass, which iSible for interacting quantum Coulomb systems: &l
of more interest to us. Our analytical calculation shows tha PA, while being exact only in the weakly interr;mctimg
B(rg)~Bo>0 for r5.<1’. ensuring that'the Ieadlng-grder <1 limit, is known to produce qualitatively reasonable re-
temperature correction, in agreement with our numerical €3 .lts even in the strongly interacting.& 1) regime, as dem-

sults, enhances the effective-mass renormalization in a “ne%rnstrated by the agreement between RPA and experiments in
manner asT—0. Moreover, the linear temperature coeffi- 55" iais f.~3-5) and in 2D semiconductor systents (
S

cient is independent of; asr <1 is also in good agreement ~1-10). The fact that our predicted nonanalytic low-

with our numerical results in this region, as shown in Fig. 5temperature many-body enhancement of effective mass sys-

an?_r?lscuts)lsedd]n Stec. . t i h th th't matically persists to the;<1 regime shows the generic
€ subleading temperature correction, Snown as the thir alidity of our results. In addition, RPA self-energy calcula-

term in Eq.(13), is negative. This correction, combining with ion should become more accuraterasncreasedi.e., de-

the leading-order linear temperature correction, produces tht(,ereasing densifyfor a fixed nonzerd™ because RPA is exact
peak in the effective-mass temperature dependence. Théﬁ any density fof/Te> 1
F .

again agrees qualitatively very well with our numerical find- In this context we emphasize that the RPA self-energy

INgs .ther5<1’.T(TF<l region as shown in Fig. S. O.f calculation(i.e., our effective-mass calculation based on the
course it is very difficult to determine whether the Sumeadmgdiagrams of Fig. 1is an expansion in the dynamically

tempgrgture correctpn g or T?nT depe_ndence JUSt by screened Coulomb interaction which becomes equivalent to
examining the numerl_cal results, but the sign of this correcy, expansion i only in ther—0 limit. The RPA self-
tion is certainly negative. energy at arbitrary ;¢ may not be an expansion ing at all,

but in some other effective parameters. Even in the high-
densityr,—0 limit, the effective expansion parameter turns

Our most important result is the unanticipated nonanalytiut to bers/y wherey is a number of order 15) in three-
linearT enhancement of the quasiparticle effective mass attwo) dimensional systems.
low T/Tg and for all densities. This result transcends our
specific GW approximation scheme since it persists fqQr
<1 where our approximation is exact. Since all quantum
many-body renormalizations must vanish in the classical This work was supported by NSF-ECS, ONR, DARPA,
high-temperature limit, it follows rigorously thamn*(T) and LPS.

V. CONCLUSION
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